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QUADRATURE AND HARMONIC Lx-APPROXIMATION

IN ANNULI

D. H. ARMITAGE AND M. GOLDSTEIN

Abstract. Open sets D in RN (N > 3) with the property that D is a

closed annulus {x: r\ < \\x\\ < r-i) are characterized by quadrature formulae

involving mean values of certain harmonic functions. One such characterization

is used to give a criterion for the existence of a best harmonic Lx approximant

to a function which is subharmonic (and satisfies some other conditions) in an

annulus.

1. Introduction

Several authors have shown that, in various ways, balls in R (N > 2) are

characterized by the volume mean value property of harmonic functions. A very

elegant characterization of this kind has been given by Kuran [10]. Denoting

Lebesgue measure on R by X, we can state his result as follows: if D is a

domain in RN such that X(D) < +00 and if there is a point x G D such that

h(x) = (X(D))~X fD h dX for every function that is harmonic and integrable in

D , then D is a ball of centre x. Another result of this kind is due to Goldstein,

Haussmann and Rogge [9]: if D is a bounded, open set in R such that R \D

is connected and if

(1.1) h(x) = (X(D))~X fhdX
JD

for some x G R and every function h harmonic in /? , then D is a closed

ball of centre x . (Note that here we cannot conclude that D is a ball.) In the

first part of this paper we give similar theorems in which the conclusion is that

D is a ball or an annulus centered at the origin, that is, D = {x: r, < ||x|| < r2} ,

where 0 < r, < r2. One of our results (Theorem 2.3(i)) improves the result

from [9] stated above. It will be convenient to work only with N > 3 ; for

quadrature formulae characterizing plane annuli, we refer to Sakai's work [11,

Example 1.2]. Kuran's result [10], quoted above, is central to the proof given

by Goldstein, Haussmann and Rogge [9], but the short, simple proof in [10]

seems not to be adaptable to our requirements. Our proofs therefore differ

substantially from that in [9]. The proof of one of our results (Theorem 2.2)
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was suggested by a paper of Avci [1] in which a somewhat similar theorem

is stated. Unfortunately, both the statement and proof in [ 1 ] contain serious

errors, and substantial modifications are required to prove Theorem 2.2.

In the second part of the paper we use one of our characterizations of annuli

by quadrature formulae to establish a criterion for a subharmonic function

satisfying certain regularity conditions in an annulus to have a best harmonic

L   approximant. Our result is analogous to that given for the unit ball in [9].

2. Characterization of annuli by means of quadrature formulae

We start with some notation and terminology. Throughout this section we

work in the Euclidean space RN, where N > 3. We denote the Euclidean

norm of a point x G R    by ||x||. If 0 < r, < r2, we put

A(r\ ,r2) - {x gR   : r, < ||x|| < r2}

and call A(rx ,r2) an annulus. Further, we call A(rx ,r2) an r-annulus if

I/(N-2)
I L r-, - r,

r =
N r2.\       r2

and we then call A(rx, r2), the closure of A(rx, r2), a closed r-annulus. Note

that if A(rx ,r2) is an r-annulus, then r, < r < r2. By allowing r, = 0 we

admit the possibility that a closed r-annulus is a closed ball.

If p > 0, then we denote by B(x , p) and S(x , p) the open ball and the

sphere of centre x and radius r in R . The origin of R is denoted by

O. We use a to denote surface area measure on S(0, p) normalized so that

o(S(0, p)) = I . If f G Lx(S(0,p)), let

(2.2) M(f,p)=f       fda.
JS(O.p)

The volume of B(0,1) and the surface area of S(0,1) are denoted by vN

and oN . Note that aN = NvN .

Proposition 2.1. If s is subharmonic and integrable in an r-annulus A(rx , r2),

then

(2.3) (X(A(rx,r2)))~x f        sdX>M(s,r).
'¿(ri ,r2)

We use a method of Beardon [2] to prove this result. It is well known (see,

e.g. [5, p. 24]) that M(s ,t) is a convex function of t ~ for t G (r, ,r2).

Hence

(2.4) M(s,t) = 4>of(t)       (rx<t<r2)

~N and <t> is convex on (r2~

f, the equation

where f(t) — t        and 4> is convex on (r2      , r,     ). Using the definition of

(2.5) (r2 -rx)     l    Nt       dt
Jr,
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and Jensen's inequality, we obtain

2     N _    N\ l/("-2)>

'2       '1

*{2r2»-rr

<t>((rN2-rxN)-Xjy(t)NtN-Xdt)

,,N A\-l   f2,      ritxKTiN-\   ,t<(r2 -rx)     I    4>o f(t)Nt      dt
Jr,

rn
= fr2s-rlN)-1 f2M(s,t)NtN-xdt

Jr,

= (X(A(rx,r2)))-X [        sdX.

Corollary 2.1. If h is harmonic and integrable in an r-annulus A(rx, r2), then

(2.6) (X(A(rx,r2)))-x f        hdX = M(h,r).
JA(rt ,r2)

This follows immediately by applying Prposition 2.1 to both h and -h .

The corollary can also be proved directly by using the fact that M(h ,t) —

at ~ + ß for t G (rx , r2), where a and ß are constants and noting that the

left-hand side of (2.6) is equal to

, n      n,-i  (n ,,,,   ;XArJV-i ..     olN I r2 - rx \
(r2 - r, )     /   M(h , t)Nt      dt = -=-   -j¡-L    + ß

Jr, ¿    \r2  -rx )

= M(h,r),

by (2.1).

Our next result is a partial converse to Corollary 2.1. For each x G RN define

(2.7) Mí) = H*-íü2~"       (íe*")

(so that hx(x) = +00). Thus hx is the fundamental superharmonic function

of RN with pole x, and hx is harmonic in RN\{x).

Theorem 2.1. Let D be a nonempty open set in RN such that X(D) < +00 and

let r > 0. If for all x G RN\D, we have

(2.8) (X(D)rx f_hxdX = M(hx,r),
Jd

then D is a closed r-annulus or a closed ball of centre O.

We shall deduce Theorem 2.1 from the folowing similar result, which is in a

more convenient form for our applications.
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Theorem 2.2. Let D be a nonempty open set in R    such that X(D) < +cc and

let c>0. If for all x G RN\D, we have

(2.9) (X(D))-X [_h dXG{hx(0),c},

then D is a closed r-annulus with r — c  l'(        or D is a closed ball of centre

O.

To prove Theorem 2.2, we put £2 = (D)° (the interior of the closure of D )

and note first that D ç Q c D , so that D = Q, and hence

(2.10) d(RN\U) = dU = dD = D\(D)° = Q\Q = ÖQ.

Now, following Avci [1], define U in R    by

(2.11) U(x)= [_hxdX.

Then U is a Newtonian potential in R (for, clearly, U £ +00 ). From a

known result (see, e.g., [3, p_. 228]) it follows that U G CX(RN). From (2.9)

and (2.11), we have, since Q = D ,

(2.12) U(x)G{\\x\\2~NX(D),cX(D)}       (xgRN\U),

and since U G CX(RN), it is easy to see that in each connected component co

of R  \Q, we have either

(2.13) ry(jc) = \\x\?~NX(D)       (x G co)

or

(2.14) U(x) = cX(D)       (xeto).

If x G £2, then AU(x) = (2 - AOtfy > where A is the Laplacian operator in

RN. Hence

(2.15) U(x) = v(x)-(2N)-X(N-2)oN\\x\\2       (x G Í2),

where v is harmonic in Q. From (2.13), (2.14) and (2.15) it follows that

/ a(d)(2 - ;v>iwr" or °    (* € *"\").
(2.16) grad £/(.*) = < ,

[ gradw(x)-Ar_V-2)(T^JC       (xeß).

Now define
N   Í-1

*A z = E E^2; - y/z<)(eiA e>) -
/=1 7=1

where e( (1 = 1,... , N) is the vector in RN whose ith component is 1 and

whose other components are 0, and where A denotes the exterior product. Since
%NjtAx = 0 for any x G R   , we obtain from (2.16)

(2.17) gradU(x)Ax =
O (xg RN\Cl)

gradu(x)Ax   (x G Q).
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Since grad U is continuous in R , so also is the function grad U(x) A x.

Hence it follows from (2.17) that gradU(x)Ax = O on d(RN\U) = ÖQ (see

(2.10)). (At the corresponding point of his proof, Avci [1, p. 125], asserts

that grad U(x) A x = O on dD ; this is false if 3D / öQ—for example, if

D has "slits" or "punctures". Thus the statement of Theorem 2 is in error. A

further error arises from the fact that equation (2.1) in [1] cannot hold with,

for example, w = 1.)

Now let H be one of the components of gradu(x) Ax in Q, that is

(2.18) H(x) = x^bhj/dx^ - x^&v/dXj)

for some i and j with 1 < j < i < N. Calculation of A/7 shows that H is

harmonic in Q. Further, H vanishes continuously on dQ, since gradw(x)A

x = grad U(x) A x in Q and grad U(x) A x is continuous in RN and equals

O on <9Q. It follows that the function u, defined in R

\H(x)\       (xgQ),

(xtQ).

by

(2.19) u(x)
{i:

is subharmonic in R

For all xgR

(2.20)

and all i = 1, ... , JV, we have

dx-}X)\
hAS)dk{£) [3, p. 228]= 1/-

= (N-2)\f(xj-Çi)\\x-c:\\-NdX(Ç)
\JD

<(N-2) f_\\x-c;\\X-NdX(Ç)
JD

<(N-2)f       \\x-Ç\\x-NdX(i) + (N-2) [_
JB(x.l) JD\B(x

dX
IB(x

<(N-2)(oN + X(D))

>v

D\B(x,\)

Hence grad U is bounded in R   , and so there exists k> 0 such that

(2.21) u(x)<K(l + \\x\\) (xgRN).

Using the volume mean value inequality for subharmonic functions, we now

obtain for all x G RN

(2.22) 0 < u(x) < (vNpN)   ' / u
JB(x,p)

dk

^ i      N\~t f

JB(0.\\x

'B(x.p)

udX
B(0,\\x\\+p)

<(TV/f1K(l +||X||+ />)A(7J)
-> 0      (p -► +00).

Hence u = 0 in R   , and so gradv(x) Ax = 0 in Í2. Therefore gradu(x) =

a(x)x in Q for some function a: Q -» /Î.
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Avci's calculation [1, pp.   126-127] shows that a(x) — k\\x\\~N for some

constant k . It now follows from (2.16) that

X(D)(2 - N)x\\x\\~" or O       (x G R" \fi),

k\\x\\~Nx-N~x(N-2)oNx       (XGÍI).
(2.23) gradíJ(x) = | ,_„„_„..    „_,,

Since grad U is continuous in R and d(RN\Q) = dCl, we find that at each

point x GdQ either

(2.24) k\\xfNx - N~X(N - 2)oNx = X(D)(2 - N)x\\xfN

or

(2.25) k\\xfNx-N~x(N-2)oNx = 0.

Hence if x G dCl, then x = O or

(2.26) \\x\\N = (k + (N-2)X(D))N{oN(N-2)}~x =p,    say

or

(2.27) \\x\\N = kN{oN(N-2)}~x = v,    say.

If k < (2 - N)X(D), then v < p < 0, and so <9Q ç {O}, an impossibility

as 0 < X(Q) < +00. If (2 - N)X(D) < k < 0, then v < 0 < p and hence

dQ ç {0} u S(0 ,r2), where r2 = px^N . This inclusion and the inequalities

0 < X(Q) < +oo imply that B(0, r2)\{0} çfiç B(0, r2), so that D = Q =

B(0,r2). If /c> 0, then 0 < v < p and we have

an C {O} U S(0, rx ) U 5(0, r2),

where r, = vx¡N and r2 = px,N . Given that 0 < A(Q) < +oo, we find that

B(0,rx)\{0} cnç B(0,rx)

or

n = A(rx,r2)

or

0 = 5(0,^)^,

where E c {0} uS(0,rx) (and E may be empty). Hence

D = n = B(0,rx),    or   ~À(rx ,r2)   or   B(0,r2).

It remains to show that if D = A(rx ,r2) with r, > 0, then A(rx ,r2) is an

r-annulus with r = C~XI(N~2). In this case O G RN\D, and so by hypothesis

(2.9)

(2.28) (X(D))~X f_h0dX = c.
3d
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(The alternative that the left-hand side of (2.28) equals ho(0) = +00 cannot

hold since h0 is bounded in D and 0 < X(D) < +00.) Since, also,

(2.29) (k(D))~X f_h0dk = (r2 - rf)-1 [* Ntdt
JD Jr,

1 xn N        N\~h 2        2\= 2N^2 ~r^    (r2 - ri ) '

the result follows.

To deduce Theorem 2.1 from Theorem 2.2, note that

f r2~N    (xGB(O.r)),
(2.30) M(h  ,r) = {        2_¿

X \\\x\\2-N   (xtB(O.r))

(see, e.g., [6, p. 100]) so that if the hypotheses of Theorem 2.1 are satisfied,

then so also are the hypotheses of Theorem 2.2 with c = r

In our next theorem, we use the following terminology. We say that a domain

co is locally connected to 00 if there exists a piecewise linear continuous function

</>: [0, + 00) -» co such that \\4>(t)\\ -» +00 as t -* +00 .

Theorem 2.3. Let D be a nonempty open set in R such that k(D) < +00,

and let C = {co : j G J} be the set of connected components of RN\D which

are not locally connected to 00. Let r > 0.

(1)   If C is empty and if

f
(2.31) (k(D))~X  _hdk = M(h , r)

Jd

for every function h harmonic in R   , then D is a closed ball of centre O.

(ii)   If C is nonempty and if for each j GJ, there exists a. G co. such that

(2.31) holds for every function h harmonic in RN\{a.}, then D is a closed

r-annulus (and not a closed ball).

For the proof, we need a definition and a result from [7]. If y g R , we

denote by Sy any finite sum

(2.32) ¿2Hm(z-y)\\z-y\\2-N-2m    (zGRN\{y}),
m

where Hm is a homogeneous harmonic polynomial of degree m in RN , and

we shall call any such function S   a nonessential singular function (n.e.s.f.).

Note that a n.e.s.f. 5   is harmonic in RN\{y}.

Lemma 2.1. Suppose that p > 0, e > 0 and y, z are points of R with

|| v - z\\ < p. If S   is a n.e.s.f, then there exists a n.e.s.f. S   such thaty

(2.33) \Sy-Sz\<e   inRN\B(y,p).

For the proof of this lemma we refer to [7, Lemma 4].
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To prove Theorem 2.3, it suffices to show that (2.9) holds for each x G RN\D

with c = r ~ , for then it will follow from Theorem 2.2 that D is either a

closed ball of centre O or a closed r-annulus A(rx, r2) with rx > 0, and the

latter will be the case if and only if C is nonempty. In fact it is enough to prove

(2.9) for each x G RN\D with x ¿ O, for if O G RN\D and (2.9) holds for

each x G R \(D U {O}), then a simple continuity argument shows that (2.9)

also holds with x — O.

With a function h which is harmonic in the complement of some compact

subset of R we associate constants ah and ßh such that M(h ,t) = aht~ +

ßh for all sufficiently large t. Note that if h = hx for some x G RN, then

ah = 1 and ßh=0, and if h is harmonic in R , then ah — 0 and ßh — h(0).

The hypotheses of Theorem 2.3 imply that

(2.34) (k(D))~X ¡_hdkG{h(0),ahr2~N + ßh)
Jd

for every function h harmonic in R and (if C is nonempty) for every func-

tion h harmonic in RN\{a.} for some j G J. (If a. = O, then h(0) is

undefined for functions harmonic in R \{a } and is therefore suppressed in

(2.34).) In the case where h is harmonic in R , (2.34) is immediate, for then

M(h , r) — h(0), and in the case where h is harmonic in R \{aA, (2.34) fol-

lows since M(h , r) = h(0) or ahr ~N + ßh according as \\a || > r or ||a || < r

(and ||a || - r is impossible as (2.31) would fail by the nonexistence of M (h , r)

for some functions h harmonic in R  \{a }).

Now let x G RN\(D\j{0}) and let co be the connected component of RN\D

to which x belongs.

Consider first the case where co is not locally connected to oo. Then co = co.

for some j G J and so there exist üj g cOj such that (2.31) holds for every

function harmonic in RN\{a.} . There exist finitely many balls B(xk , pk) (k =

0,1..... K) such that

(2.35) x0 = x, xK = üj, xk_x GB(xk,pk)       (k=l,...,K),

K

B=\jB(xk,pk)Ccoj,       O^Bifa^O

Let e > 0 and let S„ = /»„. By Lemma 2.1, there exist n.e.s.f.'s Sr   such that

(2.36) \SXk¡-SXk\<e/K in RN\B(xk,pk)       (k=l,...,K).

Hence

(2.37) \hx-SXK\<¿2\SXki-SXk\<e   inRN\B
k=l
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Put h = SXk.  Then h is harmonic in RN\{xK} = RN\{aj} and so (2.34)

holds. By (2.37) we have \hx - h\ < s in Dli(RN\B(0 ,R)) for some R > 0

( R independent of e ), and hence

(k(D))~x f_hxdk-(k(D)) ' fhdk
Jd Jd

< e(2.38)

and

(2.39) \M(hx,t)-M(h,t)\<e       (t > R).

Further, if a^O, then O G RN\B, and so

(2.40) \hx(0) - h(0)\ < e.

If a t¿ O and the expression on the left-hand side of (2.34) equals h(0), then

(2.38) and (2.40) imply that

(2.41) (k(D))'X [_
Jd

hxdk-hx(0) < 2e,

and hence (2.9) holds. If, on the other hand, the expression on the left-hand

side of (2.34) equals ahr2~N + ßh , then we proceed as follows (whether or not

aj = 0). Since aA  = 1 and ßhx = 0. It follows from (2.39) that \ßh\<e and

|aA - 1| < 2eRN~2. Using these inequalities and (2.34) and (2.38), we obtain

(2.42) (k(D)fX ¡_
JD

hxdk-r
2-N

<2e(l+cRN~2),

2-N
so that (2.9) holds with c = r

Next consider the case where co is locally connected to oo. There exists a

sequence of balls (B(xk , pk)) such that

(2.43) x0 = x,    xk_xGB(xk,pk)       (¿=1,2,...),
OO

0$B= \J B(xk , pk) C co,        ||xJ| — oo, pk<l (k=l,2, ...).
k=\

Let e > 0 and let Sr = hr. Using Lemma 2.1 and an induction argument, we
X0 X

find that there exist n.e.s.f.'s 5    such that
Xk

(2.44) l-V, - Sxt I < e2 "in RN\B(xk ,pk)       (k = l,2,...).
Xk -1 Xk

If r > 0, then there exists k   such that

(2.45) B(0,r0)cRN\ljB(xk,pk),
k=k„

so that the sequence (S, ) converges uniformly in B(0,r). Hence the limit
Xk "

of this sequence h , say, is harmonic in R   . From (2.44) it follows that

(2.46) \hx-h\<e   in R"\B
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and hence in Du {O}. Hence (2.38) and (2.40) hold. Also, h satisfies (2.34)

and ahr2~N + ßh = ßh = h(0). From (2.34), (2.38) and (2.40) it follows that
(2.41) holds, and hence so does (2.9).

We have now shown that (2.9) holds for all x G RN\(D~U{0}) and hence

for all x G R  \D , as required.

Corollary 2.2. Let D be a nonempty open set RN such that k(D) < +00 and

every connected component of RN\D is locally connected to 00. If there exists

x0gR    such that every function h harmonic in RN satisfies

(2.47) h(x0) = (k(D))~X ¡_hdk,
JD

then D is a closed ball centered at xo .

This corollary improves part of [9, Theorem 1].

The corollary follows from Theorem 2.3(f), since by hypothesis the set C is

empty and taking, without loss of generality, x0 = O and any r > 0 we have

(2.48) M(h , r) = h(O) = (k(D))~X [hdk
Jd

for every function h harmonic in RN .

As mentioned in § 1, Sakai [11], using properties of Cauchy transforms, a

tool unavailable in higher dimensions, characterized plane annuli by quadrature

formulae.

3. Best harmonic Lx  approximation to

SUBHARMONIC FUNCTIONS IN ANNULI

Again, we work in R    with N > 3, unless the contrary is stated. We also

assume throughout this section that 0 < r, < r2.

We write A = A(rx , r2) and Á — A(r\, r'2), where

,-   .. ,   1,2       .   1,2 \,   2 2, .   I,N       ,   l,N I,   N N.
(3.1) (r2)  -(rx)   =\(r2-rx),    (r2)   - (r,)    =\(r2-rx).

Thus if A is an r-ánnulus, then Â is the r-annulus such that k(A') = \k(A).

We call A1 the annulus associated to A . We denote by C(A) the set of func-

tions which are real valued and continuous in A and by C (A) and H(A)

the sets of functions which are, respectively, twice continuously differentiable

in A and harmonic in A . Given a subharmonic function s G C(A), we call a

function h* G H(A)f)C(A) a best harmonic Lx approximant to s in A if

(3.2) [ \s-h*\dk< f \s-h\dk   for all h G H (A) il C(Ä).
JA JA

The main result of this section is as follows.
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Theorem 3.1. Let s G C2(A) nC(A) with As > 0 a.e. in A. A function

h* G H(A) n C(A) is a best harmonic L   approximant to s if and only if

(3-3) h'\dA,=s\dA,

and

(3.4) s-h* >0   a.e. inA\Ä,

where A1 is the annulus associated to A.

Further, if (3.3) and (3.4) are satisfied, then h* is the unique best harmonic

Lx approximant to s.

The analogous result for the unit ball in R    is given in [9, Theorem 2].

The 'if part of Theorem 3.1 is valid under weaker assumptions about s.

Theorem 3.2. Let s G C(A) and suppose that s is subharmonic in A. If there

exists h* G H(A)r\C(A) satisfying (3.3) and (3.4), where A1 is the annulus

associated to A, then h* is the unique best harmonic L approximant to s in

A.

The proof of Theorem 3.2 requires the following lemmas.

Lemma 3.1. If h is harmonic and integrable in A, then

hdk.
'A' ¿-JA

To prove this, note that A and Ä are both r-annuli, with r given by (2.1).

Hence, by Corollary 2.1,

f hdk = k(A)M(h ,r) = 2k(À)M(h ,r) = 2 f hdk.
JA JA1

Lemma 3.2. Let V be a proper vector subspace of C(A), and let s G C(A)\V

and h* gV . Then h* is a best L approximant (among functions in V) to s

in A if and only if there exists a Lebesgue measurable function a on the zero-set

Z(s-h*) of s-h* suchthat

(3.6) H < 1   a.e. onZ(s-h')

and

(3.7) f ahdk+ f_ hsgn(s-h*)dk = 0
JZ(s-h') JA\Z(s-h')

for all he V.

For the proof of Lemma 3.2, see Singer's book [12, p. 46].

We start the proof of Theorem 3.2 by showing that if there exists h* satisfy-

ing the hypotheses of the theorem, then h* is a best harmonic L1 approximant

to s in A . Note that we can apply Lemma 3.2 with V = H (A) n C(A), for

(3.5) P*-Íl
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(3.3) and (3.4) imply that s £ H (A). Taking a = -1 on Z(s - h*), we have

for all h G H (A) n C(A), since s - h* <0 in A' by the maximum principle,

/ ahdk+  _hsgn(s - h*)dk
Jz(s-h') Ja

= - ( hdk+ \__hdk- f
Jz(s-h') Ja\A> Ja'

=  L-hdk- f
Ja\A' J A'

<Z(s-

hdk
Z(s-h') JA\A< JA'\Z(s-h*)

hdk
IA\A' J A'

= f hdk-2 f hdk = 0,
Ja J a1

by Lemma 3.1. The result now follows from Lemma 3.2.

To complete the proof of Theorem 3.2, it remains to prove the uniqueness of

h*. Let h' be a best harmonic L approximant to 5. Following the argument

in [9, pp. 259-260], we find that

(3.8) (s-h*)(s-h')>0   onl

We consider two cases.

(i) Suppose that í - /?*_< 0 in A1. Then s - h' < 0 in Á by (3.8).

Since s - h* > 0 a.e. in A\Á, (3.8) implies that s - tí > 0 a.e. in A\A'.

Since i - h' is continuous in A , it now follows that s-h' = 0 on dA1, so that

tí = s = h* on dA'. Hence, by the maximum principle, h* — tí in A', and

therefore h* = tí in A .

(ii) Now suppose that (s - h*)(x) = 0 for some x G Á . By the maximum

principle, s - h* - 0 in Á . The argument in (i) again shows that s - tí > 0

a.e. in A\A' and hence by continuity s - h' > 0 on dA1. We now have

h* = s > tí on dA'. If tí = tí on dA', then, as in (i), h* = tí in A.

Otherwise, there exists y G dÁ such that h* (y) > tí (y), so that by continuity

s — tí > (s - h*)(y) = 0 in some ball B(y , 3), and by the minimum principle

h* > tí in A', so that s - h' > s - h* = 0 in A1. Hence if a is a Lebesgue

measurable function with |a| < 1 in Z(s - h'), we have

/ adk+ I sgn(5 - h') dk
Jz(s-h') JA\Z(s-h')

> k(A') + k(B(y , S) n (A\A')) - k(l\(A' U B(y , p)))

>k(B(y,S)n(A\A'))>0,

the penultimate inequality following from the equation k(A') — k(A\A'). Hence

(3.7) fails with h = 1, and so by Lemma 3.2, tí is not a best harmonic L

approximant to s in A , a contradiction.

In view of Theorem 3.2, in order to complete the proof of Theorem 3.1, it is

enough to prove the necessity of the conditions (3.3) and (3.4). This requires

the following result [8, Lemma 6].
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Lemma 3.3. Let D be an open set in RN . If u G C2(D) and Au > 0 a.e. in

D, then k(Z(u)) = 0, where Z(u) denotes the zero set of u.

Now let s be as in Theorem 3.1 and suppose that A* is a best harmonic L

approximant to s in A . We must show that (3.3) and (3.4) hold. Let E_ , E+

and E0 be the sets of points of A at which s-h* is, respectively, negative,

positive, and zero. We have A(s - h*) = As > 0 a.e. in A , so by Lemma 3.3,

k(E0) - 0. Hence, by Lemma 3.2,

[_hsgn(s-h*)dk = 0
Ja

for all h G H(A) n C(Ä). Hence, for all such h

f f If
(3.9) /       hdk= /      hdk== Ihdk

Je-ha Je+ha l Ja

= U(A)M(h , r) = k(E_ n A)M(h , r).

Here r is given by (2.1). The penultimate equation follows from Corollary 2.1,

and the last equation follows by taking h = 1 in (3.9). Now d(E_ n A) c

dAuE0, and hence k(E_DA) = k(E_ n A), since k(dA U E0) = 0. Hence

(3.10) [_hdk = k(E_C\A)M(h,r)
Je-ha

for every h G H(A) n C(l). _

We shall apply Theorem 2.3 to show that E_nA is a closed r-annulus. In

order to do so we show first that R \(E_ DA) consists of exactly two com-

ponents. Clearly, RN\(E_ n A) has exactly one unbounded component, and it

also has a component containing B(0, r, ). Suppose, if possible, that there is a

component co which is neither unbounded nor contains B(0,rx). Then co is

disjoint from B(0 ,rx) and RN\B(0 ,r2). Hence co c A. We shall show that

s - h* = 0 on dco. Clearly s - h* >0 in co and so, by continuity, s - h* > 0

on dco. If x G dco n A , then x G dE_ n A and so (s - h*)(x) < 0. Hence

í — A* = 0 on dconA . Now suppose, if possible, that there exists x GdcondA

such that (s - h*)(x) > 0. Then s - A* > 0 in B(x , p) n A for some p > 0.

Hence B(x , p) n (E_ n A) is empty, that is, B(x , p) c RN\(E_ n A). Since

B(x , p) n co is nonempty, it now follows that B(x ,p)Çco and hence that

co <£ A, a contradiction. Hence s-h* < 0 on dcondA and so j - A* = 0

on dcondA. We now have s - h* — 0 on dco. By the maximum principle,

s - tí < 0 in co. Since s - h* > 0 in co, we have s - h* = 0 in (y, so that

co c E0 , contradicting k(Eg) = 0.

We have now established that R \(E_f)A) consists of at most two com-

ponents, one containing B(0, r, ), and one containing RN\(0, r2). If there is

only one component, then it is locally connected so oo and since (3.10) holds
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for each A  harmonie in R   , Theorem 2.3(i) is applicable and implies that

E_ n A is a ball with centre O, a contradiction.

Hence R \(E_ n A) consists of exactly two components, the first locally

connected to co and the second bounded and containing O. Since (3.10) holds

for all A harmonic in RN\{0} , it follows from Theorem 2.3(h) that E_nA

is a closed r-annulus. Since k(E_ n A) = {-k(A), we must have E_ n A = Ä ,

where A' is the annulus associated to A .

It now follows that s - h* < 0 in Á and s-h* > 0 in A\Ä , so that, by

continuity, 5 - A* = 0 on dA'. Since k(E0) - 0 and s - A* > 0 in A\Ä , we

have 5 - A* > 0 a.e. in A\A', and the proof of Theorem 3.1 is complete.

In the case N = 2, we note that Lemma 2.1 stills holds. (See [4] and the

proof of Lemma 4 in [7].) Of course, when N = 2, the Newtonian kernel is

replaced by the logarithmic kernel. The proof of Theorem 3.1 is then the same

as in the case N > 3, except that we use the quadrature formulae for plane

annuli, given in [11, pp. 6-8].
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