ON INDUCTIVE LIMITS OF CERTAIN C^* -ALGEBRAS OF THE FORM $C(X) \otimes F$

CORNEL PASNICU

ABSTRACT. A certain class of *-homomorphisms $C(X) \otimes A \to C(Y) \otimes B$, called compatible with a map defined on Y with values in the set of all closed nonempty subsets of X, is studied. A local description of *-homomorphisms $C(X) \otimes A \to C(Y) \otimes B$ is given considering separately the cases X = point and $A = \mathbf{C}$; this is done in terms of continuous "quasifields" of C*-algebras. Conditions under which an inductive limit $\lim_{k \to \infty} (C(X_k) \otimes A_k, \Phi_k)$, where each Φ_k is of the above type, is *-isomorphic with the tensor product of a commutative C*-algebra with an AF algebra are given. For such inductive limits the isomorphism problem is considered.

The study of inductive limits of C^* -algebras of the form $C(X) \otimes F$ (with F a finite-dimensional C^* -algebra) has been suggested by E. G. Effros in [5]. Clearly, for this problem, the structure of the *-homomorphisms between algebras of the above form is important. This question has been considered in [1, 2, 8, 9, 10, 11 and 12].

The main result of the present paper gives a sufficient condition for the triviality of the inductive limits, i.e., so that they are tensor products of commutative algebras and AF-algebras.

After some preliminaries in §1, we consider in §2 *-homomorphisms $\Phi: C(X) \otimes A \to C(Y) \otimes B$ compatible (2.3) with a map $\theta: Y \to K(X)(K(X))$ the closed subsets of X) which generalize the homomorphisms compatible with a covering considered in [8]. Our results are more precise in the following two situations:

1°. $\theta(y) = \varphi^{-1}(y), \varphi \colon X \to Y$ a continuous surjection;

2°. $\theta(y) = \{\varphi(y)\}, \varphi \colon Y \to X \text{ continuous } (2.7).$

Given a homomorphism, we find conditions that insure the existence of a θ as in 1° above with which it is compatible (2.8). We also improve one of our previous results (Proposition 2.5 in [8]) concerning homomorphisms compatible with a *p*-fold covering (2.9).

In §3 the homomorphisms $C(X) \otimes A \to C(Y) \otimes B$ are unitial, A, B are finite dimensional and the compact spaces X, Y are metrizable (excepting Proposition 3.1). Our results describe the local structure of such homomorphisms in terms of continuous "quasifields" of finite-dimensional C^* -algebras ((3.1) and (3.4)). Using classes of inner equivalent injective homomorphisms between continuous quasifields of finite-dimensional C^* -algebras (see 3.3) we study the set of classes of inner equivalent homomorphisms (injective homomorphisms) from C(X) to $C(Y) \otimes B$

©1988 American Mathematical Society 0002-9947/88 \$1.00 + \$.25 per page

Received by the editors August 20, 1987. Presented at the 11th Conference on Operator Theory, Bucharert, Romania, June 2-12, 1986, organized by INCREST.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46M40; Secondary 46L99.

(3.4). A similar analysis is done for the set of all *-homomorphisms (injective *-homomorphisms) from $C(X) \otimes A$ to $C(Y) \otimes B$ which are compatible with a given continuous surjective map from X to Y, the fibre of which satisfies a certain continuity property (3.6).

§4 contains the main result of this paper. Consider a system:

$$C(X_1) \otimes A_1 \xrightarrow{\Phi_1} C(X_2) \otimes A_2 \xrightarrow{\Phi_2} \cdots$$

with X_k compact and A_k a finite-dimensional C^* -algebra. We give conditions under which the above inductive limit is "trivial," in the sense that it coincides with the tensor product of a commutative C^* -algebra with an AF-algebra. The assumptions on the spaces X_k involve the vanishing of certain nonabelian cohomologies (this occurs for X_k contractible, for instance). Moreover, it is required that

$$\Phi_k(C(X_k) \otimes 1_{A_k}) \subset C(X_{k+1}) \otimes 1_{A_{k+1}}$$

(see (4.3)). For such trivial inductive limits we also consider the isomorphism problem (4.4).

ACKNOWLEDGMENT. The author is grateful to Şerban Strătilă for his suggestions on a first version of the manuscript.

1. For A and B unital C^{*}-algebras, Hom(A, B) (resp. Hom $_i(A, B)$) will denote the set of all unital *-homomorphisms (resp. all unital injective *-homomorphisms) from A to B endowed with the topology of pointwise convergence. Z(A) denotes the center and U(A) the group of all unitaries of A. $\Phi, \Psi \in \text{Hom}(A, B)$ are called *inner equivalent*, $\Phi \sim \Psi$, if $\Phi = \text{Ad } u \circ \Psi$ for some $u \in U(B)$. For $M \subset$ Hom(A, B), we denote by M/\sim the corresponding set of classes of inner equivalent *-homomorphisms.

For a compact topological space X we use the canonical identification $C(X) \otimes A = C(X, A)$. If $f \in C(X) \otimes A$ and $F \subset X$, we denote $||f|_F || := \sup_{x \in F} ||f(x)||$ if $F \neq \emptyset$ and $||f|_{\emptyset} || := 0$. For a finite-dimensional C^* -algebra $A = \bigoplus_{i \in I} A_i$ (where each A_i is a finite discrete factor) the inclusions $A_i \subset A$, $i \in I$, induce canonical embeddings $C(X) \otimes A_i \subset C(X) \otimes A$, $i \in I$, and we have $C(X) \otimes A = \bigoplus_{i \in I} C(X) \otimes A_i$.

If $\varphi: X \to Y$ is a continuous map between compact spaces, we denote by $\varphi^*: C(Y) \to C(X)$ the map $\varphi^*(f) = f \circ \varphi, f \in C(Y)$.

Let G be a topological group, G_c the sheaf of germs of continuous G-valued functions on X and $H^1(X, G_c)$ the corresponding cohomology set; for a contractible compact space X, $H^1(X, G_c)$ reduces to the trivial element [7].

2. Throughout this section X, Y will denote compact spaces and A a finitedimensional C^* -algebra.

2.1. Consider $A = \bigoplus_{i \in I} A_i$, where I is a finite set and each A_i is a finite discrete factor.

Denote $K(X) := \{F | F \text{ is a nonempty closed (i.e., compact) subset of } X\}$. Consider $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$, where B is a unital C*-algebra. For any $y \in Y$, let $X_{y,\Phi} \in K(X)$ be such that $\{g \in C(X) | g | X_{y,\Phi} = 0\}$ is the kernel of the unital *-homomorphism:

$$C(X) \ni g \to \Phi(g \otimes 1_A)(y) \in B.$$

Then, for each $y \in Y$, $X_{y,\Phi} \in K(X)$ is determined by the condition

$$\|\Phi(g \otimes 1_A)(y)\| = \|g|X_{y,\Phi}\|, \qquad g \in C(X).$$

In a similar way one sees that for any $y \in Y$ and $i \in I$ there is a unique closed subset $X_{u,\Phi}^i$ of X such that

$$\|\Phi(f_i)(y)\| = \|f_i|X_{y,\Phi}^i\|, \qquad f_i \in C(X) \otimes A_i.$$

Note that $X_{y,\Phi}^i$ can be the empty set. Clearly $X_{y,\Phi} = \bigcup_{i \in I} X_{y,\Phi}^i$. 2.2. For any $f = \bigoplus_{i \in I} f_i \in \bigoplus_{i \in I} C(X) \otimes A_i$ and $y \in Y$ we have

(1) $\|\Phi(f)(y)\| = \max_{i \in I} \|f_i\| X_{i,\Phi}^i\|,$

(2) $\|\Phi(f)(y)\| \le \|f|X_{y,\Phi}\|$, since

$$\|\Phi(f)(y)\| = \left\|\sum_{i \in I} \Phi(f_i)(y)\right\| = \max_{i \in I} \|\Phi(f_i)(y)\|$$
$$= \max_{i \in I} \|f_i|X_{y,\Phi}^i\| \le \max_{i \in I} \|f_i|X_{y,\Phi}\| = \|f|X_{y,\Phi}\|$$

Moreover

(3) Φ is injective $\Leftrightarrow \bigcup_{y \in Y} X_{y,\Phi}^i = X$ for any $i \in I$. Indeed, by (1) we have

$$\|\Phi(f)\| = \max_{i \in I} \left\| f_i | \bigcup_{y \in Y} X_{y,\Phi}^i \right\|$$

and each $\bigcup_{y \in Y} X_{y,\Phi}^i$ is closed.

2.3. Consider a map $\theta: Y \to K(X)$. We say that a *-homomorphism $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$, where B is any unital C*-algebra, is θ -compatible if

(1) $X_{y,\Phi} \subset \theta(y), y \in Y.$

This is equivalent to

(2) $\|\Phi(f)(y)\| < \|f|_{\theta(y)}\|$, $f \in C(X) \otimes A$, $y \in Y$. Indeed, (1) \Rightarrow (2) by 2.2(2). Conversely, for any $g \in C(X)$ and $y \in Y$ we have $\|g|X_{y,\Phi}\| = \|\Phi(g \otimes 1_A)(y)\| \le \|g|\theta(y)\|$ and since $X_{y,\Phi}$ is closed in X it follows that $X_{y,\Phi} \subset \theta(y)$.

The above argument also shows that $X_{y,\Phi}$ is the smallest nonempty closed subset F of X such that $\|\Phi(f)(y)\| \leq \|f|_F\|$ for any $f \in C(X) \otimes A$.

2.4. Consider $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$, where $A = \bigoplus_{i \in I} A_i$, *I* is a finite set and each A_i is a finite discrete factor, and a map $\theta \colon Y \to K(X)$. Then, the following are equivalent:

(1) $\|\Phi(f)(y)\| = \|f|\theta(y)\|, f \in C(X) \otimes A, y \in Y.$

(2) $X_{y,\Phi}^i = \theta(y), y \in Y, i \in I.$

Indeed (2) \Rightarrow (1) by 2.2(1). Conversely, for every $i \in 1$ and $y \in Y$, we have $\|f_i|X_{y,\Phi}^i\| = \|\Phi(f_i)(y)\| = \|f_i|\theta(y)\|$, $f_i \in C(X) \otimes A_i$, and since each $X_{y,\Phi}^i$ is closed in X, we deduce $X_{y,\Phi}^i = \theta(y)$.

2.5. Suppose moreover that $(\theta(y))_{y \in Y}$ is a partition of X and that Φ is compatible with θ . Then the following are equivalent:

(1) Φ is injective,

(2) $\|\Phi(f)(y)\| = \|f|\theta(y)\|, f \in C(X) \otimes A, y \in Y.$

Indeed, $(2) \Rightarrow (1)$ by 2.2(3) and 2.4. Conversely, suppose there are $i_0 \in I$, $y_0 \in Y$ such that

$$X^{i_0}_{y_0,\Phi} \subsetneqq \theta(y_0).$$

Since Φ is compatible with θ , we have $X_{y,\Phi}^{i_0} \subset \theta(y), y \in Y$. Then, using 2.2(3) and the fact that $(\theta(y))_{y \in Y}$ is a partition of X, one has

$$X = \bigcup_{y \in Y} X_{y,\Phi}^{i_0} \subsetneqq \bigcup_{y \in Y} \theta(y) = X,$$

a contradiction. Hence $X_{y,\Phi}^i = \theta(y), y \in Y, i \in I$, and the conclusion is obtained using again 2.4.

2.6. PROPOSITION. Consider $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$ and a map $\theta: Y \to K(X)$ and suppose there is a unital embedding $B \subset M_n$, for some $n \in \mathbb{N}$. Then Φ is θ -compatible if and only if

(1)
$$\operatorname{tr}(\Phi(g \otimes 1_A)(y)) \in n \cdot \operatorname{co} g(\theta(y)), \quad g \in C(X), \ y \in Y,$$

where tr denotes the usual trace on M_n .

PROOF. For any $y \in Y$, consider the unital finite-dimensional *-representation $C(X) \otimes A \ni f \to \Phi(f)(y) \in M_n$. Since this is a direct sum of irreducible *-representations, it follows that for any $x \in X_{y,\Phi}$ there is a unital *-representation $\Pi_{x,y}$ of A such that

(2)
$$\Phi(f)(y) = \bigoplus_{x \in X_{y,\Phi}} \Pi_{x,y}(f(x)) \in M_n$$

for all $f \in C(X) \otimes A$. In particular, in this case, each $X_{y,\Phi}$ is a finite set.

Suppose that Φ is θ -compatible. Using the above discussion, for $g \in C(X)$ and $y \in Y$ we get

$$\operatorname{tr}(\Phi(g \otimes 1_A)(y)) = \sum_{x \in X_{y,\Phi}} g(x) \cdot \dim \Pi_{x,y}$$
$$= n \cdot \left(\sum_{x \in X_{y,\Phi}} g(x) \cdot n^{-1} \cdot \dim \Pi_{x,y}\right) \in n \cdot \operatorname{co} g(\theta(y))$$

since $X_{y,\Phi} \subset \theta(y)$ and Φ being unital, $\sum_{x \in X_{y,\Phi}} n^{-1} \cdot \dim \prod_{x,y} = 1$.

Conversely, assume (1) and suppose there is $y_0 \in Y$ such that $X_{y_0,\Phi} \not\subset \theta(y_0)$. Then there is $x_0 \in X_{y_0,\Phi} \setminus \theta(y_0)$ and $g_0 \in C(X)$ such that $g_0(x_0) = 1$ and $g_0|\theta(y_0) \cup (X_{y_0,\Phi} \setminus \{x_0\}) = 0$.

Using (1) and (2) we have

$$\begin{aligned} \operatorname{tr}(\Phi(g_0 \otimes 1_A)(y_0)) &= \sum_{x \in X_{y_0, \Phi}} g_0(x) \cdot \dim \Pi_{x, y_0} \\ &= \dim \Pi_{x_0, y_0} \notin \{0\} = n \cdot \operatorname{co} g_0(\theta(y_0)), \end{aligned}$$

a contradiction.

2.7. Consider in particular the map $\theta: Y \to K(X)$ given by $\theta(y) := \{\varphi(y)\}, y \in Y$, where $\varphi: Y \to X$ is a continuous map. Then Φ is θ -compatible if and only if

(1) $\Phi(g \otimes 1_A) = g \circ \varphi \otimes 1_B$, $g \in C(X)$. Indeed, since $X_{y,\Phi} = \{\varphi(y)\}$, we have $\Phi(g \otimes 1_A)(y) = \prod_{\varphi(y), y} (g(\varphi(y)) \cdot 1_A) = g(\varphi(y)) \cdot 1_B$, for any $g \in C(X)$ and $y \in Y$. Conversely, if (1) holds then for any $g \in C(X)$ and $y \in Y$ we have $||g|X_{y,\Phi}|| = ||\Phi(g \otimes 1_A)(y)|| = ||g(\varphi(y))||$ and since each $X_{y,\Phi}$ is closed, $X_{y,\Phi} = \{\varphi(y)\}$.

On the other hand let B be a finite-dimensional C^* -algebra and $\varphi \colon X \to Y$ a continuous surjective map. A *-homomorphism $\Phi \colon C(X) \otimes A \to C(Y) \otimes B$ is said to be φ -compatible if

$$\Phi(g \circ \varphi \otimes 1_A) = g \otimes 1_B, \qquad g \in C(Y).$$

If Φ is injective, then φ is uniquely determined by Φ since we can use 2.5; we have that $(X_{y,\Phi})_{y\in Y}$ is a partition of X and $\varphi^{-1}(y) = X_{y,\Phi}, y \in Y$.

Let B, Φ be as in Proposition 2.6 and consider the map $\theta: Y \to K(X)$ given by $\theta(y) := \varphi^{-1}(y), y \in Y$, where $\varphi: X \to Y$ is a continuous surjection. In this situation the following assertions are equivalent:

(2) Φ is θ -compatible.

(3) Φ is φ -compatible.

(4) $\operatorname{tr}(\Phi(g \circ \varphi \otimes 1_A)(y)) = n \cdot g(y), g \in C(Y), y \in Y$. (tr denotes the usual trace on M_n .)

 $(2) \Rightarrow (3)$. For any $g \in C(Y)$ and $y \in Y$ we have

$$\Phi(g\circarphi\otimes 1_A)(y) = igoplus_{x\in X_{m{y},m{\Phi}}} \Pi_{x,m{y}}(g(arphi(x))\cdot 1_A) = g(y)\cdot 1_B$$

since $X_{y,\Phi} \subset \varphi^{-1}(y)$ (we use the notation and remarks made in the proof of Proposition 2.6).

 $(3) \Rightarrow (4)$ is obvious.

(4) \Rightarrow (2) By assumption, for any $g \in C(Y)$ and $y \in Y$ we have

$$n \cdot g(y) = \sum_{x \in X_{y,\Phi}} g(\varphi(x)) \cdot \dim \Pi_{x,y} = \sum_{t \in \varphi(X_{y,\Phi})} c_y(t)g(t),$$

where each $c_y(t) > 0$. Now fix $y_0 \in Y$, suppose there is $t_0 \in \varphi(X_{y_0,\Phi}) \setminus \{y_0\}$ and let $g_0 \in C(Y)$ be such that $g_0(t_0) = 1$,

$$g_0|\{y_0\} \cup (\varphi(X_{y_0,\Phi}) \setminus \{t_0\}) = 0;$$

then $g = g_0$ and $y = y_0$ will contradict the above form of assumption (4). Hence $\varphi(X_{y,\Phi}) = \{y\}, y \in Y$.

2.8. The following proposition gives sufficient conditions for a homomorphism Φ to be compatible with some good φ .

PROPOSITION. Let B be a finite-dimensional C^* -algebra and consider $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$. Assume that the cardinality of $X_{y,\Phi}$ is locally constant on Y and $(X_{y,\Phi})_{y \in Y}$ is a partition of X. Then the map $\varphi \colon X \to Y$, $\varphi(X_{y,\Phi}) = \{y\}$, $y \in Y$, is a covering map and Φ is φ -compatible.

PROOF. Fix $y' \in Y$. The assumptions imply that there are $n \in \mathbb{N}$ and $U \in \mathscr{V}(y')$ such that $X_y := X_{y,\Phi}$ has exactly *n* elements for all $y \in U$. Say $X_{y'} = \{z_1(y'), \ldots, z_n(y')\}$ and let $V'_p = \overline{V'_p} \in \mathscr{V}(z_p(y')), p = 1, 2, \ldots, n$, with $V'_p \cap V'_q = \emptyset$ for $p \neq q$.

Now, for fixed $p \in \{1, 2, ..., n\}$ we claim there is $W \in \mathscr{V}(y'), W \subset U$, such that $X_y \cap V'_p \neq \emptyset$ for any $y \in W$. Indeed, in the contrary case there is a net $(y_i)_{i \in I}$ in U which converges to y' such that $X_{y_i} \cap V'_p = \emptyset$. But for $g \in C(X), g(z_p(y')) = 1$, supp $g \subset V'_p$ we have

$$\begin{split} &1 = |g(z_p(y'))| \le ||g|X_{y'}|| = ||\Phi(g \otimes 1_A)(y')|| \\ &= \lim_i ||\Phi(g \otimes 1_A)(y_i)|| = \lim_i ||g|X_{y_i}|| = 0, \end{split}$$

a contradiction which proves the claim. Therefore we can choose $V \in \mathscr{V}(y')$, $V \subset U$, such that $X_y \cap V'_p \neq \emptyset$, $y \in V$, p = 1, 2, ..., n.

We prove that φ is continuous. Indeed, if a net $(x_j)_{j \in J}$ in X converges to $x \in X$ but $\varphi(x_j) \nleftrightarrow \varphi(x)$, then, X being compact, we may suppose that $\varphi(x_j) \to y_0 \neq \varphi(x)$.

For $g \in C(X)$, g(x) = 1, $g|X_{y_0} = 0$ we have

$$0 = \|g|X_{y_0}\| = \|\Phi(g \otimes 1_A)(y_0)\| = \lim_j \|\Phi(g \otimes 1_A)(\varphi(x_j))\|$$
$$= \lim_j \|g|X_{\varphi(x_j)}\| \ge \lim_j |g(x_j)| = |g(x)| = 1,$$

a contradiction.

For each $y \in V$, let $z_p(y)$ be the unique element of $X_y \cap V'_p$, p = 1, 2, ..., n. Each map $z_p: V \to V_p := z_p(V)$ is a bijection since $\varphi \circ z_p = \operatorname{id}_V$; note that $V_p = \varphi^{-1}(V) \cap V'_p \in \mathscr{V}(z_p(y'))$. Moreover, each z_p is continuous. Indeed, if a net $(y_k)_{k \in K}$ in V converges to $\tilde{y} \in V$ and $z_p(y_k) \nleftrightarrow z_p(\tilde{y})$, we may consider $z_p(y_k) \to \tilde{x}$ for some $\tilde{x} \in \overline{V}_p \subset \overline{V}'_p = V_p$, $\tilde{x} \neq z_p(\tilde{y})$ and we have $\tilde{y} = \lim_k y_k = \lim_k \varphi(z_p(y_k)) = \varphi(\tilde{x})$, that is, $\tilde{x} \in \varphi^{-1}(\tilde{y}) \cap V'_p = X_{\tilde{y}} \cap V'_p$; hence $\tilde{x} = z_p(\tilde{y})$, a contradiction.

Thus each $\varphi_p = \varphi|_{V_p} \colon V_p \to V$ is a homeomorphism with inverse z_p . Hence φ is a covering map.

Since $X_{y,\Phi} = \varphi^{-1}(y), y \in Y$, it follows from 2.7 that Φ is φ -compatible.

2.9. The next proposition gives the structure of homomorphisms compatible with a finite covering, which improves the result in [8, Proposition 2.5] by replacing the absolute retract assumption with contractibility and by using a shorter argument.

PROPOSITION. Let $\varphi \colon X \to Y$ be a p-fold covering map $(p \in \mathbf{N})$, where X, Y are compact metric spaces and assume Y is contractible. Then there is a partition $(U_i)_{i=1}^p$ of X into clopen sets and there exist homeomorphisms $z_i \colon Y \to U_i$ satisfying $\varphi \circ z_i = \operatorname{id}_Y (1 \le i \le p)$ such that if $\Phi \colon C(X) \otimes A \to C(Y) \otimes B$ is a φ compatible *-homomorphism, then there are $u \in C(Y, U(B))$ and *-homomorphisms $\Psi_1, \Psi_2, \ldots, \Psi_p \colon A \to B$ such that

$$\Phi(f)(y) = \operatorname{Ad} u(y) \left(\bigoplus_{k=1}^{p} \Psi_k(f(z_k(y))) \right)$$

for all $f \in C(X) \otimes A$ and $y \in Y$.

PROOF. Since Y is simply connected, there is a homeomorphism $H: X \to Y \times \{1, 2, ..., p\}$ such that the diagram

$$\begin{array}{c} X \xrightarrow{H} Y \times \{1, 2, \dots, p\} \\ \varphi \downarrow \\ Y \longleftarrow \psi \end{array}$$

commutes, where ψ is the canonical projection. For each $1 \leq i \leq p$ we define $U_i = H^{-1}(Y \times \{i\})$, the homeomorphism $h_i \colon Y \to Y \times \{i\}$ given by $h_i(y) = (y, i)$, $y \in Y$ and $z_i \colon Y \to U_i$, $z_i \coloneqq H^{-1} \circ h_i$.

Using Proposition 2.4 from [8] and the fact that Y is connected, we find *homomorphisms $\Psi_1, \ldots, \Psi_p \colon A \to B$, a proper open covering $(V_i)_{i \in I}$ of Y (see [7, p. 17] and $u_i \in C(V_i, U(B))$ such that

$$\Phi(f)(y) = \operatorname{Ad} u_i(y) \left(\bigoplus_{k=1}^p \Psi_k(f(z_k(y))) \right)$$

for $f \in C(X) \otimes A$, $y \in V_i$, $i \in I$. (The set of Ψ 's in [8, 2.4] depends on the local neighborhood but they can be chosen canonical [4], that is, in a finite set, so that this locally constant choice of the Ψ 's is actually constant.) The continuous maps $g_{ij}: V_i \cap V_j \to G :=$ the topological group of all unitaries of the relative commutant of $\bigoplus_{k=1}^p (\Psi_k(A))$ in B, defined by $g_{ij}(y) := u_i(y)^* u_j(y)$, $y \in V_i \cap V_j$, $i, j \in I$, satisfy $g_{ij} \cdot g_{jk} = g_{ik}$ on $V_i \cap V_j \cap V_k$ and hence $\{V_i, g_{ij}\}_{i \in I}$ defines an element in $H^1(Y, G_c)$. Since Y is contractible, $H^1(Y, G_c)$ reduces to the distinguished element. Therefore, we may assume that, for any $i \in I$ there exists a continuous map $v_i \colon V_i \to G$ such that $g_{ij}(y) = v_i(y)v_j(y)^*$, $y \in V_i \cap V_j$, $i, j \in I$. We define $u \colon Y \to U(B)$ by $u(y) := u_i(y)v_i(y)$, $y \in V_i$, $i \in I$. Since $u_i(y)v_i(y) = u_j(y)v_j(y)$ for $y \in V_i \cap V_j$, $i, j \in I$, the map u is well defined and continuous.

It is easy to verify that

$$\Phi(f)(y) = \operatorname{Ad} u(y) \left(\bigoplus_{k=1}^{p} \Psi_{k}(f(z_{k}(y))) \right), \qquad f \in C(X) \otimes A, \ y \in Y.$$

3. Throughout this section X, Y will denote compact metric spaces (excepting Proposition 3.1) and A, B finite-dimensional C^* -algebras.

In this section we give a local description of homomorphisms from $C(X) \otimes A$ to $C(Y) \otimes B$ by considering separately the cases X = point and $A = \mathbb{C}$. We also consider certain classes of inner equivalent homomorphisms.

3.1. PROPOSITION. Consider $\Phi \in \text{Hom}(A, C(Y) \otimes B)$, where Y is a compact space. For every $y' \in Y$ there exist $V \in \mathcal{V}(y')$, $\Psi \in \text{Hom}(A, B)$ and $u \in C(V, U(B))$ such that

$$\Phi(a)(y) = \operatorname{Ad} u(y)(\Psi(a)), \qquad a \in A, \ y \in V.$$

PROOF. It is enough to consider the case when $A = \bigoplus_{i=1}^{n} M_{k_i}$, $B = M_l$.

For every $y \in Y$, consider the unital finite-dimensional *-representation $A \ni a \to \Phi(a)(y) \in M_l$. Since this is a direct sum of irreducible *-representations, it follows that $(\exists) p_i(y) \in \{0, 1, 2, ...\}$ and $u'(y) \in U(l)$ such that

$$\Phi(a)(y) = \operatorname{Ad} u'(y) \left(\bigoplus_{i=1}^{n} a_i \otimes 1_{p_i(y)} \right)$$

for any $a = \bigoplus_{i=1}^{n} a_i \in \bigoplus_{i=1}^{n} M_{k_i}$ and $y \in Y$.

Since for any *i*, the map $Y \ni y \to \operatorname{tr}(\Phi(1_{k_i})(y)) = k_i \cdot p_i(y) \in \{0, 1, 2, ...\}$ is continuous (here tr denotes the usual trace on M_l), $(\exists)V' \in \mathscr{V}(y')$ and $(\exists)\tilde{\Psi} \in \operatorname{Hom}(A, B)$ such that

$$\Phi(a)(y) = \operatorname{Ad} u'(y)(\tilde{\Psi}(a)), \qquad a \in A, \ y \in V'.$$

We denote G := U(B), $S := U(\Psi(A)^c)$ (here $\Psi(A)^c$ is the relative commutant of $\Psi(A)$ in B), $G/S := \{gS | g \in G\}$ and $\Pi : G \to G/S$ the canonical map. G/S will be

embedded into the topological space $\operatorname{Hom}(\tilde{\Psi}(A), B)$ by the formula $\Pi(g)(\tilde{\Psi}(a)) = \operatorname{Ad} g(\tilde{\Psi}(a)), g \in G, a \in A$. It follows that we can define a continuous map $\theta \colon V' \to G/S$ by $\theta(y)(\tilde{\Psi}(a)) = \Phi(a)(y), y \in V', a \in A$. Since S is a closed subgroup of the Lie group G, Π has smooth local sections. Thus, there is $\tilde{V} \in \mathscr{V}(y'), \tilde{V} \subset V'$ and $\tilde{u} \in C(\tilde{V}, G)$ such that the diagram:

$$G \xrightarrow{\Pi} G/S$$
$$\stackrel{\uparrow}{\overset{\downarrow}{v}} \xrightarrow{\uparrow}_{\tilde{u}} \overset{\downarrow}{v} \overset{\downarrow}{v}$$

commutes, which ends the proof.

3.2. We consider on K(X) the topology given by the Pompeiu-Hausdorff metric \tilde{d} , defined by

$$\widetilde{d}(F,G) := \max\left(\sup_{x\in F} d(x,G), \sup_{y\in G} d(F,y)\right),$$

 $F, G \in K(X)$. Here d is a metric which gives the topology of X. Denote by F(X) the set of all finite nonempty subsets of X. Then $F(X) \subset K(X)$ is endowed with the induced topology.

The proof of the following lemma is elementary and will be omitted.

LEMMA. Let W be a metric space and a map $\theta: W \to F(X)$. The following assertions are equivalent:

- (1) $\theta \in C(W, F(X)),$
- (2) the map $W \ni w \to ||f|_{\theta(w)}|| \in \mathbf{R}$ is continuous for every $f \in C(X)$.

3.3. Let T be a compact space and for each $t \in T$ let E(t) be a C^* -algebra. We say that $((E(t))_{t\in T}, \Gamma)$ is a continuous quasifield of C^* -algebras if Γ is a continuity structure for T and the $\{E(t)\}$ in the sense of J. M. G. Fell [6], i.e., every $a \in \Gamma$ is a map defined on T such that $a(t) \in E(t)$ for any $t \in T$ and

(1) Γ is a *-algebra under the pointwise operations,

(2) $\overline{\{a(t)|a\in\Gamma\}} = E(t), t\in T,$

(3) for any $a \in \Gamma$, the map $T \ni t \to ||a(t)|| \in \mathbf{R}$ is continuous.

Any continuous field of C^* -algebras [3] is a continuous quasifield.

Let $\mathscr{E}_i = ((E_i(t))_{t \in T}, \Gamma_i), i = 1, 2$, be two continuous quasifields of C^* -algebras. We say that $\Psi = (\Psi_t)_{t \in T}$ is a homomorphism from \mathscr{E}_1 to \mathscr{E}_2 if (1°) every Ψ_t is a *-homomorphism of C^* -algebras from $E_1(t)$ to $E_2(t)$; (2°) Ψ takes Γ_1 into Γ_2 (if we consider quasifields of unital C^* -algebras, each Ψ_t is assumed unital). We say that Ψ is *injective* if each Ψ_t is injective.

We denote by $\operatorname{Hom}(\mathscr{E}_1, \mathscr{E}_2)$ (resp. $\operatorname{Hom}_i(\mathscr{E}_1, \mathscr{E}_2)$) the set of all homomorphisms (resp., injective homomorphisms) from \mathscr{E}_1 to \mathscr{E}_2 .

In the unital case we say that $\Psi^{(i)} = (\Psi_t^{(i)})_{t \in T} \in \operatorname{Hom}(\mathscr{E}_1, \mathscr{E}_2), i = 1, 2$, are inner equivalent, written $\Psi^{(1)} \sim \Psi^{(2)}$, if there is $u \in \Gamma_2$ such that $u(t) \in U(E_2(t))$ and $\Psi_t^{(1)} = \operatorname{Ad} u(t) \circ \Psi_t^{(2)}$ for any $t \in T$.

3.4. Let B be a C^{*}-algebra, $B \simeq M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_k}$, $n := n_1 + n_2 + \cdots + n_k$, $\mathscr{F}_n(X) := \{F \in F(X) | F \text{ has at most } n \text{ elements}\}.$

For any $\theta \in C(Y, \mathscr{F}_n(X))$ consider $E_{\theta}(y) := C(\theta(y)), y \in Y$ (each $\theta(y)$ is a discrete topological space) and $\Gamma_{\theta} := \{Y \ni y \to f|_{\theta(y)} \in E_{\theta}(y) | f \in C(X)\}$. Using

Lemma 3.2, we see that $\mathscr{E}(\theta) := ((E_{\theta}(y))_{y \in Y}, \Gamma_{\theta})$ is a continuous quasifield of C^* -algebras.

Let $C := \text{Hom}(C(X), C(Y) \otimes B), C_i := \text{Hom}_i(C(X), C(Y) \otimes B)$ and let \mathscr{F} be the constant continuous field on Y, of fibre B. We define a map

$$F: C \to \bigcup_{\theta \in C(Y, \mathscr{F}_n(X))} \operatorname{Hom}_i(\mathscr{E}(\theta), \mathscr{F})$$

by

$$F(\Phi) := (\Psi_{y,\Phi})_{y,Y} \in \operatorname{Hom}_{i}(\mathscr{E}(X_{\Phi}),\mathscr{F})$$

where $\Psi_{y,\Phi}(f|_{X_{y,\Phi}}) := \Phi(f)(y)$ for $f \in C(X)$, $y \in Y$ and $X_{\Phi} : Y \ni y \to X_{y,\Phi} \in \mathscr{F}_n(X)$ is continuous by virtue of Lemma 3.2.

PROPOSITION. The map F is a bijection which induces in a canonical way a bijection of C/\sim onto $\bigcup_{\theta\in C(Y,\mathcal{F}_n(X))}(\operatorname{Hom}_i(\mathscr{E}(\theta),\mathscr{F})/\sim).$

Moreover, F restricts to a bijection of C_i onto $\bigcup_{\theta \in \tilde{C}(Y, \mathscr{F}_n(X))} \operatorname{Hom}_i(\mathscr{E}(\theta), \mathscr{F})$ which induces a bijection of C_i/\sim onto $\bigcup_{\theta \in \tilde{C}(Y, \mathscr{F}_n(X))} (\operatorname{Hom}_i(\mathscr{E}(\theta), \mathscr{F})/\sim)$, where $\tilde{C}(Y, \mathscr{F}_n(X)) := \{f \in C(Y, \mathscr{F}_n(X)) | \bigcup_{y \in Y} f(y) = X\}.$

PROOF. Consider $F(\Phi_i) = (\Psi_{y,\Phi_i}^{(i)})_{y \in Y}$, i = 1, 2, with $F(\Phi_1) = F(\Phi_2)$, that is, $\Psi_{y,\Phi_1}^{(1)} = \Psi_{y,\Phi_2}^{(2)}$, $X_{y,\Phi_1} = X_{y,\Phi_2}$ for any $y \in Y$. Then

$$\Phi_1(f)(y) = \Psi_{y,\Phi_1}^{(1)}(f|X_{y,\Phi_1}) = \Psi_{y,\Phi_2}^{(2)}(f|X_{y,\Phi_2}) = \Phi_2(f)(y)$$

for $f \in C(X)$, $y \in Y$; hence F is injective.

For the surjectivity of F consider $\Psi = (\Psi_y)_{y \in Y} \in \operatorname{Hom}_i(\mathscr{E}(\theta), \mathscr{F})$, where $\theta \in C(Y, \mathscr{F}_n(X))$ and define $\Phi \in C$ by $\Phi(f)(y) := \Psi_y(f|\theta(y)), f \in C(X), y \in Y$. Using the definition of $X_{y,\Phi}$ $(y \in Y)$ and the fact that each Ψ_y is injective, we have $\|f|_{X_{y,\Phi}}\| = \|\Phi(f)(y)\| = \|f|\theta(y)\|, y \in Y$, which implies $X_{y,\Phi} = \theta(y)$ for any $y \in Y$. It follows that $F(\Phi) = \Psi$.

Finally, using 2.2(3) it follows that $F(C_i) = \bigcup_{\theta \in \tilde{C}(Y, \mathscr{F}_n(X))} \operatorname{Hom}_i(\mathscr{E}(\theta), \mathscr{F}).$

3.5. REMARK. Consider the continuous map $\varphi \colon \mathbf{T} \to \mathbf{T}$ given by $\varphi(y) := y^2$, $y \in \mathbf{T}$ (:= $\{y \in \mathbf{C} | |y| = 1\}$). Define $\theta \in C(\mathbf{T}, F_1(\mathbf{T}))$ by $\theta(y) := \{\varphi(y)\} = \{y^2\}$, $y \in \mathbf{T}$ and two continuous maps $f, g \colon \mathbf{T} \to \mathbf{C}$ by $f(y) = 1, g(y) = y, y \in \mathbf{T}$.

Then $f \in \Gamma_{\theta}$ and $g \cdot f \notin \Gamma_{\theta}$; thus $((E_{\theta}(y))_{y \in \mathbf{T}}, \Gamma_{\theta})$ is not a continuous field of C^* -algebras (see [3, 10.1.9]).

3.6. Let $\varphi \colon X \to Y$ be a continuous surjective map such that $\varphi^{-1}(y)$ is a finite subset of X for any $y \in Y$ and the map $Y \ni y \to \varphi^{-1}(y) \in F(X)$ is continuous. This condition is satisfied if, for instance, φ is a covering map with a finite fibre.

Denote by $C(\varphi)$ the set of all φ -compatible *-homomorphisms from $C(X) \otimes A$ to $C(Y) \otimes B$ and by $C_i(\varphi)$ the set $C(\varphi) \cap \operatorname{Hom}_i(C(X) \otimes A, C(Y) \otimes B)$.

Let $\mathscr{E} := ((E(y))_{y \in Y}, \Gamma)$ be the continuous field of C^* -algebras given by $E(y) := C(\varphi^{-1}(y)) \otimes A, y \in Y, \Gamma := \{Y \ni y \to f | \varphi^{-1}(y) \in E(y) | f \in C(X) \otimes A\}$. (To see that \mathscr{E} is indeed a continuous field use Lemma 3.2 and standard partition of unity arguments.) Let \mathscr{F} be the constant continuous field on Y, of fibre B. Define a map $G: C(\varphi) \to \operatorname{Hom}(\mathscr{E}, \mathscr{F})$ by $G(\Phi) := (\Psi_y)_{y \in Y}$ where $\Psi_y(f | \varphi^{-1}(y)) := \Phi(f)(y), f \in C(X) \otimes A, y \in Y$.

Using 2.5 we easily obtain the following:

PROPOSITION. The map G is a bijection which induces a bijection from $C(\varphi)/\sim$ onto $\operatorname{Hom}(\mathscr{C},\mathscr{F})/\sim$.

Moreover G maps $C_i(\varphi)$ onto $\operatorname{Hom}_i(\mathscr{E},\mathscr{F})$ and induces a bijection from $C_i(\varphi)/\sim$ onto $\operatorname{Hom}_i(\mathscr{E},\mathscr{F})/\sim$.

4. In this section we prove our main result concerning the stability under inductive limits of C^* -algebras of the form $C(X) \otimes A$ and isomorphisms of such C^* -algebras.

4.1. We first clarify the local structure of θ -compatible homomorphisms with $\theta(y) = \{\varphi(y)\}$ where $\varphi: Y \to X$ is continuous.

PROPOSITION. Let X, Y be compact spaces, A, B finite-dimensional C^* -algebras, $\varphi: Y \to X$ a continuous map and consider $\Phi \in \text{Hom}(C(X) \otimes A, C(Y) \otimes B)$ such that

$$\Phi(g \otimes 1_A) = g \circ \varphi \otimes 1_B, \qquad g \in C(X).$$

Then, for each $y' \in Y$ there exist a neighborhood V of y', a continuous map $u: V \to U(B)$ and a *-homomorphism $\Psi \in \text{Hom}(A, B)$ such that

$$\Phi(f)(y) = \operatorname{Ad} u(y)(\Psi(f(\varphi(y))))$$

for $f \in C(X) \otimes A$, $y \in V$.

PROOF. Fix $V \in \mathscr{V}(y')$, $\Psi \in \text{Hom}(A, B)$ and $u \in C(V, U(B))$ given by Proposition 3.1 for the homomorphism $A \ni a \to \Phi(1_{C(X)} \otimes a) \in C(Y) \otimes B$. Then, for any $g \in C(X)$, $a \in A$ and $y \in V$ we have

$$\begin{split} \Phi(g\otimes a)(y) &= (\Phi(g\otimes 1_A)(y)) \cdot (\Phi(1_{C(X)}\otimes a)(y)) \\ &= ((g\circ \varphi)(y) \cdot 1_B) \cdot (\operatorname{Ad} u(y)(\Psi(a))) \\ &= \operatorname{Ad} u(y)(\Psi(g\otimes a(\varphi(y)))), \end{split}$$

which completes the proof.

4.2. In the situation of the above proposition suppose that Y is connected. Then there are $\Psi \in \text{Hom}(A, B)$, a proper open covering $(U_i)_{i \in I}$ of Y and $u_i \in C(U_i, U(B))$ such that

$$\Phi(f)(y) = \operatorname{Ad} u_i(y)(\Psi(f(\varphi(y))))$$

for $f \in C(X) \otimes A$, $y \in U_i$, $i \in I$. For $y \in Y$, denote by $(\Phi(C(X) \otimes A)(y))^c$ the relative commutant of $\Phi(C(X) \otimes A)(y)$ in B. Since for any $y_1, y_2 \in Y$ there is a (inner) *-automorphism of B (depending on y_1 and y_2) which maps $\Phi(C(X) \otimes A)(y_1)$ onto $\Phi(C(X) \otimes A)(y_2)$, $(\Phi(C(X) \otimes A)(y_1))^c$ and $(\Phi(C(X) \otimes A)(y_2))^c$ are *-isomorphic and hence

$$U((\Phi(C(X) \otimes A)(y_1))^c) \simeq U((\Phi(C(X) \otimes A)(y_2))^c), \qquad y_1, y_2 \in Y$$

(as topological groups). Assume also that $H^1(Y, U((\Phi(C(X) \otimes A)(y))^c)_c)$ is reduced to the distinguished element for some $y \in Y$ (and hence for all $y \in Y$).

Proposition. $\Phi \sim \varphi^* \otimes \Psi$.

PROOF. Define continuous maps $g_{ij}: U_i \cap U_j \to G$, where G is the unitary group of the relative commutant of $\Psi(A)$ in B, by $g_{ij}(y) = u_i(y)^* u_j(y), y \in U_i \cap U_j,$ $i, y \in I$.

Since $g_{ij} \cdot g_{jk} = g_{ik}$ on $U_i \cap U_j \cap U_k$, $\{U_i, g_{ij}\}_{i \in I}$ defines an element in $H^1(Y, G_c)$. As $H^1(Y, G_c)$ is trivial, we may assume that for any $i \in I$ there is a continuous map $v_i: U_i \to G$ such that $g_{ij}(y) = v_i(y)v_j(y)^*$, $y \in U_i \cap U_j$, $i, j \in I$. Define $u: Y \to U(B)$ by $u(y) := u_i(y)v_i(y)$, $y \in U_i$, $i \in I$. Since $u_i(y)v_i(y) = u_j(y)v_j(y)$ for $y \in U_i \cap U_j$, $i, j \in I$, the map u is well defined and continuous, and we have $\Phi = \operatorname{Ad} u \circ (\varphi^* \otimes \Psi)$.

4.3. Now consider a system

$$C(X_1) \otimes A_1 \stackrel{\Phi_1}{\to} C(X_2) \otimes A_2 \stackrel{\Phi_2}{\to} \cdots,$$

where for each k, X_k is a compact space, A_k is a finite-dimensional C^* -algebra, Φ_k is an isometric *-homomorphism such that

$$\Phi_k(g \otimes 1_{A_k}) = g \circ \varphi_k \otimes 1_{A_{k+1}}, \qquad g \in C(X_k),$$

with $\varphi_k \colon X_{k+1} \to X_k$ a surjective continuous map. Let $X := \varprojlim (X_k, \varphi_k)$.

Assume that for any $k \geq 2$, X_k is connected and

$$H^{1}(X_{k}, U((\Phi_{k-1}(C(X_{k-1}) \otimes A_{k-1})(x))^{c})_{c}))$$

is reduced to the distinguished element for some $x \in X_k$ (and hence for all $x \in X_k$). Here $(\Phi_{k-1}(C(X_{k-1}) \otimes A_{k-1})(x))^c$ is the relative commutant of

 $\Phi_{k-1}(C(X_{k-1})\otimes A_{k-1})(x) \quad \text{in } A_k.$

Then, by Proposition 4.2, for any $k \ge 1$ there exists $\Psi_k \in \operatorname{Hom}_i(A_k, A_{k+1})$ (unique, up to inner equivalence) such that $\Phi_k \sim \varphi_k^* \otimes \Psi_k$. Let $A := \varinjlim(A_k, \Psi_k)$.

We thus obtain the following:

THEOREM. The C^{*}-algebra $\varinjlim(C(X_k) \otimes A_k, \Phi_k)$ is *-isomorphic to the (spatial) C^{*}-tensor product $C(X) \otimes A$.

4.4. The isomorphism problem for the above considered inductive limits can be settled in certain cases by using the following result. We give a proof for the sake of the completeness.

PROPOSITION. Let X, Y be compact spaces and A, B unital C^{*}-algebras with trivial centers. Then $C(X) \otimes A \simeq C(Y) \otimes B$ if and only if X and Y are homeomorphic and $A \simeq B$.

PROOF. Suppose that $\Phi: C(X) \otimes A \to C(Y) \otimes B$ is a *-isomorphism. Since Φ maps $Z(C(X) \otimes A)$ onto $Z(C(Y) \otimes B)$, $C(X) \simeq C(Y)$, i.e., X and Y are homeomorphic.

Let *m* be a maximal ideal in C(X) and let χ be the corresponding character of C(X). We consider the surjective *-homomorphism $\chi \otimes \operatorname{id}_A : C(X) \otimes A \to \mathbb{C} \otimes A$. Since $\operatorname{ker}(\chi \otimes \operatorname{id}_A) = m \otimes A$, we have $A \simeq \mathbb{C} \otimes A \simeq C(X) \otimes A/m \otimes A$. But $\Phi(m \otimes 1_A) = m' \otimes 1_B$ with *m'* a maximal ideal in C(Y), since Φ maps $C(X) \otimes 1_A$ $(= Z(C(X) \otimes A))$ onto $C(Y) \otimes 1_B (= Z(C(Y) \otimes B))$. We have $A \simeq C(X) \otimes A/m \otimes A \simeq \Phi(C(X) \otimes A)/\Phi(m \otimes A) = C(Y) \otimes B/m' \otimes B \simeq B$, which completes the proof.

CORNEL PASNICU

REFERENCES

- 1. M. Dădârlat, On homomorphisms of certain C^* -algebras, Preprint.
- 2. ____, Inductive limits of C^* -algebras related to some coverings, Preprint.
- 3. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- E. G. Effros, Dimensions and C*-algebras, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.
- ____, On the structure of C*-algebras: Some old and some new problems, Operator Algebras and Applications, Proc. Sympos. Pure Math., vol. 38, part 1, Amer. Math. Soc., Providence, R.I., 1982, pp. 19-34.
- 6. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
- 7. F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin and New York, 1966.
- 8. C. Pasnicu, On certain inductive limit C*-algebras, Indiana Univ. Math. J. 35 (1986), 269-288.
- 9. ____, Tensor products of Bunce-Deddens algebras, Operators in Indefinite Metric Spaces, Scattering Theory and Other Topics, Birkhäuser-Verlag, 1987, pp. 283-288.
- 10. K. Thomsen, Inductive limits of homogeneous C*-algebras, Preprint.
- 11. \ldots , On the diagonalization of matrices over C(X), Preprint.
- 12. ____, Approximately trivial homogeneous C*-algebras, Preprint.

DEPARTMENT OF MATHEMATICS, INCREST, BDUL PĂCII 220, 79622 BUCHAREST, Romania