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THE STEFAN PROBLEM WITH HEATING:

APPEARANCE AND DISAPPEARANCE OF A MUSHY REGION
BY

M. BERTSCH, P. DE MOTTONI and l. A. PELETIER

Abstract. We consider a material which is initially in the solid state and then, due

to heating, starts to melt. We describe the appearance of a so-called mushy region,

i.e., a region in which the material is in neither a solid nor a liquid state. The main

result is that after a finite time the mushy region has disappeared and only the solid

and the liquid phases have remained.

1. Introduction. In this paper we study the problem

(u, = (4>(u))xx+f(u) in(0,l)xR+,

(I) U(u)(0,t)=(<t>(u))x(l,t) = 0    inR\

\u(x,0) = u0(x) in [0,1],

in which the functions <i>, /, and u0 satisfy

HI. </> is locally Lipschitz continuous and nondecreasing on R, <#>(0) = 0 and for

some 0 < a < ß < oo,

<i> g Cl(R\(a,ß))       and        <¡>' > 0    onR\(a,ß),

<j> = a>(a) = <t>(ß)    on[a,ß].

For convenience we choose <j>(ot) = 1.

H2. / is locally Lipschitz continuous and positive on R+.

H3. w0 g L°°(0,1), ||m0|Ioo < a and wo is nondecreasing.

H4. <f>, / and u0 are such that the associated stationary problem

(<t>(v))" + f(v) = 0   on (0,1),

\4>(v)(0) = (<*>(»))'(!) = 0

has a solution w, which is minimal in the set (w > u0}, and <j>(w)(l) > 1. In

addition, u0 is a subsolution of Problem II.

Hypotheses H1-H4 will be assumed throughout the paper; we shall refer to them

collectively as hypothesis H.

More general versions of Problem I, all having in common that <j>' vanishes on an

interval, have been considered in a previous paper [3]. Existence, uniqueness and

regularity properties of solutions were established there, and many references were

given.
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The connection of Problem I with the Stefan problem was also discussed in [3].

Then the function u represents the enthalpy, <$>(u) the temperature and $(u) = 1 is

the melting temperature of the material. If <j>(u) < 1, the material is in the solid

phase; and if <j>(u) > 1, it is in the liquid phase. The two phases are separated by a

set J( in which <¿>(m) = 1. The interior JÍ of Jt', if it is not empty, is usually

referred to as the mushy region.

Let

Jf(t) = [x g [0,1]: (x,t) g^}

and let Ji't) be defined similarly.

In the absence of interior heating (/ = 0) it has been known for some time [4, 7]

that

Jf(0) = 0 =>J((t) = 0    Vr > 0.

In [3, 6] it was shown that if the boundary condition at x = 1 is replaced by

$(w)(l, t) = A > 1, then, for any—quite general—initial enthalpy profile u0, there

exists a time T0 such that

Jf(t) = 0    \/t> T0.

Thus, in this case, mushy regions disappear in finite time.

If there is interior heating (/ > 0), the situation is quite different. If an initially

solid material is heated, and the heating is so strong that it results in melting of parts

of the material, then, as was shown in [3], a mushy region emerges; i.e., there exists a

time Tf > 0 such that

J((t) =0    forO < t < Tf

and

Jf(t) #0    for Tf < t < Tf + t,

and a lower bound for t g R+ can be given.

Numerical work of Atthey [2] and an example studied analytically by Ughi [8]

suggest that the set J( does not extend indefinitely into the future, but that there

exists a time T* such that

Jf(t) =0    Vf > T*;

i.e., the mushy region disappears again in finite time. A conjecture to this effect was

already made in [3].

The object of this paper is to prove this conjecture for solutions of Problem I with

functions <j>, f and u0 satisfying hypothesis H. The source function / and the initial

profile u0 are so chosen that u(x, t) is increasing in ; and in x, and that at x = 1

the medium passes in time from solid to mush and then to liquid. Thus, interfaces

appear at x = 1 — first between solid and mush, and then between mush and liquid

—which recede monotonically towards x = 0. This leads to the situation sketched in

Figure 1.
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Figure 1. Disappearance of J(

While proving the conjecture we also prove that these solid/mush and mush/liquid

interfaces are continuous, and that the function u(-,t) is continuous across the

solid-mush interface (but not across the mush-liquid interface). The fact that this

interface is receding plays a crucial role here. In [3] examples were given which show

that u(-,t) need not be continuous when the solid/mush interface advances.

In the following we shall borrow some of the terminology of the literature on the

Stefan problem and call

Sf:= {(x,t) g [0,1] XR+: $(u)(x,t) < 1}

the solid region,

&:= {(x,t) g [0,1] X R + : <¡>(u)(x,t) > 1}

the liquid region, and the interior J( of the set

M:= {(x,t) g [0,1] X R+: <b(u)(x,t) = 1}

the mushy region.

In view of the degeneracy of the equation in Problem I, we need to define

solutions in a weak sense. For convenience we write

n = (0,l),        QT=ax(0,T],        Q = fi X R + .

Definition 1.1. A (weak) solution u(t) of Problem I on [Q,T] is a function

u: [0, T] -* L1(Q) with the properties

(i) ueC([0,T];l}(Q))nL<»(QT);

(ii) f u(t)^(t)- f «„«HO)-/' / («*, + *(«)*„+/(«)*) = 0

for all t G [0, T] and all ^ G C2l(QT), i> > 0, xp = 0 at x = 0 and ^x = 0 at x = 1.

A solution on [0, oo) is a solution on [0, T] for every T > 0. A sub(super) solution

is defined by (i) and (ii) with equality replaced by  <  (>)■

A (weak) solution (respectively sub- and supersolution) of the associated stationary

problem is defined in an analogous way.

To study the qualitative behaviour of weak solutions, we shall frequently employ

comparison arguments, using a family of sub- and supersolutions, specifically

tailored to this problem.
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Because w0 is nondecreasing, we find that at any time t > 0, the temperature

profile d>(u)(-,t) is nondecreasing, and thus proceeding from x = 0 to x = 1, one

may pass from solid to mush and from mush to liquid, but not from mush back to

solid. Thus we are led to introduce the following family of classical sub- and

supersolutions: given 0 < ts < t, < T, we introduce two functions

o:[rs,T]^[0,l],        X: [r„T] - [0,1]

with o(t5) = X(t¡) = 1 (the solid/mush and the mush/liquid interfaces), and we

define the sets

SfT:= {(x,t) G 0r: r < tv} u{(x,t) g Qt: 0 ^ x < o(t), rs ^ t ^ T),

£CT:= {(x,t) g QT: X(t) < x < 1, r, < t < T),

JiT-- {(x,t) g QT: a(t) < x < 1, ts < t < t,}

u{(x,t)^QT:a(t)^x^X(t),rl^t^T}.

t

T

0 1   x

Figure 2. The sets £fT, =S?r and MT

Definition 1.2. A triple (u, a, X) is a classical subsolution of Problem I on [0, T] if

(i) u g Cll(yr U ST\ a g C1«^, T]) n Car,, T]), X g C1«^, T]) n C([t„ 7])

and the limits

u(a(t) + ,t):=    lim   u(x,t),        u(X(t)-,t)=   lim   w(x,/)
xio(r) xTX(r)

exist for all t G (t4, !T], respectively, t G (t/; T];

(ii) (<*>("))** +/-u^0myTUif7.,/-H!>0 m ^r;

(iii) w < w0 a.e. in ñ X {0};

(iv) «(0, t) < 0, (<J>(h))*(1> i) < 0 o.e. on [0, T];

(v) u(o(t)- ,t) = afort e[rs,T], u(\(i) + , t) = ß for t g [T„ 7"];

(vi)

(♦(«))x(a(r) - ,0 < a'(i)[«(a(0 + ,f) -a],        / g (T„r],

(<f>("))*(M0 + ,0 > X'(t)[u(X(t) -,t)-ß],       te (r„T].

A supersolution is defined likewise, but with the inequalities reversed, and a solution is

defined by replacing the inequalities by equalities.

As in [3] we can prove that classical sub- and supersolutions are also weak sub-

and supersolutions.

Xlt)

-critl
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The existence, uniqueness and regularity of solutions of Problem I are well

established [1, 3]. For convenience we summarize the main results in §2. Some results

concerning stationary solutions of Problem I are derived there as well.

In §3 we prove that the mushy region and the liquid region both appear in finite

time, and that the boundary of Ji consists of continuous curves. The continuity of u

near the solid/mush interface will also be discussed in this section.

In §4 we prove that after a finite time T*, the mushy region ceases to exist, i.e.,

that J((t) = 0 for all t > T*.

2. Basic properties of the solutions. We begin with a standard existence and

uniqueness theorem.

Theorem 2.1. Suppose hypothesis H is satisfied. Then for any T > 0, Problem I

has a unique weak solution u(t) on [0, T]. There exists a constant K > 0, independent

of T, such that 0 < u(t) < Kfor all t G [0, T).

The proof can be given by a standard regularization procedure (see for instance [1

and 3]).

A central role will be played by the following Comparison Principle for (weak)

sub- and supersolutions. For the proof we also refer to [1].

Theorem 2.2. Let hypothesis H be satisfied, and let u(t) be a (weak) subsolution

and u(t) a (weak) supersolution of Problem I on [0, T], with initial values u0 and u0,

respectively. Ifu0 < ù0 a.e. in £2, then u(t) < û(t) a.e. in ß for all t G [0, T\.

Theorem 2.2 and the assumption that u0 is a subsolution of Problem I allow us to

deduce the following monotonicity and convergence theorem for solutions u(t) of

Problem I.

Theorem 2.3. Let hypothesis H be satisfied, and let u(t) be the solution of Problem

I on [0, T]. Then

(i) / -» u(t) is nondecreasing a.e. in Í2;

(ii) for any t > 0, (<b(u))x(t) G L°°(S2) and <f>(") G Cvv/2(QT) for every v G (0,1);

(iii) <i>(u)(t) converges uniformly as t —> oo to <t>(w), where w is the stationary

solution of Problem I defined in H4.

Proof. Part (i) is standard. To prove part (ii) we observe that u,(t) is a positive

distribution, and hence a positive measure. Thus (<¡>(u))xx is a measure which is

bounded below, whence ((¡>(u))x(t) g L°°(Í2). The Holder continuity of 4>(u) in QT

follows from Sobolev's embedding theorem and a lemma due to Gilding [5]. (iii) By

the monotonicity proved in part (i) and the boundedness implied by H4, there exists

a function ux G L°°(ß) such that

"(0 ~* "oo     as t ~* °° in LPW

for any p > 1. Likewise we have

/(«)('W( O    as, -ooinL'(S2)

for any p > 1.
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By part (ii) </>(«)(!) G W1,2(û) and hence, following [3], {<¡>(u)(t): t > 1} is

bounded in W1,2(&), whence there exists a function Vx g C(ß) such that

<í>(")(0 -» vx    as r -> oo inC(fi).

By the continuity of <j>, it follows that vx = <t>(ux).

Thus it remains to prove that ux = w. To do this we take a test function

i g C2(fí) such that ^ > 0 in £2, t//(0) = 0 and t//(l) = 0. In view of the definition

of a solution we have

/ «(o*- / "o^=r / {*(«)+„+/(«)*}.
If we divide by t, let í —> oo and use the convergence properties of the functions

u(t), <¡>(u)(t) and f(u)(t), we obtain

/ {*(«.)*„ + /(«.)*}-o.

Thus, «^ isa (weak) stationary solution of Problem I.

We conclude this section by noting the following properties of stationary solutions

of Problem I.

Theorem 2.4. Suppose hypothesis H is satisfied, and let w be a stationary solution

of Problem I such that <í>(h>)(1) > 1. Then

(i) cp(w) G C1,Y(Q) for any y G (0,1);

(ii) the set J(*:= {x G Q: <¡>(w)(x) = 1} consists of a single point {a*}, and

0 < a* < 1;

(iii) <f>(w) g C2(Í2 \ {a*}), weC(Ü\{a*}) and limxTa. w(x) exists,

limxla,w(x) exists;

(iv)(<f>(w))" +/(w) = 0/nß\{a*);

(v) 4>(w)(0) = (<f»(w))'(l) = 0 andw(a* - ) = a, w(a* + ) = ß.

Proof. Property (i) results immediately from the fact that (<b(w))" + f(w) = 0

holds in the sense of 2>'(Q,) and that f(w) g L°°(Í2). To prove (ii) observe that by

the maximum principle, <¡>(w) cannot have any positive minimum in Í2. Thus, the

level sets of (j>(w) are intervals. To show that JÍ* consists of a single point, it

suffices to show that J(* = 0. Suppose not. Then for any test function \p with

support K c J(*,

0= [ {*(*)*"+/(*)*} = //(")*,

whence /(w) = 0 a.e. in J(*, which contradicts H4.

The remaining properties follow from the equation being satisfied in S)'(ü) and

the existence of a continuous inverse of <f> on R+\(a, ß).

3. Continuity properties of the interfaces. In this section we establish the continu-

ity of the boundary of the set M and the continuity of u across the (receding)

solid/mush interface a.

To begin with we note the following monotonicity property of the solution of

Problem I.
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Lemma 3.1. Let hypothesis H be satisfied. Then for any t > 0, <f>(u)(t) is a

nondecreasing function on [0,1].

Proof. This follows by regularizing the equation and applying the maximum

principle to the spatial derivative of the regularized solution, and finally passing to

the limit.

As a consequence of Lemma 3.1, <¡>(u)(t) attains its maximum value at x = 1, and

its level sets are intervals of the form [/(/), 1], 0 < /(/) < 1.

Let us write

y(t):= {x G ß: <b(u)(x,t) < l},        &(t):= {x G fi: <b(u)(x,t) > l},

Jt(t):= {x g ß: <f>(w)(jc,r) = 1}

and let

Ts:= inf{i > 0: Jl(t) * 0),    TL:= inf{i > 0: Sf(t) * 0),

a(í):=min{^eJ'(í)},    t > Ts,        X(t):= max{x g Jt(t)},    t>TL.

By Theorem 2.3, u(t) is nondecreasing on [0,7"] so that Ts < TL. Thus, using

Lemma 3.1 we can write

J(T= {(x,t) G QT: a(t) «S x < 1, Ts < t < TL)

u{(x,t) G QT: o(t) < x < \(t), TL < t < T).

Lemma 3.2. Assume hypothesis H is satisfied. Then

(i)0 < Ts < oo;

(ii) a(i) is strictly decreasing and a(Ts) = 1;

(iii) a G C([rs, T]) for any T > Ts.

Let w be the stationary solution defined in H4, and let a* be defined by <p(w(a*)) = 1.

Then

(iv) o(t) —> a* as t -> oo.

Proof, (i) By H3 and the continuity of 4>(u) in Q, Ts > 0. If Ts = oo, <t>(u)(t) < 1

for all t > 0, which contradicts the convergence of u(t) to w established in Theorem

2.3.

(ii) By Lemma 3.1, a is nonincreasing. The strict monotonicity is proved as in [3,

Theorem 4.1(h)].

(iii) Suppose a is not continuous. Then there exists a time r0 > Ts such that

lim a(t) = x0 < Xf = lim o(t).
¡Ho Ht0

Consider the rectangle R = (xQ, x,) X (0, r0]. Then u < a on the parabolic boundary

of R and u = a on the top: [x0, xx] X {t0}. Because <p'(<0 > 0, we may apply the

strong maximum principle to deduce that u = a throughout R. Since u0 < a, this is

not possible, whence a must be continuous.

(iv) That a(t) tends to a limit follows from part (ii). That the limit is a* may be

deduced from Theorem 2.3.
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Corresponding properties can be proved for the interface X. Their proofs are very

similar to those for a, except for the continuity, which needs further preparation.

Thus we state without proof

Lemma 3.3. Under hypothesis H we have

(i)T5< TL< œ;

(ii) X(t) is strictly decreasing and X(TL) = 1;

(iii) X(t) —> a* as t -* oo.

Before proving the continuity of X, we shall establish the continuity of u across

the interface a.

Lemma 3.4. Suppose hypothesis H is satisfied. Then

(i) Ts < TL;
(ii) let t0 ^ Ts and let o(t0) < X(t0) if t0 > TL.

Then for any e > 0 there exist positive constants 8 and t such that

ess sup \u(x, t) — u(x, t0) | < e
R0

where R0 = (0, o(t0) + 8) X (t0 - t, r0 + t).

Proof. Write x0 := o(t0) and define

|{x0 + M'o)}     ¡ît0>TL,

{-(xq + 1) otherwise.

Then, if ¡0 > 7"s, x0 < Xf < 1, if t0 = Ts, x0 = x, = 1 and

m := ess sup u(x, t0) < ß.
[x„.x¡]

We claim that for any e > 0 there exists a constant tf > 0 such that

(3.1) u(x,t) ^ a + e    for (x, t) G [0, x0] X [t0, t0 + tf].

Let us prove (3.1). Since <j>(u)(x, t0) < 1 for all xe(Q,x0), we can choose

constants A g (0,1) and 17 g (0, x0) such that

1 — A
A+——x><l>(u)(x,t0)    in[0,xo].

•*o     n

If t0 > Ts, and thus x, < 1, we can also find a constant B > 0 such that

1 + B(x - Xf) > 4>(u)(x,t0)    in[x,,l].

Introducing the quantities

B2
y:= sup<f>';    K:= max<max/, m,

y(ß-a)

ö(t):= (x0 - î)){l - Y~(t - ¡o));    a(/):= Xf - ^f(t - t0);

j l< Hto=Ts,

t;:= -mm{e,ß-m}    and    re:= l^t^x^-x,^     .f ^ > ^
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we define for t G [t0, t0 + rt) the function ü:

u(x,t):= { x0-ji

1 -A
-x + yK(t - t0)\, 0 < x < ö(t),

a + K(t - f0), rj(/) < x < x0,

and, in the case r0 > Ts,

m + K(t - iff), x0< x <X(r),
ü(x,t):=

4rx{l + B(x - Xf) + yK(t - i0)),     X(t) < x < 1.

0       T|    X0     X,      X(t

Figure 3. The function ü in case <f> is piecewise linear

A straightforward calculation shows that ù is a classical supersolution of Problem

I on ß x[t0, tQ + tJ. Thus by the comparision principle, ü(x, t) > u(x, t) a.e. in

fi x [i0, t0 + te], whence (3.1) follows.

By putting t0 = Ts in (3.1) we find that TL > Ts.

Combining the monotonicity of t -» u(x, t) and the continuity of a with (3.1), the

desired continuity property of u follows.

It so happens that we can actually compute the time interval TL — Ts. This will be

done in

Lemma 3.5. Under hypothesis H we have

(3-2) Tl-T*-£    ^

More generally, for t > Ts,

(3.3) t-o-\x) = f
Ja f(s)

holds a.e. on M(t) = (a(t),X(t)), where X(t)= lifTs<t^TL and~X(t) = X(t) if

t>TL.

Proof. As in [3, Theorem 3.4] we find that

u(x,t) - u(x,s) = l f(u)(x,r) dr    a.e. in Jt(t)

K /(*)'

«O,0    ds
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when j > a_1(x), or

fu(x.t)    ds .       ...  ,
l~ 'o= / 77"^    a.e. in^(i),

J..I„ , \   ris)

provided t0 > a '(x). Thus, letting t0i o l(x) and using the continuity of u near a

proved in Lemma 3.4, we obtain

ru(x.t)     ds

7(7)
This proves (3.3). If we now set / = T, and let x —> 1 through a sequence on which

(3.3) holds, we obtain

ds

-ii   \      /*«<*•')    ds .      .,, ,
(x)=j ypr    a.e. in^(i).

TL-TS =
L /(*)'

where w = limx^1 u(x, TL). Clearly ü < ß. However, if ü < ß, then u ^ u < ß in

ß X[0, TL\. By using a comparision function similar to the one constructed in the

proof of Lemma 3.4 (for x0 = 1), we can deduce that this implies that «(1, TL) < ß,

which contradicts the definition of TL. Thus u = ß, and the proof of (3.2) is

complete.

We conclude this section by proving the continuity of the mush/liquid interface

X.

Lemma 3.6. Under hypothesis H the interface curve X is continuous at all t > TL

where X(t) > o(t).

Proof. Because of the monotonicity of X and u, it is sufficient to prove that if

X(?0) > a(t0), then for any small e > 0, there exists a time t£ > 0 such that

(3.4) X(r)>X(r0)-2e   for /0 < t < t0 + t£.

To this end, let

x0 = X(i0) => u(x0,tQ) *S ß.

By the strict monotonicity of t —> u(t) (cf. Lemma 3.5) we have

(3.5) u(x,t0)<ß    a.e. in [0, x0).

Let e > 0 be a small number and define

ó"(e):= ß — ess sup{ u(x,t0): x g [0, x0 — e/2]}.

By (3.5), 5(e) > 0 and without loss of generality we may suppose that 8(e) < ß - a.

We define the following quantities: L > 0 to be such that

(3.6) <¡>(u)(x, t0) < 1 + L(x - x0 + e)    when x g [x0 - e, 1],

M:= max{sup/,2L2/yô(e)},    f = L2/yM2,

(3.7) X(t) = x0-e-(yM/L)(t- t0),        t e [t0,t0 + r],

where y = sup<f>' has been defined before. For t G [í0, t0 + f ] we define the

function

y(l + L(x - x0 + e) + yM(t - t0)),     x G [X(í),l],

'ß-8(e) + M(t-t0), xg[0,X(0).
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An elementary calculation confirms that it is a supersolution of Problem I on

^ x[?0''o + T]- Thus, the comparision theorem implies that û(t) > u(t) for t g

[t0,t0 + f ] and hence

X(r)<X(/)    for t e [tQ,t0 + f].

Remembering the definition of X (3.7) and introducing t = min{T, eL/(yM)}, we

obtain (3.4).

4. Extinction of the mushy region in finite time. In this section we prove that there

is a (finite) time T* > TL such that J((T*) = 0.

We begin with a technical lemma, which is proved in the Appendix.

Lemma 4.1. Let g be a continuous function on [0, oo) such that g(0) > 0, and let y:

[0, 7"] -» R satisfy y' — cg(y) — mt, y(Q) = 0, in which c, m G R+. Then for any

t0 G [0, T], y0 G R+, there exists a constant c > 0 such that, for some t g (0, t0) and

V e (0,y0), J(r) = i), /(t) = 0.

Recall that w is the minimal solution of Problem II such that w ^ u0 in ß,

defined on H4.

Lemma 4.2. Let hypothesis H be satisfied. Suppose ß G (ß,w(l)) and t G (T,, oo)

are so chosen that w(l, t) = ¿8 and o(i) < X(t) < 1. Tne« i/iere exista a function ü

which, for t > t has all the properties of a classical subsolution except the boundary

condition at x = 0. Its mush/liquid interface X(t) is given by X(t) = 1 — a + c(t — i)

where a g (X(t), 1) and c > 0 are suitable constants, and U(x,t) < u(x,i) a.e. in

[o(i), 1].

Remark. The existence of constants ß and / with the stated properties follows

from the results of §3.

Proof. We construct a family of travelling wave solutions q = q(x + et), c > 0,

of the differential equation in Problem I, in which the source term / is replaced by a

constant m G R+, where m = min{/(s): a < s < w(l)}.

Substitution yields the equation

(4.1) (<*>(?))" - cq' + m = 0

in which primes denote differentiation with respect to the variable £ = x + ct.

Integrating (4.1) once we obtain

(4.2) (<S>(q))' -cq + mt=C,

where C is a constant. Fixing the interface q = ß at £ = 0, and prescribing that q

jump there from ß to a, we find, in view of the interface condition

(<p(q))'(0+) = c(ß-a),

and hence, by (4.2), C = -cet. Putting p = 4>(q) and q = r/(p), for q > ß, we get

for (4.2) that

(4.3) p' = c{y](p)-a)-mi,        p(0) = 1.

Since 4>'(ß + ) > 0, the right side of the differential equation is locally Lipschitz

continuous on [0, oo), whence the local existence and uniqueness of a solution is

ensured.
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The assumptions of Lemma 4.1 being fulfilled, we conclude that there exists a

constant c > 0 such that the solution p of (4.3) satisfies p(a) = <b(ß) and p'(a) = 0

for some a g (0,1 - a(t)) and ß G (ß, ß).

Having chosen c in such a way, let

t* = max{
1 -a

c
sup{/ > TL, a(t) < X(t)}

and

(4.4) X(f) = 1 - a + c(t - t),        t G [/,**].

For t g [i,t*] define

{a, 0 =ç x < X(t),

q(x + c(t - t) - 1 + a),    X(t) < x < X(/) + a,

ß, X(t) +a < x ^1.

It is easy to verify that ü meets all the requirements for a classical subsolution except

the boundary condition at x = 0.

X(t) X(t)n

Figure 4. The function u

We are now ready to prove the main result: the extinction of the mushy region J(

in finite time.

Theorem 4.3. Suppose hypothesis H is satisfied. Then there exists a time T* g

(T,, oo) such that a(T*) = X(T*).

Proof. We assume the assertion is false—i.e., a(t) < X(t) for all / > TL—and

show that this leads to a contradiction.

Choose t >TL,ße(ß, w(l)) and select ß g (ß, ß), a g (X(i), 1) and c> 0 as

in Lemma 4.2. Let X(t) be the interface curve (4.4) associated with ü, defined for

t G [t, t +(1 - a)/c\. Since X(/+(l - a)/c) = 0, there must exist a time ("e

[t, t + (1 - a)/c) such that

(4.5) X(t) = a(t).

Define a continuous, decreasing function f : [i, f] -» (0,1) such that

o(t) < f(/) < min{X(r), X(t)}    for / < / < i.



THE STEFAN PROBLEM WITH HEATING 689

Fix  te[t, t) arbitrarily and partition the set  Q,;'= [x g fi:   t < t < t)  as

Q¡, = P~U P+, where

P:= ((jt,i)Efi„:fl<x<{(i)})    P+:= {(x,t)e Qi}: £(t) <x< l}.

On Q¡¡ we now define the function

ti = fu    in P~,
\u    inP\

We prove that this function is a (weak) subsolution of Problem I.

We introduce a further partition of Qtr To this end we define continuous

decreasing functions ax, a2, X,, X2: [t, i] -* (0,1), such that

a < Of < a2 < f < X2 < X, < X    on [t, t],

and subsets of Q¡¡:

2, = {0 < x « 0l(i)},    22 = [Of(t) <x< a2(t)},

Z= {a2(i)<x<X2(0},

A2 = {MO < x < Xf(t)),    A, = {Xf(t) < x < 1}.

Then g,, = 2, U 22 U Z U A2 U A,.

Define three functions tj, g Cx(Q¡ ¡) such that

1    on 2,, Í0    on 2, U 22 U Z,

Vl      \0    onZuA2UA1(        Vl      \1     onAi,

/1     on Z,
''a — |o    on 2; u Aj,

and 0 < tj, < 1 (j = 1, 2, 3), ti, + tj2 + tj3 = 1. Then any test function t// can be

written as t// = <//, + i\>2 + \p3, where t//(. = ^17,. Clearly the functions i//,- are all

admissible test functions for Problem I.

Let t e [i, i] and consider for any test function \p the quantity

d*] = / u(t)4,(t)-f u(i)t(i)-f(_  [uxp, + <p(u)^xx + f(u)^}.
JSl JQ J JQ¡¡

To prove that U is a subsolution we need to show that q[\p] < 0 for any 4>.

Write

(4.6) *[*] = í[*i]+?[*2]+í[*3]-

Since in ^[^J the integrals are taken over parts of 2, U 22, we can replace U in

this expression by u, whence

(4.7) ?[*.] = 0.

Similarly, we can replace U in q[\p2] by w. By Lemma 4.2 and the fact that i//2

vanishes near x = 0, it follows that

(4.8) q[^2] < 0.
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Finally, consider ^r[u/3]. Since the integrals involved are taken over a subset of Jt,

ü = a in J( and \p3 vanishes near the boundary of 22 U Z U A2, an easy

calculation shows that

(4-9) f[*3]«jP /*' [m "/(«)]*3 + $[*3l<4[*3J.

where

(4.10) $[*3]:= f(l)u(t)W)-f0)u(t)Ui)

"i'   f  [«*3,+/(«)*3l-

Since t and X are monotonie and continuous, it is possible to choose f to be almost

everywhere differentiable. Since the domain of integration in (4.10) is contained in

Jt, we can proceed as in Lemma 3.5, to obtain

$1*3]=   i'r«(î(T)1T)*3(î(T),T)aT<0)

since f is decreasing.

Thus we have proved that U is a subsolution of Problem I. This means that U < u

a.e. in Q¡¡ and, in particular, that X(i) > X(t) for t g [t, ?]. Since t was chosen

arbitrarily in [t, i] we may conclude, in view of the continuity of X, that X(t) > X(f).

But we had chosen / so that X(t) = a(t), whence we find that o(t) > X(i), which

contradicts our original assumption that o(t) < X(t) for all t > TL. This completes

the proof.

Appendix.

Proof of Lemma 4.1. Define B := ma\{g{y): 0 < y <j0} and let í = sup{í > 0:

y < y0 on (0, t)}. Then, by the differential inequality

y' < cB - mt    for 0 < t < s

we have

(A.l) y(t) ^ cBt - \mt2    for0<i<5.

But if we choose c g R+ so that c < cx:= (2my0)1/2/B, then

cBt - \mt2 < y0    for all t > 0,

whence s = 00. By choosing, in addition, c < c2:= \mt0/B, we ensure, using (A.l)

that y(t0) < 0. Since ^'(0) = cg(0) > 0, this means that the graph of y has a

maximum at a point r g (0, t0). Hence we have ij := y(j) G (0, y0) and y'(r) = 0.
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