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NONLINEAR SECOND ORDER ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS AT RESONANCE

R. IANNACCI, M. N. NKASHAMA, AND J. R. WARD, JR.

Abstract. In this paper we study the solvability of boundary value problems

for semilinear second order elliptic partial differential equations of resonance

type in which the nonlinear perturbation is not (necessarily) required to satisfy

the Landesman-Lazer condition or the monotonicity assumption. The nonlin-

earity may be unbounded and some crossing of eigenvalues is allowed. Selfad-

joint and nonselfadjoint resonance problems are considered.

I. Introduction

be

C1 •" , 0 < p< 1, and let

Let il ç R^ (N > 1) be a bounded domain with boundary dQ of class

and

where

^ = tt^(aU^ê-)+tw^-a0(x)u
i=i j=\     i \ j /     i=i '

;(x) = aJt(x), 1 <i,j< N, a0(x) > 0 on Í2, and

N     N

J2 X! "ijWZfij > ° for all x e ñ and all £, e Hn \ {0} ,
i=l ;=1

(Q stands for the closure of Q in R^). We assume that the coefficients of the

differential operators L and A satisfy the following conditions

aijECx(U),        l<i,j<N,

6,. eL°°(£î),        I<i<N, and

a0EL°°(Çl).
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We shall consider the selfadjoint boundary value problems

(1.1) Lu + áxu + g(x ,ü) = h in n,    u\díl = 0,

and the nonselfadjoint boundary value problems

(1.2) 'Au + Xxu + g(x,u) = h in Q,    u\diï - 0

where A, is the first (resp. principal) eigenvalue of -L (resp. -A), h eLp(Q)

with p > N, and g : Q x R —► R is a Carathéodory function which grows at

most linearity i.e. g(., u) is measurable for all u E R, g(x ,.) is continuous

for a.e. x E £2, and there exist a constant cx > 0 and a function c2 E LP(Q.),

p> N,  such that

(1.3) \g(x,u)\<cx\u\+c2(x)

for a.e. x E Q and all u e R. Under the assumptions placed on L and A

above, the Bony's maximum principle (see e.g. [3, 5]) and the abstract Krein-

Rutman theorem [23] imply the existence of a real simple eigenvalue A, > 0 of

the problem

-Lu = Xxu   (resp. -Au — kxu),    w|an = 0,

of minimal modulus such that there is a corresponding smooth eigenfunction

$ > 0 in Q and d<f)/dn < 0 on <9Q, where d/dt] stands for the outward

normal derivative. Moreover A, is also an eigenvalue for the adjoint problem

-A*u = A,w,    w|aiî = 0,

such that there is a corresponding smooth eigenfunction cf>* > 0 in Í2 and

d<p*/dn<0 on <9£2 [15].
In recent years much work has been devoted to the solvability of boundary

value problems (1.1)-(1.2) in the nonresonance case. We refer to the papers by

Berestycki and de Figueiredo [4], Dancer [10], de Figueiredo and Gossez [11],

Mawhin [25] and the bibliography therein. When dealing with resonance prob-

lems, several results have been obtained by many authors when the nonlinearity

g(x , u) satisfies (among others) either a monotonicity assumption with respect

to its second variable or a so called Landesman-Lazer condition

(1.4)

/ gAx)<f>(x)dx < / h(x)(p(x)dx < / g+(x)tp(x)dx

(resp.   / g_(x)tf>*(x)dx< / h(x)4>*(x)dx < / g+(x)<p*(x)dx\

where

g-(x) = lim sup g(x,u)   and   g,(x) - lim inf g(x, u).

The reader is referred to the papers by Ahmad [2], Berestycki and de Figueiredo

[4], Brézis and Nirenberg [7], Dancer [10], Drabek [13], Fucik [14], Iannacci and

Nkashama [19, 20], Mawhin, Ward and Willem [27, 28], Mawhin and Willem

[29], Schechter, Shapiro and Snow [32].



NONLINEAR SECOND ORDER ELLIPTIC PDE AT RESONANCE 713

On the other hand, very little is known on the solvability of boundary value

problems (1.1)—(1.2) in the resonance case when the nonlinearity satisfies nei-

ther a monotoncity assumption nor a Landesman-Lazer condition (1.4). Let us

mention here, for bounded nonlinearities, the papers by Cesari and Pucci [9], de

Figueiredo and Ni [12], Gonçalves [16], Kannan, Nieto and Ray [22], Schaaf

and Schmitt [31]; and, for unbounded nonlinearities in the case of ordinary

differential equations, those ones by Gupta [18] and Iannacci and Nkashama

[21].
It is the purpose of this paper to study the solvability of the second or-

der partial differential equations (1.1 )—( 1.2), in which the nonlinearity is not

necessarily required to satisfy monotonicity assumption or Landesman-Lazer

condition. The nonlinearity may be unbounded and some crossing of eigenval-

ues is allowed. Our results are based on Leray-Schauder degree arguments and

our proofs are somewhat a combination of ideas in Ahmad [2], Iannacci and

Nkashama [21], Ward [32], together with some deep results on the maximum

principle and regularity properties of second order elliptic partial differentail

equations (see e.g. Amann and Crandall [3], Bony [5], Gilbarg and Trudinger

[15] and Protter and Weinberger [30]).

This paper is organized as follows. In §2, we prove some preliminary results

on piecewise linear problems

(1.5) Lu + Axu + p+(x)u+ - p_(x)u~ = 0,    u\dCl = 0,

and

(1.6) Au + kxu + p+(x)u+ - p_(x)u~ = 0,    ti\dn = 0,

here u+(x) = max(M(jc), 0) and u~(x) - max(-u(x) ,0). In §§3 and 4, we

state and prove our main results on the solvability of the selfadjoint and non-

selfadjoint nonlinear boundary value problems (1.1 )—( 1.2) (see Theorems 1-5).

Besides the classical real Lebesgue spaces Lp(Sl) and C"(f2) or Cn,fl(Çï)

of «-times continuously or Holder continuously-differentiable real valued func-

tions, we shall make use, in what follows, of the Sobolev spaces H0 (£2) and

W  p(Si)   (see e.g. Adams [1], Brézis [6] for definitions and properties).

For concluding this introduction, let us mention that when Í2 ç R^ is a

bounded domain whose boundary dCl isa C -submanifold of dimension N-l

such that Í2 lies locally on one side of 9Í2 and if dSl is the disjoint union

of two closed subsets ro and T, each of which is an (N - 1 )-dimensional

submanifold of R^, then our results remain valid for second order elliptic

partial differential equations with more general linear boundary condition Bu -

0 with

{u on ro,

^ + b0u   onr,,
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where t] e C (T, ; R ) is an outward pointing, nowhere tangent vector field on

T, , and b0 E c'(r,;R) satisfies bQ(x) > 0 on T,. Thus B is the Dirich-

let boundary operator on ro and the Neumann or regular oblique derivative

boundary operator on Tx (either ro or T, may be empty). We restrict our-

selves, to the case when d£l is a C ''-submanifold of R with Dirichlet

boundary operator on 9Q, only for sake of bringing out the ideas involved

clearly.    D

II. Preliminary results on piecewise linear problems

Throughout this paper, for a given linear operator P, we shall denote its

nullspace (kernel) by N(P). For each u E H0x(il), let us write

u(x) = U(x) + u(x)

where u(x) = (I/b)[f ucpdx]cfi(x), b = /cf> dx, and

û(x) = u(x) - U(x),

so that, with obvious notations

HX(Ci) ^HX0(Ci)&H^(Ci).

For u E L2(Q), we define u+(x) = max(u(x) ,0) and u~(x) — ma\(-u(x) ,0),

so that u(x) = u+(x) - u~(x). Let A2 e R , A2 > A, , be the second eigenvalue

of -L with homogeneous Dirichlet boundary condition (see e.g. Gilbarg and

Trudinger [15]) and let us set

(2.1) q = A2-A,.

We have the following

Lemma 1. Let T+ , T_ E LP(Q) be such that for a.e. x E Í2,

0 < T±(x) <a

with

(2.2) [    [a - r+]w2 dx + f    [a-T_]w2dx>0

for all w E N(L + k2I) ,w¿0. Then, for all p+,p_E Lp(Cl) with

(2.3) 0<p±(x)<r±(x)

a.e. and all u e W  p(Q) , p> N , satisfying

(2.4) Lu + kxu + p+(x)u+ - p_(x)u~ = 0,    u\dn-0,

one has that u E N(L + A,/).

Proof. Let p± e LP(Q) and u e W2'P(Q.) satisfy (2.3) and (2.4). Since Y+

and T_ fulfill the relation (2.2), it follows that

(2.5) /    [a- p+]w2dx+ f    [a- p_]w2dx>0
J ir>0 Jw<0
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for all w E N(L + A2/), w £ 0. Define q:QxR-+R by

f PÂx)    if x E Q and u > 0,
q(x ,u) — <

I P-(x)   if xe£1 and u<0,

so that

0 < q(x ,u) < a

for a.e. x e Í2 and all u e R,  and for every u E L2(Q) and a.e. x E Cl

#(;c, m(x))m(x) = #(.x , u)u+ - q(x , u)u~ = p+(x)u+(x) - p_(x)u~(x).

Now taking into account the orthogonality of fi and û in L (il) and the fact

that (-Lu, û) > X2(û,û), one has

0=    [Lu + AjW-l- p+u+ - p_u~][u-u]dx

=    [Lu + Xxu + q(x ,u)u][u - u]dx

= / [(-Lu)u - (A, + q(x , u))u ]dx +     q(x, u)u dx

> f[(-Lû)û-X2u]dx>0

with equality if and only if û = w with w e N(L + X2I). In such a case, one

has

(2.6) i[a-q(x,u(x))]w2dx = 0

and

(2.7) [ q(x,u(x))udx = 0

where U E N(L + XXI), w E N(L + X2I) and u = u + w. Let

Qv = {x E Cl: U(x) ¿ 0}   and   Clw = {x E Í2: w(x) ¿ 0}.

By equalities (2.6) and (2.7), one has necessarily

q(x ,U(x) + w(x)) = 0   for a.e. x E Qv ,

q(x , u(x) + w(x)) = a   for a.e. x eQw ,

and hence the (Lebesgue) measure of the set Qv n Í2ffi is zero. If Qv = 0,

then u = w and the equality (2.6) becomes

0=     [a- q(x ,w(x))]w dx = [a - p+]w dx +        [a-pj\w dx ,
J Jw>0 Jw<0

so that, by relation (2.5), w = 0 and hence u = 0. If Clv ¿ 0, it follows,

from the properties of the eigenfunction cp and the fact that u(x) = acp(x)

with a E R, that Qv = Q. Therefore, one must have q(x , u(x)) - 0 for a.e.

x E il. By equality (2.6), one gets w = 0 and hence u = u. Thus, in both

cases, u = u E N(L + A,/) and the proof is complete,   a
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While the preceding lemma will allow us to get an existence result for (1.1)

when the nonlinearity "lies" between the two first eigenvalues, the following

lemma will allow us to derive existence results for (1.1) when the nonlinearity

"jumps over" the second eigenvalue. In fact, we can cross any number of higher

order eigenvalues.

Lemma 2. Let T_ E Lp(il), p > N, be a function such that T_(x) > 0 for

a.e. x E il. Then there exists a constant d = d(T_) > 0 such that for all

P+,P_£ Lp(il) with

(2.8) 0 < p+(x) < d ,    0 < p_ (x) < T_ (x)

for a.e. x E il, and all u E W 'p(il), p > N , verifying equation (2.4), one

has that only one of the following assertions holds true:

(i) u = 0 on il;

(ii) u(x) > 0 for all x Eil and du/dt} < 0 on dil;

(iii) u(x) < 0 for all x Eil and du/dt] > 0 on dil.

Proof. If u(x) / 0 for some x E il,  then either (ii) or (iii) holds true.

Let us assume that the conclusion of the lemma does not hold. Then, for

each n e N ,  there exist p"± E Lp(il) and un E W2,p(il), p > N,  with

0 < p"+(x) < l/n   a.e. on il,

(2.9) 0 < p"_ (x) < T_ (x)   a.e. on il,

klc', = !
such that

(2.10) Lun+Xxun +pl(x)u+n-p"_(x)u~n =0,    un\aQ = 0,

and neither (ii) nor (iii) is fulfilled.

Since W2'p(il) and C1 '"(£2) are compactly embedded into CX(U) ([l]),by

using the weak closedness of L [2, pp. 150-151], relations (2.9), the standard

¿''-estimate \u\ wl p <c\L u\L„ for second order elliptic partial differential equa-

tions [15], and the fact that W ,p(il) is a reflexive Banach space [6], we can

assume (by going if necessary to a subsequence) that there exist ueW ,p(il),

p_ E Lp(il),  with

|m|c,.„ = 1,    0<p_(x) <T_(x)   a.e. on   Í2,

un - u in W2 '"(il),    un^uinCx "(ñ),

p"_ -» p_ in Lp(il),    p" —► 0 in L°°(Í2),    as n —> co ,

(2.13) Lu + Xxu- p_(x)u~ = 0,    u\aa = 0.

(2.11)

such that

(2.12)

and
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By taking the inner product (in L2(£2)) of (2.13) with the eigenfunction <j>,

we deduce that p_(x) = 0 (a.e.) whenever u(x) < 0. Hence, (2.13) reduces to

(2.14) Lu + Xxu = 0,    u\da = 0,    u^O.

Therefore, by the properties of N(L + A,/) \ {0}, either u(x) > 0 for all

x eil and (du/dn)(x) < 0 for all x E dil or u(x) < 0 for all x E il and

(du/dn)(x) > 0 for all x E dil. Since «„ -» u in C1 ,ß(Q), this implies

that there exists a non-negative integer n0 such that for each n > n0 either

un(x) > 0 for all x E il and (dujdn)(x) < 0 for all x E dil or un(x) < 0

for all x E il and (dun/dt])(x) > 0 for all x E dil. We get a contradiction to

the fact that for each n e N, un does satisfy neither assertion (ii) nor (iii) of

the lemma and the proof is complete,   a

Remark 1. If fi ç r" is a bounded domain whose boundary dil isa C-

submanifold of dimension N - 1 such that £2 lies locally on one side of

dil, the above lemmas may be proved for Newton (regular oblique derivative)

boundary value problems as mentioned in the introduction. The //-estimate

to be used, in that case, is given by Proposition 2 in Amann and Crandall [3, p.

783]. Note that, for Neumann boundary conditions, the statements and proofs

of the above lemmas may be significantly simplified. In the case of Dirichlet

boundary conditions, the underlying principle in Lemma 2 (though not in the

same generality given here) also was observed by Dancer [10].

On the other hand, if Y is a constant in Lemma 2, then by using the

"shooting method" in one dimensional case (N — 1), one can find the ex-

plicit relationship between T_ and d (see e.g. Drabek [13], Dancer [10] and

references therein).

Results similar to those proved above hold true for nonselfadjoint piecewise

linear problems. We shall state two results. The first is due to Ahmad [2, pp.

149-152], while the second one is similar to Lemma 2 herein.

Lemma 3 [2]. There exists a constant d* > 0 such that for all p± E Lp(il) with

0 < p±(x) < d* a.e. on il,

and all ueW ,p (Í2), p > N ,  satisfying the equation

(2.15) Au + Xxu + P+(x)u+ - p_(x)u~~ = 0,    u\gn = 0,

one has that the conclusion of Lemma 2 holds true.

Note that the approach used in the proof of Lemma 2 herein gives a simpler

proof of Lemma 3. For selfadjoint second order uniformly strongly elliptic

operators, it is known that d* < a (= A2 - A,); in that case, we have got

much more precise results (see Lemmas 1 and 2 herein). On the other hand,

for nonselfadjoint elliptic operators considered herein, by assuming that the

equation

Au + Xlu + du = 0,    u\aa = 0,    withi/>0,
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has a nontrivial solution, it is easy to see that d >a, where now a > 0 is the

largest number such that

(Au + Xxu ,u) > (-l/a)\Au + Xxu\L2

for all u E H2(il)f)HQx (il). We are ensured that Lemma 3 holds for any d* < a.

For the existence of such a number a , we refer to Berestycki and de Figueiredo

[4] or Brézis and Nirenberg [7].

Lemma 4. Let T_ E Lp(il), p > N, be a nonnegative function a.e. on il.

Then there exists a constant d — d(Y_) > 0 such that for all p± E Lp(il)

satisfying

0< p+(x) < d,

o<p_(x)<r_(x)

for a.e. x E il, and all u e W ,p(il), p > N, solving (2.15), one has that

the conclusion of Lemma 2 holds, true. (Note that there is no restriction on the

upper bound for T_).

Proof. It parallels the proof of Lemma 2, in which one replaces the operator

L by A, up to the point (2.13). Now, taking the inner product (in L (il)) of

(2.13) (where L is replaced by A ) with the eigenfunction <\>*, we deduce that

p_(x) - 0 (a.e.) whenever u(x) < 0. Therefore (2.13) reduces to Au + Xxu =

0, u\an = 0. One can reach a contradiction as in the proof of Lemma 2 and

the proof is complete.   G

III. SeLFADJOINT SEMILINEAR RESONANCE PROBLEMS

Let ^:ßxR-»R be a Carathéodory function which grows at most linearily

(see §1 and condition (1.3)). We assume, without loss of generality, that the

following upper bounds are nonnegative

lim sup g(x , u)/u < r (x),    a.e. on Q

(3 1)
lim   sup g(x , u)/u < T_ (x),    a.e. on £2.

u—> — oo

Obviously, according to the growth condition (1.3), we can suppose, without

loss of generality, that T±E Lp(il), p > N.

Theorem 1. Let us assume that

(3.2) g(x,u)u>0

for a.e. x E il and all u e R. Moreover, suppose that the functions T+ ,T_ ,

given in relation (3.1), are such that

(3.3) 0<r±(x)<a(=X2-Xx)   fora.e.xEil,

with

(3.4) f    [a-r+]w2dx+ [    [a-TJw2dx>0
Jw>0 Jw<0
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for all w E N(L + X2I) ,w ^ 0. Then equation (1.1) has at least one solution

ueW2 '"(il) n Hx (il) for any h EL" (il), p>N ,  with

(3.5) [ hcf>dx = 0.
Ja

moreover ueCx ,fi(il). (Recall that cp is the unique eigenfunction associated to

the eigenvalue A, ofL.)

Proof. For some fixed constant y with 0 < y < a ,  let the operator

E: W2'p(il)nH0x(il)cCX(n)^Lp(il)

be defined by

Eu = Lu + Xxu + yu.

To prove that (1.1) has at least one solution, it suffices, according to the Leray-

Schauder continuation method (see [24]), and the compact embedding of

W ,p(il), p > N , into C (il) (see [1]), to show that there exists a constant

p > 0 such that

(3.6) |w|c, < p

for all possible solutions u E IV ,p(il) n H0X (Í2) of the homotopy

(3.7) Lu + Xxu + (l -t)yu + tg(x,u) = th(x),

t E [0,1), (with p independent of u and t ). It is clear that for t = 0, (3.7)

has only the trivial solution. Now, let us assume that the relation (3.6) does not

hold true, then there exist sequences (tn) in the open interval (0, 1) and (un)

in rV2-p(il) with \un\a >n for all «eN suchthat

(3.8) Eun = tn[YUn-g(x,un) + h(x)],    u„|an = 0.

Setting vn = (un/\un\a), we have

(3.9) Evn = tn[yvn - (g(x , un)/\un\a) + (h/\un\a)],    vn\ail = 0.

By the growth condition (1.3), it follows that (g(x , "n)/|«n|Ci) is bounded in

Lp(il), so that the right-hand member of equality (3.9) is bounded in Z/(Í2).

By using Lp-estimate, and the compact embedding of W2,p(il) into Cx(il),

we deduce from (3.9), (going if necessary to a subsequence relabeled (vn)),

that there exist v eCx(U), t E [0,1],  such that

(3.10) V"^V   inC'(")'        '«-'   as«-co,

\v\c¡ = 1    and   v\aa = 0.

On the other hand, by (3.9), we get that \Lvn\L„ < c for some constant c> 0.

Therefore, by using the fact that Lp(il) is a reflexive Banach space and the weak

closedness of the operator L , we get that v eW2 ,p(iï) n H0X (il), L vn -- Lv

in Lp(il) and v solves the equation

(3.11) E v = t[yv - K(x)],    v\9[i = 0,
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where K(x) is the weak limit in LP(H) of the sequence (g(x ,un)/\un\c,). Let

us mention, here, that (3.11) implies that t ¿ 0. Indeed, if / = 0, then by using

the definition of the operator E, we deduce, from (3.11), that v = 0, which

would contradict the fact that |w|c, = 1. In order to bring out all properties of

the function v , we need to analyze a little bit carefully the function K(x) in

(3.11). Let us denote by kv(x) the function defined by K(x)/v(x) if v(x) # 0

and kv(x) = 0 if v(x) = 0. It turns out that

0 < kJx) < V(x)   ifu(jt)>0,(3 12) -   vk ; -   +K  j \ i

' 0 <kv(x) <Y _(x)   ift»(;c)<0,

we refer to [4, pp. 108-110]. Therefore (3.11) is equivalent to

(3.13) Ev-t[yv-kv(x)v] = 0,    v\aa = 0.

By setting k*(x) = kv(x) for v(x) > 0, and k~(x) = kv(x) for v(x) < 0

and observing that

kv(x)v(x) = k+(x)v+(x) - k~(x)v~(x),

we obtain that (3.13) is equivalent to

Lv+Xxv + [(l-t)y + tk+(x)]v+

-[(l-t)y + tk;(x)]v-=0,    v\ail = 0.

Hence, by inequalities (3.12), and Lemma 1 in which

P+(x) = (l-t)y + tk¿(x),

P_(x) = (l-t)y + tk;(x),

we deduce that v e N(L + XXI) \ {0} , so that we have either v > 0 in Í2 and

dv/dn < 0 on dil, or v < 0 in Í2 and dv/drj > 0 on dil. Let us assume

that v > 0 and finish the proof (the proof for the case v < 0 is similar).

Since, by (3.10), vn -► v in CX(U) with v(x) > 0 in Í2 and dv/dt] < 0 on

9Í2, we get that there exists n0 E N such that for n > n0,vn(x) > 0 for all

x E il. Therefore, for all n> n0

(3.16) "„(*)> 0   for all x€Í2,

where un is a solution of the homotopy (3.8) which is now equivalent to

(3 17) LU" + Al"" + (l ~ tn)yUn + tn8{t ' "n) = tnh{X) '

MJan = 0'    fom>"0.

Now taking the inner product (in L2(£2)) of (3.17) with the eigenfunction

<f>, observing that /B e (0,1), and taking into account assumption (3.5), we

deduce that, for each n > n0 ,

(3.18) f g(x,un(x))cp(x)dx<0.
Jn
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This is a contradiction since, by (3.16) and assumption (3.2), we have

g(x , un(x))(p(x) > 0   a.e. in Q

for each n> n0 and the proof is complete,   o

Remark 2. Theorem 1 generalizes main results in de Figueiredo and Ni [12],

Gonçalves [16], Gupta [17, 18], Iannacci and Nkashama [21], and Ward [33].

It is obvious that in Theorem 1, the function f(x ,u) = A, w + g(x , u) "lies"

between the two first eigenvalues. We shall, now, present a result on crossing of

eigenvalues. Actually either limsupu_too g(x ,u)/u or limsupu_>_00 g(x ,u)/u

can cross any number of eigenvalues.

Theorem 2. Let us assume that inequality (3.2) holds true. Let T_(x) > c >

0,c E R, a.e. on il,F_ given in relation (3.1), and let d = d(T_) > 0 be

a constant associated to T_ by Lemma 2. Moreover suppose that the function

T+ , given in relation (3.1), is such that

(3.19) 0<T+(x)<d

fora.e. xeíI. Then (I.I) has at least one solution for any h E Lp (il), p>N,

satisfying the orthogonality condition (3.5). Moreover that solution belongs to

C'""(Q). One can obtain a similar result when the roles of T+ and T_ are

interchanged.

Proof. It parallels the proof of Theorem 1. Let the constant dx be defined by

dx =min{d(T_),c,a/2}.

We consider the following homotopy

(3.20) Lu + Xxu + (l-t)dxu + tg(x,u) = th(x),    u\dil = 0,

where t E [0,1], so that when ( = 1 we have our original problem and when

( = 0 we have a problem of the type studied in Theorem 1. We shall prove that

the set of all possible solutions of (3.20) is bounded in C'(Í2) independently

of t E [0,1). Here the operator E is defined by

(3.21) Eu = Lu + Xxu + dxu.

Let us assume that the relation (3.6) does not hold true for solutions of (3.20),

then there exist (tn) in the open interval (0, 1) and (un) in W2,p(il) with

|w„|Ci > n for each n E N such that

(3.22) Eun = tn[dxun-g(x,un) + h(x)],    un\0Q = 0.

By proceeding as in the proof of Theorem 1 with vn = (w„/|«„|Ci), we have

that there exist v e W2'p(il) ,ie(0,l] such that relations (3.10) are fulfilled

and v solves the equation

(3.23) Lv+Xxv+[(l-t)dx+tk^(x)]v+-[(l-t)dx-rtk;(x)]v~ =0,    w|an = 0,
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where, by reasonings similar to those used in the proof of Theorem 1, for a.e.

XEÍI

(3 24) 0<(l-t)dx+tk+(x)<(l-t)dx+tr+(x)<d,

0 <,( 1 — t)dx + tk~(x) < (1 - t)dx + tr_(x) < r_(x).

Hence, by Lemma 2 in which

P+(x) = (l-t)dx+tk¿(x),

P_(x) = (i-t)dx + tk;(x),

we deduce that (since \v\c¡ = 1) either v > 0 in il and dv/t] < 0 on dil,

or v < 0 in il and dv/dn > 0 on dil. One can, now, reach a contradiction

as in the proof of Theorem 1, with relation (3.17) replaced by

(3.25) Lun+Xxun-r(l-tn)dxun + tng(x,un) = tnh(x),    M„|9ii = 0,

for each n > n0. The proof is complete,   o

Remark 3. The sign condition (3.2) cannot be relaxed, as illustrated by a coun-

terexample in [12], to hold only for all u in R with \u\ > R > 0. However

in case liminf^^ g(x , u) - g^x) is such that f g00(x)cf)dx > 0, one may

replace, in Theorem 2, the orthogonality condition (3.5) by a Landesman-Lazer

condition

I hcpdx< I g^Wcpdx

and relaxing a little bit the sign condition (3.2). Therefore, our Theorem 2,

with these obvious modifications, may be considered as an improvement of

Theorem 4 in Berestycki and de Figueiredo [4, p. 113] to the case when T+(x)

is not necessarily identically zero. On the other hand, if T_ is a constant, then

in the one dimensional case, one can relate explicitly d to T by using the

"shooting method". We refer to Drabek [ 13] and references therein. Note that

the "shooting method" works only for the one-dimensional case, i.e. ordinary

differential equations. If the Landesman-Lazer condition is not fulfilled our

result of Theorem 2 is completely new in case of ordinary and partial differential

equations.    D

The following result follows from a slight modification of the proof of The-

orem 2.

Theorem 3. Let us assume that the inequality (3.2) holds true. Moreover, suppose

that the functions T±(x), given in relation (3.1), are such that

(3.26) r+(x) = 0<r_(jt)

for a.e. x E il. Then the conclusion of Theorem 2 holds true. One can obtain a

similar result when the roles T+ and V    are interchanged.

Proof. We consider the following homotopy

(3.27) Lu + Xxu + (l -t)gx(x,u) + tg(x,u) = th(x),    u\aa = 0,
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(3.28) gx(x,u) = \ (aff"
I ln(l + u)

where gx : il x R —> R   is defined by

for u < 0,

0    for u > 0,

and as before í 6 [0,1], so that when t — 1 we have our original problem,

and when t — 0 we have a problem of the type studied in Theorem 1.

As in the proof of Theorem 2, it suffices to show that the set of all possible

solutions of (3.27) is bounded in C (il) independently of the parameter t E

[0,1). Note that for t = 0 the set of all possible solutions of (3.27) is bounded

in C (il) since limM_t_00 gx(x , u) = -oo and lim^^ gx(x , u) = oo (see e.g.

[2, 4, 20]).
Let us assume that the relation (3.6) does not hold true for solutions of (3.27),

then there exist sequences (tn) in the open interval (0,1 ) and (un) in W ,p(il)

with |«„|Ci > n for each n E N such that

(3.29) Lun + Xxun + (l-tn)gx(x,un) + tng(x,un) = tnh,    M„|an = 0.

Now, proceeding as in the proof of Theorem 2 with vn = uj\un|c, , we can

find t E (0,1] and v e W2'p(il) with |v|c, = I ,vn - v in C'(Q), tn - t

and v solves the equation

(3.30) Lv+Xxv-[(l-t)(a/2) + tk;(x)]v~ = 0,    v\on = 0,

with

0 < k~(x) < T_(x)   for a.e. x E il.

Taking the inner product (in L (Q)) of (3.30) with the eigenfunction cp, we

deduce that

'[(1 -t)(a/2) + tk~]v~cj>dx = 0Lla
which implies that

(1 -t)(a/2) + tkv (x) = 0   whenever v(x) < 0,

so that v eW lP(il) solves the equation

Lv + Xxv = 0 ,    v\un = 0 ,

and therefore v E N(L + A,/) \ {0}. one can reach a contradiction as in the

proof of Theorem 2 and the proof is complete.   D

Let us give an example of a nonlinearity which is unbounded and such that

neither monotonicity nor Landesman-Lazer condition is fulfilled.

Example. Let g:fixR be defined by

{c(x)usin u      for x e il and all u > 0,

r_(x)«sin u   for x E il and all u < 0 ,

where T_(jc) > X2- Xx, Y    is an Z/(Q)-function;   c(x) = 0 on a subset Í2,

of il of positive measure and 0 < c(x) < d ,   where d = d(V'_) is a positive
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constant associated to F by Lemma 2. (Note that c(x) may be zero a.e. on

O.)
Obviously g(x , u) is not monotone in its second variable and

lim sup g(x , u) = 0 = lim inf g(x , u)   for a.e. x E il.
U-.-00 M-»00

On the other hand limsupu_>_00 g(x , u)/u = r_(x) may cross any number of

eigenvalues.    D

IV. NONSELFADJOINT SEMILINEAR RESONANCE PROBLEMS

In this section, we shall state results similar to our Theorems 1 and 2 in case

one is dealing with nonselfadjoint boundary value problems (1.2). It appears

that the main tools for proving these results are Lemmas 3 and 4 herein.

Theorem 4. Let us assume that the inequality (3.2) holds true, and let d* > 0

be a constant given by Lemma 3.

Moreover, suppose that the functions F+ , V given in relation (3.1) are such

that

(4.1) 0<V+(x)<d\    0<r_(x)<d*

for a.e. x E il. Then (1.2) has at least one solution ueW2 '"(il) n Hx(il) for

any h E Lp(il), p> N ,  satisfying the orthogonality condition

(4.2) / ht¡>* dx = 0,
Ja

(Obviously ueCl,"(Ti).)

Proof. We follow step by step the proof of Theorem 1 (up to the relation (3.17)),

in which we replace the operator L by the nonselfadjoint operator A and we

make use of Lemma 3 instead of Lemma 2.

Now, by taking the inner product (in L (il)) of (3.17) by cp* (replacing L

by A ) and taking into account assumption (4.2), we deduce that

(4.3) f g(x,un)<fdx<0
Ja

for all n > n0, so that we reach a contradiction as in the proof of Theorem 1,

and the proof is complete,   a

Theorem 5. Let us assume that the inequality (3.2) holds true. Let T_(x) > c>

0, c E R, a.e. on il,T given in relation (3.1), and let d = d(T_) > 0 be

a constant associated to T_ by Lemma 4. Moreover suppose that the function

T+ , given in relation (3.1), is such that

(4.4) 0 < T+(x) < d

for a.e. x e il.  Then the conclusion of Theorem 4 holds true.
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One can obtain a similar result when the roles of T+ and T_ are interchanged.

Proof. It is similar to the proof of Theorem 2 in which we introduce modifica-

tions similar to those in the proof of Theorem 4. The proof is complete.   D

One can also prove a result similar to Theorem 3 herein.    D
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