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CODIMENSION TWO COMPLETE NONCOMPACT

SUBMANIFOLDS WITH NONNEGATIVE CURVATURE

MARIA HELENA NORONHA

Abstract. We study the topology of complete noncompact manifolds with non-

negative sectional curvatures isometrically immersed in Euclidean spaces with

codimension two. We investigate some conditions which imply that such a man-

ifold is a topological product of a soul by a Euclidean space and this gives a

complete topological description of this manifold.

1. Introduction

In [9], Sacksteder studied isometric immersions of manifolds with nonnega-

tive sectional curvatures in Euclidean spaces with codimension one, under non-

degeneracy conditions about the curvature, namely, that at least one sectional

curvature is positive at each point on the manifold. Under the same hypothe-

ses, we want to obtain a topological characterization of complete noncompact

manifolds isometrically immersed in codimension two. This uses the existence

of a compact soul in M, proved by Cheeger and Gromoll in [6]. Baldin and

Noronha in [4], show some results along the same line. Basically, it is proved

that if this manifold Mn is simply connected then M is diffeomorphic to

A x R"~ , where A is a fc-dimensional soul of M. We obtain a similar con-

clusion without the simply connected condition and this allows us to know the

topology of the manifolds, as we know the topology of the compact soul by [2

and 3]. Our first result states

Theorem 1. Let f: Mn —► Rn+ be a substantial isometric immersion of a com-

plete noncompact manifold with nonnegative sectional curvatures, such that at

least one of them is positive at each point x in M and let A be a k-dimensional

soul of M. Then if k > 2, M is diffeomorphic to A x R"~ or nx(M) is
finite. In the latter case M has the homotopy type of the real projective space

RP2 or k = 3.

Remark. In the former case the possibilities for A follow from [2 and 3].

They are that A    is homeomorphic to a sphere, or a product of two spheres,
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or a product of the circle S by a homotopy sphere, or is diffeomorphic to the

total space of a nonorientable fiber bundle over Sx whose fibers are homotopy

spheres.

This theorem is proved by showing that the two-dimensional flat torus and

also the two-dimensional flat Klein bottle cannot be a soul for this manifold and

when k > 3 we prove that, if nx(M) = Z, then the immersion is reducible along

a soul A (see Definition (2.7) below). This means that / reduces codimension

when restricted to the soul.

Theorem 2. Let f: M" —> R"+ be an isometric immersion with the same hy-

pothesis of Theorem 1. If M is simply connected there exists an isometric

immersion of the soul A in Euclidean space with codimension two.

This, together with Proposition 3.3 in [2], implies that the complex projective

space CP   cannot be a soul for this manifold M.

Before we state our next result, we want to recall that the curvature tensor R

at x in M can be regarded as an endomorphism ÍH of TxM f\TxM which is

symmetric with respect to the inner product defined by the Riemannian metric.

The hypotheses of the above theorems imply that for each point x in M,

there exist vectors U, V in TXM such that 9\(U A V) ^ 0. A two-form

9Î(C/ A V) is defined to have rank2p iff p is the largest integer such that

<H(t/ A V) A • ■ • A 5K(t/ A V) (p times) ^ 0. Since we are studying codimension

two, the two-form ÍK(t/ A V) has rank at most 4.

Theorem 3. Let f: M" -* R"+ be a substantial isometric immersion of a com-

plete noncompact manifold with nonnegative sectional curvatures and such that

for every point x in M there are vectors U,  V in TXM such that ift(t/A V)

has rank 4. Let A be a k-dimensional soul of M, k ^ 0. Then k > 2 and

M is diffeomorphic to A   x R"~  .

Moreover,

(i) If k >3, then M is simply connected.

(ii) If k = 2, A is either the sphere S   or the real projective space RP .

Finally, we will consider the index of relative nullity of / at a point x in

M as

vf(x) = dim{ X E TXM : a(X , Y) = 0 , VF" G TxM}

where a is the second fundamental form. By Hartman [7], if M is not a

cylinder, there exists a point x in M such that Vr(x) = 0. If this point

belongs to a soul we conclude

Theorem 4. Let f: Mn -» R"+ be a substantial isometric immersion of a com-

plete noncompact manifold with nonnegative sectional curvatures and k-dimen-

sional soul A . If there is a point x E A such that vAx) = 0 we have.

(i)Ifk>2>, M" is simply connected and diffeomorphic to A  xR"~  , where

A    is homeomorphic to the sphere S  .
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(ii) Ifk-2 then M" is diffeomorphic to S x R" or has the homotopy

type of RP2.

We want to observe that the results of Cheeger and Gromoll in [6] do not

allow us to know the dimension of the soul. However, under our hypotheses,

if the manifold has nx (M) = Z and is not a topological product of a compact

manifold by a Euclidean space, we can conclude that the soul is homeomorphic

to the circle Sx .

2. Some known results of the soul

It is a well-known result of Weinstein [10], that if the codimension of an

isometric immersion is two then the nonnegativity of the sectional curvatures

(K > 0) implies the nonnegativity of the curvature operator (9Î > 0).

For the case where M" is complete noncompact manifold with 5K > 0,

we now collect some properties of a soul A of M. We denote by A a k-

dimensional soul of M, 0 < k < n . We consider the splitting of the tangent

bundle of M, TM — TA® TA , where TA is the tangent bundle of A and

TA is the normal bundle of the inclusion A c M . We observe the following

properties of a soul:

(2.1) If the soul is a point, then M is diffeomorphic to R" . (See [6].)

(2.2) A soul A of M is a compact, totally convex submanifold of M without

boundary and has ÍR > 0. (See [6].)

(2.3) The inclusion /': A —► M is a homotopy equivalence and M is diffeo-

morphic to the total space of TA   . (See [6].)

(2.4) If X E TA and Y E TAL , then 9\(XA Y) = 0. Moreover, ^A2 (TA))

C l\2(TA) and 9\(A2(TA±)) c /^(TA1). (See [3, Lemma 3.1].)

(2.5) The normal curvature tensor R of the inclusion i: A —► M vanishes.

(See [3, Lemma 3.1].)

From these properties we can state the following theorem (proved in [3]).

(2.6) Theorem. // nx(M) = {0} and ÍH > 0 then M is a topological product

of a soul by a Euclidean space.

In order to prove Theorems 1 and 3 in the case that n{ (M) ^ {0}, we need

an extrinsic property of the immersion, namely, reducibilitiy along the soul.

(2.7) Definition. Let /: M" —» Rn+P, p > 1, be an isometric immersion of

a complete, noncompact manifold M with K > 0, nontrivial &-dimensional

soul A and second fundamental form a . We say that / is reducible along A

if for XeTA and Ye TA^ , a{X.Y) = 0.

(2.8) Theorem. // / is reducible along a soul A then M is diffeomorphic to

Ak x R"~k . (See [3, Proposition (5.4)].)
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In the rest of this paper ( , ), V will denote the Riemannian metric and con-

nection respectively. If ¿j is a normal direction, A, will denote the Weingarten

operator and V £ will be the normal connection.

3. Basic lemmas. Proof of Theorem 1

Consider x e'A . We want to investigate if / satisfies the reducibility con-

dition at x. By abuse of notation, we will say " / is reducible at x ." If for

every X eTxA, a(X , X) = 0 or for every Y e TxAl , a(Y , Y) = 0, by the

Gauss equation, / is reducible at x, since k > 0 and 9t(Af A Y) = 0.

To study the general case, let r(x) be the Lie algebra generated by the range

of the curvature operator ÍH at the point x .If U is the orthogonal complement

of the relative nullity subspace N(x), by Theorem 1 in [5] we have the following

possibilities for r(x):

(a)r(x)= /\\U),

(3.1) (b) r(x)= /\2(V)®/\2(W), where V®W = U,

(c) r(x) = u(2), the unitary algebra of some complex structure on U,

if dim U = 4.

Moreover, if (b) occurs with dim V > 1 and dim W > 1 then V and W are

orthogonal to each other and R (x) = 0, where RJ~ is the normal curvature

tensor of /.

(3.2) Lemma. If Vt\ /\2(TXA) ¿ 0 and fH| ̂(T^) + 0 then f is reducible
at x. Moreover, there is an orthonormal frame {¿j, ,<!;2} such that A* \TXA = 0

and A^\TXAX = 0.

Proof. By (2.4), the only possibility is r(x) = f\2(V) © f\2(W) with dim V> 1

and dim W > 1 whence R (x) = 0. Therefore, the lemma follows by Theorem

D of [4].

(3.3) Lemma, (a) Suppose 5t| /\2(TxA) / 0 and 9<t| f\2(TxA^) = 0.Ifa(Y, Y)

# 0 for some Y E TXA , there is an orthonormal frame {¿¡x ,c;2} in the normal

space such that rank A. — 1 and A* \TxA± — 0.

(b) Ify\\/\2(TXA) = 0 and ^/^(T^) # 0 with a(X ,X) / 0 for some
X E TA, we have a similar conclusion with Af \TA = 0.

X Î21     X

Proof, (a) Consider an orthonormal frame {X{ , ... ,Xn} of TXM such that

Xx.XsE N(x) and Y E Span{X, , ... ,Xt,Xs+l}. We have

ÍH(Ar/A^) = 0,        (=1.s   and   j = 1.n.

Denoting by X' and X" the orthogonal projection of the vector X onto TxA

and TxA± respectively, by (2.4) we have

SR(r A Xj) =m(Y A X'j) +V\(Y A X") = 0 ,        j = l.n .
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Then the range of £ft is contained in /\ (IV), where W = Span{AfJ+2 , ... , Xn} ,

which implies

(3.4) r(i)co(n-î-l)

where o(n-s-l) is the orthogonal group. If n-s = 4, r(x) cannot be u(2),

since u(2) is not contained in o(3). Then r(x) - f\2(V) © ¡\2(w), where

dim V = 1.

Then, following the proof of Theorem 1 in [5], there is one normal vector ¿j,

such that rank,4, = 1. If £2 is a normal vector orthogonal to ¿j, we have

(3.5) K = A(iAAi2.

We will prove that this basis {£x ,t¡2} satisfies the lemma. Consider X ,Y E

TxM. We have

m(X A Y) = (A(X)' A (Ai2Y)' + (Ai2X)' A (A^Y)"

+ (Ai2X)" A (Ai2 Y)' + (A(X)" A (A^ Y)"

where

Q = (AÍ2X)" A(Ai2Y)" = 0,

CO = (Ai2X)' A (Ai2Y)" + (Ai2X)" A (A(Y)' = 0

since we are supposing Dt| /\2(TXA±) = 0. Let us suppose (A, X)' ^ 0. Taking

interior product of to with (A. X)' we get

0 = i((Ai2X)')co = \\(Ai2X)'\\2(Ai2Y)" - ((A(Y)', (A(X)')(AÍ2X)"

and therefore

(A(Y)" = ((Ai2Y)',(Ai2X)')\\(Ai2X)'\f2(At2X)".

Taking interior product with (A* Y)' we get

0= i((Ai2Y)')œ= ((Ai2X)\(A(2Y)')(Ai2Y)'' -\\(Ai2Y)''\\2(Ai2X)''

= \\(A( X)'\\-2{((Ai2Y)', (A(X)')2 - \\(AÍ2X)'\\2\\(A(Y)'\\2}(A( X)".

If (A( X)" ,¿ 0 the above relation implies (A* Y)' = X(A( X)' and then

5K(AT A Y) = (Ai2X)' A (¿&Y)' = 0.

Hence,

(3.6) if X(X A Y) ± 0 we have (A^X)" = (AçY)" = 0.

Consider now the orthonormal basis {Zx , ... ,Zn} which diagonalizes the

operator A^ such that A^(ZX) = XZX and A(¡(Z¡) = 0, i > 2. Since 9\¿0

at x, there 'exist Z(., Zj such that ÍH(Z(. A Zj) ¿ 0. By (3.6), for every Y E

TxA^ we have (a(Zi, Y), Q = (a(Zj, Y), Q = 0. This implies a(Z¡, Y) =

0, as we can suppose that A^(Z¡) = 0.  In the Gauss equation this implies
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(a(Zi,Zi),a(Y ,Y)) = 0, since m(Y A Z¡) = m(Y A Z'¡) + m(Y A Z") = 0.

Because a(Zi,Zi) is orthogonal to <J, , we have that a(Y,Y) is orthogonal

to c%2. Now, writing the Gauss equation for the sectional curvature of a plane

spanned by X E TxA and Y eTxA   , we get

0=(Ai2X,X)(Ai2Y,Y)-(AsY,X)2 = -(Ai2Y,X)2.

This and (3.6) together imply A, ,TxA± = 0, concluding the proof of (a).

(b) This is proved in an analogous manner.

We observe that, under the hypotheses of Lemma (3.3), in (a) there is only

one vector Y E TxA such that a(Y ,Y) ^ 0 and in (b) only one vector

X E TxA such that a(X,X)¿0.

(3.7) Proposition. If dim A = k > 3 and nx(M) = Z, then f is reducible

along A.

Proof. Let / = fiA : A —> R , the isometric immersion / restricted to the

soul. Since A is a totally geodesic submanifold of M, the first normal space of

/ is at most two dimensional. We can easily generalize to /, using the same

arguments, Theorems (2.2) and (2.3) of [2], obtaining the same results, since

they need only the fact of the first normal space be at most two dimensional.

We will denote by vAx) the index of relative nullity of the immersion /.

Since A is compact, consider x E A such that vAx) = 0. We claim that

a(Y , Y) = 0, for every Y E TXA . Otherwise, under the conditions of Lemma

(3.2), all the sectional curvatures along planes tangent to A at x would be

positive. Also, under the conditions of Lemma (3.3), the index of relative

nullity would be a n — k — 1. Then in (3.4) we would have r(x) = o(k).

This implies that all the eigenvalues of A. \TxA are nonnull and then all the

sectional curvatures along planes tangent to A at x would be positive. The

slight generalization of Theorem (2.2) of [2] to this immersion / would imply

that A and consequently M , is simply connected. ^

Now, we will prove the reducibility for x E A such that vAx) > 0. Let

N (A) denote the set of points in A at which the index of relative nullity is

y . Since we know that / is reducible on the closure of N0(A), we will use the

inductive argument used by Moore to prove Theorem 2 in [8]. Let y > 1 and

V be the open set

Ny(A)-Cl[\J{Nß(A)/ß<y)]

where CI denotes closure, a set on which the index of relative nullity is equal

to the constant y .

We recall that if nx(A) = Z by the generalization of Theorem (2.3) of [2],

x has a neighborhood isometric to an open subset of the product of the circle

Sx  by a (k - 1 )-dimensional homotopy sphere, which implies that there are
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two integrable and parallel distributions Tx and T2 such that dim Tx — 1 and

dim T2 — k - 1.

Suppose that ?R\/\2(TXA) ^ 0 at x and Z is tangent to Tx , Z must be

relative nullity vector. Otherwise r(x) = o(m-l)®o(l) where m = k-y. But

in the proof of the Lemma (3.3) we see that m + 1 = n - s, which contradicts

(3.4).
Now, consider a: (a.b) —> V a unit speed geodesic passing through x whose

tangent vector o(t) is the relative nullity vector Z eTx, for each t E (a ,b).

Assume that o cannot be extended beyond the interval (a , b) without leaving

V. Since A is compact, either a > -oo or b < +oo. Suppose b < +oo. By

Theorem (6.2) in [1], o(b) lies in the closure of (j{Ng(A)/ß < y}, a set on

which / is reducible by the inductive hypothesis.

We will prove that if / is not reducible at x, f cannot be reducible at

o(b), which will be a contradiction. If / is not reducible at x we can take the

frame {¿j, ,t\2} of the Lemma (3.3) such that A^\,TXA =0. Let us denote by

X and Y the unitary orthogonal projection of Z, (see the proof of Lemma

(3.3)) onto TXA and TXA respectively. Denoting by F a vector in TXA

orthogonal to X and by V± the normal connection, we can apply the Codazzi

equation to X, Y, V and £2 to get

(Vxa(V , Y), Q - (a(VxV, Y),Q - (a(V , VXY), Q

= (VXva(X, Y) ,{2) - (a(VvX,Y),Z2) - (a(X , V VY) ,Q.

Observe that a(V ,Y) = 0 since V e TxA, is orthogonal to X and Zx,

Y E TxA*-  and (a(V ,Y) ,Q = 0.   This together with Ait\TxAx = 0 and

Vx Y E TXA implies that the left-hand side is equal to zero. The same reasons

will imply that the right-hand side is equal to

(V^a(X , Y), Q = -(a(X , Y), V^i2) = 0.

As we are supposing that (a(X, Y), ¿;x ) ^ 0, we have

(3.8) V¿£2 = v£<S, = 0.

Now, with the same notation we will consider the vector fields X, Y and Z

such that on o(t), Z't) = o(f). Applying the Codazzi equation to X, Y, Z

and t\x we get

(Vxa(Z ,Y),Q- (a(VxZ , Y),{,) - (a(Z ,VXY),Q

= (V^a(X , Y),«?,) - (a(VzX , Y),Q - (a(X , WZY),Q.

As we have observed before, Z must be relative nullity vector and then Z is

orthogonal to X. This implies in the above equation, that the only nonnull

term on the left-hand side is

(a(VxZ ,Y) ,ÇX) = (VXZ ,X)(a(X ,Y) ,ZX) + (VXZ ,Y)(a(Y ,Y) ,Q

= - (Z ,VxX)(a(X ,Y) .Q
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since A is totally geodesic. The same reasons will imply that the only non-

null term on the right-hand side is the first one. Therefore the above Codazzi

equation is reduced to

(3.9) (Z,VxX)(a(X,Y),Q = Z((a(X,Y),c;l))-(a(X,Y),Vz-tl).

Since X E T2, Z E Tx , and T2 is parallel we have (Z, VxX) = 0 and by

(3.8) we have in (3.9), Z((a(X, Y) ,£,)) = 0. This implies that (a(X, Y),{,)

is constant on o(t) and then (a(X, Y) ,£,) ^ 0 at o(b), which is the required

contradiction.

Suppose now that SK| /\ (T^.,4) = 0 in some neighborhood of x. By our hy-

pothesis there is a plane a on TxM suchthat k(o) > 0. From Lemma (3.3) we

have f2 such that A(i = 0 and then (RJ(X, Z){, , {2> = (^(A", Z)^ ,{2) = 0
for every X ,Z E TxA . This implies reducibility at x, concluding the proof of

the proposition.

In order to prove Theorem 1, first we observe that if the soul A is homeo-

morphic to the two-dimensional flat torus or flat Klein bottle, as SR(Af A Z) = 0

for every X ,Z E TxA and every x E A, we would have in Lemma (3.3)

AATXA = 0 and this would imply vAx) > 0, for each x E A . This is impos-

sible, since A is compact.

Now, Theorem 1 follows from (2.6), (2.8), (3.7) and the generalization of

Theorem (2.2) in [2]. The possibilities for A   follow from [2 and 3].

4. Proof of Theorems 2, 3 and 4

(4.1) Proof of Theorem 2. Let us consider the normal bundle of M along A ,

denoted by vM\A , and define a normal connection V : X(M) x T(uM\A) —►

T(uM\A) by V x¿¡ = 0 orthogonal projection of V^c; onto uM\A . Now, as the

inclusion of A in M is totally geodesic, we define a second fundamental form

a:TA®TA^ vM\A by a(X , Y) = a(X ,Y). It is clear that vM\A , V"1 and

a verify the Gauss and Codazzi equations. Thus, we need to prove that the

condition SK(;t) ̂ 0 for all x E A, implies the Ricci equation. Denoting by

V    the normal connection for / = f\A : A —* Rn+   we have

i=n-k+l

where {Zn_k+X , ... ,Zn} is an orthonormal frame of TxA . Thus, the Ricci

equation for / is

n

(RX(X,Y)Ç,t1) = (R±(X,Y)Ç,r,)-    £    (a(X ,Z() ,i)(a(Y ,Z;.), n)
i=n-k+l

= {[AtJll]X,Y)

where At: TxA -» TxA is given by A,(X) = orthogonal projection of A(X

onto TXA. Since by our definition of V^c;, (ÄX(AT, X)í , n) = (R±(X , Y)( , r¡),
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all we need is to prove that

¿    (a(X,Zi),t:)(a(Y,Zi),n)=0.

i=n-k+l

But this follows directly from Lemmas (3.2) and (3.3).

k+2
This proves that the soul can be locally isometrically immersed in R

Since A is simply connected, Theorem 2 follows.

(4.2) Proof of Theorem 3. Consider x E A. If / is not reducible at x, we

will have by Lemma (3.3) a normal vector ¿j, such that rank/L = 1. Then by

the Gauss equation, 91(C/ A V) cannot have rank 4. So / is reducible at x .

Now we consider x such that vAx) = 0. If a(X, Y) = 0 for every Y E

TxAL , consider U ,V E TxA such that SH(£7 A V) has rank 4. Denoting by

If' and U" the orthogonal projection onto TA and TxA respectively, we

have 9t(i/ A V) = ÍR(Í/' A V1). This implies k > 4. We claim that A/ is simply

connected. For otherwise, by the generalizations of Theorems (2.2) and (2.3)

of [2], we would have r(x) = o(k - 1 ) © o( 1 ) and then there would be a normal

vector ¿; such that rank ,4, = 1 , which contradicts SR(t/AF)AiK(t/Al/)/0.

If there is y G TxAL such that a(Y, Y) ¿ 0, we have the conditions of

Lemma (3.2) and we can take that normal frame {i, ,<j;2}. Then k > 2 (oth-

erwise rank A, would be one), and all the sectional curvatures along planes

tangent to A are positive. If k > 3, M is simply connected. If k = 2, A

cannot be homeomorphic to flat torus or to the flat Klein Bottle.

Now Theorem (2.8) finishes the proof.

(4.3) Proof of Theorem 4. Consider x E M such that vAx) = 0.  By (2.4)

and (3.1) we have r(x) = t\(V)®/\2(W) where V®W = TxM . If dimF> 1

and dim IV > 1 we are under the conditions of Lemma (3.2). If dim V = 1 or

dim W = 1 we are under conditions of Lemma (3.3). In both cases, we have

that all the sectional curvatures along planes tangent to A are positive at this

point x. Again, if k > 3, M is simply connected and A homeomorphic

to S . If k = 2 then A is homeomorphic to S or RP2. Now, applying

Theorem (2.6) to the simply connected case we finish the theorem.
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