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SOME FAMILIES OF ISOPARAMETRIC HYPERSURFACES AND
RIGIDITY IN A COMPLEX HYPERBOLIC SPACE

MICHEAL H. VERNON

Abstract. The geometric notion of equivalence for submanifolds in a chosen

ambient space is that of congruence. In this study, a certain type of isopara-

metric hypersurface of a complex hyperbolic space form is shown to have a
rigid immersion by utilizing the congruences of a Lorentzian hyperbolic space

form that lies as an S '-fiber bundle over the complex hyperbolic space. Sev-

eral families of isoparametric hypersurfaces (namely tubes and horospheres) are

constructed whose immersions are rigid.

0. Introduction

-.2/71+1
Analogous to the Hopf fibration S' ->S"""+I -*CPm of an odd-dimensional

sphere over complex projective space, we have a Lorentzian S -fiber bundle,

called anti-De Sitter spacetime (denoted by Hxn+i), that lies over a complex

hyperbolic space form CHn(-4). The rigidity of an immersion of a hyper-

surface into CPm is usually obtained by considering the S -fiber bundle over

the hypersurface as a hypersurface of S m+x and then applying isometries of

R m+1 that restrict to isometries of S m+x. We shall use the same approach to

establish the rigidity of certain isoparametrical real hypersurfaces of CHn(-4).

Let A/2"-1 be a complete, connected real hypersurface of CHn(-4) with

immersion  i and n : H,n+   —► C77"  be the Riemannian submersion with'i

timelike, totally geodesic fibers. If Mx " — n    (M) is the S -fiber bundle over

M, there is an induced immersion

diagram commutes:
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M -* H
2n+\
1 such that the following
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Now by considering the natural imbedding of H2n+X into the complex

Lorentzian euclidean space C"+ , we can view M as a Lorentzian submani-

fold of R2 , of real codimension 2, and thereby use known congruence results

for submanifolds of semi-Riemannian euclidean spaces to obtain a congruence

result for hypersurfaces of C/7" :

Theorem 2. Let M and N be isoparametric orientable real hypersurfaces of

CH" that each have the distinguished direction U asa principal direction. If M

and N have the same second fundamental form, i.e., the corresponding principal

curvatures are the same, then M and N are congruent.

This theorem establishes the rigidity of several families of isoparametric hy-

persurfaces of C7/" that are constructed in this study. These families form the

model spaces for classifications of isoparametric hypersurfaces that will appear

in other papers. Along the way, we will construct a horosphere and explicitly

display the convergence of a family of geodesic hyperspheres to a horosphere

using Theorem 2. The notion of a certain distinguished direction on a real

hypersurface being a principal direction is central to the study.

This paper includes a portion of my doctoral dissertation at Michigan State

University. I would like to extend my deepest appreciation to Gerald Ludden,

Bang Yen Chen, David Blair, and Ralph Howard for sharing their knowledge

and many valuable suggestions.

1. Real hypersurfaces of CH"(-4)

Let CH"(-4), n > 2, denote a complex hyperbolic space equipped with

the Bergman metric tensor, i.e., a complex space form of constant holomorphic

sectional curvature —4. Let M be an orientable real hypersurface of CH" ,

V and V be the metric connections on M and CH" , respectively, so that the

Gauss and Weingarten formulae can be written as

(1.1) VXY = VXY + (HX ,Y)c¡   and   Vxc¡ = -HX   for all X , Y g T(M) ,

where t\ is a unit normal field on M in CH" and H denotes the second

fundamental form (in this case the Weingarten map of £ in End[T(M)] ).

We shall refer to the eigenvalues and eigenvectors of 77 in R and T(M),

respectively, as principal curvatures and principal directions.

Let J denote the complex structure of the ambient complex space form. It

induces a bundle endomorphism (ft of rank 2n-2 and a linear functional f

on T(M) given by setting at each point p of M

(1.2) JX = <pX + f(X)£,   for all X in Tp(M).

Let U = -/£. As M is of codimension one we have U G T(M). The

following equations now hold for all X, Y in T(M) :

(1.3) f(X) = (X,U),

(1.4) /W) = 0.
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(1.5) <f)U = 0,

(1.6) <p2X = -X + f(X)U,

(1.7) (X,<f>Y) = -(<pX,Y)

(<j>X ,<pY) = (X ,Y) - f(X)f(Y).

(4> ,f ,U) is an example of what is called an almost contact structure on M.

The tensor fields <f> and U have the following derivatives:

(1.9) VxU = <j>HX,

(1.10) (V xcj>)Y = f(Y)HX - (HX ,Y)U.

We also have the usual Gauss and Codazzi equations for a real hypersurface

of a complex space form (of holomorphic sectional curvature -4) in terms of

4> and 77:

(1.11) R(X , Y)Z = (X ,Z)Y-(Y , Z)X + (<pX , Z)4>Y - (<j>Y , Z)<ftX
- 2(X , (pY)<pZ + (HY , Z)HX - (HX , Z)HY ,

(1.12) (VxH)Y-(VYH)X = -f(X)<f>Y + f(Y)<pX-2{X,<pY)U

for all X, Y , Z G T(M), where R is the curvature tensor on M.

An important special case will be when U is a principal direction on M.

Under this assumption, more information can be gained concerning the struc-

ture of M. For example, it is straightforward to show that the direction U is

principal on M if and only if the trajectories of U on M are geodesic [12].

In particular, the assumption that U is a principal direction will force a strong

relationship to hold between H and </> :

Lemma 1 [12]. Suppose that U is a principal direction on M with principal

curvature a. Then

(1.13) 2(7/(7)7/ + <p) = a(4>H + Heft)    in T(M).

Since ker(/) is (^-invariant (formulae (1.3)-( 1.7)), it is natural to investigate

the action of </J on ker(/).

Lemma 2 [12]. If k is a principal curvature on M, let Dk denote the distribution

of principal directions on M with principal curvature k. If k2 - 1 ^ 0 on a

neighborhood in M and le^n ker(/) on that neighborhood, then <f>X is

principal on that neighborhood.

Some information can be gleaned from the case that remains in the wake of

Lemma 2:

Let p G M be a point at which k = 1 and A is a principal curvature with

a direction X e (ker(f))p . We may choose a = 2 at p by selecting a suitable

orientation of M. Assume that k = -1 at p. Then, for X g (Dx) , (1.13)

yields </>X principal with curvature 1. However, if a = 2 and k = 1 at p, then
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for X G (DÀ)p, (1.13) is an identity and no information is gained concerning

4>X. This case must be treated separately.

We also note that assuming (1.13), k2 ^ 1, a ^ ±2 and a ^ 2k are equiv-

alent statements.

The hypersurfaces studied in the sequel sections will have U principal and

constant principal curvatures. If M is such a hypersurface with a / ±2, we

can choose a frame {Xx, ... ,Xn_x,</>Xx, ... ,4>Xn_x, U} on M that consists

entirely of principal directions, with the property that <f> interchanges the distri-

butions spanjA!", , ... ,Xn_x} and span{c/tXx , ... ,<f>Xn_x}. In this case </> acts

on ker(/) as a complex structure and, from (1.13), the principal curvatures of

a </>invariant plane span{.Jf;, </>X¡} will be related by the equation

(1.14) yi = (aki-2)/(2ki-a)

where HX¿ = kiXi and H<pXi = yi<j>Xi.

2. Some families of isoparametric hypersurfaces

In this section, families of isoparametric hypersurfaces in CH"(-4) are con-

structed that have the distinguished direction U as a principal direction. Our

initial discussion will be of a more general nature: tubes in Riemannian mani-

folds. (For more detail, see [1, 4, 7, 9, 18].)

Recall first the notions of cut point and cut locus. (A detailed and analytic

discussion of cut loci can be found in Vol. II of [10] and in [11].) A cut point

of a point p in a Riemannian manifold M is a point c = y(t), where y is a

geodesic emanating from p = y(0) with the property that for s > t, the length

of the curve y(J), J = [0 ,s], is greater than the distance dM(p, y(s)). For

instance, if p G S (r), its only cut point is its antipodal point.

The cut locus of a point p G M, written Cut(p), is the set of all cut points

of p. The cut locus of a point on a sphere is a singleton, whereas for a point

p on a cylinder over Sx in R3, Cut(p) is the axial line opposite p. Define

c(p) = min{d(p ,q)\qG Cul(p)} .
Let Nm be an immersed submanifold of a Riemannian manifold M" . De-

fine the unit normal sphere bundle of N by

S±(N) = {XgT(N)±:\\X\\ = 1}.

Set c(N) = inf{c(p) \p G N} . Now for each r G (0, c(N)), define the tube of

radius r about N in M to be the hypersurface given by

Nr = {exptl(rX):qGN, XgSX(N)}.

Let x(t, Xq) be parallel translation of vector fields along the geodesic (yx)q :

t - expq(tX) .Forp = expq(rX) G Nr, x(t, Xq) : Tq(M) ^ Tp(M) is a linear

isometry [15, p. 66]. (See Figure 1.) By the generalized Gauss lemma [11, p.

121], we have

(2.1) Tp(Nr) = x(r,Xq)({Xq}±) = {x(r,Xq)Xq}±
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and

(2.2) Tp(Nr) 3 Tq(N) ® [{Xqt n Tq(Nf],

where = denotes the isomorphism of parallel translation.

For X € S±(N) and q G N, define Rx(t) G End[Tq(N)], for each t > 0,

by

where R is the curvature tensor of M. As we are primarily interested in the

tangent space of the tube Nr, set

RX(t)   = Rx(t)\{xy±.

Finally, define F(t, X) G End^X}1") for each X G S±(N) to be the solution

of the initial value problem

(2.3) (d2/dt2)[F(t ,Xq)] + Rx(t) °F(t,Xq) = 0,

F(0 ,Xq) = P,       (d/dt)[F(t, Xq)]l=0 = -AxoP + Px,

for each q G N, where P: {X}1- -» T(N) and P±: {X^ -► T(Nf n {^}x

are orthogonal projections of the vector bundle {X}1- = T(N) e [//'(/Y)'1" n

{X} ] onto the indicated component distributions, and Ax is the Weingarten

map of X on TV" in M. To simplify notation we shall write F'(s ,X ) for

(d/dt)[F(t,Xq)]\l=s and F"(s,Xq) for (if2/^2)[f(i.Xj^•

Theorem 1 [4, 9, 16]. TAe second fundamental form of Nr at p = exp (rX) is

given by

(2.4) Hr = x(t,Xq)oF'(r,Xq)oF(r,Xq)-Xox(r,Xq)-x.

x(r,X)Xq

Figure 1
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Hence, in order to find an explicit representation of the second fundamental

form of a tube, we need merely select a suitable basis of T(Nr) using (2.1)

and (2.2), solve (2.3), and then compute (2.4). Of course (2.4) says that Hr g

End[r(7Vr)] at p - expq(rX) is nothing more than parallel displacement of the

endomorphism

F'(r ,Xq)°F(r ,Xq)-X GEnd[{Xq}L]

along the geodesic yx emanating from q and passing through p.

Now we will assume that M is not an arbitrary Riemannian manifold but the

ambient space discussed in the previous section, namely a complex hyperbolic

space. Let TV be an immersed orientable submanifold of C7/"(-4). As CH"

is a symmetric space, once a suitable basis of {X?}J" is selected (where q G N

and X G S (N)), parallel displacement along the geodesic yx will preserve

the basis and the respective orthogonality relations between its elements. Thus,

Hr will have the same matrix representation with respect to the displaced basis

as F'(r , Xq) o F(r , Xq)~ has with respect to the chosen basis of {Xî}"L. This

simplifies the calculation of (2.4) considerably.

An additional feature of CH" is that Rx(r) is of a particularly simple form.

Let X G SX(N) and Y G {X .JX}1'. Direct computations using the Gauss

equation show that (Rx(t)Y)q = -Yq and (Rx(t)JX)q = -4JXq for all t > 0.

As Nr is orientable, let £ be a local unit normal field on Nr. From the

earlier discussion on tubes, at any point p — expq(rX) G Nr, we can write

¿;   = x(r , Xq)Xq . In this way a unique point q and a unique direction in 5

(N ) can be associated to each point p G Nr.

In order to simplify notation, set Y* = x(r ,X )Y g T (Nr) for any Y G

{X }x . In particular, we shall write £* for a normal field on Nr, and £ will

refer to the associated direction in S±(N) ; that is, £* = exp (nj; ). In terms

of§l, U; = -J(*p = T(r,Xg)JZg and

{uX n Tp(Nr) = x(r ,çq)[(Tq(N) n (J^f) © ({Jc¡q .^ n t;(A0x)]

is the (^-invariant subspace, (ker(/))p , of Tp(Nr).

Also, CH"(-4), as a space of constant negative holomorphic sectional cur-

vature, is a space of negative sectional curvature. Since C//"(-4) is simply

connected, by Theorem 8.1, Chapter VIII, Vol. 2 of [10], all cut loci will be

empty. This means that tubes of radius less than min{d(p ,N): p a focal

point of TV} may be constructed about N .

The following are examples of tubes that form families of isoparametric

hypersurfaces of the type discussed in §1. In each, it will be crucial that

U = x(r , Xq)~xUp is tangent or normal to the core at q . (Also see [1].)

Example 1. Let N = H"(-l) be a real space form of constant sectional cur-

vature -1 immersed in CH" as a totally geodesic and totally real subman-

ifold.   (See the proof of Theorem 1 in [3].)   As  /V has no focal points, for
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any r > 0 let JVr be the tube of radius r about N in CH" . Since N is

a totally real submanifold of dimension n, if £* is a unit normal to Nr,

at each point p G exp (rÇ) G Nr we have Uq - -JÇ G Tq(N). So let

{XX,X2, ... ,Xn_x ,Uq} be an orthonormal basis of Tq(N). If (<f>, /) is the

almost contact structure induced by J on Nr, then

Bp = {x;,...,x:_x,<t>(x¡).<t>(x*n_x),u;}

forms an orthonormal basis of T (Nr). Setting <j)Xi = x(r ,Ç )~ [4>(X*)\ for

each i = I, ... ,n - I allows us to write

Bq^{Xx,...,Xn_x,cf>Xx,...,(pXn_x,Uq}

for an orthonormal basis of {Ç }J~. With respect to this basis, (2.5) has the

matrix solution

F(t,iq) = diag(cosh(0/n_, . sinh(i)/„_! , cosh(2/)).

Now, from (2.4), the second fundamental form, Hr, of the tube will have the

following matrix representation with respect to the basis B :

(2.6) Hr = diag(tanh(r)/„_, . coth(r)In_x , 2tanh(2r)).

We see that the representation of Hr depends only on r and is hence con-

stant on Nr. As a consequence Nr is isoparametric. Also notice that U is

principal on Nr.

Example 2. Let N = CH , fc = 0,l,...,«-l,bea complex space form

immersed in CH"(-4) as a totally geodesic submanifold (see [3]). In case

k = 0, we are regarding a point to be a trivial complex space form. Otherwise,

from [3], the C/7 will have constant holomorphic sectional curvature -4.

Again, as N has no focal points, for any r > 0 let Nr be the tube of radius

r about ./V in C//"(-4) and C be a global unit normal to Nr.   As N is
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a complex submanifold of CH", its tangent space is invariant under J. So

r(r ,¿¡q)[Tq(N)] isa 0-invariant subspace of Tp(Nr) and

Uq = -T(r,ÇqrXJc:*GTq±(N).

Let {Xx , ... ,Xk ,JXX , ... ,JXk} be an orthonormal basis of Tq(N) and

extend to an orthonormal basis

*? = {*i.Xk.JXl.jxk,xk+x,...,xn_x,jxk+x,...,jxn_x,uq}

of {£,q}L . The last 2n-l-2k elements of Bq form a basis of T^N^ntf}-1-.

The radially symmetric matrix solution to (2.5), with respect to B , has the

matrix representation

F(t,£q) = diag(cosh(i)/2A:, sinh(r)/2n_2i._2, sinh(2r)).

Computing (2.4) yields the following matrix representation for the second fun-

damental form on Nr with respect to the translation of B :

(2.7) Hr = diag(tanh(r)/2¿ , coth(r)/2n_2fc_2,2 coth(2r)).

Again, U* - -JÇ* is principal on Nr and Nr is isoparametric.

Example 3. The previous two examples, despite their obvious differences as

tubes with different cores, do have one thing in common. Each core has no

focal points so that tubes of any radii may be constructed. Hence, if the basis

of T (Nr), p - expq(rÇ ), is chosen for each r > 0 to be compatible (via t)

with Bq , then we can discuss the limit of the tensor Hr, viewed as acting on

span(5 ), as r-»oo. Clearly, this matrix limit is given by

(2.8) lim/7f = diag(72n_2,2).
r—>oo

The geometric significance of this is obscure from our view of these tensors as

acting on the tangent space of the core of the tube. However, in §4 (originally

in [13]), a hypersurface is constructed in an analytic way that has a second

fundamental form of the form (2.8). So we know that such a hypersurface

exists; the question is whether we can obtain a geometric characterization.

Choose a point p G CH" and any direction t\ G T(CH"). For each r > 0,

let q(r) = exp (ri ) and y( be geodesic with initial direction t\p that joins p

to q(r). Then p is on each geodesic hypersphere, Gr(q(r)), centered at q(r)

with radius r.

It is known that as q(r) recedes from p (r —> co) the Gr(q(r)) approach a

limiting hypersurface, M°° , called a horosphere (see [5, 8]).

The horosphere will have an extrinsic geometry that is obtained as a limit-

ing hypersurface of these expanding geodesic hyperspheres. That is, M°° will

have a second fundamental form with a representation (2.8) with respect to a

suitable basis of T (M°°). We shall establish this analytically in §4 when, sub-

sequent to more theory, we will be able to show the convergence of the geodesic
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hyperspheres to a hypersurface with a second fundamental form of the type

(2.8).
The hypersurfaces of Examples 1,2, and 3 will yield satisfying geometric

characterizations for isoparametric hypersurfaces of CH" that satisfy a number

of conditions. However, to make further progress in this direction we must show

that hypersurfaces of this type are completely determined (up to congruences

of CH") by their second fundamental forms. In order to do this, CH" must

be thought of as the base manifold of a certain Lorentzian Sx-fiber bundle.

3. The Lorentzian circle bundle over CH"(-4) and rigidity of

CERTAIN ISOPARAMETRIC HYPERSURFACES OF  CH"(-4)

The best understood of all non-Euclidean complex space forms, complex pro-

jective space (usually written CP"), is constructed using a natural equivalence

on an odd-dimensional sphere, S "+x, itself immersed in C"+1. A complex hy-

perbolic space can be constructed in a similar way (see [2; 10, vol. II]). In this

case CH" is formed by taking the equivalence on a real Lorentzian hyperbolic

space form in C"+   instead of on a real Riemannian space form.

Define a hermitian bilinear form F on Cn+I by

n

F(z , w) = -z0w0 + Y^ zfWj
7=1

for all z - (z0,zx , ... , zn) and w = (wQ ,wx , ... , wn) in C"+x . F forms a

complex Lorentzian metric, so that C"+x equipped with the metric F forms

a complex Lorentzian space, C"+l, where at the origin (z0,0, ... ,0) is a

timelike vector if z0 ^ 0. C"+ can also be regarded as a real semi-Riemannian

euclidean space, R2"+ , if it is equipped with the metric Re(F). (At the origin

(1,0.0) and (/', 0, ... ,0) form a basis of the negative definite subspace

of ro(R2"+ ), with respect to the metric Re(F).) Anti-De Sitter spacetime is
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the hyperquadric defined by

H2n+X = {zgC"+x\F(z,z) = -1}.

The tangent space of anti-De Sitter space is determined by its immersion into

the ambient complex euclidean space; explicitly:

TZ(HX"+X) = {wg Cn+X |Re[F(z , w)] = 0}

for any z € H2n+X . As a real hypersurface of R2"+2 , H2n+X has Re(.F)|H2„+,

as a natural Lorentzian metric that is of constant sectional curvature -1.

An S -action can be defined on Hx"+X (in fact on C"+ ) by z —► kz for

any z G H2n+X and k G C with \k\ = 1. At each point z g H2n+X, the vector

V - iz is tangent to the flow and has length -1. Given a point z g H2n+X,

the flow of V through z in Hx "+   will be given by the orbit

Oz = {xt =e"z\tGR}

that satisfies the differential equation dxjdt = ixt. This in turn shows that Oz

lies in the intersection of the negative definite plane span{z , V} with Hx"+ .

Let ~ be the equivalence given by the orbits of the action, that is, w ~ z

if w GOz. Then the natural projection n : Hx2n+X -+ H2n+X / ~ = CH" is a

Riemannian submersion with fundamental tensor the natural complex structure

J on C"+1 (see [13, 16]) and with timelike totally geodesic fibers, each of

which is a trajectory of the vertical vector V — iz at any point z G H2n+X .

The complex Riemannian space, CH", obtained in this way has its complex

structure induced from that on C"+ and has constant holomorphic sectional

curvature -4 with the metric induced from Re(i").

The differential of the submersion, n^, is a linear isometry [16]; i.e., it

preserves the metric tensor on the horizontal distribution as it projects onto

T(CH"). So we shall make no distinction between the metric on H2n+X and

that on CH" . We can now write

Tz(H2n+X) s Tn{z)(CHn) © span{F}

where the isomorphism is given by nt ® I\span{v} •

nm, as a linear isometry of the distribution ?F of horizontal vector fields on

H2n+X onto T(CH"), induces relations between the connections V and V. of

H2n+X and CH" , respectively. (See [6, 16].) These are

(3.1) V)y~ = ^xY)~ + (J(x~) 'Y~>V-

(3.2) VK(;T ) = V{X^V = (JX)~ = J(X~)

for all X, Y G T(CH") = %*, and where X~ denotes the unique horizontal

lift of a vector field X G T(CH").
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If M2"~x is an orientable real hypersurface of CH"(-4) then the hyper-

surface M2" = n~x(M) of H2n+X is orientable and invariant under the Sx-

action, and fc\~: M -* M is a Riemannian submersion with timelike totally

geodesic fibers. Conversely, if Mx is an orientable S -invariant hypersurface

of H2n+X, then n\~ is a Riemannian submersion of M onto M2"~x = n(M)

with timelike totally geodesic fibers. Hence, we have the following commutative

diagram:
M"    2/1             J rj2n + \ ,     . ■,

I      -► 7/,      (-1)

ÁÍ2"-1 —¿-^   CH"(-4)

where j: M2"'x -* CH"(-4) and j: M2" -+ H2n+x(-l) are immersions com-

patible with the fibration. If £ is a normal field on M, its unique lift, <i;~,

is horizontal and forms a normal field on M. Henceforth, we will drop this

distinction between <j; and <*~ .

Let V be the metric connection of M as a hypersurface in Hx"+ and //

be its second fundamental form. The Gauss and Weingarten formulae in this

case are given by

(3.3) VXY = VXY + (HX,Y)Ç   and   VXÇ = -HX

for all X,Y G T(M). Now combining (1.1), (3.1), (3.2), and (3.3) we have

the following relations between H and H :

(3.4) H(X~) = (HXf-f(X)V

for all X G T(M) s {V}x n T(M) and

(3.5) HV = U  .

Let .R be the curvature tensor of M. We shall have the opportunity to use

the Gauss and Codazzi equations for M in 7/,"+I :

(3.6) R(X , Y)Z = (X,Z)Y-(Y , Z)X + (ÈY , Z)HX - (HX , Z)HY,

(3.7) (VXH)Y = (VYH)X

for all X ,Y G T(M). These and the preceding formulae can be used to prove

the following useful identities:

(3 8) &r*KX ' y)Z = WWH)Y, Z)HX - ((VWH)X, Z)HY

+ (HY,Z)(VWH)X-(HX,Z)(VWH)Y

for all X, Y, Z, W g T(M), and

(3.9) (V{X^H)V = [(c/,H-H4,)Xf

for any X g T(M).

*
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An immediate consequence of the preceding formulae is that M and M

have the same mean curvatures. Thus, M is isoparametric when M is isopara-

metric.

If {Xx, ... ,X2n_x} is a local frame on M consisting of principal direc-

tions in T(M) with corresponding principal curvatures {kx, ... , k2n_x} , then

{A"j~ , ... ,X2n_x , V} forms a local frame on M with respect to which H is

represented by the matrix

r    ¿. /w i
o

0       k2n_x      f(x2n_x)

V-f(xx) ■■■   -f(x2n_x)       o     J

all of whose entries are functions on M. Hence, even the stipulation that M

be S -invariant does not guarantee an easy analysis of the structure of M via

an investigation of those subbundles of T(M) held invariant by H, for we are

not even assured the existence of principal directions that have real principal

curvatures.

However, in case U is a principal direction on M, we can choose U = X2n_x

so that H is represented by the matrix

(3-10) diag^,.A2„_2,[_aj   ¿]).

We shall see that if M is also isoparametric, then M is rigid; that is, M is

unique up to congruence.

In order to characterize congruence in C/7"(-4), the principal 5'-fiber bun-
dle over CH" must be taken into account as well as the fiber bundle's own

imbedding in C"+ . From the preceding discussion we see that rigid motions

of C"+x that leave H2n+X invariant will induce rigid motions of CH" .

The isometries of C"+   under F ,

U(l,n) = {AG GL(n + 1 ;C): F(Az.Aw) = F(z ,w) ,Vz ,w G C"+1} ,

are precisely the rigid motions that leave H2n+X invariant and act transitively

on H2n+X . Hence, the elements of U(l, n) will induce isometries of CH" via

7t .

Now let M and N be isoparametric hypersurfaces of CH" that each has

the distinguished direction of the induced almost contact structure as a princi-

pal direction. Suppose that M and N have second fundamental forms with

the same matrix representation with respect to suitably chosen orientations of

M and N and local orthonormal bases of principal directions of T(M) and

T(N). Let M, p and Ñ, a be the simply connected covering spaces of

the lifts M - n~x(M) and Ñ = n"x(N), respectively. Since Ñ and M are

isoparametric, following an argument in [17], combine (3.10) with the fact that
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the ambient space of Ñ and M is of constant sectional curvature to show that

the principal curvatures a and k¡, i = I, ... ,2n- I, are constant.

If /: M —► CH" and j: N —<• CH" are the isometric immersions in complex

hyperbolic space and 1: M -* H2n+X and ]: Ñ —► /72n+1 are the induced

immersions of the respective lifts, we have the following commutative diagram

of immersions, submersions, and covering maps:

M Ñ
ïp r

M       l   H2n+X    l        Ñ

M        ±    C/7"     X        /V

The maps i o p: M —► T/2""1"1 and ] o o: Ñ —> Hx"+X are now isometric im-

mersions of simply connected Lorentzian spaces of codimension 1 into the

Lorentzian symmetric space H2n+X that have the same constant matrix repre-

sentation for their second fundamental forms with respect to canonically chosen

orthonormal bases of T(M) and T(Ñ).

Lemma 3. Let N and M be isoparametric oriented real hypersurfaces of

CH"(-4) that have

(i) U as a principal direction, and

(ii) the same corresponding principal curvatures, i.e., the same matrix repre-

sentation for the second fundamental form with respect to suitably chosen bases

of corresponding principal directions.

If Ñ and M are the simply connected covering spaces of Ñ — n~x(N) and

M = n~x(M), respectively, then Ñ and M are isometric.

Sketch of Proof. Let x G Ñ and y G M. By hypothesis and using the ideas
of §1 we can choose orthonormal bases of F.,,.(N) and T. ,y))(M) that

consist entirely of principal directions, with respect to which the second fun-

damental forms have the same representations. Now pull back and extend to

orthonormal bases of TAN) and TJM). (These constructions rely primarily
x y

on the distinguished direction U being principal on both M and N.)

Define a linear isometry y/: TAN) —> TJM)  in the "obvious" way; that
x y

is, y/ maps basis elements of TX(N) onto the corresponding basis elements of

TJM). Let H and H' denote the second fundamental forms of the isometric

immersions j oo and i o p, and similarly let H and //' denote the second

fundamental forms of the immersions j and /', respectively. As o and p are

local isometries, Hx and //' will agree with Ha(x) and //'     , respectively. By

hypothesis and applying (3.4) and (3.5) we have that y/(Hx(Z)) — H1 (y/(Z)) for

any Z G TX(Ñ). Let R and R' denote the curvature tensors of Ñ and M,

respectively. By (3.6),  y/(Rx(X ,Y)Z) = R'y(y/X, y/Y)y/Z for all X,Y,Z g

Tx(Ñ).
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Let V and V' denote the connections on Ñ and M. Using (3.7) and (3.9),

it follows that y/ maps the tensor (VH)X to the tensor (V'h')  . Hence by

(3.8), y/ maps (VR)X to (V'R')y . The fact that H and H' have correspond-

ing constant matrix representations provides the inductive step to show that y/

maps (VmR)x to (V'mR')y for any m > 0.

Now by Corollary 7.3, Chapter VI, Vol. I of [10], there is a unique isometry

fí: Ñ -* M such that (d£l)x = y/ .

The point of Lemma 3 is to get into position to establish a general congruence

theorem for real hypersurfaces of complex space forms. We shall establish

this by using known congruence results for submanifolds of semi-Riemannian

euclidean spaces.

Theorem 2. Let M and N be isoparametric orientable real hypersurfaces of

CH" that each have the distinguished direction U asa principal direction. If M

and N have the same second fundamental form, i.e., the corresponding principal

curvatures are the same, then M and N are congruent.

Sketch of the Proof. Regard the simply connected covering spaces, M and Ñ

of the lifts of M and N in 7/,"+1, as Lorentzian submanifolds of the semi-

Riemannian manifold R2"+2. Define y/x : T^Ñf c TX(R22"+2) - Ty(M)x c

Tx(R2n+2) by ^(x) — y and V±(ZX) = i'y , where £ and Ç' are the normals

to Ñ and M in //, "+l, and then extend linearly to obtain a linear isometry of

the two-dimensional normal spaces. Utilize the hypotheses that M and yY are

isoparametric and have the direction U principal and the fact that Hx "+ is

a totally umbillic (and isoparametric) hyperquadric in R2"+ to show that for

any curve a through x in N, the linear isometry of normal spaces

fa«) = Pci{a(s)) ° VX ° Pa(s\ : Ta(s)W± - TQia(S))(^)± -

where P is normal parallel translation along smooth curves, maps the second

fundamental form of Ñ at a(s) onto that of M at Q(a(i)), regarded as

submanifolds of R2"+2 « C"+1 .

Finally, use Lemma 3 and Theorem 41, Chapter 4 of [15], to show that there

exists an isometry y/ of C"+l such that y/\~ = fi. Hence, y7 induces a rigid

motion of CH" that maps N isometrically onto M.

Theorem 2 will be used in the following section to establish the existence of a

horosphere in CH" independent of [5, 8, 18]. Theorem 2 will also be useful in

the future for classifying real hypersurfaces of CH" that satisfy certain tensor

equations.

4. Application: An analytic construction of a horosphere

Using the congruence results of §3, we can now place the model spaces used

in [13] into the context of the hypersurfaces constructed in §2.   First, recall
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an elegant and well-known (e.g., [13, 14]), analytic method of determining the

extrinsic geometry of a level hypersurface of a C°° function on a space form

imbedded as a hypersurface in a euclidean space, modified to fit the particular

needs of this section.

Let /: R2+1 -»Rbea C°° function and M"(c) be an imbedded Lorentzian

space form in R"+1 of sectional curvature c . Let Vf denote the gradient of

/ in T(M) as a function on M, and Vf denote the gradient of / as a

function on R2+1. Let S be the set of all s G R such that Ms = f~x(s) is

a hypersurface of R"+1. Then for any s G S, Ms and V//||V/|| as a unit

normal field in T(R2+1). Similarly, let T be the set of all s G S such that

Ms = Msn M"(c) is a hypersurface of M"(c). Then Ms will have Vf/\\Vf\\

as a unit normal in T(M"(c)), for each s e T.

For a given /, Vf is usually easy to calculate. Once this is done,

(4.1) Vf = Vf+(Vf,Qt;

where ( , ) is the standard metric of R2+   and Ç is a unit timelike normal

field to M"(c) in R2+1. (Notice that the choice of positive coefficient of r is

necessitated by the causal nature of r.)

Let Hess(/;R2+1) denote the hessian of / as an operator on R2+1. For

each 5 G S, the second fundamental form H of Ms in R2+I is given by

(4.2) (HX , Y) = Hess(/ ; R"2+X)(X , Y)/\\Vf\\

for all X, Y G T(MS), which for a given / is usually easy to compute. For each

s G T, the second fundamental form 7/ of Ms in M"(c) can be expressed

similarly:

(4.3) (HX.Y) = Hess(f;Mx"(c))(X,Y)/\\Vf\\

for all X ,Y G T(Ms) and where Hess(/ ; M"(c)) denotes the hessian of / as

an operator on T(M"(c)). Since Hess(/;A71"(c)) is defined to be the second

covariant derivative of / on M"(c) [15]:

Hess(f;Mx"(c))(X , Y) = XYf - (V xY)f = (Vx(Vf), Y),

where V denotes the connection on M"(c) ; once (4.2) has been computed,

(4.1) can be used to obtain a representation of (4.3), thereby yielding an explicit

calculation of the second fundamental form of Ms in M"(c).

Example 4. Consider the function G : C"+1 -► R, for each p = 0,1, ... ,n,

defined by

Gp(*) = -|z0|2 + í>,-|2

i=i

where z = (zQ, zx , ... ,zn). For r > 0, define a level hypersurface of C"+x by

Mp(r) = {z G C"x + X | Gp(z) . -cosh2(r)}.
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The gradient of G   in C"+1 is computed to be

VGp(z) = 2(z0,zx.zp,0,...,0)

for all z g C"+x, so that

VGp(z)/2 cosh(r) = (sech(r)z0 , sech(r)z, , ... , sech(r)zp , 0, ... ,0)

is a unit (timelike) normal to M (r) in C"+1, for all z G M (r).

The level hypersurface Mp(r) = M (r) n H2n+X is nothing more than the

model A72p+1 2¡?+1(tanh2(r)) of example 4.1 in [13]. Notice that M (r) is

isometric to the product H2XP+X (-cosh2 (r))xS2(n~p)~x (sinn2 (r)). The gradient

of Gp on Mp(r) in T(H2n+x) is given by (4.1 )

VG„(Z) = -2 cosh2(r)(tanh2(r)z0 , ... , tanh2(r)zp ,zp+x.zj

for all z G M (r). Thus,

£(z) = -(tanh(r)z0, ... ,tanh(z)zp, coth(r)zp+1 .... ,coth(r)z„)

is a unit normal to Mp(r) in Hx"+X , for all z G Mp(r).

At this point we can see that the second fundamental form of M (r)  in

H2n+X is diagonalizable with respect to a real basis of Tz(M (r)) = {z .i(z)}1'

and has constant principal curvatures tanh(r) and coth(r) of real multiplicities

2/7 + 1 and 2n - 2p - I, respectively.

Let N (r) = n(M (r)) and  U denote the distinguished vector on N (r)

viewed as a real hypersurface of CH". Let //' and 7/ denote the second

fundamental forms of M (r) and N (r), respectively. We can write

un{z) = -7(7T,(^(z))) = n,(-it(z)) •    i-e-, (U~)z = -iÇ(z).

An explicit calculation of H'(U~)z using (4.3) followed by an application of

(3.4) shows that Un{2) is principal in T.ANJr)) with curvature 2coth(2r).

Subsequent calculations yield the other principal curvatures tanh(r) and coth(r)

of multiplicities 2p and 2n - 2p - 2, respectively, each having a (¿»-invariant

eigendistribution. From the work of §§2 and 3 we see that N (r) is congruent

to a tube of radius r about a totally geodesic complex space form in CH"

isometric to a CHP . In particular, we shall need that N0(r) is congruent to a

geodesic hypersphere of radius r .

Example 5. Consider the function G: C"+   —> R given by G(z) = \z0 - zj  ,

where z = (zQ.zn), and the level hypersurface of C"+ , M = G~ (1).

The gradient of G in C"+   can be written as

VC7(z)-2(z1-z0,z,-z0,0.0)

for all z G M.
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The level hypersurface N — M n Hx"+ is the model hypersurface N of

example 4.2 of [13]. The gradient of G in Hx"+X is given by

VG(z) = 2(z, ,2zx-z0,z2, ... ,zn)

for all z G N. Hence,

£(z) = (z, ,2z, -z0,z2, ... ,zn)

is a unit normal to A" in H2n+X .

Set M* = n(N), as in example 4.2 of [13]. Explicit calculations using (4.3)

and (3.4) show that U is principal on M* with principal curvature 2 and that

1 is a principal curvature of multiplicity 2n - 2 ; that is, the second fundamental

form of M* acts as the identity transformation on ker(/). Thus, according

to Theorem 2, M* is our candidate for a horosphere. In order to see this

(and thereby establish the existence of a horosphere in CH" analytically) we

will show that M* is a limiting hypersurface of a specific family of geodesic

hyperspheres.

Let P = (1,0, ... , 0) e H2n+X and consider the geodesic emanating from

n(P) in CH" given by y(r) = 7t(cosh(r), sinh(r), 0, ... , 0). (See [10, Vol. II,

p. 285].) As in example 3, each geodesic hypersphere of radius r centered at

y(r) contains the point n(P). We will see that as r —► oo, these hyperspheres

converge to a limiting hypersurface, namely M*.

Earlier in this section, we discovered that the hypersurface of //. "+1 defined

by

AS  (r\  —   J   T ^   W2"+1   I ton^/^liM0(r) = (zg H2n+X |tanh2(r)|z0|2 =¿|z/|2}

is actually the lift (up to a congruence, of course) of a geodesic hypersphere of

radius r. Notice that y(r) g M0(r) and that 71(7*) is equidistant from every

point on M0(r). So n(P) plays the role of center of n(M0(r)) in CH" .

In particular, we see that the family of hypersurfaces {n(M0(r)) | r > 0} is not

our candidate for the convergent family. However, all is not lost, for we should

be able to find a rigid movement of CH" , induced by an A(r) G U(l, n), that

for each r > 0 will translate n(M0(r)) to a geodesic hypersphere of radius

r and center y(r) in such a way that the family {n(A(r)[(MQ(r))]) \ r > 0}

will converge to a limiting hypersurface. This limiting hypersurface will be

M* - n~ (N), which must then be a horosphere through n(P).

For each r > 0, let A(r) G U(l, n) be defined by

ai \     a-     ircosh(r)    -sinh(r)l    .     1
A(r) = diag <     . .) ! .) '    , /    . \.

[[sinh(r)    -cosh(r)J     "~l j

A(r) is a rigid motion that maps A70(r) onto the lift of the geodesic hypersphere

of radius r centered at y(r) and therefore induces a rigid motion of CH" that

moves the geodesic hypersphere n(MQ(r)) that has radius r and center ^(7*)
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Figure 4

onto the geodesic hypersphere that has radius r and center y(r) and contains

n(P).

Proposition.  N is the limiting hypersurface of the family {A(r)[M0(r)] | r > 0}

of hypersurfaces in H2"+x, that is,

Um {A(r)[M0(r)]} = N

and is therefore an Sx-fiber bundle over a horosphere.

Proof. For any z - (z0,zx , ... ,zn) G M0(r) we have

n

\z0\  = cosh (r)   and    J^|z|   = sinh (r).

j=i

Let w = (w0 ,wx , ... , wn) G A(r)[M0(r)]. Then

w = (cosh(r)z0 - sinh(r)z, , sinh(r)z0 - cosh(r)z, ,z2, ... ,zn)

for some z G M0(r). In particular, we have

\wQ - wx | = (cosh(r) - sinh(r))|z0 + z, | = e~r\zQ + z, |.

Thus,

No ~ w\ I - e~r(\zo\ + lzi I) ^ fc'_r(cosh(r) + sinh(r)) = 1 ,

which shows that the limiting hypersurface limr_>oo{^(r)[A/0(r)]} must satisfy

|z0-z,|<l for any z = (zQ.zn) G limr^oo{^(r)[A70(r)]} .

To see the reverse inequality, let R > 0 be given. For each r>R, consider

the disc

S(r ,R) = {wg A(r)[M0(r)] | d(P ,w)<R}

on the translated lift of the geodesic hypersphere n(M0(r)). Let w G S(r , R).

Since A(r) is an isometry, there is a z g MQ(r) such that w = A(r)z and

d((cosh(r), sinh(r) ,0, ... ,0) ,z) < R.
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Hence, \z0 - cosh(r)| < R, |z, - sinh(r)| < R, and \zk\ < R for k > 2. Thus,

for r sufficiently large,

\wQ -wx\ = e~r\zQ + z, | > e r(cosh(r) + sinh(r) - R) - 1 - e rR.

Now we see that for a point z in the lift of the horosphere within R units of

P, we must have |z0 - z,| > 1. But R was an arbitrary choice so that

N = (J { lim S(r , R)} = lim {A(r)[M0(r)]}.
R>0

This establishes the existence of a horosphere analytically in CH" .

As one would expect, the representation of a horosphere as a submersed level

hypersurface depends both on the choice of P G H2n+X and on the geodesic

emanating from P ; equivalently: on the choice of normal to the lift of a

horosphere at P. It is interesting to note that we obtain different bounds for
1 1

\z0 - zx |   for a limiting hypersurface of a convergent family of S -fiber bundles

over geodesic hyperspheres if a different geodesic emanating from P is selected.
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