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CONSTRUCTION OF AN INNER FUNCTION
IN THE LITTLE BLOCH SPACE

KENNETH STEPHENSON

Abstract. An explicit construction using Riemann surfaces and Brownian

motion is given for an inner function in the unit disc which is not a finite

Blaschke product yet belongs to the little Bloch space 3§^. In addition to

showing how an inner function can meet the geometric conditions for 3Sq,

this example settles an open question concerning the finite ranges of inner

functions: the values which it takes only finitely often are dense in the disc.

A function / analytic on the unit disc D = {\z\ < 1} belongs to the space &o,

the so-called little Bloch space, if it satisfies the equality lim|0|_1(l-|z|)|/'(z)| =0.

There are several equivalent definitions, but for our purposes the most useful relates

to the geometry of the image surface ff%f, namely, / 6 3§o if and only if for each

£ > 0 there exists a compact set K C 3ij so that 3if contains no schlicht discs

of radius e centered at points outside of K. An inner function is an analytic

function mapping the disc D into itself whose radial limits are of modulus one

almost everywhere on the unit circle T. It is evident that finite Blaschke products

are inner functions belonging to £$o; however, it would at first appear quite difficult

for more general inner functions to belong. Indeed, their image surfaces cover

nearly all values of the unit disc infinitely often outside of any compact subset,

and at the same time their boundaries lie largely over the unit circle. Nonetheless,

J. M. Anderson [2] saw that such an example was possible using certain positive

singular measures on the unit circle first constructed by J.-P. Kahane. (See [5,

8, and 13, VII.5].) In [7], Donald Sarason asks for a direct construction of an

infinite Blaschke product in 38q, with the aim of characterizing the zero sets of such

functions. He also writes of a suggestion of Tom Wolff concerning the Hausdorff

measure of their singular sets.

The construction here is not of the type Sarason requests—it does not provide the

desired zero set. Rather, we construct our function by building its image surface and

checking the geometric condition above. Still, it does show how inner functions can

overcome the geometric constraints for membership in 38q, it satisfies the Hausdorff

measure property suggested by Wolff, and it raises some other questions which may

be of interest. Moreover, the particular example we obtain answers an open question

regarding the finite ranges of inner functions.

A point w E D is in the finite range of an inner function / if the cardinality

of /_1{tu} is finite.   Of course, for a finite Blaschke product, the finite range is
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the entire disc D; however, by a theorem of Frostman, for other inner functions

the finite range is of (logarithmic) capacity zero. In studying the finite ranges of

inner functions in [11], the author left open the question of whether the closure of

the finite range was also of capacity zero. The answer is no, for the example in

this paper has a finite range whose closure is the entire unit disc. In particular,

this illustrates that an infinite Blaschke product need not take every value in some

neighborhood of the origin infinitely often.

The author would like to thank Christian Pommerenke, Wayne Smith, and Tom

Wolff for helpful conversations on the material presented here. The geometric

characterization of 3Sq is given in Theorem A(ii) of [10]; for the basic notions

regarding Brownian motion and Riemann surfaces which we use, see Davis [4] and

Ahlfors and Sario [1], respectively.

1. An overview. Our method of construction depends on the Riemann map-

ping or uniformization theorem. We first construct a simply connected Riemann

surface 32 by pasting together infinitely many copies of the unit disc, slit along

specified radial segments. The natural projection 7r of 32 to the unit disc is a

bounded analytic function, so 32 is conformally equivalent to the unit disc by the

uniformization theorem. Let (p: D —» 32 be a conformal mapping. The function /

of interest is defined by

/ = 7ro0:D^£>;

automatically we have 32f = 32. The construction of 32 will guarantee that the

range of / has a dense set of points which are taken only finitely often. For a

bounded analytic function in D, this alone implies the geometric conditions for

membership in 3Sq.

The proof that / is an inner function is more delicate. It suffices to show that

the full harmonic measure of 32 lies on a part of its ideal boundary which projects

to the unit circle under 7r. Here is where Brownian motion arguments are useful.

A subset of the ideal boundary of a surface has full harmonic measure if and only

if almost every Brownian path, starting from some fixed point of 32, eventually

exits the surface at a point of that subset. In our case, we show that almost every

Brownian path has a projection under 7r which converges to the unit circle.

2. The construction of 32. Let Eq C Ey C E2 C • ■ • be finite subsets of

nonzero points in the unit disc, Eo ^ 0. We require that their union be dense

and that no two points of their union have the same argument. For each index

j we define the surface Qj obtained from a copy of the unit disc with the points

of Ej removed and with radial slits cut from those points to the unit circle. (See

Figure 1.) The surface 32 will be obtained by pasting together many such "sheets"

along opposite edges of common slits. All of the pasting operations are essentially

the same, so let us describe one rather fully here at the beginning: Fix a point

e E En\En_y and denote by 7 the radial segment from e to the unit circle. A sheet

Qk has a slit along 7 if and only if k > n. Suppose k,l > n and consider pasting Qk

to Qi along 7. Of course, 7 has two sides which we might refer to as left and right.

Say that we want to attach the left side of 7 on Qk to the right side of 7 on Cj.

We take the disjoint union of Qk and Q[, identify these edges, and use the induced

topology on this new surface. The natural projections, call them irk and 7T;, of Qk
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and Qi to the unit disc agree on the overlap and provide a continuous, locally one-

to-one projection to the disc. This induces a conformal structure on the new surface

which agrees with the original structures on the subsurfaces corresponding to fi^

and fi/. The new surface is simply connected by van Kampen's theorem, since the

original two pieces were simply connected and were joined along a simply connected

set, namely 7. (Note that the new surface has points lying over the interior of the

segment 7, but no point over e.) In general, we will be joining one new sheet to

a surface already made up of several others, but the operation is the same: each

connection is made from some edge of a slit 7 on one sheet to the opposite edge of

7 on another.

Figure 1

The surface 32 is the directed limit of a sequence of nested surfaces {32j}. The

first of these, 32o, is just fio, and has 2c unattached edges formed by the slits to

the points of £0, where c is the cardinality of Eq. The next surface, 32y, will result

from several additional stages of pastings: First, we paste 2c copies of fii to the

2c edges of 32q, obtaining a surface which has unattached edges formed by the

slits in these copies of fii. The sheets we added at this stage will be called sheets

of the first generation. Next, we paste copies of fii to all of the new unattached

edges—these are sheets of the second generation. We continue in this way until

we have adding some integer number gy of generations to 320, all made of copies

of fix, the appropriate number gy to be determined later. The surface we have

built to this stage is now denoted 32y. Observe that all the unattached edges of

32y are the ones left from the last generation of sheets we attached, since edges

of all earlier generations have had additional sheets pasted on. The surface 322

is obtained likewise, attaching some number g2 of generations of copies of Q2 to

the edges remaining on 32y. One continues inductively in this way to obtain the

sequence {32j}.

The 3ij-'s are nested simply connected surfaces lying over the unit disc. Their

directed limit 32 is therefore a simply connected Riemann surface with a natural

projection 7r: 32 —> D. Note that there are no unattached edges in the limiting

surface; all will have been pasted to succeeding generations during the construction.

There are no points of 32 lying over points of Eq, for none of the sheets Qj contains

points over Eq. The points of Ey\EQ are covered only once, by the original copy of
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fi0. And in general, the points of En\En-y are covered only finitely often—namely,

by the copies of fio, fii,..., fin-i which went into the construction of 32n-y. We

have met one of our objectives: There is a dense set in D which 32 covers only

finitely often, and consequently the function / we obtain from 32 is in 3Sq.

It may be helpful to identify this surface 32 with a tree whose nodes represent

the copies of the fi/s and whose edges represent the pastings. (See Figure 2.)

Each node has two edges for every slit in its corresponding sheet. The base node

corresponds to the single copy of fio we started with and succeeding generations

of nodes correspond to the generations of sheets we added. There are uncountably

many trees (i.e., surfaces) we could build with similar methods, just by varying our

selection of nodes at each generation; and we will actually use one other in our

later work. We do not claim to understand fully how the properites of the trees

and their corresponding surfaces are related, but this representation is suggestive.

Observe, for instance, that in our tree if one stands at a node corresponding, say,

to fin, then one must travel at least gn+i edges to reach a node corresponding to

Qn+2. We will be choosing the j^'s so that Brownian travelers on the surface will

be discouraged from making such long trips.

•

Figure 2

3. Proof that / is an inner function. Let tuo E 32 be the point lying

over z = 0 on the sheet fio with which we started the construction of 32. For

convenience, choose the Riemann mapping function cp: D —* 32 so that cp(0) = w0;

then /(0) = 7r(<p(0)) = 0. Denote by Zt, t > 0, the standard Brownian motion in

D starting at z = 0 and stopped on first hitting the unit circle. It is well known

that / has an asymptotic value along almost every Brownian path. It will generally

be helpful to picture the Brownian motion, transplanted via <p, as a motion on

32 starting at tuo. Thus, on 32 almost every Brownian path starting at tuo will

approach the ideal boundary and will give rise to an asymptotic value for -jr. To

prove that / is an inner function, it suffices to prove that these asymptotic values

have modulus one on almost every Brownian path. Since it is not difficult to see

that every point interior to the unit disc is an asymptotic value of n along some

path, our main task is to show that the positive integers gj used in the construction

of 31 can be chosen so that asymptotic values interior to the disc are almost never

taken on Brownian paths.
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We will choose the gj inductively, with go = 1, corresponding with the fact that

we used only one sheet fio in our construction of 32. Assume now that we have

chosen integers gj, j = 0,... ,n — 1. In choosing gn, we will use an auxilliary surface

'y = ^"n defined as follows: Start with the surface 32n-y constructed as described

earlier using g0, gy,..., gn-i- In all subsequent generations, however, paste on only

sheets which are copies of fin. The surface 2^ is the directed limit of the resulting

nested sequence of surfaces and has a natural projection 7r„ to the unit disc. (It is

not difficult to show that T/~ is the image surface of an inner function, but that will

not be needed here.)

Now for the choice of gn. Choose small closed discs Dk lying in the open unit

disc, one centered on each of the points of En, so that 0 ^ \JDj and so that

(1) w(o,|J^,D\(JzV)<i-,

where w indicates harmonic measure. This is possible because En, being a finite

set, has logarithmic capacity zero. Let F be the finitely connected plane region

D\ (j Dj and let V denote the open set 7r~1(F) C 2^". From our construction of "V

one sees that V with the projection 7r„|y is a regular smooth covering surface of F

(see [1, I.14F]). It is well known that in this situation, a Brownian path starting

at tuo in V has the same probability of exiting V at a point of its ideal boundary

lying over T as a Brownian path starting at 0 = 7rn(tuo) in F has of exiting F in T.

But (1) implies that this latter probability is at least 1 — £-. Furthermore, every

Brownian path which exits V over T will have finite winding number about each

of the discs Dj. Thus it will, during its wanderings before exiting V, visit at most

some finite number of the sheets of V. Consequently, for a sufficiently large integer

M, the Brownian paths on V will, with probability at least 1 — *, exit over the unit

circle before hitting any of the discs Dj and before leaving the Mth generation of

sheets of 'W. Let V be the open subset of V consisting of the sheets in the first M

generations of the construction of W. Brownian paths starting from tuo will, with

probability at least 1 — -, exit V over the unit circle.

Choose gn so that Y^j=q 9j > Af. Then the first M generations that go into the

constructions of 32 and W are precisely the same; and in particular, WqEV' C 32n.

The Brownian traveler starting at wq does not know whether he is in the surface 32n

or ff. In either case, he will exit V and hence the surface over the unit circle with

probability at least 1 — £. Continuing inductively, we determine all the integers gj

and complete the construction oi 32.

Finally, note that the surfaces 32j are nested subsurfaces of 32. Given e > 0,

choose N so large that -^ < e. The Brownian paths starting at tuo exit 32^ over

the unit circle with probability at least 1 — e, so they also exit 32 with at least that

probability. Since e was arbitrary, almost all Brownian paths on 32 will exit over

the unit circle, and we are done.

4. Properties of /. We know very little about the properties of / in certain

regards. Unlike the work on finite ranges in [11], we do not control the number

of times that points in its finite range, |J E3, are taken; we know / has infinitely

many zeros, but it is not known where they are located nor even whether / has a

nontrivial singular inner factor, versus being a pure Blaschke product. Fortunately,

we can still answer the last question in [12] by using a classical result of Frostman.
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For a E D, define a Mobius transform of / by

fa(z)=!{z)~,\,        ZED.
1 - af(z)

This is an inner function, and it has dense finite range

According to the theorem of Frostman, fa is a pure Blaschke product for all a

outside an exceptional set E(f) having logarithmic capacity zero. Thus for a typical

a, fa will be a pure Blaschke product with infinitely many zeros but with values

arbitrarily close to zero which are taken only finitely often.

We can determine from our construction some of the properties of the singular

set oi f, which we denote S(f). This is the closed set of points of T to which /

does not extend analytically.

First, note that almost every Brownian path on 32j will exit on a free arc of

the boundary which lies over the unit circle and belongs to one of the sheets Qj

used in the construction. Since T is an analytic arc, one can show by the reflec-

tion principle that the mapping function cp and its projection f = ir o <p will have

analytic continuations to a neighborhood of that boundary point. In particular,

S(f) has Lebesgue measure zero. This is not the case for every inner function in

33q: Using singular measures a la Sarason, one can construct inner functions in 38q

with singular set all of T.

On the other hand, S(f) is not too small: If Eq has at least two points, then

results of Seidel and Lohwater (see Theorems 5.13 and 5.14 of [3]) imply that for

every open interval I C T, either S(f) fl I is empty or has positive logarithmic

capacity. Tom Wolff has apparently shown this to be the case for every inner

function in 3?o, and he has suggested that 'positive capacity' can be replaced by

'Hausdorff dimension one'. Using results of Toppila [12] and the methods of J.

Fernandez [6], we can show that this stronger result holds for a class of functions

containing /.

PROPOSITION. Let g be an inner function whose finite range has an accumula-

tion point in D. Then for every open interval I CT, either S(g) f] I is empty or it

has Hausdorff dimension one.

PROOF. Denote by 2f (■) the Hausdorff dimension of a subset of T. Given £> 0,

choose points wy,w2 E D which are in the finite range of g and are separated by

a hyperbolic distance less than e. Assume that all their preimages lie in the disc

{|tu| < R < 1}. Let A = {R < [w\ < 1} and choose a universal covering map

tp: D -> A mapping T+ = Tn{3?z > 0} to T and T~ =Tn{3fz < 0} to {\w\ = R}.
The function G = g o tp maps D into the doubly punctured disc D\{wy,w2}. Let

<p: D —» D\{wy,w2} be a universal covering map. It is well known that <p is an

inner function, and according to the theorem of Fernandez, 3>(S(<p)) > ot(e), where

a(e) increases to one as £ goes to zero. Since £ can be chosen to be arbitrarily small,

it therefore suffices to prove

(2) &(S(g))>9t(S(<t>)).
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Let us denote by B the singular set of g o tp in T+, i.e., the closed set of points at

which g o tp fails to continue analytically. Since tp is analytic on T+ and maps it

onto T, tp(B) = S(g). Therefore, (2) will follow from

(3) &(B)>&(S(<I>)).

The range oi g o tp lies in D\{wy,w2}, so we may factor this map through the

universal covering map (p; that is, there exists an analytic function h: D —> D so

that

g o tp = (p o h.

One easily verifies by the maximum principle that since g o tp has modulus one

almost everywhere on T+, the same holds for h. Let fi be a domain with fi D T =

T+. By the Schwarz reflection principle, h extends across T+\B to a meromorphic

function on Q\B; moreover, gotp = tpohis analytic on T+\B, so h(Q\B) omits the

singular set S((p) of (p. (3) follows from a theorem of Toppila (see Theorem A [6]).

All these results hold locally for any interval I intersecting S(g), so this completes

the proof.

5. Discussion. Having seen the contortions which an inner function must

exhibit for membership in 33q, it is tempting to think that certain features of our

example are unavoidable. For instance, / and the earliest example using Kahane's

measure rely heavily on singular inner factors—in our case, values must be omitted

on vast portions of the image surface. If all inner functions in 33q behave in an

appropriate local sense like inner functions which omit values, then perhaps the

suggestion of Wolff concerning the Hausdorff dimension of singular sets will follow

by the methods of Fernandez.

Unfortunately, inner functions and the geometry of their image surfaces remain

quite mysterious. For instance, we can modify our construction of 32j in innumer-

able ways to obtain new examples: At each stage, as we paste on a new sheet, we

can perturb the locations of the tips of the slits in that new sheet (except of course

for the slit on which the pasting is being done) without invalidating our argument

that we obtain an inner function in 33q. We can build an inner function in 33q

whose finite range has no accumulation point in D, or even one with empty finite

range. Note however, that in all these constructions whenever a slit is used in a

pasting in one generation, there are at least two branches of the associated tree

along which its tip is omitted in every subsequent generation. Thus, even if the

resulting function has empty finite range, it seems to have locally omitted values.

Does it necessarily have a nontrivial exceptional set? Are there any inner functions

in 3Sq whose exceptional sets are empty, i.e., indestructible Blaschke products [7]?
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