Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles
HTML articles powered by AMS MathViewer

by Vesselin M. Petkov and Luchezar N. Stojanov PDF
Trans. Amer. Math. Soc. 312 (1989), 203-235 Request permission

Abstract:

Let $\Omega \subset {{\mathbf {R}}^n}$ be a domain such that ${{\mathbf {R}}^n}\backslash \Omega$ is a disjoint union of a finite number of compact strictly convex obstacles with ${C^\infty }$ smooth boundaries. In this paper the singularities of the scattering kernel $s(t,\theta ,\omega )$, related to the wave equation in ${\mathbf {R}} \times \Omega$ with Dirichlet boundary condition, are studied. It is proved that for every $\omega \in {S^{n - 1}}$ there exists a residual subset $\mathcal {R}(\omega )$ of ${S^{n - 1}}$ such that for each $\theta \in \mathcal {R}(\omega ),\theta \ne \omega$ \[ {\text {singsupp}} s(t,\theta ,\omega ) = {\{ - {T_\gamma }\} _\gamma },\] where $\gamma$ runs over the scattering rays in $\Omega$ with incoming direction $\omega$ and with outgoing direction $\theta$ having no segments tangent to $\partial \Omega$, and ${T_\gamma }$ is the sojourn time of $\gamma$. Under some condition on $\Omega$, introduced by M. Ikawa, the asymptotic behavior of the sojourn times of the scattering rays related to a given configuration, as well as the precise rate of the decay of the coefficients of the main singularity of $s(t,\theta ,\omega )$, is examined.
References
  • C. Bardos, J.-C. Guillot, and J. Ralston, La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Differential Equations 7 (1982), no. 8, 905–958 (French). MR 668585, DOI 10.1080/03605308208820241
  • Y. Colin de Verdière, Sur les longueurs des trajectoires périodiques d’un billard, South Rhone seminar on geometry, III (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 122–139 (French). MR 753865
  • J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI 10.1007/BF01405172
  • C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Prépublications de l’Université Paris-Sud, 1986.
  • V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), 1976/77 supplement, pp. 69–88. MR 0448453, DOI 10.2977/prims/1195196598
  • Victor Guillemin and Richard Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), no. 3, 204–232. MR 539531, DOI 10.1016/0001-8708(79)90042-2
  • Mitsuru Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ. 23 (1983), no. 1, 127–194. MR 692733, DOI 10.1215/kjm/1250521614
  • Mitsuru Ikawa, Precise informations on the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ. 27 (1987), no. 1, 69–102. MR 878491, DOI 10.1215/kjm/1250520765
  • Mitsuru Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 113–146 (English, with French summary). MR 949013
  • Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
  • Andrew Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math. 30 (1977), no. 2, 165–194. MR 435625, DOI 10.1002/cpa.3160300203
  • Shahla Marvizi and Richard Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), no. 3, 475–502. MR 679068
  • R. B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), no. 1, 43–59. MR 523601
  • R. Melrose and J. Sjöstrand, Singularities in boundary value problems. I, II, Comm. Pure Appl. Math. 31 (1978), 593-617 and 35 (1982), 129-168.
  • Shin-ichi Nakamura and Hideo Soga, Singularities of the scattering kernel for two balls, J. Math. Soc. Japan 40 (1988), no. 2, 205–220. MR 930597, DOI 10.2969/jmsj/04020205
  • V. M. Petkov, High frequency asymptotics of the scattering amplitude for nonconvex bodies, Comm. Partial Differential Equations 5 (1980), no. 3, 293–329. MR 562545, DOI 10.1080/03605308008820141
  • V. Petkov, Singularities of the scattering kernel, Nonlinear partial differential equations and their applications. Collège de France seminar, Vol. VI (Paris, 1982/1983) Res. Notes in Math., vol. 109, Pitman, Boston, MA, 1984, pp. 288–296. MR 772247
  • Vesselin Petkov and Pierre Vogel, La représentation de l’application de Poincaré correspondant aux rayons périodiques réfléchissants, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 633–635 (French, with English summary). MR 705678
  • Vesselin M. Petkov and Luchezar Stojanov, Periodic geodesics of generic nonconvex domains in $\textbf {R}^2$ and the Poisson relation, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 1, 88–90. MR 838792, DOI 10.1090/S0273-0979-1986-15445-5
  • —, Propriétés génériques de l’application de Poincaré et des géodesiques périodiques généralisées, Seminaire Equations aux Dérivées Partielles, Ecole Polytechnique, Exposé XI, 1985-1986.
  • Vesselin Petkov and Luchezar Stojanov, Spectrum of the Poincaré map for periodic reflecting rays in generic domains, Math. Z. 194 (1987), no. 4, 505–518. MR 881708, DOI 10.1007/BF01161919
  • Vesselin Petkov and Luchezar Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math. 109 (1987), no. 4, 619–668. MR 900034, DOI 10.2307/2374608
  • —, Singularities of the scattering kernel for non-convex obstacles, Conférence Equations aux Dérivées Partielles, Saint-Jean-de-Monts, 1987.
  • Nikolai Sergeevich Krylov, Works on the foundations of statistical physics, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1979. Translated from the Russian by A. B. Migdal, Ya. G. Sinai [Ja. G. Sinaĭ] and Yu. L. Zeeman [Ju. L. Zeeman]; With a preface by A. S. Wightman; With a biography of Krylov by V. A. Fock [V. A. Fok]; With an introductory article “The views of N. S. Krylov on the foundations of statistical physics” by Migdal and Fok; With a supplementary article “Development of Krylov’s ideas” by Sinaĭ. MR 551057
  • Ja. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970), no. 2 (152), 141–192 (Russian). MR 0274721
  • Hideo Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 729–765. MR 685528, DOI 10.1215/kjm/1250521678
  • Hideo Soga, Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems, Osaka J. Math. 23 (1986), no. 2, 441–456. MR 856897
  • N. Tchernov, Construction of transversal foliations for multidimensional semi-scattering billiards, Functional Anal. Appl. 16 (1982), 33-46 (Russian).
  • Kazuhiro Yamamoto, Characterization of a convex obstacle by singularities of the scattering kernel, J. Differential Equations 64 (1986), no. 3, 283–293. MR 857711, DOI 10.1016/0022-0396(86)90076-8
Similar Articles
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 312 (1989), 203-235
  • MSC: Primary 35P25; Secondary 35L05, 35R30, 58G17, 78A05
  • DOI: https://doi.org/10.1090/S0002-9947-1989-0929661-5
  • MathSciNet review: 929661