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SINGULARITIES OF THE SCATTERING KERNEL
AND SCATTERING INVARIANTS FOR

SEVERAL STRICTLY CONVEX OBSTACLES

VESSELIN M. PETKOV AND LUCHEZAR N. STOJANOV

Abstract. Let Í2 c R" be a domain such that R"\£2 is a disjoint union of

a finite number of compact strictly convex obstacles with C°° smooth bound-

aries. In this paper the singularities of the scattering kernel s(l, 8, a), related

to the wave equation in R x Q with Dirichlet boundary condition, are studied.

It is proved that for every a € S"~l there exists a residual subset 31(a) of

S"~l  such that for each 8 6 31(a), 8 ¿ a ,

singsuppi(i, 8, a) = {—Ty}y,

where y runs over the scattering rays in fl with incoming direction a and

with outgoing direction 8 having no segments tangent to dSl, and Ty is the

sojourn time of y. Under some condition on Ci, introduced by M. Ikawa,

the asymptotic behavior of the sojourn times of the scattering rays related to a

given configuration, as well as the precise rate of the decay of the coefficients of

the main singularity of s(t, 8, a), is examined.

1. Introduction

Let ßcR", n > 3, n odd, be an open domain with C°° smooth boundary

d£l and bounded complement K = R"\Q c {x : \x\ < p0}. The scattering

operator 5 for the wave equation in Rxfl with Dirichlet boundary condition

is a unitary operator from L (R x Sn~ ) into I(Rx Sn~ ) and the kernel

s(t - t' ,6 , co) of S Ad is called the scattering kernel (see [10, 11]). For fixed

(0 , co) G S"~x x S"~x we have s(t,d,co)G 5"'(R) and

(1.1) s(t,d,co) = Cn [  d" 2dvw((x,d)-t,x;co)
JdK

Here w(x, x ; co) is the solution to the problem

(1.2)

(dz - Ax)w = 0   in R x Q,

w = 0   on R x dil,

w\x<_pQ = ô(x-(x,co)),
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v is the interior unit normal to dil (pointing into Q),

Cn = (-l)(n+x)l22-"n(X-n),

and dSx is the induced measure on dK. The integral (1.1) is interpreted in

the sense of distributions (see [11, 26]).

Denoting by s(k,6 ,co) the Fourier transform of s(t ,8 ,co) with respect to

t,

a(k,9,co) = (2n/ik){n~x)/2s(k ,6 ,co)

is called the scattering amplitude. The analysis of the asymptotic behavior of

a(k,6 ,co) as k —> oo is closely related to the examination of the singularities

of s(t, 6 , co).

For co / 6 and for strictly convex obstacles s(t ,6 ,co) has only one sin-

gularity related to the reflecting ray at x g dK, x being the point where

u(x) = (8 - co)/\\8 - co\\. On the other hand, for nonconvex obstacles there

exists co G S"~ for which s(t, -co ,co) has at least two different singularities

[26, 29].)
For obstacles with arbitrary geometry max( singsupps(i,8 ,co) has been

studied in [11, 17, 27]. One of the authors investigated in [16] the set of all

singularities of s(t, 6 , co) for nonconvex obstacles, making some restrictions

on the geometry of the rays incoming with direction co. These restrictions are

too difficult for verification. Nevertheless, some of them are fulfilled for generic

obstacles, provided co, 8 are fixed (see [20, 21]).

As suggested in [5, 16], singsupps(-/ ,8 ,co) must be related to the sojourn

times of the so-called (co, 0)-rays (see §2 for a precise definition). It is natural

to expect that for generic directions (co, 6) the sojourn times of all ordinary

(co, 0)-rays belong to singsupps(-t ,6 ,co). A (co.d)-ray y is called ordinary

if y has no segments tangent to dK. In general a nonconvex obstacle K could

admit (generalized) rays with incoming direction co and outgoing direction 8

which have some gliding segments on dK. This leads to considerable difficulties

when we try to prove the above assertion for nonconvex obstacles.

Throughout this paper we assume

\K=(jKi, KiKK] = 0   forijij,
U"*; i=i

.Kj   are compact and strictly convex for i = I , ... ,s.

For fixed co ̂  8 , let -2^ e be the set of all ordinary (co, 0)-rays with reflections

on dK. Given y G =2^ e , denote by x (resp. by y ) the first (resp. the last)

reflection point of y. Let Zw be a fixed hyperplane so that K is contained

in the open half-space 7/^ determined by Zw and having co as an inward

normal. If y hits Zw at A , then in some neighborhood U of A we can

define the map Jy : Uy3 u —► 6(u), d(u) being the outgoing direction of the

(co, 6(u))-ray issued from u (see [5, 16] and §3). Denote by T the sojourn

time of y (see [5, 16] and §4 for the definition). Finally, recall that a subset
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32 C S"     is called residual if 32 is a countable intersection of open and dense

subsets of S"~x. Our main result is the following.

Theorem 1.1. Let co G Sn~x   be fixed.    Then there exists a residual subset

32 (co) c S"~x such that for each 8 G 32 (co), 8 ¿ co, we have

(1.4) singsuppi(r, 8 , co) = {-Ty : y G 2>we}.

Moreover, near -T   we have

(1.5)

s(t,8,co) = (2n)(X-n]l2(-l)m'-Xf'

dt\dJ(Ay)(v(xy),co)

(Hyv).o)

-1/2

ô{"-X)/2(t + Ty)

+ smoother terms. Here m is the number of reflections of y, a G N is a

Maslov index, and ( , ) is the inner product in R" .

Equality (1.4) is similar to the Poisson relation for the distribution o(t) =

^2j cos k ¡t, where {A2}°î, are the eigenvalues of the Laplace-Beltrami operator

on a compact manifold without boundary [3] or the eigenvalues of the Dirichlet

problem for the Laplacian in a bounded domain tf c R (see [19, 22]). In

these cases the singularities of a(t) are included in the union of the lengths

of all periodic geodesies. For this reason we will call {T' : y G ^fw g} the

scattering length spectrum of K related to co, 8. Nakamura and Soga [15]

established (1.4) for 6 = -co and for two disjoint balls cf¡,, i = 1,2, making

some restrictions on dist(rf, ,cf2) and the diameters of ¿f., i — 1,2.

Formula (1.5) was obtained in [16]. Similar results concerning the singulari-

ties of a(t) when t coincides with the period of some periodic geodesic have

been proved in [3, 6]. Theorem 1.1 says that for fixed co G Sn~x and 8 G 31(8),

6 ^ co, from the singularities of s(t, 8 ,co) we can recover as scattering data

all sojourn times T , y G -2^ e together with the corresponding coefficients c

in front of ô{"~X)/2(t + T ). On the other hand, from the scattering kernel we

cannot determine when 8 belongs to 32(co).

The proof of Theorem 1.1 is based on three main points. First, we study the

topological properties of the map Ja related to a fixed configuration a. We

describe the maximal subset M  cZ„, where J  : M —► / (M ) becomes a
a co ' a a aK     a'

homeomorphism. This leads to the uniqueness of the (co, 8)-ray associated to

a. Second, for generic 8 we establish two properties of (co, ö)-rays. One of

them says that the sojourn times of different (co, ö)-rays are different too. Third,

to examine singsupps(i, 8 , co) n [-T, T], we introduce a special localization

of the problem (1.2) different from those previously used in [16, 17, 27]. This

localization depends on T as well as on the results in §§3 and 4 playing a crucial

role when we deal with the rays admitting tangent segments. Moreover, our

localization enables us to eliminate completely the investigation of the mixed

problems with data localized in the shadow domain with respect to co (see

[16]).
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The results of Melrose and Sjöstrand [13, 14] imply that for nontrapping

obstacles the sojourn times Ty of all (co ,ö)-rays y are uniformly bounded for

all (co ,8) G S      . For trapping obstacles we expect that for suitably chosen

co, 8 we have

(1.6) sup{Ty:yG^f(ae} = oo.

In our case we are able to establish (1.6) making the additional assumption

(H)
For all triples (ix, i2, i'3) € {1, ... , s} , ¿. ^ ik, j ±k,

the convex hull of AT   U K   has no common points with K .

This condition was introduced by Ikawa in [9], where he proved that for each

configuration

a = 0'i.*fc).      h*h>

there exists a unique periodic ray ya with successive reflection points Je G dK¿ ,

j = I, ... ,k. Under condition (H) we show in §6 that for each such a,

choosing co, 8, suitably for every q > 0 there exists an ordinary (co,8)-ray

yxm with m = qk + l reflection points

xpk+JGdKh,       0<p<q, l<j<k(l<j<l for p = q).

The choice of co and 8 depends on some condition of visibility concerning

K¡   and K¡   which we are able to arrange exploiting (H). On the other hand,

to guarantee that ym are ordinary rays, we apply essentially our results in §4.

In our paper we study the asymptotic behavior of the sojourn times T k+l

of yxk+¡ as q —» oo. The leading term of the corresponding asymptotic is

merely qda , da being the length of ya (see Theorem 6.5). Consequently, the

scattering length spectrum {¿2?w e : co ± 8} determines the lengths of all periodic

rays ya . For this reason we could consider da as scattering invariants. In our

previous paper [22] we proved that the lengths of ya can be recovered from the

singularities of the distribution XV e" ', À being the poles of the scattering

matrix, provided that K is a generic obstacle. The above result says that we

may obtain the same information from the scattering length spectrum.

Marvizi and Melrose [12] and Colin de Verdiére [2] studied the asymptotic

behavior of the lengths of periodic geodesies for strictly convex planar regions

tf c R . In [12] these geodesies approximate the boundary def, while in [2]

they approximate an elliptic periodic ray. In our situation yn is a hyperbolic

ray and in the asymptotic of Txk+¡ we obtain two terms modulo a remainder

0(ô9) with 0 < S < 1. For two disjoint balls some partial results have been

obtained in [15].

In §7 we examine the precise rate of decay of the coefficients cm in front of

6{n~X)l2(t + Tx¿) as m -> oo. We obtain the asymptotic behavior of ln|c^+/|
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as q —► oo with leading term

nr    = —
1     "-1

j=l

Here u , |/í | > 1, are the eigenvalues of the (linear) Poincaré map related

to ya. Our analysis is based on the representation of the Poincaré map [18,

22] which makes it possible to simplify the calculation of det dJ (A ) and the

examination of the asymptotic of ln|c^+/|.

For two obstacles Kt■, i = 1,2, condition (H) is trivial. Then from the

scattering length spectrum we can recover the invariants d = dist(ATj, K2) and

cd = -J^jli ln|^i -I related to the unique periodic ray. Moreover, we may

determine the first sequence

kj = -(icd)/d + j(d/n),       jgZ,

of pseudopoles of the scattering matrix (see [1,4, 7]). In this case k- are

connected with the meromorphic continuation of the leading term

aoW=     ¿2    Cye~UTy

of the scattering amplitude a(-k, 8 , co). It is interesting to study the analytic

properties of a0(k) for more than two obstacles.

The paper is organized as follows. In §2 some notation and preliminary facts

are given. In §3 we study the map Ja, while in §4 we treat the (co, ô)-rays

for generic 8. §5 is devoted to the proof of Theorem 1.1. In §6 we discuss

the existence of (co, ö)-rays and property (1.6) together with the asymptotic of

T k+/. Finally, the asymptotic of ln|c .+/| is examined in §7. Part of our results

have been announced in [23].

2. Preliminaries

2.1. Let /, and l2 be linear segments with a common end point x G dK.

We say that /, and l2 satisfy the law of reflection at x with respect to dK if

either /, and l2 lie on a common line tangent to dK at x and /,n/2 = {x}

(the case of tangency) or /, and l2 make equal acute angles with v(x) lying in

a common two-dimensional plane with v(x) (the case of a proper reflection).

Let co,8 G S"~' and let y = U*=0/( be a curve in R" , where /( = [x¡,xi+x]

are finite segments for i — I, ... ,k - I (k > 1 ), x¡ G dK for 0 < i < k,

l0 (resp. lk) is an infinite segment starting at x, (resp. at xk) and having

direction -co (resp. 8). Then y will be called an (co, 8)-ray if the following

conditions hold:
o

(i) the open segments l¡, i — 0, ... ,k , have no common points with K,

and

(ii) for every / = 0.k - 1 the segments /( and lj+x satisfy the law of

reflection at xj+, with respect to dK.
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Points xx , ... ,xk will be called reflection points of y. Some of them are

proper reflection points, and if x( is among the others, then we say that y is

tangent to dK at x¡. This definition of an (co, 8)-ray is slightly different from

that in [20, 21]. If all reflection points of y are proper ones, then y will be

called an ordinary (co, 8)-ray.

2.2. Given co G S"~ , let Zm be a fixed hyperplane so that K is contained

in the open half-space Hm determined by Zu and having co as an inward

normal.

For u G Zm consider the motion of a point with unit velocity starting at

u with direction co and reflecting from dK following the usual reflection law

or tangent to dK. By St(u) we denote the shift of u at time t > 0, and

by Nt(u) we denote the velocity vector of the point at the moment t (for

y = S.(u) GdK we identify NAu) with o(N,(u)), o„ being the symmetry withi i y       i y
respect to the tangent plane to dK at v). By xx(u) ,x2(u), ... we denote the

successive reflection points (proper or not) of the ray y(u) = {St(u) : t > 0} . By

tx(u), t2(u), ... we denote the times of the corresponding reflections. Clearly,

these two sequences may be empty, finite, or infinite. By r(u) we denote the

number of all reflections of y(u). Thus we have r(u) = 0,1, ... , oo.

The following property of St(u) is well known in the theory of dispersing

billiards (see [24, 25, 28]).

Proposition 2.1. Let U be an open subset of Zw and let t>0 be such that for

every ugU we have r(u) > m, tm(u) < t < tm+x(u), and xx(u), ... ,xm(u)

are proper reflection points of y(u).  Assume Xj(u) G dK(   for every u G U

and j = 1, ... ,m. Then St(u) is a smooth surface in R" and the second

fundamental form of St(u) with respect to the normal field {Nt(u) : u e U} is

positive definite.

2.3. In this paper smooth means C°° . For a subset Y of a topological space
_        o

X by Y (Y) we denote the closure (interior) of F in I. We will use the

notation

dKf = {yGdKi:(v(y),co)$0}.

2.4. Let A be a real (pxp) matrix and let I be the identity (pxp) matrix.

Recall that

|det^|<(l + p-/||)p,

11/111 being the norm of the operator A : Cp —> Cp . If M is a symmetric and

positive definite matrix, then for k > 0 we have

||(/ -r-AAi)-1!! < (1 + Act)-1 ,        \\M(I + kM)~X\\ < l/k,

where er = min spec M, spec M being the spectrum of M.
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3. The maps J
a

By a configuration a with length \a\ = m, m > 1, we mean a symbol

a - (ix,i2, ... , im) such that ij G {1,2, ... ,s} for all j and ij ^ ij+x for

7 = 1,2.m - 1.

Let w g S"~x and let Z,, be as in subsection 2.2. Consider the sets
w

Fa = {uGZw: r(u) > m and Xj(u) G dKr for j = I, ... ,m} ,

Ua = {u G Fa : Xj(u) is a proper reflection point for all j < m}.

Define the map

J  :F ^S"-X
a        a

by Ja(u) = Nt(u) for arbitrary t with tm(u) < t < tm+x(u) (resp. t < oo if

r(u) = m). This map was introduced by Guillemin [5] in a slightly different

context.

In this section we establish some properties of the maps Ja which will be

used in the next sections.

Lemma 3.1.

(a) For every u G Fa there exists a configuration ß = (?,,..'. , / ) with

p > m, u G Fg such that there is a sequence px < p2< ■■■ < pm = p

with i = ij for all j = I, ... ,m. Moreover, if xr(u) is a proper

reflection point of y(u) for some r = I, ... ,p, then r = p. for some

j=l, ... ,m;

(b) Ja can be extended to a continuous map Ja: Fa-* S"~x ;
o

(c) F=U.

Proof. The proofs of (a) and (b) are quite elementary and we omit them. To
o

establish (c), first note that Ua is obviously open and Ua c F . Take u G Fa

and suppose u £ Ua. Then y(u) is tangent to dK at xAu) for some j =

I, ... ,m . Let j be the minimal number with this property and for convenience

set x0(u) = u and t0(u) = 0. Choose an arbitrary t with t _x(u) < t < tÂu)
° i i

and an open neighborhood U of u in Fa so small that t._x(u) < t < t.(u)

for all u G U. We may arrange St(U) to be strictly convex with respect to

the normal field {Nt(u) : u G U} (cf. subsection 2.2 and Proposition 2.1). A

simple geometric argument shows that there exists u G U so that the straight

ray starting at jc •_,(«') with direction Nt(u) has no common points with dK¡ .

Thus u  $ F , which gives a contradiction. Therefore F   c U   and we obtain

(C).     D

Consider the set

(3.1) La = {u G F~a : N(u) = co for every t > 0}.
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For u G La the ray y(u) goes straightforward with constant direction co and

has common (tangent) points with dK¡ , ... ,dKi    and, possibly, with some
o

other dKr. Clearly, La is compact, La = 0, and La n Ua - 0. In fact, La

is contained in the boundary (in ZJ) of the orthogonal projection of K¡ onto

Zw . Consequently, the set

(3.2) M = F~\L
o

contains F .
a

Since Ja'- Fa—> Sn~   is continuous and Fa is compact,

(3.3) E  = / (F~)

is a compact subset of Sn~ . Note that Ja(La) = {co}, so Ja(Ma) is either

E   or E \{co\.

The main result in this section is the following.

Theorem 3.2. For every configuration a the map

J  :M ->J(M)

is a homeomorphism.

Proof. It is sufficient to prove that if u G Ma , v G Fa with h/u, then Ja(u) ^

J (v). Indeed, assume this true. Then J : M —> J (M ) is a continuous

bijection and it remains to show that J~ is continuous. Take a sequence

{uk} c Ma and u G Ma so that Ja(uk) —► Ja(u). Let v be a cluster point

of {uk} ; then v G Fa and clearly Ja(v) = Ja(u). Therefore v = u, and this

shows that u is the only cluster point of {uk} in Fa. Thus uk —> u and

Ja : Ma —> Ja(Ma) is a homeomorphism.

Let a = (/,,... , i' ) and let u ¿ v be elements of M and 7" , re-

spectively.  By Lemma 3.1(a), there are configurations ß = (/',, ... , i ) and

y = (ij, ... , /' ) with p > m , q > m, u G F„, v g F . Moreover, there exist

px < p2 < ■ ■ ■ < pm = p and qx < q2 < ■■ ■ < qm = q such that 177 = T^ = i.

for ail j = 1.m, and if xr(u), r < p (resp. xr(v), r < q) is a proper

reflection point of y(ü) (resp. y(v)), then r = p. (resp. r = ^.) for some

j =1,... ,m.

Define St(u) (resp. St(v)) for í > 0 in the same way as St(u) (resp.

S (v)) assuming that after the pth (resp. <?th) reflection from dK the point

u (resp. v) is moving straightforward with constant velocity Jn(u) = 7g(w)

(resp. Ja(v) = J (v)) no matter whether it intersects K or not.

Set x, = xn (u) and y, = y„ (v) for 7 = 1.w and take
J Pj J Q)

t>ma\(tp(u),tQ(v))

sufficiently large (this will be made clear afterwards). Denote by A. the tan-

gent plane to dK.   at x,, by H. the closed half-space determined by A. and
'j J J J
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containing K( , by er   the symmetry map with respect to A-, and by ¿5   the

symmetry map with respect to the tangent plane to dK.   at y. .

Further, denote by x,   (resp. y, ) the point for which we have xx G [u , x\]

,('>.. - ,(') (0, iWand \\u - x\"\\ = t (resp. y, G [v,y\"] and ||v - y\"\\ = t). Let A\' be the

plane parallel to Zw and passing through x['] and y|'V Set x^' = ox(xx]),

y(i = ¿¿y?)» 4° = *i(4°).and H2] = M^i0) (seeFisure l)-

V    u

Figure 1

Choose t so large that K. c 77(.° . It is then clear that K. c H(']. Note that

(0if y(u) is tangent to dK¡   at x, , then x2

In particular, we have

«'UjcW, 4') = ^, and 77^ = 77

(3.4) yleH2.

° it)
On the other hand,  y, e Kt \{x}  implies  y, € H', .   By definition ^41,    =

cr, (v4ji5), therefore yo(y( , 4'') < />(y, , 4'') and tne eQuality holds if and only

if y(u)  is tangent to dK¡   at x, .   Here  p(z ,A)  is the Euclidean distance

II* o p(y. ,A\'), we getbetween z and A. Since ||y, — y2\

(3.5)

and (3.4) yields

(3.6)

Moreover, if x, or y, is a proper reflection point of y(u) or y(u), respectively,

then-yf €/%'>.
Further, we proceed by induction. In fact we will describe in detail only the

next step.

Ily.-yfll^y,,^0).

y2  e//2 .
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Set Af = o2(A(f),   Hf = o2(Hf), xf = a2(xf), and yf = 62(yf)
(see Figure 2). Since y2 G [yx,yf], by (3.4) and (3.6), we get y2 € Hf . On

the other hand, y2 G H2, hence p(y2,A2t]) < p(y2,A(f).  By (3.5) we find

\\y2-yf\\<p(y2,Af), so

(3.7) ll^-^llspü^Sfy
Since x2 ,x2r) e /72 n T/j'', exploiting the fact that [x2 .x^] is orthogonal to

Af , we see that y2 G Hf. Now (3.7) yields yf G H{f . Moreover, if at least

one of the points x,, x2, y, , y2 is a proper reflection point, then yf G fíf .

Since u G Ma means that some x   is a proper reflection point of y(u),

proceeding in this way we conclude finally that

(3.8) Wiy" , € 77
¡At)

m+l

r(0where HK   x is the half-space determined by AK   . and containing x   , while(0

«(') ,<0
m+l

(l)
Am'+X is the plane passing through xm'+x and orthogonal to [xm , xm'+x]. Let us

,(')    _ cV ,(')    _ -Qtmention that by our construction we have xm'+x = St(u) and ym'+l = St(v)

rWThus, by (3.8), St(v)GHm+x
Replacing the roles of u and v and using the same arguments, we see that

*,(«)€ g£?+i Here &m\x is the half-space determined by B

while J?^ ,  is the plane orthogonal to [yn

'm+l

w
m+l

and containing

ym+i] and passing through

Suppose J (u) = J (v).   Choose < so large that /C;    C 7/j^i n ^m+i ■

Then Am\x and 5m>+1 are parallel, so either (%>+l c Hm>+X or 77-;, cr(0
m+l

Figure 2
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Assume, for example,  ém\x c 77^,.   Then ~St(u) G ém\x c H¡?+1, hence

St(u) $ Am\\, which gives a contradiction. Therefore Ja(u) ^ Ja(v) and the

proof of the theorem is complete.

Let co ,8 G Sn~x and let y be an (co, 8)-ray with successive reflection points

x,, ... , xm . We say that y is of type a = (/,,... , im) if Xj G dKr for every

j = I, ... ,m .

Corollary 3.3. If co^ 8, then for every configuration a there exists at most one

(co, 8)-ray of type a.

It is clear that in general there could exist some configurations a for which

there are no (co, ö)-rays of type a. The existence of (co, <?)-rays will be treated

in §6.

Fix a configuration a = (ix, ... , im) and consider the map Ja : Ua —> Sn~x.

For our aims in §5 we will show that dJ (u) is invertible for each u G U . The

proof of this fact is based on the representation of the Poincaré map related to

a periodic billiard trajectory found by Petkov and Vogel [18] (see also §§4, 5 in

[21]).
Let u0 G Ua and let ß  = Xj(u0), j = 1, .... m. For j - I, ... ,m - I

denote by D. the oriented line QjQJ+l with direction ß,ß7+1 ■ By 7>m we

denote the oriented line through Qm with direction 8 = Ja(u0).   Choose a

point Xj G Dj so that Hß-A'J = 1  and g.A'. is colinear with QjQj+x  for

j < m and QmXm — 8. By n we denote the hyperplane passing through

Xj and orthogonal to T> . Let cr be the symmetry map with respect to the

tangent plane /I   to dK at ß   and let A, = ||ß-ß:_,|| for j = 2, ... ,m,

k{ = ||«0ß1|| + 1 • Then

Zw x Zu 9 (w,v) —» (u + kxv ,v) G Zx x Z, ,

where we identify Zw and Z, = ^(n,) by the orthogonal projection of Zw

onto  Z, .   Let  7r   : n._,  —» TQ(dK)  be the projection along the direction
-►
Qj_xQj,   7 = 2.m, and let  Gj  be the differential of the Gauss map

corresponding to dK at ß . Consider the symmetric linear map ^ : n —» n ,

given by

(fyjW.àjW) = -2(ß7_1ß;,I/(ß7.))(C7.^.(«;),7r7(«;))/||ß7_1ß7||

for u; e n._, (we identify here and below the planes o.(n._,) and n accord-

ing to the orthogonal projection of one of them onto the other). Following the

argument and the basis given in [18, 21], we have

(3.9)

(dj(u0))(u)=pr2(^    y*  y.f:*<    y>~ )(»)
"   ° 2Wmcrm    om+kmvmom)      \y,xox    ox+kx¥xox)\0)

for uG Zw, where pr2(w , v) = v .
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Proposition 3.4. For every configuration a we have

(3.10)     (^("0))(M) = Mm°mVm-X +*J*m-lK,-l(/m-2 +¿m-l^m-2)

■■■o2(Ix +k2Mx)axu,

where /. ¿s the identity map on n¿ and for i = I, ... ,m, M¡ : n. —► n. is a

symmetric positive definite linear map. Moreover,

(3.ll)Mx = wx,       Mi = aiMi_l(Ii_l+XiMi_ir1ai + Çfi,       i = 2,...,m.

The proof is straightforward and we omit it. Consequently, we get

Corollary 3.5. For every configuration a and every u0 G Ua the map dJa(u0)

is invertible and Ja : Ua —> Ja(Ua) is a diffeomorphism.

4.   (CO, 0)-RAYS FOR GENERIC  8

In this section we prove that for given cogS"~ there exists a residual subset

32 = 32(co) of S"~x such that for 8 G 32 all (co, ö)-rays have some special

properties. Recall that a subset 32 of a topological space X is called residual

in X if 32 = f)~,   Ui, where U¡ are open and dense subsets of X.

Throughout this section cogS"~   will be fixed.

Theorem 4.1. There exists a residual subset 32x — 32x(co) of Sn~x so that for

every 8 g32x and every configuration a if uGFa and Ja(u) = 8, then u G Ua .

The latter means that if J (u) G 32, for some u G F , then the first \a\

reflection points of y(u) are proper ones.

Proof. We are going to construct a sequence ^¡ D 3^D ■■■ D 3^D •■■ of open

and dense subsets of Sn~ so that for every m if a is a configuration with

\a\ = m , u G Fa and Ja(u) G ETm , then the first m reflection points of y(u)

are proper ones.

Set STX = S"~ \{co} . Suppose we have constructed open and dense subsets

^3--o^ of 5"~   having the desired properties.

Fix a configuration a — (ix , ... ,im, im+l) and set ak = (/,,..., ik) for

k = I , ... ,m. Since ¿77 is open and dense, F = Sn~ \7T   is compact and

F = 0 . Let ß = ak for some k = I, ... ,m . Then F n E„ is compact with

empty interior (cf. (3.3)). Consider the map /„ : F„ —► Eß c Sn~x. Since

J-X(F) = J~l(FnEß) c (J7X(F nEp)nMa) uLa,

we deduce from Theorem 3.2 that J7X(F) has empty interior in Zw . Hence

Fa n J7'(F) is a compact subset of Zw with empty interior. Thus

Ja(Fa nJ7X(F)) is compact, and as is easily seen from Theorem 3.2, it has

empty interior in Sn~x . In this way we have proved that
m

^ = ̂ \U^an.r>))
k=l
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Figure 3

-,«-1
is an open and dense subset of S     . Note that if u G Fa and Ja(u) G V,

then the first m reflection points of y(u) are proper ones.

Denote by 3^"] the set of 8 G V such that if J (u)g8 for some u G F ,
J      m+l ax   ' a '

then the first m + 1 reflection points of y(u) are proper ones. We are going

to show that 3~^a\ is open and dense in V (and therefore in S"~x). Clearly,
m+l

^m+l is open.  To prove the density, take 8 G V\3¿+xH\. Then 8 = Ja(u0)
for some u0 G Fa, the first m reflection points xx(u0), ... ,xm(uQ) of y(u0)

are proper ones, and y(u0) is tangent to dK at the (m+l) st reflection point

xm+x(u0). Choose t so that tm(u0) < t < tm+x(u0) and take a neighborhood U
o

of u0 in Zw so small that U c Fa = Ua . By Proposition 2.1 it follows that

for U sufficiently small Y = S^U) is a smooth strictly convex surface in R"

(see Figure 3). Then for every u G U the ray y(u) issued from u has exactly

m proper reflections from dK. , ... ,dK     when the time runs from 0 to t.
'I Im

Note that {Nt(u) : u G U} is a normal field for Y and if u G U, then St(u)

moves in the direction N((u) (cf. subsection 2.2). It is now clear that there

exists u G U such that the ray starting at St(u) G Y with direction Nt(u)

intersects transversely dKi . This means that Ja(u) G 3^"] . We have shown

in this way that 3^"\ is open and dense in S"~x.

Setting 3m+x = n|a|=m-H^m+i ' we 8et an °Pen and dense subset of S"~x

with the desired properties. This closes the induction.

Finally, setting 32x - fl^Li ^m » we complete the proof of the theorem.   G

isLet Ba be an open ball with radius a > 0 containing K such that Z

tangent to Ba . For 8 G Sn~   denote by Ze the tangent plane to Ba such that

8 is orthogonal to Ze and the half-space He determined by Ze and having
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8 as an outward normal contains Ba . Let y be an (co, 8)-ray with successive

reflection points xx, ... ,xm. The sojourn time T  of y is defined by

m-l

(4.1) Ty = \\njxx) - x.ll + £ ||x,. - x,.+1|| + \\xm - ne(xj\\ - 2a,
i=i

where nu : R" —► Zw and ne : R" —► Z8 are the orthogonal projections. The

definition of Ty was introduced by Guillemin [5]. It is easy to see that T does

not depend on a.

«—I
Theorem 4.2. There exists a residual subset 322 — 322(co) of S      such that if

8 g322, then for any two different (co, 8)-rays y and ô we have T ¿ Tg.

Proof. First, notice that if y is an (co, 8)-ray, then there exist u G Zw and

m G N so that xx(u), ... ,xm(u) are the successive reflection points of y.

Moreover, there is unique t > tm(u) with St(u) G Ze and then we have Nt(u) —

8 and T=t-2a.

Figure 4

Let u G Zw be such that 1 < r(u) < oo. Setting w, = r(u) and 8 = Nt(u)

for t > tm¡(u), choose uniquely t0 with S¡ (u) G Ze and set Te(u) = t0.

Further, fix two different configurations a and ß and set m = max(|a| ,\ß\)

and

2'(a,ß) = {8G3rm: ifuGUa, VGUß, r(u) = \a\, r(v) = \ß\,

and Ja(u) = Jß(v) = 8 , then Te(u) ¿ Te(v)}.

Here 3m is the set defined in the proof of Theorem 4.1. We are going to prove

&(a, ß) is open and dense in 3~m .

To show 3m\2'(a,ß) is closed in 3~m, consider a sequence {8k} c

3'n\3'(a,ß)  with  8k — 8 G 77~m.   Then for any k  there exist  uk G Ua
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and vk 6 Uß with r(uk) = \a\, r(vk) = \ß\, Ja(uk) = Jß(vk) = 8k, and

Te (uk> ~ Te (vk>- We may assume uk ^ u e ^a anc* vk ~^ v e Fß- If

u £ Fa, then u G Fa, for some a and y(u) would have some tangent point

to dK. On the other hand,

Ja,(u) = Ja(u) = lim Ja(uk) = lim 8k = 8 G 7Tm ,
k—*oo k—*oo

which is a contradiction with the properties of 3~m . So u G Fa and again by

Ja(u) = 8 G3~m we get uGUa. Similarly, Jß(v) = 8 and vet/». It is clear

also that r(u) = \a\ and r(v) = \ß\. Therefore 8 G 3~m\7¿~(a., ß) and we have

shown that 7? (a, ß) is open in 3~m .

To establish the density, take 8 G 3m and suppose 8 £ 77?(a., ß). Then

there exist u G Ua, v g Uß with r(u) = \a\, r(v) = \ß\, Ja(u) = Jß(v) = 8,

and Te(u) - Tg(v). It follows by Proposition 2.1 that for t = Tg(u) = Te(v)

there exist small open neighborhoods U c Ua and V c Uß of u and v,

respectively, in ZM such that St(U) and St(V) are strictly convex surfaces.

Note that both St(U) and St(V) are tangent to Zg at S((u) and St(v), re-

spectively, hence they lie in Hg (see Figure 4). Further, according to Theorem

3.2, we see that for every 8' G 3~m sufficiently close to 8 there exist unique

u G U and v' G V with Ja(u) = Jß(v') = 8'. Denote by F the set of those

8'G3~m with Ja(u) - JJv') = 8' for some u gU and v' G V and such that

there exists a plane tangent simultaneously to St(U) at St(u) and to St(V) at
/ ° n—1

St(v ). It is easy to see that F = 0. Since 3~m is open in S , we can take

8' G 3~m\F arbitrarily close to 8. Choosing such a d', denote by A (resp. B)

the plane tangent to St(U) (resp. St(V)) at St(u) (resp. St(v')). Then the

three planes Zg,, A, and B are mutually parallel. Thus for tx - Tg,(u) - t

and t2 = Tg,(v') -1, we see that |i,| is the distance between A and Zg,, while

\t2\ is the distance between B and Zg, . Since A ^ B , we have r, ?£ t2 , hence

Tgi(u) = í + í, ^ t + t2 = Tg,(v'). On the other hand, 7a is invertible on Ua ,

while Z» is invertible on Uß . Consequently, 8' G 5C(a, ß) and ¿2?(a, ß) is

dense in 37 .
m

Setting

(4.2) 322= f)5?(a,ß),
a^ß

we obtain a residual subset of S"~x having the desired properties. This proves

the theorem.   D

5. Singularities of the scattering kernel

In this section we prove Theorem 1.1. The scattering kernel s(t ,8 ,co) is

given by (1.1).   Let p(t) G C0°°(R),  p(t) = 1  for |/| < 1/2,  p(t) = 0 for
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|fI > 1. Setting

(*>     d P,
pc(t) = p(t/e),       0 < e < 1,       p™ =

dt

£

consider

(s(t,8,co),pe(t + T0)e ia)

(5.1) =Ec,(-ar2-* / / *"<'-<*.•».,« ((x,d)-t + T0)
fc=o •/r-/ô*

x ——(r ,x ,co)dtdS„,
du x

where c^ = const, cQ = Cn. Obviously, we must study dw/du\Rx9K only for

(t, x) satisfying the relation

Ht n{(r,x,l, -grad(x,8)\dK)GT (RxdK)}
RxdKJ

D{(r,x, 1 ,<?): (r,x)e supp/>f >«x,0> - / + r0)} ̂  0.

It is well known [14] that the generalized wave front WFb(w) is propagating

along the outgoing generalized bicharacteristics of the operator D issued from

WF(S(-p0 - (x , co))). The projections of these bicharacteristics on Í2 will be

called generalized rays. They are unions of finite or infinite number segments

which are reflecting or tangent to dK.

The results about the propagation of singularities [ 14] show that (t, x, 1, n) G

WF(dw/du\KxdK) if there exists i) G T*(Sl) such that |^| = I, f)\T,dK) = n,

(r) ,v(x)) < 0. Therefore i)\T,dK) = _ö|r:t(a/f) leads to one of the following

cases:

(a) fj = -8 for (8 ,v(x)) >0,

(b) r) = -8 + 2(8, u(x))u(x) for (8 , u(x)) < 0,

(c) fl = -e for (f5\i/(x)) = 0.

In cases (a) and (b) the singularities are propagating along a generalized ray

y reflecting at x. Moreover, in case (a) (resp. (b)) the reflecting (resp. the

incoming) direction of y at x is just 8. In case (c) the singularities are

propagating along a ray simply tangent at x and having direction 8. Thus we

must study the behavior of the generalized rays having at least one (finite or

infinite) segment with direction 8 .

Fix  T > 0.   We are going to study the singularities  T0,   \TQ\ < T, of

s(t ,8 ,co)   introducing  a  partition   of unity   J2°fL\<Pj(x)   —    1>    9j(x)

gC0x(R"~x), x = (x, .... ,*„_,), depending on 7V From

XGdK,        (t,x)Gsuppp{£k)((x,8)-t + T0),        \T0\<T

we conclude that we need to know the singularities of ¿^/¿^luxa/c for |i| <

Tx = T + p0 + e. Since the singularities of w are propagating with speed 1,
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we are going to investigate only the generalized rays y with lengths less than

or equal to some fixed number T2 depending on T and p0 . Without loss of

generality we may assume co = (0, ... ,0,1).

Consider the Cauchy problem

f UVj = 0,

(5.2)
Vj\t=z = (Pj(x')Ô(r-Xn),

avj

dt
= 9j(x')S\t-xh)

with x < -p0, x fixed. It is easy to see that

.n+l>
WF(u.) c{(t,x, ±1, tco)gT (R     )\0 : there exist x and cr > 0

so that x = x, t — x±a , x = x±cr<y}.
n

,n-l
Therefore there exists a compact set F'0 c R" such that supp cpj c\F'Q-0

implies singsupp v. n K = 0. Set

F0 = {x G Rn : x G f'q , x„ = t}

and consider the generalized rays y(u) starting at u G F0 with direction co and

having lengths less than or equal to T2. We identify FQ with Zw and choose

32(co) — 32x(co) C\322(co), where 32\\co), i — 1,2, are defined in Theorems 4.1

and 4.2. The rays y(u) have at most m0 reflections and there exists a finite

number of configurations a with \a\<mQ. Below we assume 8g32(co) fixed,

8±co.

Let y(u), u G FaC\FQ be a ray having at least one segment with direction

8 starting at xr(u). According to Theorem 4.1, the successive reflection points

x¡(u), I < i < r, of y(u) are proper ones and u G Uß for some \ß\ = r.

Exploiting the continuity of the broken Hamiltonian flow related to D (see [14])

for rays with uniformly bounded lengths and Corollary 3.3, we conclude that the

points u G F0 with the above property of y(u) form a finite set {«,,..., uN} .

Thus, if w0 € F0\{ux , ... ,uN}, then the ray y(u0) has no segments with

direction 8 among the first m0 ones. Choosing a sufficienly small neighborhood

cf(u0) of m0 in R"~ , we arrange the same property for y(u) for all uG(f(u0).

Given w(, i = 1, ... ,N, there are two cases. First, assume x_(«,-) is a

proper reflection point for every p < m0. Taking a small neighborhood cf(ut)

of ui, we obtain that for every u G cf(u^) the first m0 reflection points of

y(u) are proper ones. Second, let y(u¡) have some tangent segments among the

first m0 ones. Since 8 G 32x (co), these segments have directions different from

8 . The continuity of the broken Hamiltonian flow implies that there exists a

neighborhood cf(u¡) of u¡ so that for u G cf(u¡) the ray y(u) has reflection

points

(5.3) xx(u), ... ,xro(u), xro+x(u).xq(u),       r0>l.
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where x¡(u), i = I, ... ,rQ are proper ones, while the segments starting at

Xj(u), i = r0, ... ,q, have directions different from 8 . Notice that r0 = r0(i)

does not depend on u G cf(u^), while q could depend on it. Finally, assume

that u¡ $ (f(Uj) for i / j.

This procedure leads to a covering F0 c U„o€f0 &(uo) an(* we may assume

M

Foc\J<?(uj)-       N<M.
j=i

Let c?(Uj) c cf(Uj) be a neighborhood of Uj. Choose the partition of unity

{Vj(x)}^ so that

(5.4) snpp cpj c cf(Uj), cpj(x) = 1    for x G cf(Uj), 1 < j < M.

Assume that for M0 < N the rays y(u¡), i — I, ... ,M0, have only proper

reflection points among the first m0 ones; that is, the first case described above

holds.

Setting Vj = Vj - q>j(x')ô(t - xn), j — 1, ... , N, we have

nVj = (Ax,cpj)ô(t-xn),

dvA
Vj\,=r = dt

0,

and the singularities of V, are propagating along the straight lines l(u) issued

from cf(Uj)\cf(Uj) with direction co.

Fix 1 < 7 < N and consider the lines l(u) with u G cf(Uj). Let l(u) meet

dK transversely for the first time t(u) > x at x, (m) = (u, t(u)) G dK¡ . Suitably

modifying V. and tpj in the interior of AT, , we introduce two distributions

Vj and (j>j = cjjj(t ,x)S(t - xn) so that

U(Vj + <j>j) G C°°   inRxfi,

<-"■ t=x

We take $.(t ,x) g C°°(Rn+x) such that

f f.(x)   for t < t(x'), x < t(x'), x G cf(u\ ,

J [0 for x i cf (Uj) or xn > t(x') + e ,

where e > 0 is chosen sufficiently small. Similarly extending V¡, we arrange

(5.5)

wfí^UJuwfÍ^      )
V RxOK/

c {(t(u),xx(u) ,o,- oco\Tx adK)) G r (R x dK*h)\0 : u G rf(Uj)\e?(Uj)}.
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Introduce W- and Wj as solutions of the problems:

nWj = 0   inRxß,

rVj + Vj = 0   onRxdK,

7 = 1.N,Wj\«-Po=°-

Uuij = 0   inRxQ,

Wj + (j>j = 0   onRxdK,

W,l,j  „ =0,       7 = 1, ,N,

OWj = 0   inRxfí,       Wj = 0   onRxôi:,

wj\t=x = <pM')S(t-xn),
dWj

= <Pj(x')ô'(x-xn)

for j — N + I, ... ,M.

After this preparation set

H

"> = £(w7 + ̂ 7 + »7 + Vj) +   E   ™7 + E U; '
7=1 j=N+\ ;>A/

tf

A simple argument yields w - w G C°°(R x fi). The singularities of W. are

related to the (generalized) rays y(u), with u belonging to cf(Uj)\cf(Uj), which

have no segments with direction 8. Consequently,

(5.6)     [IJWF
IM

d(Wj + Vj)

du

M

RxdK/       j=N+\ \ Rx9A7

n{(i,x,l, - 8\T (dK)) : x G dK, \t\ < T} = 0.

Replacing w in (5.1 ) by w and using (5.6), we are going to study the asymp-

totics of the integrals

'* ■>w=L L e'Mt~{x 'e))p<k){{x -d)-t+ro)¿(^+*>] dt ds* •
'RJdfC

j = I, ... ,N. We have

dé       dô
-Qr = ^¡-S(t-xn)-(v,co)fjo'(t-xn)   onRxdK.

If z. is a stationary point of (x, 8 - (o)\aK lying on dK* , then v(z}) =

(8-co)/\\8-co\\. Moreover, dcpj/dv and d$j/dt vanish on some neighborhood

of z, in dK. Therefore a stationary phase argument implies
J

hM)= I I  em-{xmpf)((x,8)-t + T0)3tw dtdS
JR JdK
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mod cf(\k\  m) for every m with 3SWj = (d/dv - (v ,8)d/dt)Wj\RxdK. Here

we have used the equality

f ea{x-w-e)(v,8 + co)p*\(x,8-co) + T,)dSx
JdK

• hwïiï^"-*^-«-^^*-
Fix M0 + 1 < j < N. The wave front WF^w.) is related to the rays y(u),

uGcf(Uj). As we mentioned above, the first r0 reflection points of these rays

are proper ones. Then by the construction in [16], we take u;   in the form

r0-l

p=i

By using (5.3), the singularities of ¿%w are related to the finite segments

[x(u),x x(u)] meeting dK transversally. Extending w ■ in the interior

of dK and repeating the argument in [16] with the outgoing Green function,

we conclude that wp , does not contribute to the asymptotic of Ik (A). On

the other hand, the singularities of 3§w'j are connected with the segments is-

sued from xp(u), p = r0, ... ,q which have no directions 8 . Consequently,

Ik .(X) = cf(\k\-m), Mm, for M0 + 1 < j < N.

To study Ik j(k), j = I , ... ,M0, notice that WF^ur) is related to or-

dinary reflecting rays issued from WF(0,|RxaA-+ ) • Thus we are in a position to

apply the results of Petkov [16] for Ik (A). The arguments in [16] with trivial

modifications work for dimensions n > 3, n odd. In particular, instead of

Lemmas 1 and 2 on p. 321 of [ 16] we obtain directly the following.

Lemma 5.1. Let G, P, and Q be (n - I) x (n - 1) matrices. Then

l-G 0 -I\
(5.6) det      0     P     I      = det(GQP + P - G).

V-7 7 QJ
Proof. First assume G invertible. Then

det I   0     P    I   \ -detC?-1 = det

= det ^_G-r_ q   ))= det(G lP + QP-I).

which implies (5.6). In the case det G = 0, we choose e0 > 0 so that Ge = G+el

is invertible for 0 < e < e0. Applying (5.6) for G£ and letting e —► 0, we

complete the proof.

As we proved in §3, the map dJ   (see §1) is invertible at the point Ay,

where y hits Z   . Moreover, the sojourn times of the different (co, 0)-rays are
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different for 6 G 32(co). Therefore, from the asymptotic of Ik .(A), given in

[16], we get

singsuppj(i ,8 ,co) n {|i| <T} = {-Ty : y GS?m e , \Ty\ < T}.

Since T is arbitrary, we obtain (1.4). The form of the leading singularity at

—T  follows from [16]. This completes the proof of Theorem 1.1.

6. Existence of (tu, 0)-rays and asymptotics of Txm

Throughout this section we assume that K = [fi=x K( satisfies condition (H)

introduced in §1. Let 32(co) = 32x(co) C\322(co), where 32x(co) and 322(co) are

the residual subsets of S"~x defined in §4.

Definition 6.1. Let a = (/,,... ,ik) be a configuration. We say that a pair

(eu, 8) of unit vectors satisfies the conditions of visibility with respect to a if

8 G 32(co) and the following conditions hold:

(a) for every x G dK¡   the ray starting at x with direction -co (resp. eu)

has no common point with K\K¡   (resp. K¡ ) ;

(b) for every x 6 dKi   the ray starting at x with direction 8 (resp. -8)

has no common point with K\K.   (resp. K¡    ).

Lemma 6.2. For every configuration a = (/,,..., ik) there exist co,8 G S"~

such that (co ,8) satisfies the conditions of visibility with respect to a.

Proof. Take a hyperplane A which separates Ki and AT;? and such that A is

tangent to K¡ at some point x, while A is tangent to K¡ at some point y. Set

co = (y - x)/||y - x|| and denote by Z an arbitrary hyperplane orthogonal to

co such that the open half-space, determined by Z and having co as an inward

normal, contains K. Consider the convex cone C = {y + t(u - y) : u G K¡ ,

t > 0}. It is easy to see that the orthogonal projection of K¡ on Z is contained

in C. Therefore, condition (H) implies

(6.1) {u-tco':t >O}n(K\Kí¡) = 0,        «r€JC(|.

Indeed, suppose there are u G Kt , t > 0, and j ^ /, so that v = u-tco G Kj.

Let u be the orthogonal projection of u (and therefore of u) on Z. Since

ii,HëC,we have v G C. On the other hand, the definition of C shows

that the segment [y , v] contains a point of AT( which is a contradiction with

condition (H). Hence (6.1) holds and the compactness of K\K¡ implies the

existence of a number e > 0 so that

{u-tco: t>O}n(K\Ku) = 0,       ugKu,

whenever ||eu-eu'|| < e. Choose eu with ||cu-eu'|| < e and (-co ,v(x)) > 0.

Then it is clear that condition (a) of Definition 6.1 holds.
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Since 32(co) is dense in S"~ , in a similar way we can find 8 G 32(co)

satisfying (b). This completes the proof of the lemma.

Fix a configuration a = (ix, ... ,ik) with i, ¿ ik and an integer / =

1,..., k. For q = 0,1,... set

Vi = (*i.'ti-i'i.'t ;/,,...,i;).
>-v-'

<?

Proposition 6.3. Let (co, 8) satisfy the conditions of visibility with respect to

ax ¡. Then for every integer q > 0 there exists an (co, 8)-ray of type a   ,.

Proof. Fix £7 > 0 and two hyperplanes Zu, Zg as in the text preceding Theo-

rem 4.2. Set m = qk+l, D = Z,xdK,. x-xdKi xZñ and define F:ß-»R
at i¡ i,„ a

by
m-l

F(t) = \\zx -x.ll + J2 \\Xj -Xj+iW + \K - ziW •
;=i

where £, = (z, ;x, , ... , xm ; z2) G D. Since F is continuous, it is clear that

there exists c; = (z, ;x, , ... ,xm;z2) g D with F(Ç) = min/7. Moreover,

Zj = tt^x,) and z2 = ne(xm). Then from condition (a) we deduce that the

segment [z, ,x2] has no common point with Ki . For c > 0 consider the

rotative ellipsoid

Ec = {xgR" : \\zx - x\\ + \\x - x2\\ < c}.

Take the minimal c > 0 with Ecn K¡  ^ 0. Therefore, Ec will be tangent

to dK¡   at some x'j. In view of //(¿J) = minF(cj) we get x, = x^. Thus the

segments [z,x,] and [x,,x2] satisfy the law of reflection at x.

Repeating this argument and exploiting conditions (H) and (b), we deduce

that xx , ... ,xm are the successive reflection points of an (eu,0)-ray of type

a   ¡. This proves the proposition.

Remark. In [23] we announced the existence of (eu, 0)-rays under weaker con-

ditions than those given above. However, there are counterexamples showing

that this statement in [23] is not true.

Up to the end of this section we will assume that a and / are fixed and

(co ,8) are fixed too so that the conditions of visibility with respect to a(/

are satisfied. This assumption combined with (H) implies the existence of a

constant k, = ic^a.eu) > 0 such that if y(z) is a ray issued from z gZu

with direction eu and having successive reflection points x, G dK^ , x2 G dK^ ,

x,, ... , xp , then

coscpj>Kx,       j — I, ... ,p - I,

where »   is the angle between i/(x,) and x¡x¡+l   (I < j < p - I).

Let VQ c Zw be the set of points such that every ray y(z) issued from

z G VQ with direction eu has successive reflection points

u%\j e dKi •       0 < q < m, I < j < k (I < j < I for q = m).
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Of course VQ depends on m, I but we will not mention this explicitly. Let

cp(x) be a real smooth function defined in ^ so that \Vcp\ = 1. We say that

cp satisfies condition (P) in ^ if the principal curvatures of 7? (x) — {y G %? :

cp(y) — cp(x)} with respect to -Vcp are nonnegative for all x G %.

Choose cp0(x) = (x , co) and ^0 = {y + reu, y G V0 : x > 0} . Obviously, cpQ

satisfies (P) in ^0 . Let <px(x) be a function so that |Vp,| = 1 and

fiW-foW.      d-t = -d~t   onFi = ^n<.

We extend cpx on 1tx = [j eV {y + xVtpx(y): x > 0} so that cpx satisfies

(P) in 1¿x (see [9]). Following this procedure we define successive functions

cp0,cpx,cp2, ... , cpqk+j satisfying (P) respectively in ^0 , ̂  , %2 , ... , %qk+J ,

where

*+*j-   U   {^ + tV^+y(y):r>0},       Vqk+jcdK..

Let yx and y2 be two ordinary reflecting rays issued respectively from y0 , z0

G V0 with direction cu and having successive reflection points

y«k+j ■ zqk+j edKij>        0<q<m, 1 < j < k (1 < j < I for q = m).

The properties of g>0, ... , <Pqk+¡ combined with the proof of Proposition 3.8

in [9] yield

Lemma 6.4. There exist constants C > 0, 0 < 8 < I, independent of yx, y2, I

so that

(6.2) ||y. - z.|| < Cr5m*+/~'',        i = 0,... ,mk + l.

Constructing rays with m reflections, letting m -* co, and exploiting (6.2),

it is easy to find a unique ray y°°(co) starting at x^° G Zw with direction eu

and having infinite number reflection points x°^+ G dKr , q > 0, 1 < j < k.

The properties of the dispersive billiards [24, 25] (see also Lemma 5.4 in [9])

yield

(6-3) H\~+7 - xjW ̂ C^ ■       °>0, l<j<k,

with C, independent of q and j.

Set dL= EU\\xp+l -xp\\, 1 < 7 < k, da = dk, L~ = (x10O,eu) +

£™=i WxT+í -XTW- APPlvm6 (6-3) for 9 ̂  °> ^ > 0, we have

rifc+1

KC>*+7 - Í« + ')«. - rf/> - <*£♦/ - **- - ^)l ¿ 2C. £ **+'+' * ^.
P-l

Fixing 7 and introducing Lj^j = lim^^L^. - tfí/Q - d¡), we get

(6.4) L J+, = < + rf. + Lxa w . + 0(ô9),       * - oc.
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As above, there exists a unique ray y (-8) starting at some y0 G Zg with

direction -8 and having an infinite number of reflection points y°l+r G dKj ,

a > 0,  1 < r < k, where (jx.jk) = (i,,/,_,,...,/,. ik , /*_,,... , il+1).

Therefore, we obtain
m

(6-5) (v^-^r.^ + EllC-^ll-^ + ̂ .-. + O^),       ff-oo
p=i

with some constant L     a .

Now let yxm be an ordinary (eu, 0)-ray with sojourn time Tm and m = qk+l

reflection points xp"f+j G dK¡ , 0 < p < q, 1 < j < k (1 < j < l for p = q).

Set
p m—1

C = ̂ m)^)+Eii^:i-^m)ii' ¿Pm] = -(xT.o)+ E ii^î-^ii.
r=l r=p+\

and take p = [<,/2]/c + / - 1. Applying (6.2) twice for the reflection points of

y m ' y00^0*) as weu as f°r those of yxm , y°°(-8), we obtain

,r(m)       ,oo,      ,Am)      n ,
ILP     -Lpl + IGP     -%-lc/2]k\

p+\ m-p

< 2^nxr-x^ii+2 j: iixr¿+1-yrii < c3^.
r=l 9=1

Since 7¿' = L¡,m) + dpm), by (6.4) and (6.5) we get

Theorem 6.5. Assume (H) is fulfilled. Let a = (/,,..., ik), t, ^ rfc, ¿>e a
configuration and let (co ,8) satisfy the conditions of visibility with respect to

a, ,. Then we have the asymptotic

(6-6) Txk'+I = qda + Lxc;w e + 0(S9),       q -» oo,

"^^.^^..-i+^.-fl + ^-i-   4) = 0. ¿'.c.o^L,*-
Corollary 6.6. Lei K - Kx UK2, d = dist(Ä^ , Â^). Assume (co,8) satisfies

the conditions of visibility with respect to a — (1 ,2).  Lei y^  be the (co ,8)-

ray with sojourn time T^ and m reflection points {xp   }, where x,    G dK{,

x(™] G dKj. Then we have

(6-7) T2Uq+i+j_x=2qd + LÏ0 + O(ôq),       q-+oo, i,7 = 1,2.

Note that a particular case of (6.7) for two disjoint balls has been obtained by

akamu

' the pe

[2, 12]).

Nakamura and Soga [15]. The asymptotic (6.6) is similar to this for the lengths

of the periodic reflecting rays in bounded strictly convex domains cf c R   (see

7. Asymptotic behavior of \c„ I

Throughout this section we assume (H) is fulfilled and we use freely the

notation of §6. Fix co ̂  6 and a configuration a - (ix.ik) with /', ^ ik .
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Assume / is fixed and (co ,8) satisfies the conditions of visibility with respect

to a, i. Then it is easy to find a constant k = k(K , eu ,8) > 0 such that if

y is an (eu, 0)-ray with successive reflection points xpk+J G Kt■ , 1 < p < q ,

1 < j < k, then

(7.1) cos<Pj>K,       j = 1 , ... ,qk + l,

cpj being the angle between v(x¡) and XjXj+x (resp. 8 for j = qk +1). Set

d = diam^,       d' = mindist(#,., K.),       dñ = l/d'.

Since K¡ are strictly convex, there exist constants p2 > px > 0 so that

px(v,v)<(Gxv ,v)<p2(v,v),       vGTxdK,

where Gx is the differential of the Gauss map of dK at x .

Let x G dKi, y G dKj, i ^ j. Suppose the segment sx = [x , y] c Q. is

transverse to both 8K¡ and dKj. Let x be a point lying on the line joining

x and y such that ||x - x|| = 1. Let n be the hyperplane orthogonal to sx

and passing through x. Seting e = (y-x)/||y-x||, denote by n the pro-

jection n —» TxdK along the direction -e. Introduce the symmetric operator

y/ : n -+ n by

(7.2) (\j/u ,u)— 2(e ,v(x))(Gxnu ,nu),       ugh.

We will say that \j/ is related to sx    . It follows easily that

(7.3) spec y/ c [2px (v(x) ,e), 2p2(v(x) ,e)~ ].

Now we will prove a technical lemma which will be applied several times

in this section. We need to introduce some assumptions and notation. Let

ß = (ix, ... , i ) be a configuration and let Xj ,x'j G dK-, j = 1, ... , p, be

points so that

(7.4) ||x7-x7.||</V,        j=l,...,p,

with some constants D > 0, a > 0. Assume (e , v(x.)) > k , (e', i^(x')) > k ,

where e¡ = (xJ+x -xJ)/\\xj+l-x¡j\\,   e) = (x'j+x -x7)/||x;+1 -Xj\\, j=l, ... ,p.
According to Lemma A in the Appendix, for every 7 = 1.p there exists

an isometry Aj : R" -» R" such that A (n':) = n   and

(7.5) \\Aj -I\\ <CxD(l+a)aJ,       \\yfj-A^A^W < CxD(l +a)aJ.

Here {¡/j : n —* n and y/'j : n' —» n' are the operators related to the segments

Sj = [Xj ,xj+x] and s'¡ = [x'j ,x'j+x]. Let Mx : n, —> n, and M[ : r!x -> n', be

arbitrary symmetric positive definite linear operators. Set

(7.6) M, =oíM¡_¿I+k.Mi_x)-xoi + i¡íi,        i = 2.p,
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where k¡ = ||x(_, -x(.|| and er is the symmetry with respect to n.. Let M[

be the map defined by (7.6) replacing íj/i, o¡, A,, Xj by \p\, er, k\, x¡,

respectively. Finally, set

(7.7) 6 = (l + 2/<IJcrf'r1.        «, = {*     ,     ..    ***-]'
I max(a.o)   fora < 1.

Lemma 7.1. Under the assumptions and notation above there exist constants

E > 0, E' > 0, depending only on k , K, and a such that

(7.8) 11717. - AjM'jA7X\\ < DEa[ + b2U~v)\\Mv - ¿XVII -

\lndtt(I+ kj+xMj)(I+k'j+xM'j)-
(7.9)

< DE'a{ + (n- l)db2U~v)+x \\Mv - ¿XVII

for 1 < v < j < p.

Proof. First notice that \k¡ - A'| < D(l + a)a'.  Moreover, min spec A7(._, >

min spec W¡-\(i > 2) implies (see subsection 2.1)

W+^M^y'W^b,        ||A7,_1(7 + A1.7l//_ir1||<l/A1.<i/0.

Introduce L¡ - A^AJ1 : n; —<■ n(.. Then a\ — A~xaiAi and we obtain

L. = <TJ.fiiLI._1(7 + A;XI._ir1Ä-1aI. +A,fàl,

where Bi = A¡A~\ . Combining (7.5) with the inequality

\\X - BJB-'W^WXW-WI - Bft + WX -Y\\

we deduce

||M,.-L,.||<||717/_i(/ + A,.M,_1)-1-/í/.L/_1(7 + A;X1_1)   '/i,. '|

+ WWi - Aiij/'¡Ai x\\ < CxD(l + a)a' + 2Cxd0D(l + afa

+ ||7Wf_1(/ + AIAr/_1)-1 - L,_,(7 + A^,..,)-1!!.

On the other hand, using subsection 2.4, we get

l|M,_1(/-rA,.M,_1)-1-L;_1(/ + A;L,_1)-1||

< |A,. - k\\ • ||(7 + V^r V^.ll • ||Li._1(7 + A;X/_1)

+ è2||M,._1-L,_1||

<Ddl(l+a)ai + b2\\Mi_x-L¡_x\\.

-l,

Therefore,

II

with E" = (l+ a)(Cx + 2d0(l + a)a~xCx + d¡) > 0.

||A7,. -L,.|| < DE"a' + è2||A7,_1 -L,_,||,        i = 2./>,
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By induction on j we get

(7.10) \\Mj - Lj\\ < DE"J~J2 aJ-rb2r + b2{j-v)\\Mv - LJ
r=0

for I <v < j < p.

Case 1.  a > 1. Then a > b2 and (7.10) yields

||A7. - Lj\\ < DE"ajJ'J2 (b2/a)r + b2{j'v]\\Mv - LJ
r=0

< DE"aj(l - b2/a)~X + b2{j-v]\\Mv - LJ.

In this case we set E = E"a(a - b )~ .

Case 2. a < 1. Taking ax = max(a , b), by (7.10) we have

7—0—1

\\Mj-LJ<DE"  £ a\+' + b2^\\Mv-Lv\

<DE"(l-ax)-xai + b2U-v)\\Mv-LJ.

Then we set E = E"(l - ax)~  .

Consequently, we have proved (7.8).

To verify (7.9), we use the estimate

det[(/+A,.+1A7(.)(/+A;+1A7;r1]<(i + ii/-(/+A(.+IM/.)(/+A;+1L;r1iir1

= (l + ||(A;+1L,-A,+1M,)(/ + A;+1L,.)-1||r1

<(l + l-^f^ + bk¡+x\\Mi-L¡\\]
\ Ái+\ )

< (l+D(l+a)d0ai+x+bd\\Mi-Li\\)"-x.

Similar equality holds for det[(7 + A;+1 A7()- (7 + k'j+xMlj)] and we obtain

|lndet(/ + ki+xMt) - lndet(/ + X'i+lM¡)\

<(n-l)ln(l+ Dd0(l + a)ai+x + bd\\Mt - LJ)

< (n - l)(Dd0 + (l+ a)ai+x + bd\\Mi - L.||).

Applying (7.8) for j — i, we arrange (7.9) with

E' = («- l).((a2x+ax)d0 + bdE).

This completes the proof of Lemma 7.2.

Let xx , ... ,xk  be the reflection points of the periodic ray yn  related to

a, where x, G dK.   for j = 1, ... ,k.   For convenience we set x    = x
J 'j m j

for m = pk + j,  1 < j < k .  Let ij/j : ñ; —» ñ. be the operator related to
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[x, :Xj+x] and let £üí(ñ.) be the space of all symmetric positive definite linear

operators M : ñ. —> n.. Consider the map & : SDÍ(ñ-) -+ 97t(ñ.+1) given

by 3r](M) = öj+xM(I + kj+xM)~xöj+x + y/j+x, where X. = ||x; -x^J and

dj+x is the symmetry with respect to ñ +1 . It is easy to show (cf. the proof

of Theorem 6.2 in [22]) that the map ^o^o-o^: 9Jl(ñ,) -» Ortífí,)

has a unique fixed point M, . Then M2 = 3rx(Mx) is the unique fixed point of

3¡o3ko3k_x o-.-o«^, etc.

Let m = qk + I.   Introduce the configuration a   ¡  (cf. the beginning of

§6). The corresponding map 7      will be denoted briefly by 7 . Recall that

Jg ■ Fa —► 5"~ and FQ cZffl. It follows by Proposition 6.1 and Corollary

3.3 that there exists a unique m g Fa such that y(w ) is an (eu,0)-ray of

type a ¡. Moreover, 8 G 32(co) implies u G Ua . Thus dJ' (u ) is well

defined and we will examine the asymptotic of det dJ (u ) as q —*• oo .

Let xx, ... ,xm and y,, ... , ym, ym+1.ym+k be the successive reflec-

tion points of y(u ) and y(u   x), respectively.   Set A(. = ||jcf_j — jcf||, A'. =

||y,_i - y,ll and denote by \pi, y/\ the operators related to [x(., x(+1] and

[y¡■> y¡+\] > respectively. Introduce A7(. and A7(' by (7.6), where rx(., cr^ are the

symmetries with respect to n; and n'. Setting

(7.11) P = [m/2],       t = [p/2],

we have 2p < m < 2p + 1, 2t < p < 2t + 1, hence 4t < m < 4t + 3. According

to Lemma 6.4 and (6.3), we obtain

(7.12) \\xi-yi\\<CSp~l,       i = l,...,t,

(7.13) ||x(. -y,.|| <C¿'',        í = í+l, ... ,p,

(7-14) ll*^i-y^wlK«'"'.        Í-1.-.Í.

(7.15) ||xp+1-yp+jtJ|<C5\        / = i+l.m-p,

(7.16) l|y^+;-^ll<c^+;,      »fe+/<p + fc,

where C > 0 and 0 < ô < 1 depend only on AT, eu, and 8 . Taking D = Côp ,

a = I/o > 1, (7.12) becomes

||x(.-y.||</)a',        i = l.î,

and we are in a position to apply Lemma 7.1 to the sequences x, , ... , x( and

y,,... , yt. Since

\\MX -¿XV|| = \\V\ -^i^r'll < Ci7>(l -r-a)a<2C1C¿),'"2,
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applying (7.9) for v = 1 and ax = I/o , we get

|lndet(/ + kMMt) - lndet(7 + 4X>I

< DÉÔ^ + 2(n - l)db2i~xC,Cô"~2
(7 17) '

</)/?'<-' + 2(/i - l^CC,^2'-3

where F, = CE' + 2(n - l)dCCx and Sx = max(<5, 6) < 1.

Observe that (7.12) implies ||x¿ - y¡\\ < Cô', i = I, ... ,t. Combining this

with (7.13), we can apply Lemma 7.1 for D — C, a = Ô = ax, v = 1. Then

we find

(7.18)    |lndet(/ + Ai+1Af;.)-lndet(/ + A'.+X)l<7',¿í,        i=l,...,p,

where Fx and ax are the same as above.

Further, we apply Lemma 7.1 for the sequences xx , ... , x   k and yx , ... ,

yp+k • By (7.1) and (7.3) we obtain \\M[\\ = \\y/[\\ < 2p2K~x and (7.9) yields

(7.19)

|lndet(7 + kp+j+xM'p+j) -mdet(I + X^J+lMp+j)\ < F2ôf+J,       j = 1, ... ,k ,

where 7'2 > 0 depends only on K, co, and 8 .

Next, consider the sequences x,, ... ,xp and yk+x, ... ,yk+p and denote

by ¿' : n'j+k —> n. the corresponding isometries. Applying Lemma 7.1, we find

(7.20) \\mp-a!pm'p+J-x\\<f,ôpx

with some constant F3 = F3(K, co, 8) > 0. Consider the sequences x   , , ... ,

xp+l  and  yp+k+l, ... ,yp+k+l.    Taking into account (7.14) and (7.20), by

Lemma 7.1 for D = C8P , a - I/o = ax, and v = p , we obtain

(7.21)
\lndet(I+kp+j+xMp+j)-lndct(I+k'p+k+J+xM'p+J+k)\ < F,SPX~},    j=l,...,t,

where F4 depends only on K, co, and 8 .

Finally, we apply Lemma 7.1 two more times and find

(7.22) |lndet(/ + kp+j+xMp+j) - lndet(/ + A;+,+,+X+*+,)l < V -

j = t + I, ... ,m - p ,

(7.23) |hi|detMJ -ln|detMm+,|| < F6SP ,

where F5 > 0 and F6 > 0 depend only on K, co, and 8 .

Set F = max{Fx,... ,F6} and

k

(7.24) c = -^lndet(7 + kj+xM}) < 0.

;=i

By the representations of dJq(uq) and dJq+x(uq+x) (cf. (3.10)) we obtain

(7.25) ln|det¿7     (k     )| = ln|det¿7 (u )| - c + sq ,,
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where

eq j = ¿[indet(7 + x'i+lM¡) - lndet(7 + A/+1Mf)]
1=1

+ £[lndet(/ + *'P+i+iKJ - lndet(7 + UW
1=1

m—p—1

+   £  [lndet(I + k'p+k+j+xM'p+k+j)-lndet(I + kp+j+xMp+j)]
7=1

+ [ln|detA7m+,|-ln|det7l/m|].

Now (7.17), (7.18), (7.19), (7.21), (7.22), and (7.23) yield

(t p k m-p-l

2E<r+E*;+E<c+ e *i+*t
i=l i=t+\ 1=1 7=í+i

<6F(l-r5ir1r5|<7'X<7

with r50 = ô\'A , F'0 = 6F(1 - ö-.r'eSr3/4 .

Let x^ , x^ , ... be the successive reflection points of the ray y°°(eu) related

to the configuration a and constructed in the previous section. Set A°° =

||x°^, - x°°|| and let M°° be the corresponding symmetric positive definite

linear operator. Set ß = (/,,..., i/) and

/-l oo

c,(co,8) = ln|detAf/00| + ^lndet(/ + A^1Af°°) + ^e;. ,.

i=i 7=1

By (7.25) we obtain

ln|dete/79(w9)| = -qc + c,(co ,8) + Sq ,

with ôq , = -¿ZjLqCjj + [^^dJß(uq)\ - ln|dete/7^(x~)|]. The term in the

brackets can be estimated by FqÔ0" with F'0' depending only on K, co, and

8 . Therefore, by (7.26) we get

iV/i < K*?v - tfr'+FXq < Vofei •

Now let ym be the (eu, ö)-ray with m reflections, introduced in §6, and

let cxl be the coefficient in front of ô{n~X),2(t + Tx') in formula (1.5) for the

leading singularity at —Tm . Set ca = c/2. The above considerations lead to

Theorem 7.3. There exist constants CJ w e, 0 < <50 < 1, depending only on a,

co, 8, and I = I, ... ,k such that

(7-27) ln|c¿+,| = qca + ClJM e + 0(ô9),       q -> oo.

Remark 7.4. It follows easily by our argument in §6 of [22] that pn = n"~, |^| =

n*=1det(/ + kj+xMj), \Pj\ > 1, p} ,j = 1, ... ,n - 1, being the eigenvalues of
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the (linear) Poincaré map related to ya. Consequently, from the asymptotics

(7.27) we can recover pa .

Appendix

Here we prove the following lemma, which has been applied in §7. We use

some notation from §7.

Lemma A. Let (x, y) and (x', y) be two pairs of points with x, x G dKi and

y ,y G dKj, z / j, and let e > 0 be such that ||x - x'|| < e and \\y - y'\\ < e.

Assume (e,v(x)) > k and (e ,v(x')) > k for e = (y - x)/||y - x|| and

e = (y'--x:')/||y'-x'||. Let y/ : n —► n and ^':n' -» n' be the operators related

to [x, y] and [x , y'], respectively. Then there exists an isometry A : Rn —► Rn

with A(r!) = n and \\A - I\\ < C,e such that \\y/ - Ay/'A~X\\ < Cxe, where

Cx > 0 is a constant depending only on k and K.

Proof. Let Ax : Rn —► R" be the translation determined by x'x. Set v" =

Ax(u(x')) and denote by ¿2 the rotation with rotation angle

cp - arccos(i/(x), i^(x'))

such that A2(v") = v , A2\,^ v,,^i. = Id. Set e" = ¿2 o Ax(e) and denote by

¿3 the rotation with AA\e") = e and ¿3L  e„->± = Id. Set A — ¿3 o A2 o¿,.

It is easy to see now that ||¿/ - 7|| < conste for / = 1,2, 3. For example,

ll¿2-/|
(l-coscp       smcp    \ /—- ,

. i = y/2(l -COStp) = \\v(x)-v(x)\ -sinç»     1 - cos cp j       v   v Tj...  w.\ t      \   i

and using the smoothness of the Gauss map on dK and the compactness of

dK, we find \\u(x) -u(x')\\ < const||x -x'|| < conste.

Therefore ||¿ - 7|| < C[e for some constant C'x > 0.

For convenience set x = ¿^'¿_1, G = Gx, G4 = Gx,. Take wen with

||u|| = 1 and set u = A~xu. Then u e n' and ||w'|| = 1 . Let n : n — TxdK

and ri : n —* Tx,dK be the projections along e and e , respectively, and let

v = nu,   v' = n'u . Then we have

\(y/u, u) - (xu , u)\ = \(y/u, u) - (ij/'u , u)\ = \2(e, i/(x))(Gnu, nu)

- 2(e , v(x'))(diîù , n'u')\ < 2\(e, v(x)) - (e , v(x'))\(Gv , v)

+ 2(e , v(x'))\(Gv , v) - (GV ,v')\< conste + 2\(Gv,v)- ((TV , t;)|.

By the smoothness of the Riemannian metric on dK we get | (Gv , v) - (GV , v') \

< const \\v - v'\\. Finally, using \\n\\ < 1/k and ||7r'|| < l//c , we find

||u - v'\\ = \\nu - n'A~xu\\ < \\n - nA~x\\ + \\n\\\\A - 7|| < conste.

Therefore \((y/ - x)u,u)\ < conste and this yields ||^ - x\\ < Cxe for some

constant C" > 0.

Setting C, =max(CÍ,C")>0,weget ||¿-7||<C1e and |||?-¿y/'¿_1|| <

C,e.
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