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APPLICATION OF A THEOREM OF M. G. KREIN
TO SINGULAR INTEGRALS

RAINER WITTMANN

ABSTRACT. We give Holder and L? estimates for singular integrals on ho-

mogeneous spaces in the sense of Coifman and Weiss. The fundamental tool

which allows us to pass from Holder to L2 estimates, is a theorem of M. G.

Krein.

1. Introduction. In this paper we study L2 and Holder estimates for singu-

lar integrals on homogeneous spaces in the sense of Coifman, Weiss [2, 3]. The

connection between both types of estimates is established by

M. G. KREIN'S THEOREM (cf. Gohberg, Krupnik [7, p. 183] for a proof).

Let H be a real or complex Hubert space with inner product (-, •) and norm \\ ■ \\h-

Let further B C H be a Banach space dense in H with norm \\ ■ \\b such that

\\x\\h < Cb^HzIIb (x G B). Then for any two linear operators Ti,T2: B —> B

satisfying \\Tix\\B < C¿||x||B (x G B, i= 1,2), (TfX,y) = (x,T2y) (x,y G B), we

have

\\Tíx\\h < (t71C72)1/2||x||H        (x EB,i= 1,2).

In particular, Tf,T2 can be extended to bounded operators on H.

Usually Holder estimates are much easier to prove than L2 estimates for which

only two tools are known: the Fourier transform and Cotlar's Lemma [4, 8]. Using

Cotlar's Lemma, G. David and J. L. Journé [5] characterized L2 boundedness

of elliptic singular integrals on Rn but their method is not applicable to general

homogeneous spaces.

It is convenient to discuss our results first for ordinary singular integrals. Ob-

viously, L2(R") will be the Hubert space H in Krein's theorem. Because of the

preceding remarks the Holder space Aa(R") (0 < a < 1), which consists of all

functions /: R" —> C satisfying

||/||00:=sup{|/(x)|:xGRn}<oo,

|/|Q := sup{|/(x) - f(y)\ \x-y\-a:x,yG Rn,x ¿ y} < oo,

would be a good candidate. However A"(Rn) has two disadvantages:

1. AQ(R") is not contained in L2(Rn).

2. Singular integrals behave only well on functions / G AQ(Rn) with "small"

carrier. For instance, even for the Hubert transform we have

If 1
im - / -f(y)dy = —oo        (iêR)
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582 RAINER WITTMANN

where
(0    if y < O,

f(y):=\y   if O < y < 1,
ll    if y > 1.

These disadvantages disappear if we work on compact spaces as, for instance, the

n-dimensional torus. On the other hand, it is possible to adapt Krein's theorem

also to the noncompact situation:

LEMMA (CF.   LEMMA 2.5).   Let 0 < a < 1 and

Ag(R») := {/ G Aa(Rn) : \n({f ¿ 0}) < oo},

where Xn is the n-dimensional Lebesgue measure.    Let further S,T: Aq(R"')  —>

Aa(Rn) be two linear operators satisfying

(i) !gSfd\ = ffT-gd\(f,gGAoI(Kn)),
(ii) |5/|Q) |r/|a<cSil|/|Q,

(m) \\sf\u iir/iloo < Cs,2\f\a\n({f¿o})a'n.
Then there exists a constant Cs depending only on Cs,i,Cs,2 and n such that

\\Sf\\L2,\\Tf\\L,<C8\\fU*       (/eAg(R")).

In particular, S,T extend to bounded linear operators on L2(Rn).

Unfortunately a precise estimate like (iii) cannot be found in the literature. We

prove estimates (ii), (iii) for very general singular integrals on homogeneous spaces.

On Rn this theorem, which is of independent interest, reads as follows.

Theorem A  (cf.    Theorem 2.1). Let 0 < a < a0 < l, W c Rn,

An(R" \ W) = 0 and k: R™ x Rn —> C a measurable (singular intégrât) kernel

such that

i)

ii)

iii)

iv)

\k(x,y)\<Ci\x-y\~n,

\k(x,y)-k(x',y)\<C2\x-x'\a°\x-y\-n-ao

(x,x',yGRn,\y-x\ >2|x-y'|

/ <\y-x\o

k(x,y)dy <C3        (0 < r < s < oo),

lim     sup
/Je,<\x-y\<£2

k(x, y) dy 0        (xGW),

k(x,y)dyh(x) := lim /
£^°Je<\y-x\<e-í

exists for any x G W. Let the linear operators Tfc:£, Tfei£ be defined by

Tkt£f(x):= f k(x,y)f(y)dy,
Je<\x-y\<e-1

Tk.J(x) ■= f
Je

k(x,y)(f(y)-f(x))dy.
£<|z-y|<£-1

Then there exist linear operators Tfc,ífe: Aq(R") —* L°°(Rn) such that

(a) lim£^0Tfc,£/(z) = Tkf(x), \imE^o Tk,ef(x) = fkf(x) (x G W),
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(b) |ík/|„<Cs,i|/l«.
(C) HTfc/Hoo, Hffc/Hoo < Cs,2\f\c-\n({f + 0})«/".

If h G Ca(W) then we have also

(d) \Tkf\a<C'SA\f\a.
The constants Cs,i,Cs,2 depend only on Ci,C2,C^,a,ao and C's ,  depends also

on \h\a.

From the last theorem we see that the operators Tk<£ and Tk often behave better

than the operators Tk^ and Tk. This is the reason why we can work with Krein's

theorem even in situations when Tk does not preserve Holder continuity. The way

to L2-estimates is now fairly easy.

Theorem B (Theorem 2.6 and Corollary 2.7). Leí 0 < a0 < l
and k: Rn x Rn —> C a measurable kernel such that k and the adjoint kernel

k*(x,y) := k(y,x) satisfy estimates (i)-(iii) of Theorem A. Then there exists a

constant Cs depending only on Ci, C2, C3, n, c*o such that

(a) |||rfc,£|||LÎ)L2, |||ffc,e|||L2iL2<Cs.

IfWc Rn, A"(Rn \ W) = 0 and k satisfies condition (iv) of Theorem A then

(b) lll^fcllll,*,!.2»  III^III/AZ,2 < Cs,
(c) lim^o ||Tfc,e/ - Tkf\\L2 = 0 (/ G L2(R")).

The antisymmetric case, which we will state below, is obviously a special case

of the theorem of G. David and J. L. Journé. In general, it doesn't seem so easy

to show that the above assumptions imply the assumptions of the David-Journé

theorem.

Corollary (cf. Corollary 2.8). Let 0 < a0 < l andk: R" xR" -> C a
measurable antisymmetric kernel, i.e. k(y,x) = —k(x,y), satisfying the conditions

(i)-(iii) of Theorem A. Then there exists a linear operator Tk on L2 such that

(a) Tfe sf converges to Tkf in the weak topology on L2(R") for any f G L2(p),

(b)\\\Tk\\\LitLi<Cs.

In order to give concrete applications we consider the following two forms of the
Cauchy kernel:

ka(x,y):=-,-s ,  ,'/!-r^rr        (x,yeR,x^y),
(y - x) + i(a(y) - a(x))

ka(x, V) •■= 0 =: ka(x, y)        (x,y G R),

where a : R —> R is a Lipschitz continuous function and a' is the almost everywhere

existing derivative of a. It is easy to see that ka,k^ and ka satisfy the conditions

(i) and (ii) of Theorem A. It is a quite simple property of the Cauchy integral that

ka satisfies condition (iii), and that, if a behaves well at infinity, also condition

(iv) and (v) hold for ka, provided we choose for W the set of points for which o'

exist. Since the behavior at infinity is not essential we get Holder estimates for T¡¡. .

Unfortunately the kernel ka is very bad if a is only Lipschitz continuous. However,

if a' G AQ(R) then we can pass from Tr.   to Tka and get Holder estimates also
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for this operator. Since the kernel ka is antisymmetric we have then also the L2

boundedness of Tka.

A very different application of our results to singular integrals studied by Knapp,

Stein [8] is mentioned in Remark 2.9(b). Actually the method of Knapp and Stein

can be used to prove Theorem B and Theorem 2.6 when C3 = 0 but in general this

assumption is quite articial.

2. L2 and Holder estimates for singular integrals. In the sequel (X,d,p)

will be a homogeneous space in the sense of Coifman and Weiss [3]. That means

(i) d: X x X —y R+ is a pseudo-distance, i.e.

d(x,y)=d(y,x) (x,y G X),

d(x, y) = 0 o x = y (x,y G X),

d(x, z) < Cd(d(x, y) + d(y, z))        (x, y,zG X).

(ii) A is a topological space such that for any x G X, the sets B(x,r) := {y G

X : d(x, y) < r} form a neighborhood base of x.

(iii) B(x, r) is Borel measurable for any x G X, r > 0 and p is a measure on the

Borel sets of X such that

p(B(x, 2r)) < Cßp(B(x,r)) < 00        (xGX,r>0).

Next we introduce the Holder spaces Ca(W) (W C X, 0 < a < 1) which consist of

all functions / : W —> C satisfying

\\f\\00:=Sup{\f(x)\:xG\V}<oo,

|/|c- := sup{|/(x) - f(y)\p(B(x,d(x,y)))~a :x,yGW}<œ.

If we endow Ca(W) with the norm

|| • lie := II • lloo + He-

then Ca(W) becomes a Banach space.

Obviously, for any 0 < a < 1,

C£(X) := {/ G Ca(X): p({f ¿ 0}) < 00}

is a subspace of Lp(p) (1 < p < 00). However, it is not clear whether Cft (X) is

dense in Lp(p) (1 < p < 00). Already in classical situations it happens for large

a that Ca(X) consists only of constant functions. We will come back later to this

question, when we derive L2 estimates from the Holder estimate which we now

state.

2.1 THEOREM. Let k: X x X —> C measurable, 0 < a < 7 < 1, ß > 1 and

W c X be such that

(i) \k(x,y)\<Cfp(B(x,d(x,y)))-1        (x,y G X),

(i)    \k(x, y) - k(x\ y)\ < C2p(B(x, d(x, x')Vp(B(x, d(x, y))))-1^

(x, x',yGX, d(x, y) > ßd(x, x')),
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Iii)

iv)

v)

/ <d(x,y)<s

lim     sup

k(x,y)p(dy)

L

<C3 (igX, 0 < r < s < oo),

<d{x,y)<e2

k(x, y) p(dy) 0        (xGW),

h(x) := lim / k(x,y) p
e~*°Je<d(x,y)<e~1

(dy)

exists for any x GW. Assume that either

vi) liminip(B(x,r)y1p(B(x,r)\B(x',r)) = 0        (x,x'gX)

or

vii) for any x G X there exists r > 0 such that k(x, y) = 0 (y G X, d(x, y) >r).

Then, for any f G Cfî(X) and xGW,

Tkf(x) := lim [ k(x,y)f(y)p(dy),
£^° ■> e<d(x,y)

fkf(x) := lim f k(x, y)(f(y) - f(x)) p(dy)
E^°Je<d(x,y)<£-i

exist and we have

(a)

(b)

(c)

Tkf = fkf + f\w ■ h,

TkfGCa(W)    and     |ffc/|c- < Cs,i|/|c-,

\\Tkf\\oo<Cs,2\f\c«p({f¿0})a,

l|2fc/||oo < CsM\c°p({f + 0})" + Cali/U«,.

// p(X) = oo then we have

(d)
l|rfc/||oo<cSta|/|c-M«/^o}r.

If he Ca(W) then we have

(e)

|Tfc/|c- < (Cs,i + C3)|/|c- + \h\c- ll/lloo-

If h G Ca(W) and p(X) = oo then we have also

(f)

\Tkf\c°<C'sJf\c°.

The constants Cs,i, Cs,2, C's 2 depend only on Ci,C2, C3, Cd, C^, a, ß, ~y and C's ,

depends also on \\h\\c°.

REMARKS,   (a) Assumption (vi) is always satisfied if p(X) < 00.  Also for all

"natural" homogeneous spaces (vi) is satisfied.

If x,x' G X, r > d(x,x'), ñ := inf{n £ N: 2Cd < 2"} then

p(B(x',r)) < p(B(x,2Cdr)) < C^p(B(x,r))
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together with (vi) implies

liminf p(B(x,r))~lp(B(x',r) \ B(x,r)) = 0.
r—»oo

Thus (vi) is equivalent to

(vi')       liminip(B(x,r))-1 p((B(x,r) \ B(x',r)) U (B(x',r)\B(x,r))) = 0
r—»oo

(x,x'eX).

(b) The general idea behind the proof of Theorem 2.1 is very old and seems to

appear first in A. Korn [9]. For translation invariant singular integrals acting on

periodic functions special cases of Theorem 2.1 were proved by A. P. Calderón and

A. Zygmund [1] and by M. H. Taibleson [13]. We should also mention that Zygmund

[14] has characterized all translation invariant bounded operators acting on Holder

spaces of periodic functions. For general homogeneous spaces, singular integrals on

somewhat different Holder spaces were studied by R. Macias and C. Segovia [11].

A theorem of N. G. Meyers [12], which was generalized to homogeneous spaces

of R. Macias, C. Segovia [10], shows that both types of Holder spaces coincide.

The method of Macias and Segovia is quite different from ours. They require the

I? boundedness of the kernel and assume also that h is constant. On the other

hand they need not assume (iii) and (iv) and use a weaker form of (v) which would

have been also sufficient for us. The principal advantage of our method is that via

Krein's theorem it allows to prove L2-estimates, a problem, which was considered

to be much harder than the Holder estimates (cf. C. Fefferman [6, p. 102]).

For the proof of the theorem we need the following

2.2 LEMMA. Let f G Ca(X) (0 < a < 1) such that {/ = 0} ^ 0 and
p({f 7^ 0}) < oo.  Then we have

\\f\\oo<C¿f\c°p({f¿0})a.

The above assumption is fulfilled for any f G C§(X) if p(X) = oo.

PROOF. Let x G X with f(x) ^ 0. We choose 0 < rx < oo, x' G X such that

B(x,rx) C {/ / 0}, x' G B(x,2rx), f(x') = 0 and we conclude

\f(x)\ = \f(x) - f(x')\ < \f\c°p(B(x,d(x,x'))) < \f\Cap(B(x,2rx))

< Cß\f\c°p(B(x,rx)) < Cß\f\c«p({f ¿ 0}).

PROOF OF THE THEOREM, (a) is trivial. For any x G X, 0 < r < oo denote

hx(r) := p(B(x,r)). We will use frequently

(1) [ fohx(d(x,y))p(dy)< [ '      f(t)dt
Jr<d(x,y)<s Jhx(r)r<d(x,y)<s J hx(r)

(/: R+ —> R+ decreasing and continuous).

We even have equality for arbitrary measurable functions, but we do not need this

fact. Now (1) is a special case of

r chx(r)+ß(A)

(2) / U(f o hx)(d(x,y)) p(dy) < f(t)dt
Jr<d{x,y) Jhx(r)

(/: R+ —> R+ decreasing and continuous, A C X measurable).
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Formula (2) is an immediate consequence of the distribution function inequality

p({xG A: f ohx(d(x,y)) > s,d(x,y) > r})

< X({hx(r) < t < hx(r) + p(A) : f(t) > a})    (s > 0)

where A is one-dimensional Lebesgue measure.

If f(t) < s for all t > hx(r) then there is nothing to prove. If this is not the case,

we define
a' := sup{i G R+ : f(t) > s} > hx(r),

s" :=sup{t eR+: hx(t) < a'}.

If s" < oo then
p(B(x,s"))>s',        f(s') = s

and we can conclude

p({xG A: fohx(d(x,y)) > s,d(x,y) > r}) = p(A n {y G X: r < d(x,y) < s"})

< min(p(A),hx(s") - hx(r))

= X([hx(r), hx(r) + p(A)} n [hx(r), hx(s")})

< \([hx(r),hx(r) + p(A)}n[hx(r),s'})

= K{hx(r) <t<hx(r) + p(A) : f(t) > a}).

The case s" — oo is trivial.

Let now 0 < a < 7, / G C{f"(X) and x G W.  Then we have for any 0 < £1 <

£2 < 00

/ Hx,y)f(y) p(dy) - k(x,y)f(y)p(dy)
Jei<d(x,y) Je2<d(x,y)

<   [ k(x,y)(f(y)-f(x))p(dy)  +   [ f(x)k(x,y)p(dy)
Jei<d(x,y)<S2 J £i<d(x,y)<£2

=: J(£i,£2) + J'(ei,£2).

By (iv), J'(ei,e2) tends to 0 if e2 tends to 0. In order to show that Tkf(x),

Tkf(x) exist we have to show the same for J(£1,£2). This will be accomplished by

lim£2_o hx(e2) — hx(ef) — 0 and by the following useful estimate for J(ef, e2):

Cfhfl(d(x,y))\f\cah«(d(x,y))p(dy)(3) d(£i,£2)< /
J si<d(x,y)<eï

rhx(£2)

<Ci\f\c° i        r1+adt
rnx(t

il/lc- / 1+adt=Ç±
) Q

\f\o(K(£2) - hf(£i)).

Let now x G X with f(x) = 0. Denoting A :— {/ ^ 0} and using (2) we get, for

any e > 0,

/ k(x,y)f(y)p(dy)  =   f k(x,y)(f(y) - f(x))p(dy)
J e<d(x,y) Je<d(x,y)

<Ci|/|c- / hy1+a(d(x,y))p(dy)<Ci\f\Ca [
Ja Jo

,M(A)

t-1+adt

= ±±\f\Cap,(A)°.
a
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Thus we have proved

(4)     |Tfc/(x)| = |ffc/(x)| < (Cf/a)\f\c*p({f * 0})a       (x G W, f(x) = 0).

Introducing

we have

g(s) :=inf{neN: s < 2n}        (s > 0)

p(B(x, sr)) < Cl{s)p(B(x, r))        (x G X, r, s > 0).

Let now x,x' G X, 6 := d(x,x') and let ß' := max(ß,2Cd). Then we have, for any

0<£<<5~1,

/ £<d(x, y)<£~1

k(x,y)(f(y)-f(x))p(dy)

f k(x',y)(f(y)-f(x'))p(dy)
Je<d(x',v)<£-1

< I£<d{x,y)<ß'6

' e<d(x' ,y)<£

k(x,y)(f(y) - f(x))p(dy)

+

+

+

[ k(x',y)(f(y)-f(x'))p(dy)
Je<d(x',y)<ß'S

f (k(x,y)-k(x',y))(f(y)-f(x))p(c
J&>/3'6<d(x,!/)<£-1

k(x',y)(f(y)-f(x))p(dy)
ß'S<d(x,y)<£-1

J0'

fJß'8

ß'S<d(x',y)<£

k(x',y)(f(x)-f(x'))p(dy)

k(x',y)(f(y)-f(x))p(dy)

<ß'6<d(x',y)<£-i

=:If(e) + I2(e) + I3(£) + h(e)+I5(e).

From (3) we get

h(e) = J(e,ß'6) < (Cf/a)\f\c»p(B(x,ß'e)r

<(Cf/a)C^\f\c«p(B(x,8)Y

and similarily

h(e) < (Cf/a)\f\c«p(B(x',ß'6))a < (Cf/a)\f\c°p(B(x,Cd(6 + ß'6))y

<(Ci/a)CZ9lc*W»\f\c°p(B(x,6))a.
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Using (ii) and (1) we get

/3(e)< / C2h2(S)hy1^(d(x,y))\f\CaK(d(x,y))p(dy)
Jß'S<d(x,y)

r°° c
< C2\f\c«h2(S) / t"-1-»* = -^-\f\c-h2(6)hr'1(0'S)

Jhx(ß's) l-a

< -Q-\f\c°KB(x,6))a.
~y — a

Obviously

h(e)<C3\f\c»p(B(x,6))a.

Setting ß" := Cd(l+ß') and D£ := (B(x, e-l)\B(x', e~1))U(B(x', e~1)\B(x, e~1))

we have

/4(e) <   f \k(x',y)\\f(y)-f(x')\p(dy)
J6<d(x',y)<ß"6

+ [ \k(x',y)\\f(x')-f(x)\p(dy)
JS<d(x',y)<ß"S

+ [ iDMx',y)\\f(y)-f(x)\v(dy)
J(2Cd)-1£-l<d(x',y)

=:/4,i(e) + /4.2(e) + /4.3(e)-

Using (3) we can estimate /4.1(e) similarly as /2(e):

/4,i(e) < (Ci/a)\f\c°p(B(x',ß"6)r < (Ci/a)C^1+e"»\f\c°p(B(x,6)r.

Obviously we have

/4.2(e) <C3\f\c°p(B(x,ó))a.

If (vii) is satisfied, then /4.3(e) = 0 provided e is so small such that k(x',y) = 0

when d(x',y) > (2Cd)~1e~1. If (vi) is satisfied, then

/4.3(e) < j lDcCiß(B(x',(2Cde)-1))-l2\\f\\ooß(dy)

<C2\\f\\0Op(B(x',e-i))-1p(DE)

together with (vi') implies

liminf /4.3(e) = 0.

Collecting all these estimates and letting e tend to 0, assertion (b) follows.

Let now x G A — {/ ^ 0} and assume that {/ = 0} ^ 0. Then there exist

0 < rx < 00, x' G X such that B(x,rx) C A, x' G B(x,2rx), f(x') = 0. Observing
first that

p(B(x,2rx)) < Cßp(B(x,rx)) < Cßp(A)

and using (b) and (4) we get

|Tfc/(x)| < \fkf(x')\ + \fkf(x) - fkf(x')\

< (Ci/a)\f\Cap(A)<* + Cs,i\f\c«p(B(x,d(x,x')))a

<((Ci/a) + Cs,iCli)\f\c«p(A)a.
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If {/ = 0} = 0 then p(X) < oo and hence 1 G Cg(X). Choosing an arbitrary point

xq G X, the function f'(x) := f(x) - f(xo) satisfies {/' = 0} / 0 and therefore

|Tfc/(x)| = \fkf'(x)\ < (Ci/a + Cs,i)\f'\c<,p(A) = (Cf/a + Cs,i)\f\c°p(A).

Together with Lemma 2.2 the assertions are now immediate.

The following rather technical lemma, which is based on results of R. Macias,

C. Segovia [10], is obvious for all classical homogeneous spaces and is therefore not

necessary in order to understand the proof of Proposition 2.5.

2.3 LEMMA, (a) There exists à > 0 such that Cg(X) is dense in Lp(p) (0 <

oc < à, 1 < p < oo).

(b) There exists a family (<pr)o<r<oo of functions on X such that

(i) 0 < <pr <  1, 'Pr < <Ps  (0 < r < S < CO),

(ii) {^r ^ 0} C {p2r = 1},

(i")   Ur>oter = U = *,
(iv) p({<fr Ï 0}) < CVtir,
(v) Vr e Cg(X), \<pr\c° < C^2r-a (0 < a < à, r > 0).

à and the constants C^ijCp^ depend only on Cd and Cß.

PROOF. The proof will be divided into three steps, from which the first is the

essential one.

1. Step. We assume that (X, d, p) is a normalized homogeneous space, i.e. there

exists a constant Cn > 0 with

(1) Cjfr < p(B(x, r)) < CNr        (x G X, r> 0).

Then Ca(X) coincides with the "metric" Holder space Ha(X) which consists of all

functions / : X —> C satisfying

ll/lloo <oo,|/|Ha :=sup{|/(i)-/(y)|d(x,y)-a: x,y G X, x^y}.

Moreover, we have

(2) CV|/|„Q<|/|c«<c?£|/|„Q.

Now we employ [10], Theorem 2 to find a pseudo-distance d' on X and 0 < à < 1

satisfying

(3) Cf1d'(x,y)<d(x,y)<Cfd'(x,y)        (x,y G X),

(4) |d'(x, z) - d'(y, z)\<C2 max(d'(x, z), d'(y, z))l'&d'(x, yf        (x, y,zGX),

where à := (\og3Cj)~l log2, d := 1l/&, C2 :=à~l. For any z G X, r > 0 we can

now define the Urysohn function

<pr<z(x) := sup(0, inf(l, 2 - r~ld'(x, z))).

Obviously, we have

(5) 0 < v?r., < 1,        {<Pr,z + 0} C B'(z, 2r),        B'(z, r) C {^r,2 = 1},

(6) •Pr.z < fs,z        (0 <r < s <oo),

where B'(z,r) := {y G X: d'(x,y) < r}. From (4) we get for any x,y G B'(z,3Cdr)

\<Pr,z(x) - VrAv)\ < r-1C2(3Cdr)l-ad'(x,y)á < C23Cdr-&Cfd(x,y)á.
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Since d(x,y)ä < (6Cjr)&-ad(x,y)a < 6Cjr&-ad(x,y)a we get

\<Pr,z(x)-<PrAy)\<C3r-ad(x,y)a    (0<a<&,r>0,zGX, x,y G B(z,3Cdr)).

For any x G X \ B'(z, 3Cdr), y G B'(z, 2r) we have d'(x, y) > r and therefore

\<PrAx) - <PrAv)\ = \<PrAv)\ ̂  1 ^ ^ d'(x,y))a < r~aC?d(x,y)a.

For any x G X \ B'(z, 2>Cdr), yGX\B'(z, 2r) we have

\<Pr,z(x) -<Pr,z(y)\ = °-

Altogether we have

(7) \<Pt,z\h° < C'^2r~a        (0<a<oT, r > 0, z G X).

Thus if we choose an arbitrary point zq G X and let ipr := ipr,z0 assertion (b)

follows from (7), (5), (6), (1), (2).
To prove (a), we note first that the balls B'(x,r) (x G X, r > 0) are relatively

compact in the completion of X with respect to d' (cf. [2, p. 67]). Since, by (7),

there exist so many Urysohn functions in Cg (X) (0 < a < a) (a) is now immediate.

2. Step. We assume now only that {y G X: d(x,y) < r} is open for any r > 0.

By [10], Theorem 3 (X,d",p) is a normalized homogeneous space, if we define

U V'y) - \ ini{p(B(z,r)):zGX,r>0,x,yG B(z,r)},

Moreover, denoting by H"a the metric Holder space with respect to d" we have

obviously Ca(X) C H"a(X), \f\H„« < |/|c-. Since the constants C'J,C'¿,C'¿ of

the normalized homogeneous space (X,d",p) depend only on Cd,Ctl the assertion

follows if we apply the first step to (X, d", p).

3. Step. If (X, d, p) is an arbitrary homogeneous space, then we apply [10,

Theorem 2] once more to find a pseudo-distance d' such that (3) and (4) hold. It

follows from (3) that (X, d', p) is a homogeneous space with C'd :— C2Cd, CM := C™,

ñ := inf{n: 2C\ < 2"} and that

C'a(X) = Ca(X),    Cfl\f\c« < |/|c- < C4|/|c-,

where

B'(x,d'(x,y)) C B'(x,Cfd(x,y)) C B(x,C2d(x,y)) C B(x, 2ñ~1d(x, y)),

B(x,d(x,y)) c B'(x,C2d'(x,y)) C B'(x,2ñ-1d>(x,y))

shows that we may choose C\ :— (C'ß)n~l. Since by (4) the balls B(x,r) are open

the assertion follows from the second step.

The next lemma adapts Krein's Theorem to the present situation.

2.4 LEMMA. Let 0 < a < 1 be such that Cg(X) is dense in L2(p) and such

that there exists a family (fr)r>o satisfying 2.3(i)-(iv). Let further S,T: C§(X) —>

Ca(X) be two linear operators satisfying

(i) ¡fSg~dp = lgTfdu(f,gGC§(X)),
(ü)||5/||c-,||r/||c.<Cs,i|/|c-,
(iii) \\Sf\U \\Tf Wo» <Cs,2\f\c°p({f¿0})".

Then we have

\\Sf\\v, \\Tf\\L, < (Csp + 2ClfCvaCs,2)\\f\\L,       (f g C%(X)).

In particular, S,T extend to bounded linear operators on L2(p).
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REMARK.   Note that we did not assume that Sf,Tf G L2(p) (f G Cg(X)).
Nevertheless the integrals in (i) exist always.

PROOF. For any r > 0 we define

Br:={<prf:fGCa(X)}cCg(X),

\\f\\Br:= Q,,2||/||oo+ r°\f\c«        (fGBr),

Srf := <prS(<prf),        Trf := <prT(<prf).

Finally let Hr be the closure of Br in L2(p) endowed with the inner product (-, -)ht

induced by L2(p). From

IliPr/lloo  <  ll/lloo,

\<Prf\c*  < kr|c-||/||oo + ll^r||oo|/|c-  < C7^2r-°||/||00 + |/|o

we get, for any f G Br,

WSrfWoo <  ||S(*>r/)||oo < CsACv,2r-a\\f\\oo + \f\c°M{<Pr Î 0})"

<Cs,2(%ACv,2 ll/lloo + ra\f\c») = CsaCZA\\f\\Br,

\Srf\c < Cv<2r-a\\S(<Prf)\\00 + \S(<prf)\c°

< C^2C^fCSt2r-a\\f\\Br +CsAvrf\c°

< C^2C^fCSl2r~a\\f\\Br + Cs,ir-Q||/||Br,

||Sr/||B, < C^2CsaC^f\\f\\Br +C^2C^fCs,2\\f\\Br +Cs,l||/||Br

and therefore

|||Sr|||ßr,ßr < Cs,i + 2CpfGpt2Cs,2 ='■ Co-

Analogously we have ||[Tr|||ßriBr < Co- Since we have, by (i),

(Srf,g)HT = (f,Trg)Hr      (f,geBr)

we may now apply Krein's Theorem to conclude that

||Sr/l|H„l|rr/||flr<Co||/||ft       (feBr).

By 2.4(i), (ii), we have <pr/ = f (f G Bs,0 < s < 2s < r) and therefore Bs C Br,

Srf = p>rSf (f GBs,0<s<2s<r) together with (1) and \<prSf\ Î |5/| implies

(2) ||5/||L2 = lim ||Sr/||L2 < Co||/||L2        (/ GBs,s> 0).
r—>oo

Since for any / G Cq(X)

lim ||/ - •prfWoo = 0, lim p({(f - <prf) ¿ 0}) = 0,
r—*oo r—»oo

by 2.3(i), (iii) and Lemma 2.2, we get from 2.4(iii) and (2)

lim ||5/- 5(^7)1100=0, lim   \\S(<prf) - S(<paf)\\L* = 0
r—»oo r,s—»oo

whence

||5/||L2 = lim \\S(<prf)\\L, < Co\\f\W        (/ e CS(X)).
r—>oo

Since the same holds for T, the proof is complete.
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2.5 PROPOSITION. Let 0 < -y < 1, W C X, p(X\W) =0 andk: IxI^C

a measurable kernel such that the assumptions of Theorem 2.1 are fulfilled with

respect to k and with respect to the adjoint kernel k* defined by k*(x,y) := k(y,x).

Then there exists a constant C's depending only on Cf,C2,Cz,Cd,CIJi and 7 and

two bounded linear operators Tk,Tk: L2(p) —> L2(p) such that

Tkf(x) = lim í k(x,y)f(y)p(dy),
e^0Je<d{x,y)

(a) fkf(x) = lim f k(x, y)(f(y) - f(x)) p(dy)
s^°j£<d(x,y)<£-1

(XGW,   fGCg(X),   0<Q<7),

(b) |||rfc||U.lL.,|||ffc|||La,L.<c¿.

PROOF. We cannot apply Lemma 2.4 directly to Theorem 2.1 and must therefore

decompose k into

fci:=i(fc + rc*),    fc2:=i(fc-fc*),

kip :— Reki,    fci,2 := Imfci,    k2il:=Rekf,    k2¡2:—lmk2.

By our assumptions on k and fc*, the kernels re¿,¿ satisfy the assumptions of Theorem

2.1. In particular, for any 0 < a < 7, 1 < i,j < 2, there exists the linear operator

ffcij,Q: C§(X) -» Ca(X) satisfying

(1) fkij,af(x) := lim / kiAx,y)(f(y) - f(x))p(dy)
e-*°j£<d(x,y)<e-1

(xeW, fGCg(X)),

(2) |Ti.3.,Q/|c-<CSil|/|c".        (fGCS(X)),

(3) ||rfci,,,a/||oc < CSl2\f\c°p.({f ¿ 0})a       (/ e C0"(X)).

Since fc¿j is symmetric or antisymmetric and real valued we have also

(4) f gfki<j,afdp = ±f 7fkid,ag dp       (f,gGC$(X)).

Taking à as in Lemma 2.3, we choose a := min(à, 7/2).   Then by (l)-(4) and

Lemma 2.3 the assumptions of Lemma 2.4 are fulfilled and we get

||Tfcl,,a/||L2 < (Csp + 2ClfC^2Cs,2)\\f\\L2        (f G C$(X)).

Since

Tfc.a = ífcliQ +ÍTk2ta = (îfci.i.Q +ÍTkU2,a) +i(/fc2il,a + ¿îfc2,2,a),

\\\Tk,a - T'/CiQ|||í,2ií,2  < C3,

we get

ll|/'fc,a|||L2,L2, ll|/fc,Q|||L2,í,2 < C's :-C3+%(Cs,i-rCylfC¡p^2Cs,2)-

Since C<p,i, C<p>2 depend only on Cd, Cß and a depends only on Cd, Cß and 7, the

assertion follows.
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2.6 THEOREM.   Assume that (X,d,p) is a normalized homogeneous space, i.e.

C^r < p(B(x, r)) < CNr        (x G X, r > 0).

Let 0 < 7 < 1 and k: X x X —> C be a measurable kernel such that k and k* satisfy

2.1(i)-(iii). Then there exists a constant Cs depending only on Cf,C2,Cz,Cd,Cli,

GN,ß,l such that the operators Tk^,Tk<e: L2(p) —> L2(p) defined by

Tk,ef(x) := / k(x,y)f(y)p(dy),
J £<d(x,y)<e'1

fk,ef(y) := f k(x, y)(f(y) - f(x)) p(dy)
J £<d{x,y)<£-1

satisfy \\\Tkt£\\\L2^2, |||Tfcie|||I,a>La <CS-

PROOF. We return to Step 1 of the proof of Lemma 2.3. There we have found

ó > 0 and we have constructed functions <pr¡z satisfying

(1) ipr.z e Cg(X), \pr.z\c» < C^2r~a (0 < a < à,r > 0,z G A),

(2) 0 < <pr,z < fs,z <l(0<r<s,zeX),

(3) B(z,C~%r) C {p>r,z = 1} C B(z,Cv,3r), {<pr,z ¿ 0} C B(z,2C^3r) (r > 0,

z G X), where Cp^ is identical with the constant Ci of the proof of Lemma 2.3.

(4) frAy) = <Pr,y(z) (r>0,y,zG X),

(5) (x,y) —> frAy) is measurable on A (r > 0).

We want to show that the kernels

gr(x,y) := <pr,x(y)k(x,y)

satisfy 2.1(i), (ii) with suitable constants C[,C2 and 7' := min(7,q), ß' :=

max.(ß,2Cd). Obviously 2.1(i) holds with C[ : = Cf. To show 2.1(h), let x,x' G X,
ß'd(x,x') < d(x,y) and consider

\gr(x,y) -gr(x',y)\

< \fr,x'(y)\\k(x,y) -k(x',y)\ + \k(x,y)\\tprAy) ~<Pr,x'(y)\ =■ h + h-

Then we have

h < C2p(B(x,d{x,x'))yp(B(x,d(x,y)))-l-i

< C2p(B(x, d(x, x'W'p(B(x, d(x, y)))"1-1',

and if d(x,y) > oCdCp^r then

d(x',y) > Cd-\d(x,y)-Cdd(x,x')) > (2Cd)-1d(x,y) > ZC^3r

together with (3) implies

/2<|fc(x,y)||0-0|=0.

If d(x,y) < oCdGp¿r then we get from (1), (4) that

h < \k(x,y)\\<Pr,y(x) - <pr,y(x')\

<Cfp(B(x,d(x,y)))-lC^2r-1'p(B(x,d(x,x'))r'

<CfC^ap(B(x,d(x,y))r\oCdC^y'(°CdC^rr'<'p(B(x,d(x,x'))y'

< CfC^2(&CdC^p(B(x,d(x,y)))-1

x Cp'p(B(x, d(x, y)))-*'p(B(x, d(x, x'W'.
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Thus we may choose

C2 := C2 + CiCpA^CdCtpiï)   CN

Now the kernels

gr,s :=gs-gr       (0 < r < s < oo)

satisfy 2.1(i), (ii) with constants C" := 2C[, C2  := 2C2.   Next we compare the

kernels gr,s with the kernels kr,s defined by

t.    rT„x._/0 ii d(x,y)<r or d(x,y)>s,
rAX'y)-\k(x,y)    if r < d(x,y) < s,

(6)        \krAx,y) -gr,s(x,y)\ < '

and obtain from (3) that

0 iid(x,y)<C-i3r,

\k(x,y)\ iiC^3r<d(x,y)<2Cv>,3r,

0 if2C„,3r<d(x,y)<C-13S,

\k(x,y)\ if C7-3s < d(x,y) < 2Cip,3s,

0 if 2CVt3s <d(x,y).

Denoting

TkrJ(x)-.= I krAx,y)f(y)p(dy)

and analogously T9r sf(x) we see that Tkra,Tgra are bounded operators on Lp (1 <

p < oo). From (6) we get for any / G L°°(p)

\TkrJ(x)-TgrJ(x)\< f Cfp(B(x,d(x,y)))-1\\f\\oop(dy)
JC~*3r<d(x,y)<2Cv,3r

+ [ Cfp(B(x, d(x,y)))~l Il/lu p(dy)
JC-^s<d(x,y)<2Cv,3s

(7) < C1\\f\\00(log(ß(B(x,2Cv,3r)))-log(p(B(x,C^3r)))

+ log(p(B(x,2C^3s))) - \og(p(B(x,C-y3s))))

<Cf ll/IU -2ñlog(CM).

Here we have used inequality (1) of the proof of Theorem 2.1 and ñ :=

inf{n G N: 2C2 3 < 2™}. Since the same holds for the adjoint operators T£r s,T*r a

we get by duality also

\\TkrJ - T9rJ\\v < 2a1ÄlQg(C#t)||/|Ut        (/ G L\p)).

Applying the Riesz-Thorin theorem we get for any 1 < p < oo,

(8) \\TkrJ - TgTJ\\Lr < 2C1ñlog(C/1)||/||LP        (0 < r < s, f G Lp(p)).

In particular (p = co),

/ 9r,3(a;,î/))u(dy)
J r'<d(x,y)<s'

<C3+ 2Ciñlog(Cfi) =: C'f        (0 < r' < s').

Thus the kernels grs, 7' = min(â,7), /?' = max(ß,2Cd) satisfy 2.1(i)-(iii) with

constants C",C2,C3 depending only on Ci,C2,C3,Cd,Cti,Cn,'),ß.   Because of
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(4) the same is true for the adjoint kernels g*s.   Since 2.1(iv), (v), (vii) are also

obvious for gr,s and gfs we may apply Proposition 2.5 to get

ll|3Vr..||U»,L»<<7s        (0<r<s<oo).

Together with (8) the assertion follows from

Tk,e = Tkrs,        r := e, s :=e_1.

REMARK. Setting r := e, s := e"1 we get from 2.1(c) and the inequality (7) of

the last proof that (0 < a < min(â, 7))

\\Tk„f \\oo < wnrj - Tgrj\u + \\TgrjWoo

< CfWfWoc + ci2\f\c«p({f + o})"     (/ e cs(x)).

If p(X) = 00 then we get from Lemma 2.2 that (0 < a < min(07))

l|7fc,e/||oo < Cg,3|/|c-A*({/ + 0})a        (/ G Cg(X))

where C'¿<2,C'g2 depend only on C\,C2,C3,Cd,Cß,CN,ß,7,a.

2.7 COROLLARY. Assume that (X,d,p) is a normalized homogeneous space.

Let 0 < 7 < 1, W C X, p(X \ W) - 0 and k: X x X —> C a measurable kernel

satisfying 2.1 (i)-(iv). Assume further that k* satisfies 2.l(i)-(iii). Then there exists

a bounded linear operator Tk: L2(p) —» L2(p) such that

(a) |||rfc||UaiLa<CS,

(b) lirn^o \\Tkf - TKef\\L2 = 0 (/ G L2(p)).
Here Cs is the same constant as in Theorem 2.6.

PROOF. From Step 1 in the proof of Lemma 2.3 we see that, for sufficiently small

a > 0, the space C¡fQ(X) of all function / G Ca(X) with sup{d(x, y): x,y G X,

f(x) ^ 0 ^ f(y)} < 00 is dense in L2(p). Because of the preceding theorem, it is

therefore sufficient to show that Tkef is convergent in L2(p) for any / G Cqo(X).

We may assume a < 7 and hence the last remark yields

(1) C(fc,/):=sup||Tfc,£/||00<oo        (fGCZo(X)).
£>0

Let now / G C§0(X) and x0 G X, r0 > 0 with {/ ^ 0} C B(x0, r0). For any x G X,

d(x, xo) > 2Cdro we have

inf{d(sf,y): /(y) # 0} > C¿ld(x,x0)-rQ > \C^d(x,Xr,) =: e(x),

and therefore, by 2.1(i),

|2fc,./(x)| <  / \k(x,y)\ ll/lloo p(dy)
JB(x0,ro)

<Cfp(B(x,e(x)))-l\\fWooP(B(xo,r0))

< CfCNe(x)-1\\fWooP(B(xo,ro)) -. Cfd(x,x0)-1.

Hence, for any e > 0 and x G X,
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If we can show that g G L2(p) then the assertion follows from the dominated

convergence theorem, since Tk¡Ef converges pointwise on W by the proof of Theorem

2.1. Now on one hand we have

/Jd(
\g(x)\2p(dx) < C(k,f)2p(B(xo,2Cdr0) < oo

ld(x,xo)<'2Cdro

and on the other hand we have

L2Cdr0<d(x,x0)

<

\g(x)\2 p(dx)

L
L
í

Jhx
CfCJft'2 dt < oo.

Cjd(x, xo)  2 p(dx)
'2C<¡r0<(i(x,xo)

:  / CfC2Np(B(xo,d(xo,x)))~2 p(dx)
l2Cdr0<d(x,xo)

-,2 4.-2

x0(2Cdr0)

Here we have used inequality (1) of the proof of Theorem 2.1.

2.8 COROLLARY. Assume that (X,d,p) is a normalized homogeneous space.

Lett) < 7 < 1 andk: IxI^C a measurable antisymmetric kernel, i.e. k(y,x) =

—k(x,y), satisfying 2.1(i)-(iii). Then there exists a bounded linear operator Tk on

L2(p) such that

(a) |||rfc|||La,La < CS)

(b) TkiSf converges (e —> 0) to Tkf in the weak topology of the Hubert space

L2(p) for any f G L2(p).
Again Cs is the same constant as in Theorem 3.6.

PROOF. As in Corollary 2.7 it is enough to show (b) for all / G Co0(X) and

a > 0 sufficiently small. Moreover, since {Tkef: e > 0} is relatively compact with

respect to the weak topology, it is enough to prove that J gTk^ef dp converges for

any /, g G Cq(X). This will be accomplished by means of the following formula for

antisymmetric kernels:

// £l<d(x,y)<£2

f(x)k(x, y)f(y) p(dy) p(dx)

< -- 2

+

ML
ML

<d(x,y)<s2

k(x, y)(g(x)f(y) - g(y)f(x)) p(dy) p(dx)

\k(x,y)\\f(y)-f(x)\\g(x)\p(dy)p(dx)
<d(x,y)<£2

\ if \k(x, y)\ \g(x) - g(y)\ \f(x)\p(dy) p(dx)
¿  J J£!<d(x,y)<£2

-■ Ii(ei,s2) + I2(ei,e2).

Using the estimate (3) from the proof of Theorem 2.1 we obtain

h(ei,e2)<l-j\g(x)\(^(p(B(x,e2)r-p(B(x,ei))a)p(dx)
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and therefore

lim     sup    Zi(ei,e2) = 0.
£2^00<£l<£2

Of course the same is true for /2(ei,e2). Because 6(f,g) := sup{d(x, y): f(x) ^ 0,

9Íy) ¥" 0} < oo, we have

IL g(x)k(x,y)f(y)p(dy)p(dx) =0
l£2 l<d(x,y)<£l l

Having done this we can conclude (0 < ei < e2 < 6(f, g)^1

/ gTkeJdp- j gTkeJdp < IL
IL

<d(x,y)<£2

(0<ei < e2 <6(f,g)-1).

from

f(x)k(x, y)f(y) p(dy) p(dx)

</i(ei,e2) + /2(ei,£2) + 0

g(x)k(x,y)f(y) p(dy) p(dx)

that

lim     sup      / gTk   fdp- / gTk   f dp
£2^00<£l<£2   I.' /

= 0.

2.9 EXAMPLES, (a) If we set d(x, y) := \x - y\n then (R™, d, A") is a normalized

homogeneous space and the results of the introduction follow from the correspond-

ing results in this section. Note that AQ — Caln. We may choose q := a/n.

(b) The special case of Theorem 1 in A. W. Knapp, E. M. Stein [8], which they

proved first, is an obvious consequence of Corollary 2.7. The general case follows

also from Corollary 2.7 if we use the simple Lemma 1.2 of [8]. Moreover, using

Theorem 2.1, we get also Holder estimates for the singular integrals of Knapp and

Stein.
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