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THE STRUCTURE OF QUASI-MULTIPLIERS
OF C*-ALGEBRAS

HUAXIN LIN

ABSTRACT. Let 4 be a C*-algebra and A** its enveloping W*-algebra. Let
LM(A) be the left multipliers of 4, RM(A) the right multipliers of 4 and
QM(A4) the quasi-multipliers of 4. A question was raised by Akemann and
Pedersen [1] whether QM(A4) = LM(4) + RM(4). McKennon [20] gave a
nonseparable counterexample. L. Brown [6] shows the answer is negative for
stable (separable) C*-algebras also.

In this paper, we mainly consider ¢-unitial C*-algebras. We give a criterion
for QM(A4) = LM(A4)+RM(4) . In the case that A is stable, we give a necessary
and sufficient condition for QM(A4) = LM(4) + RM(4) . We also give answers
for other C*-algebras.

1. INTRODUCTION AND PRELIMINARIES

Definition 1.1. Let 4 be a C*-algebra and 4™ its enveloping von Neumann
algebra. An element x in 4" is called a multiplier of A if xa € A4 and
ax € A for all a € A. Similarly, x is a left multiplier if xa € 4, for all
a € A, x is a right multiplier if ax € A, for all a € A, and x is a quasi-
multiplier if axb € A, for all a,b € A. We denote the sets of multipliers, left
multipliers, right multipliers and quasi-multipliers by M(A4), LM(4), RM(4)
and QM(A4), respectively.

If =: 4 — B(H) is a faithful representation, then the extension of n to
A** maps M(4), LM(4), RM(4) and QM(4) isometrically onto the sets of
operators in B(H) that satisfy the appropriate multiplication properties relative
to n(A4). Each set M(A4), LM(4), RM(A4) and QM(A) is equipped with a
natural weak topology.

Definition 1.2. Let 4 be a C*-algebra and A*" its enveloping von Neumann
algebra. The strict topology on A™" is generated by the seminorms x — ||xal|
and x — |lax|, a € A. Similarly, we have the left strict topology, generated
by the seminorms ||xa||, the right strict topology, generated by |lax||, and the
quasi-strict topology, generated by ||laxb|, a,be A.
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M(A) is the strict closure of 4, LM(A) is the left strict closure of A4,
RM(4) is the right closure of 4 and QM(A) is the quasi-strict closure of A.
For detailed expositions of these results the reader is referred to [1, 2, 8 and
21].

LM(A4), RM(4) and QM(4) are norm closed subspaces in 4™*; QM(A4) is
*-invariant, whereas (LM(4))" = RM(4). Moreover, LM(4) and RM(A4) are
Banach algebras. The best behaved class is M(A4) which is a C*-algebra. It is
clear that M(A4) = LM(A4) NRM(A) and that LM(A4) + RM(4) c QM(4). The
question was raised by Akemann and Pedersen [1] in 1973 whether QM(A) =
LM(A) + RM(4). McKennon [20] gave a nonseparable counterexample in
1978. Recently, L. Brown showed [6] that even when A is stable and sepa-
rable, QM(A4) may not equal LM(A4) + RM(4).

In this paper, we give exact conditions for QM(A4) = LM(A4) + RM(A) and
for QM(A4) # LM(A4) + RM(4).

Definition 1.3. A topological space X is scattered if every closed subset of X
has a relatively isolated point.

Definition 1.4. Let X be a scattered topological space. We define X[0] =X,
X=X \{isolated points of X}. If X is defined for some ordinal number
a, define X, = X \{isolated points of X}, if B isalimit ordinal, define

Xipy = Na<s Xiay-

Definition 1.5. Let X be a scattered topological space. We define A(X) = a, if
a is the least ordinal such that X is discrete. Since X is scattered, A(X) is
well defined.

Definition 1.6. Let Y, = {0,1/n,n = 1,2,...}, a subset of [0,1] with the
usual topology, and let Y, be the one-point compactification of the disjoint
union of countably many copies of Y,. If Y is defined for some ordinal
number «, define Y, as the one-point compactification of the disjoint union
of countably many copies of Y . If g is a limit ordinal, define Yﬂ as the
one-point compactification of the disjoint union of Y, o < f. We also define

ZC(!'") to be the union of m disjoint copies of Y, .
Theorem 1.7 [17] (or see [19, Theorem 1.9]). Let X be a countable, compact
Huasdorff space with A(X) = a > 1 and assume that X[a] consists of n points.
Then X is homeomorphic to Zé").

Let {X,A(t),%} be a continuous field of C~-algebras with X a locally
compact Hausdorff space. Let 4 = C,(X, 4(2),#) be the set of all continuous

cross sections of {X, A(t),#} vanishing at infinity. Then 4 is a C"-algebra.
We say a bounded cross section x in the bundle

{X, LM(4(1))}  ({X, RM(A4(0))}, {X, QM(A4(1))})
is left-strictly (right-strictly, quasi-strictly) continuous at ¢, , if forevery a € &,
xa (ax,axa) is continuous at f,. We denote by Cb(X, LM(A(t), s %)
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(C*(X, RM(A())gs,F), C°(X, QM(A(2))qs ,F)) the set of all bounded
left-strictly (right-strictly, quasi-strictly) continuous cross sections in
{X, LM(A(1))} ({X, RM(A(?)}, {X, QM(4(1))})-
Let A= Cy(X,A(t),¥). Exactly as in [2, 3.3] we obtain

Theorem 1.8 (see [19, §1.3] also).

C*(X, LM(A(1) 5 ,F) = LM(4);

C’(X, RM(A(t)g s »F) = RM(4);

C*(X, QM(A(1)) o5, F) = QM(4).

2. A CRITERION FOR QM(4) = LM(4) + RM(4)

Let A be a o-unital C*-algebra, and a a strictly positive element, 0 <
a < 1. For each n let f be a continuous function such that f (z) = 1 if
t>1/n, f(t)=0if 0<t<1/(n+1) and f, is linearin [1/(n+1),1/n].
Define e, = f,(a). Then {e,} is an approximate identity for 4. Moreover
e.e,=ee, =e ,if m>n.
Lemma 2.1. Let A be a o-unital C*-algebra and {e,} an approximate identity
for A satisfying e, e, =e,e, =e,, if m>n. Suppose that y € QM(A), then
y € LM(A) ifand only if there exists an increasing sequence {n,} of nonnegative

integers such that -
kZ=:1 (1 - enm) y (enk - enk_l)

converges in norm to an element of A where €, = 0.
Proof. Assume that y € LM(A4). For every m, ye, € A. Hence there is
m' such that |(1 — e,.)ve,|l < 1/2". Therefore we can recursively define

n, <n,<--- sothat
“(1 _e”kn)ye"k

This implies that Z:‘;] (1 —e,. ) y(enk -e, ) is norm convergent to an element
in 4.

For the converse, let z =y — 3 (1 - €.,

1
<57.

)y(enk - enk_.)‘ For fixed n, let

m Dbe the least integer such that n, > n. Then

ze, = ye, — i (l - enk“)y (enk —enk_l) e,

k=1
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Since y € QM(4), we conclude that ze, € 4, for all n. Hence z € LM(4).
It follows that

y=z+3 (1-e,., ) (e —e, ) €LM().
k=1

Lemma 2.2. Let A be a o-unital C*-algebra and {e,} an approximate identity
for A satisfying e, e, =e.e, =e,, if m>n. Suppose that x, € QM(A) with
x|l < M for some M, j isan integer and 0 < o < 1. Then

[e o}

e [¢7
Z(,en+j+1 - 6,n+j) xn(en - en—l)
n=1

converges strictly.
Proof. Let P_ be the range projection of (e, —e _,) and

« a
Vs = (es+j+l _es+j) xs(es _e:—l) .

Clearly P -P_, , =0 for i = 0,1,2,.... Suppose that 4 C B(H) and
f e H. Then
2 2
Zysf = ZPs+j+lysPsf
s=2k s=2k
s<N s<N
2 20 i
= Z “Ps+j+]ySP:f” S M ”.f”
s=2k
s<N

for all N. Similarly

2
<M|f]° forall N.

Yo oS

s=2k+1
s<N

So {|| Z:’:l y,|l} is bounded. For fixed m, if N >m + 1, then

N+k N+k

€D Vp =D Y€y =0
n=N n=N

for every k. Hence 2;”;, y, converges strictly.

Theorem 2.3. Let A be a o-unital C*-algebra and {e,} and approximate
identity for A satisfying e,e, = ee, = e,, if m > n. Then QM(4) =
LM(A) + RM(A) if and only if for every x € QM(A),, , there exists an increas-
ing sequence {n,} of nonnegative integers such that

i (1 —em)x (enk —enk_l)

k=1

converges strictly (e, =0).
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Proof. Let x € QM(4),, and n, < n, < --- be chosen such that

Yoo (1= n)X(€e, —e, ) converges strictly. Let x, = (1-e, )x(e, —e, ).

Since Zk:l X, € RM(A) for all N, we conclude that Y. x, € RM(A4). For
a fixed m, suppose that k; is the least integer such that n,>m. Then

00 ko
(x - Zxk) e, =Xxe, — > X,
k=1 k=1
‘ ko

= Zenkx (enk - e"k—l) e, € A.
k=1

Hence x — ZZO X, € LM(4). This implies that QM(4),, € LM(4)+RM(4),
and hence QM(A4) = LM(4) + RM(4).

Next assume that QM(A4) = LM(4) + RM(4). Equivalently, QM(4),, =
ReLM(4). Let x € QM(4),, . Thus there is y € LM(A4) such that x =
y +y*. By Lemma 2.1, we can choose n, < n, < --- such that the ele-
ments y, = (1—e, )y(e, —e, ) satisfy [y, || < 2%, whence YV €EA.
By Lemma 2.2 E,‘:‘ll(enk“ - e, )y(e"k - enk_l) converges strictly. Hence
>eei(1—e,)y(e, —e, ) converges strictly.

Let

ykj = (enk - e"k-l) e'lj+1y (e"j - enj—l) ’

y/(fl) = ( ny _e”k—l) e”k+ly (l —e"k) (e"k —enk—l)
yk = ( ne _e”k—l)enk+2y (] _e”k) (e"k+1 _e'lk) :

Then by Lemma 2.2,

and

" @ oo k+1 oo  k+l1
Zy Zy and >3 v =3 D iy
k=1 j=1 k=1 j=k+2
converge stnctly. Since
oo k+1
5 SE0 2 S0 S A B 1%

We conclude that 3737 5=, .y, . converges strictly. Thus
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converges strictly. So

k=1
converges strictly. Since (1 — enk)(enj - en,_.) =0 if k> j and

(1-¢, )e, =€, )=0, ifj>k,

we have

i(l —e,) (Jf;y,) +(en —e,) =0.

k=1

Finally, since x = y+y", EZ‘;[ X, converges strictly. This completes the proof.

3. LIFTING AND HEREDITARY PROPERTIES

Considering the problem QM(A) = LM(A) + RM(4), one may ask the fol-
lowing questions:

(i) If I is an ideal of 4 such that QM(A4/I) = LM(A4/I) + RM(A4/I) and
QM(I) = LM(I) + RM(I), does it follow that QM(A4) = RM(A) + LM(A4)?

(ii) If QM(A) = LM(A) + RM(A), does it follow tht QM(B) = LM(B) +
RM(B) for B in A?

In this section, we shall show that (i) has a positive answer under a suitable
assumption on A, and for some special B’s, (ii) also has a positive answer.
However, in general (ii) has a negative answer, as we shall see in Example 8.2.

Theorem 3.1. Let A be a o-unital C*-algebra and B a C~-subalgebra of A
such that the hereditary C*-subalgebra generated by B is A itself. If QM(A) =
LM(A) + RM(A4), then QM(B) = LM(B) + RM(B).

Proof. Let A and B be C’-algebras obtained by adding identities to 4 and
B. Since the hereditary C”*-subalgebra generated by B is A itself, B contains
a strictly positive element of A4, say a. It follows that 4 and B share a
common approximate identity {e,} satisfying ee, =e,e, =€, ,if m > n.
Since e, converges weakly to the identity of A4 and the identity of B in A
A and B have the same identity. Thus

QM(B),, =[(B,,)"I" nl(B,,),]” Cl(4,,)"1 Nl(4,,),]” = QM(4),,

(see [1, Theorem 4.1]). Since 4 and B have the same approximate identity
{e,}, we can apply Theorem 2.3 to obtain the desired conclusion.

Let A be a C*-algebra and I a closed ideal. We shall denote M(A4) N I""
LM(A)NI™, RM(A)NI™™ and QM(A)NI™" by M(4,1), LM(4,1), RM(4,1)
and QM(4,1), respectively. If x € M(A4,]), and a € 4, one can see that ax,
xa € I. Moreover, if x € LM(A4,I), xa€ I, etc.
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Lemma 3.2. Let A be a o-unital C*-algebra and I an ideal of A. Then
QM(A,I) =LM(A,I) + RM(A,1) if one of the following holds:

(i) QM(4) = LM(4) + RM(4) or

(i) QM(I) =LM(I) + RM(I).
Proof. Let {e,} be an approximate identity of A4 satisfying e, e, =¢,e, =¢,,
if m>n,and {u;} be an approximate identity for 7. Let x € QM(4,1). If
we define x;; = (e, —¢,_ 1)'/2x(ej - ej_])'/2 (¢p=0), then x;; € 4 nIr*=1.
There is a subsequence {u,} of {u;} such that

(1 —u,)x ||<1/2’“ j<i,i=1,2,...,

and -
Ix, (L —u)l<1/2™,  i<j,j=1,2,....

Define u = Y 2 (e, — ¢;_ )1/2u (e, —e)"/?. By Lemma 2.2, u € I'", it is
then easy to check that u € M(A4,I). Define a; =(1-¢e;,,) - ei_l)l/z,

2 2 3
b = (e, — e )", b = (e, - €)*(e; - ¢;_,) and b =
( 1€ )'/Z(ej—ej_,). Since a;=0 if i<j+1, we have
1)
(1-e, )1 - wxul(e, —e,_) = Z (1= u)x, ubl
i=j+1
3)
+ Z aji u)xu+1 Jj+1 / Z u)xu 1 _1 lb/
i=j+1 i=j+1
Thus s
(1 —e;, (1 —u)xule, —e,_)Il < 1/27".
This implies
o0
Yol —e;, (1 - wxu(e;—e,_,)ll < oo.
j=

By Lemma 2.1, (1 — u)xu € LM(A4). Similarly, ux(l — u) € RM(4) and
(1-u)x(1-u) € LM(A)NRM(A). Forevery a€ A, (1-u)xu-a€ AnI"* =1,
a-ux(l—u)el and a(l —u)x(1 —u), 1 -u)x(1-u)ael.So (1 -u)xue
LM(A4,1), ux(l —u) e RM(A4,I) and (1 —u)x(1 —u) e M(4,1).

Now we need only show that uxu € LM(A4,I) + RM(4,1).

(i) If QM(4) = LM(4) + RM(4), there are y, € LM(4) and z, € RM(4)
such that x =y, +2z,,80 uxu =uz u+uyu. Since ue€ M(4,I), y,u,uael
for every a € A. Hence uy,u € LM(4,1). Similarly, uz,u € RM(4,1).

(i) If QM(I) = LM(J) + RM(J), there are y, € LM(I) and z, € RM(J)
such that x =y, + z,, 80 uxu = uy,u+uz,u. One can easily check, as above,
that uy,u € LM(4,1I), uz,u € RM(4,I). This completes the proof.

At this point, one may ask whether QM(A4) = LM(4) + RM(A4) implies
QM(I) = LM(I)+RM(I) . This turns out to be false, as we shall see in Example
8.1. However, we have the following “lifting” theorem.
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Theorem 3.3. Let I be an ideal of a o-unital C*-algebra A, and suppose that
QM(A/I) = LM(A/I) + RM(A4/I) and QM(I) = LM(I) + RM(I). Then
QM(A4) = LM(4) + RM(A).

Proof. Let ¢: A — A/I be the canonical homomorphsim and take x € QM(A4).
So there is y € LM(A/I) and z € RM(A/I) such that ¢**(x) = y + z, where
#™" is the extension of ¢ to A*". It follows from [6, 4.13] that there are
¥, € LM(4), z, € RM(4) such that ¢"*(y,) =y and ¢ "(z,) = z,. Thus
¢ (x =z, —y,) = 0. So we may assume that x € ker¢"* N QM(4), hence
x € QM(A,1). By Lemma 3.2 x € LM(4,I) + RM(4, I) C LM(A) + RM(A) .

Let K be the C-algebra of all compact operators on .

Corollary 3.4. Let A be a C™-algebra such that QM(4® K) = LM(4® K) +
RM(4A®K). Then QM(A® K) = LM(A ® K) + RM(A® K).

Theorem 3.5. Let A be a C*-algebra such that QM(A® K) = LM(4® K) +
RM(A®K) and let B be a o-unital C"-subalgebra of A such that QM(B) =
M(B). Then
QM(B®K)=LM(B®K)+RM(BQK).

Proof. By Corollary 3.4 we may assume that 4 has an identity. Take x €
QM(B® K),, and let {e, ;3 be a set of matrix units for K. Then x can be
identified with an infinite matrix (g, j) which represents a bounded operator,
where a;; is defined by (1 ® ¢;,)x(1 ® e;) =a;®e;. Clearly each a; €
QM(B) = M(B).

Let {u,} be an approximate identity of B which is quasi-central for M(B),
ie.

lim|u,b - bu,| =0 forall b€ M(B).

For every i, we have an integer n, such that

i 11 -, Yo ] < 12
and
| iy = @, || < 172%, iz
Let w = (b,.j), where b, =u, , b.j =0,if i # j. Clearly, w is bounded

and so is wx = (“n,au) Smce a; € M(B), u,a;; € BC A. We may view
wx as an element in QM(4AQ® K ) It follows from [6, 4.20] or Theorem 2.3
that there exist n; < n, <--- such that L(wx) is bounded, where

L(wx) = i (l _fm) wx (f;l/. _f;u—l)

k=1

and f, =3  1®e,. Let 0 = —L(wx)+ L(wx)" and y =x+0. Then y is
bounded and Rey = x. Let L(y) = (c;;), where ¢, = a,.j(l —u,), if there is
k > 1 such that n, _, <i<n, n_, <j<n,and ¢ = 0 otherwise. Then
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Ly)-L@y) = (d,;) where d;; = a,u, —u,a, if there is k > [ such that
Me_y<i<m, n_ <j<n and d; =0 otherwise. Since ||| < 1/2",

d;; € B, we see that L(y) - L(y)' € B®K . For every k,

k
L)Y u,®e,€BRK,
i=1
because

2i+1
st -] (1 -, ] < 12

Moreover [y — L(y)]- Ef;l u, ®e,; € B®K. Hence
k
y‘zuk®eﬁ €B®K forallk.
i=1
Since {Ef;l u, ®e;} forms an approximate identity for B ® K, we conclude
that y e LM(4), so x € LM(4) + RM(4).

4. A CONSTANT ASSOCIATED WITH THE EQUATION
QM(A) = LM(4) + RM(4)

Definition 4.1. Let 4 be a C*-algebra such that QM(4) = LM(4) + RM(4).
For every x € QM(4), let

a(x)=inf{|ly||: x =y + 2z, y € LM(A4), z € RM(A)}.

Clearly a(x) < o0. Let a(4) = sup"x”S,a(x). To see that a(4) < oo, we
consider the mapping ¢ : LM(4) — QM(4),, defined by ¢(x) = (x + x7)/2.
Then ¢ is a bounded real linear map from the real Banach space LM(A4) onto
the real Banach space QM(4),, . By the open mapping theorem, ¢ is open.
Thus the image of unit ball of LM(A4) under ¢ contains a ball around the
origin. It follows that a(A4) < co.

The following is an immediate consequence of Theorem 1.8.
Proposition 4.2. Let A, be C-algebras satisfying QM(4,) = LM(4,) +
RM(4,) and o(A,) < c, for some ¢ > 0. Then
QM(Ze4,)=LM(Ze 4,) +RM(Za 4,)
and sup, a(4,) < a(Z@ 4,) <c.
Lemma 4.3. Suppose that A is a o-unital C*-algebra such that QM(A) =
LM(4) + RM(4). If {e,} is an approximate identity satisfying e, e, =e,e, =

e,, if m>n, and x € QM(A) with x < 1, then for every ¢ > 0, there is
n, <n, <--- such that

o]

Z (1 —enk)x (enk —enk_l)

k=1

< Ta(A)+5+¢.
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Proof. Let x = y + z, where y € LM(4), z € RM(4) and |)y| < a(4) +
(1/21)e.
As in the proof of Lemma 2.1, there exist n, <n, <--- such that

i“(l —enk+l)y (e"k _e"k—l)" < %

k=1
and -
(o) = (=) <
Define z,, = (e, — eni_l)z(enk -e, ). We have
00

f: (l - enk) z (e, - enk_.)“ -

k=1

<zl +

<zl +

For every large N
N k-2

Zzzzk

k=1 i=1

&

3

N—

Z

i=1 k=i+2 .
N=2

o O{CETREICRETN] B
Thus, by the proof of Lemma 2.2,

i (l - enk) z (enk - enk_l)

k=1

€
< =
< §|z|| + 3

Now we have

ki:l(l —enk) X (enk _enk_l)H < ::l (1 —enm)y (e"k —enk_])”
* i (e"/m - eﬂk)y (enk - erq._,)”
+ g(l -e,)z(e, — enk_,)

<z + 20+ 5zl + 5

€ 2 5
<§+2a( )+ 218+50(A)+ﬁ€+5+§
=Ta(A)+5+¢.
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Remark 4.4. From the proof of Lemmas 2.2 and 4.3, we find that if the e, ’s
are projections, we will have

I3 (1-e,,) x (e, — €, )| < deta) + 3+

Lemmad4.5. Let B bea C*-algebra which has an approximate identity consisting
of countably many projections. Suppose that QM(B) = M(B) and A= C(X)®
B, where X is homeomorphic to one of the spaces Y, described in Definition
1.6. Then

QM(A) =LM(4) + RM(4) and o(4) < Vn.

Proof. Let x € QM(4) = C(X, QM(B)y¢) and ||lx|| < 1. Let {¢,} be an
approximate identity of B consisting of projections. We use induction.
MIfn=1, Y, ={0}u{l/m}_ .
For every k, there is an N such that whenever m > N

llex (x(0) — x(1/m))e || < 1/k.

There is an integer m, such that for every m > m,,, there is a largest integer
k,, such that

"ekm(x(O) —x(1 /l))ekm” <1/k, foralll>m.

(In the trivial case x(1/m) = x(0) for all m > m", for some m", define
€, =¢e,.) Hence k, —oo,as m—oo and k,,, >k, . Define u(1/m)=e
if m < mg, u(l/m) and y(0) = x(O) y(l/m) = u(l/m)x(1/m),
z(0) =0 and z(1/m) = (1 —u(l/m))x(1/m). Then x =y + z. It is easy to
check that for every a and b€ 4, y(1/m)a — y(0)a and bz(1/m) — bz(0).
So y e LM(4), z € RM(4) and

Iyl = lluxl| < 1= V1.

(2) Next we assume that Lemma 4.5 is true for all integers less than #n. In
particular, we can choose y € LM(4) such that ||y|| < vk, where k < n.

Notice that Y, is the one-point compactification of the disjoint union of Z,,
where each Z; is homeomorphic to Y _,.

Let x,;(#) = x(t)|,, . There is an integer i; such that for every i > i, there is
a largest integer m; such that lle,,[x(00)—x,(t)]e,, || < 1/m,; for t € Z;. (In the
case that x,(¢) = x(oo) for all i > i, for some i,, we define e, =e;.) Hence
m; — oo, as i — oo and m,; , > m,;. By the induction assumption, there are
y,€C(Z;,LM(B), ) and z; € C(Z;, RM(B)y ) such that x; =y, +z;, and
Iyl < vn—T.

Define y(t) = e, x;(t) + (1 — e, (1 —e,) if t € Z;, y(co) = x(c0),
z(t) = (1 —e,)z,(t) + (1 — e, )y, m, > if 1€ Z and z(oo) 0. Clearly,
x=y+z and y(1), € C(Z LM(B)LS) and z(t)lz € C(Z;, RM(B)g5) -
Similarly to (1), one can check that y(¢) € C(Y,, LM(B)L.S_) = LM(4) and
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z(t) € C(Y,, RM(B)p 5 ) = RM(4). Hence x € LM(4) + RM(4). Moreover,
let B act on a Hilbert space H and fe€ H,

A1 =|lewx ] +[|(1 - e )y (12, ) 1

2 2 2
<A+ (n = DIA" = nllA"
This implies that ||y|| < /n.

Lemma 4.6. Let A = Cy(X ,A(t),A) be a separable C*-algebra, where X is
a countable, locally compact Hausdorff space with A(X) < oo and A(t) are
C*-algebras such that QM(A(t)) = M(A(t)). Then QM(A) = LM(A4)+RM(4).
Proof. Let I, = {f € A,f(t) =0, if t € X[k]} (cf. Definition 1.4). By
Proposition 4.2, and Theorem 3.3, we can easily prove the lemma by induction.
Remark 4.6. Define f(eie) =1i0/n (-n < 0 < =n) and let a, (n € Z) be
its Fourier coefficients. Then a, = (—l)"“Ll /nt (n # 0), a; = 0. But
Yonez alnlei"e is the Fourier series of the L* function 27" log|l + eiel which
is notin L™(T). (T denoting the unit circle.) Thus the matrix (a,_;) repre-
sents an operator on I* of norm 1. But the lower triangle of the matrix is not
bounded. Let L, = (b,;), where b, = \/—_lai_j if i>jand i<n, b,;=0
if i>n,or j>i.

Let gel’, g=(d), d,=(-11/yn'?, j<n,d =0, j>n. Then
lgll,=1 and

n k—1 2 n

2 1 — 1 1 2

IL,8l" = == (Z_; 7) > -3 (logK)
j= k=1

> %[n logn(logn — 2)] > F(log n)2
/4

if n is large enough (n > 15
is large.

Lemma 4.7. LetA, = C(Y,)® K. Then
1
or

when n is large enough (n > 20).

Proof. It follows from Lemma 4.5 that QM(4,) = LM(4,) + RM(4,) and

. We conclude that ||L || > (1/2%)logn when n

logn < a(4,) < vn

a(A4,) < yn.
For every sequence {n,}, n, <n, <---, define the operator a({n, }) = (¢,))
where r .
={\/—l(ak_,), ifi=n., j=n,
y 0 otherwise

and a, = (-1)""'/nn, n#0, neZ, a,=0.
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Then « {nk}) is selfadjoint and |a({n,})|| < 1. For every n, define
a,({n.}) = , where

r_ { v-1(a,_), ifi=n,, j=nandk,l<n,
Y 0 otherwise.

Let S, = {a,({n,}), {n,} C N}, so that each S, is countable (n € N). We
claim that the cluster points of S, are

n—1

{o,({n}), j<n—1,{n3ycN=JS,
Jj=0

(in the weak operator topology).
Let p,, (U)wheres_llfz<m €;=0, if i#Zjori>m.

Let g € U] ]S say B = a;({n.}) for some j <n-1 and {n} CN.
Define n) = n, 1f k<j,nd =n+k+s,if k> j. Forevery m,if s >m,
plB-a, {n(s)})]p = 0. This implies that o, ({n\"}) — B weakly as s — co.

Next let an({mk }) — B weakly as s — oo. Since for every i there are only

finitely many different elements p,a ({m(s)})p, , we see that

pile,(m) - Blp, = 0,
when s is large. Thus we conclude that

n—1

Befo({n}), i<n—1,{n}cNy=Js,
j=0

unless an{nf)} = B for s > 5, for some s,. This establishes the claim.

By induction, we have (S ) =’ ;-1 S; (where “w ” means the weak closure)
and (Sn)g.’] = U;;(; S, . Hence A(S" ) = n. Itis also clear, by a similar argument
as the above, that every sequence of S, has a convergent subsequence. So Sf’
is compact.

The weak operator topology on bounded subsets of B(l2 ) coincides with the
quasi-strict topology B(lz) = QM(K), so we define a continuous mapping F,
from Y, onto S, then F, € C(Y,, QM(K),s) = QM(4,). The existence
of F, comes from Theorem 1.7. Now let {e; ;} be a set of matrix units for
K and f = 27;1 1®e; (f, can be identified with a constant function:
Y — P €K). Then {f, } forms an approximate ide_ntity for A. For every
n, <n, <---, we see clearly, by the construction of S;" , that

E( L) E (-5

1
> > —
2 [|L,()ll 2 5 logn,

if n is large enough (n > 15).
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Combining this and Remark 4.4, we have that a(4,) > #logn ,if n is
large enough (n > 20).

We shall see in Example 8.1 that M(A4/I) = QM(A4/I) and M(I) = QM(])
does not imply QM(A) = M(A4) even for very simple algebras. Theorem 3.3
shows that if moreover A4 is g-unital, we do have QM(A4) = LM(A4) + RM(4).
Hence the only significance of the following proposition is the estimate of a(4).

Proposition 4.8. Let A be a o-unital C*-algebra and I an ideal of A. Suppose
M(A4/I) = QM(A/I) and M(I) = QM(I). Then for every x € QM(A), there are
y € LM(A) and z € RM(A) such that x =y + z, ||y| < |Ix|| and ||z|| < ||x||,
hence a(A) <1.

Proof. Let ¢: A— A/I be the canonical homomorphism, ¢** be its extension
to A" . So ¢(x) € QM(A4/I) = M(A/I). By [26], there is x' € M(A4) such that
#(x') = #(x) and X =Xx- x' e ker¢™ NQM(4). Thus x, € QM(4,1). Let
{e;} be an approximate identity for A satisfying ee; =ee =e;, if i<j,
and put x;; = (¢, —€,_ ,)1/2x(ej - ej_j)l/?'. Then x;; € I. Suppose that {u;}
is an approx1mate identity for I. There is a subsequence {u; } of {u;} such

that
(1)

If u=3(e,—e_"*
Lemma 3.2 we have

Zu €is1) )xl(ei_ei—l)H < 00.

Hence (1 —u)x, € LM(A4) by Lemma 2.1.

Let y = (1 —u)x = (1 —u)x’ + (1 —u)x, and put z = ux = ux, + ux .
Since u € M(4,I), we see that u € LM(4) and ux’ € M(A4). Since M(I) =
QM(I), x, € M(I). Forevery a € A, au € I, so aux, € I C A. This
implies that ux, € RM(4). Hence z € RM(4) since 0 < u < 1. We have
¥l =NI(1 = w)x|| < l|lx]| and ||z|| = [jux|| < ||x||. Thus a(4) <1.

<

S0 izii=12,

)1/2 ,then u € M(4,I). As in the proof of

u,(e,—e_,

5. THE SPECTRUM OF AN ELEMENT IN A SCATTERED C"-ALGEBRA

In this section, we shall discuss the relationship between the spectrum of a
single element in a scattered C~-algebra A4 and the spectrum of the algebra A .

Jensen [13] defined a C"-algebra to be scattered if every state on the algebra
is atomic. He showed [14] that a C -algebra is scattered if and only if it is
type I and has scattered spectrum A. He also showed [14] that a C*-algebra is
scattered if and only if it has a composition series with elementary quotients.

We recall that a C*-algebra 4 is AF (approximately finite-dimensional) if
for each ¢ >0 and a,,a,,...,a, € 4 thereisa C”*-subalgebra B of 4 and
b,,b,,...,b, € B such that B is of finite dimension and |la; - b;|| < &, for
all i=1,2,...,n
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Lemma 5.1. Every scattered C*-algebra A is AF .
Proof. Supose that 4 has a series of ideals 0=I,CcI,cl,C---CI C---C
I, = A, where each I, a1 8 is an elementary C*-algebraand I = (U peal ﬂ)_
for each limit ordinal . We prove the lemma by induction on A. Assume
Lemma 5.1 is true for all A <4,.

If A, is not a limit ordinal, Izo /1,10- , 1s an elementary C"-algebra, hence
I o /1 o1 is an AF-algebra. By the induction hypothesis I o1 is also an AF-
algebra. It follows from [11] that 4 is an AF-algebra.

If A, is a limit ordinal, 4 is the norm closure of |J,_ 1, 1, - For each & >0
and a,,a,,...,a,€ A, thereis A< 1, and b|,b,, ... b, €I, such that

lla,- bl <e/2, i=1,2,...,n.

Since, by hypothesis, I, is an AF-algebra, there is a C*-subalgebra B of I, and
b,,b,,...,b, € B such that B is of finite dimension and

6, bl <e/2, i=1,2,...,n.
Hence ||b,—a,||<e, i=1,2,...,n. So A4 is an AF-algebra.

Lemma 5.2. Let A be a scattered C*-algebra. If A(A) = a, {\hen for every
a€A,, wehave Alo(a)] <a+1. If a is alimit ordinal and A, = O, then
AMo(a)]La.

Proof. Let I, = {x € A;n(x) =0, Vn € f'f[,.]}iSa. Suppose that a € 4, .
Let B be the C*-algebra generated by a. Define J; = BnI,. Clearly, since
I, ,/1; and A/I are dual C*-algebras [12, 4.7.20], so are Ji/J; and B/J, .
Thus B is the union of closed subsets X, satisfying X; D> X,,,, X,,, C (Xi)[l]
and X, ,\X, is discrete, i < a. If A[a] =@, A=1,. Hence X = J.
Since B = C,(B), it is clear that A(B) < a and if A[a] =J, B[a] = . Thus
AMo(a)<a+1 andif 4, =0, o) La.

Lemma 5.3. Let A be a scattered C"-algebra. Suppose that l(/f) =a, I 5=
{xed;n(x)=0,m€Ay}. Then Ig, /14 is of infinite dimension, if f < a.
Proof. We shall use the facts that 4 isof typeland f+1<a.

Let Jg,, = I, /Iﬂ. IfA Jpi1 is an infinite set, the result is clear. We
may assume therefore that Jﬂ H= {#,,7,,... ,%,}. Let @, be an irreducible

representation of A corresponding to #,. We have ‘2[ 8 = Ui, {n;} . Since

’Z[ﬂﬂl # J, thereis m € /f[ +11 and hence there is i < m such that kern; C
kerz . This implies that 7,(4) must be infinite dimensional. Hence =;(/ 8 )2
K(H, ) (the compact operators on H, ), where dimH, = co. Since n,(/ ﬂ) =
0, we conclude that Jﬂ +1 1s of infinite dimension.

Theorem 5.4. Let A be a scattered C*-algebra with A(A) = o.. Then
(i) Forevery ac A,, Alo(a))<a+1.




162 HUAXIN LIN

(i) If a is not a limit ordinal, there is a € A, such that A(c(a)) > a.

(i) If a is not a limit ordinal, then there is a € A,, such that A(o(a)) =
a+ 1 ifand only if A/I  is of infinite dimension, where I = {x €
A;n(x)=0,n e/i\[a]}.

(iv) If a is a limit ordinal and A/I is of finite dimension (or zero), then
for every a€ A, , A(a(a)) < a. Moreover, for every B < a, there is
ae A, suchthat A(a(a))> p.

(v) If a is a limit ordinal such that o =lim B, (B, <a) and A/l is of
infinite dimension, then there is a € A, such that A(o(a)) > o.

Proof. We shall use induction.

Assume the theorem is true forall f < a.

(1) is the same as Lemma 5.4.

(ii) If a is not a limit ordinal, by Lemma 5.5, I /I _, is of infinite di-
mension. By the induction hypothesis for (iii), there is @ € I such that a is
selfadjoint and A(g(a)) > (a-1)+1=a.

(iii) If A/I is of finite dimension, a € 4_, , then there is a polynomial p(¢)
(p # 0) such that p(a) € I_. By the induction hypothesis A(a(p(a))) < a,
since /l(fa ) = a — 1. By the spectral mapping theorem, one sees easily that
AMo(a)) < a.

If A/I_ is of infinite dimension, there is a sequence of mutually orthogonal
projections p, € A/l , p, # 0. Let ¢ : A — A/I be the canonical homo-
morphism. Since I is an AF-algebra, by the projection lifting theorem [4],
there is p, € A4 such that ¢(p,) = p,. Using the projection lifting theorem
on (1-p)A(l - p,)/I,0 (1 -p)A(l - p,) = (1 - p)(4/I)(1 - p,), and con-
tinuing, we construct a sequence of mutually orthogonal projections {p,} C 4
such that #(p,) = p, . Since there is n € /f[a] such that n(p,) # 0, we have
m e /f\ hull(p,4p,) . It follows from the fact that p,A4p, is a hereditary C *-
subalgebra of A that (p"Apn)A is homeomorphic to ff\ hull(p, 4p,) . Since
(A\hull(p,4p,)) is open and A, N (A\hull(p,4p,)) # @, A(p,4p,)") = a.
By (ii), there are a, € p,A4p,, a, = a,, |la,| <1 and A(d(a,)) > o. Taking
ai , if necessary, we may assume that 0 < a, < 1. Define

1
a=3 5i(p,+a,);
n=1

then a is selfadjoint and A(g(a)) =a+1.
(iv) Assume that a is a limit ordinal and A4/I is of finite dimension. If
a€l , a=a",then by Lemma 5.2 i(d(a)) < a. For every a € 4, , there is

s.a.’

a polynomial p(r) (p(t) # 0) such that p(a) € I . Hence A(g(p(a))) < a. By
the spectral mapping theorem, one can see easily that A(g(a)) < a. For each
B < a, consider [ p41 C A . By the induction hypothesis, there is a € 4, such
that A(g(a)) > B.
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(v) If « is a limit ordinal such that « = limg,, B, < a, and A/I  is
of infinite dimension, then, as in the proof of (iii), 4 contains a sequence of
mutually orthogonal projections {g,} such that l[(anqn)A] = a. By (iv), there
are a, € q,Aq,, 0 <a, <1 such that, A(a(a,)) > B, . Define

1
a =Z—27(qn +a,).
n=1

Clearly a € A, and A(c(a)) > a.
The proof is complete.

6. QUASI-MULTIPLIERS OF STABLE C*-ALGEBRAS

Lemma 6.1. Let A be a separable scattered C*-algebra with }.(/f) < o0o. Then
QM(A) = LM(4) + RM(4).

Proof. Let I, ={a€ A,n(a)=0, Vn ezli}i]}. Then {0} =[,cI,CcL,C---C
I.CcA4,n= A(A), and I./I,_, and A/I are separable dual C"-algebras. Since
A and I; are g-unital and M(J,/I,_,) = QM(I,;/I,_,), M(4/1) = QM(4/1,),
by Theorem 3.3 and induction; QM(A4) = LM(A4) + RM(4).

Corollary 6.2. Let A be a separable scattered C*-algebra with A(/f) < o0o. Then
QM(A®K)=LM(A4® K)+RM(4A®K).

Theorem 6.3. Let A be a separable C*-algebra. Then QM4 ® K) =
LM(A® K)+ RM(A®K) ifand only if A is scattered and A(A) < oo .

Proof. By Corollary 6.2, we need only show the “only if” part. So we assume
that QM(A® K) = LM(4 ® K) + RM(4 ® K). It follows from Corollary 3.4
that we may assume that 4 has an identity. It follows from [6, 4.23] that A
is scattered. If }.(Zf) is not finite, by Theorem 5.4, for every integer m > 0,
there is a € A, such that A(o(a)) = m. Let B be the C-algebra generated
by a and 1. It follows from the proof of Proposition 2.4 that QM(B ® K) C
QM(A® K) and A® K and B ® K share a common approximate identity
=18 e;;, where {e;;} is a set matrix units for K. By Lemma 2.16,
thereis F € QM(B®K) C QM(4®K) such that forevery {n,}, n, <n, <---,

S (1-5) F (o)

k=1
if m is large enough. It follows from Lemma 4.3 and Remark 4.4 that

1
> —
l nlogm,

1
AR K) > —
a(A®K) > o log m
for m large enough. Hence a(4 ® K) = oo, a contradiction.

Corollary 6.4. Let A be a separable C"-algebra. Then QM(A ® K) =
LM(A® K) + RM(A® K) if and only if there is an integer m > 0 such that for
every a € A a(a) is countable and A(a(a)) < m.

s.a.’
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Proof. It is an immediate consequence of Theorem 5.1, [14, Theorem 2.2] and
Theorem 6.2.

Corollary 6.5. Let A be a separable stable C*-algebra. Then QM(A) = LM(A)

~

+ RM(A) ifand only if A is scattered and A(A) < co.

7. C*-ALGEBRAS WITH FINITE DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS

In this section we shall consider C”-algebras whose irreducible represen-
tations are finite dimensional. Let M, denote the C *.algebra of all com-
plex n x n matrices. If A4 is a C"-algebra whose irreducible representa-
tions are finite dimensional and A is Hausdorff, then by [9, Theorem 10.54],
A= CO(AA, Mn(,) ,A). If A = CO(/T,M A) is locally trivial, one can easily

n(t)?
show by Theorem 1.3 that QM(A4) = M(A4). However, even if 4 is countable
and Hausdorff, QM(A) # LM(A) + RM(A4), in general.

Proposition 7.1. There is a C*-algebra A such that all of its irreducible repre-
sentations are finite dimensional, A is a countable locally compact Hausdorff
space, and QM(A) # LM(A4) + RM(A4).

Proof. Keep the notations in the proof of Lemma 4.5. Let P(")(t) be the range
projection of F,(f). By the proof of Lemma 4.5, it is clear that P(")(t) is
a weakly continuous mapping from Y, to K. Since P(")(t) is bounded, we
conclude that P (1) € QM(C(Y, ,K)).

Let X be the disjoint unionof Y, , n=1,2,.... Define

By ={x € Cy(X,K): x(t) = P (t)x() P (t);¥t € Y, } .
Clearly, B, isa “-algebra. Let M (¢) = P" (t)KP"(t). Then each M, (1) is
isomorphic to some M, . We define 4 = Cy(X,M,(t),B)). A isa C*-algebra

all of whose irreducible representations are of finite dimension and 4 = X, a
countable, locally compact Hausdorff space. Define

k
7,0 =P" 0> 10, P" (), ifk>m(n) andtey,,

i=1

and ¢,(t) =0,if k <m(n) and t € Y,, where m(n) is the largest integer such

that e
1L (@) < [log(r + 1)1

Since m(n) — oo, ¢,(t) € A. Moreover, {g,(t)} forms an approximate iden-

tity for 4.

Define F(t) = F (t),if teY,, n=1,2,...,so that F(r) € QM(4). By
the proof of Lemma 4.5 we have for every {n,} C N, if n is large, that

|2 (1-an) F (o~ an )

2—17?Iogn—[log(n+l)]l/4 (— o0, as n— ).

Thus F ¢ LM(A4) + RM(4).
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Theorem 7.2. Let A be a o-unital C*-algebra whose dimensions of irreducible
representations are bounded by an integer n. Then

QM(A4) = LM(A4) + RM(4).

Proof. We shall use induction on n.

Assume that Theorem 7.2 is true forall n < k. Let n=k+1 and I =
{x€eAd:n(x)=0,if dimn < k}. By [21, 4.4.10], I is an ideal. Moreover, I
is a homogeneous C*-algebra of order n = k + 1. So I arises from a locally
trivial M, -bundle [12]. Hence QM(I) = M(I). Now A/I is a g-unital C"-
algebra whose irreducible representations have dimensions bounded by k. By
the induction hypothesis, QM(A/I) = LM(A/I) + RM(A/I). It follows from
Theorem 3.3 that QM(A4) = LM(4) + RM(4).

Akemann and Shultz showed in [3] that a type I C*-algebra is perfect if and
only if every convergent sequence in A converges to at most a countable number
of points. So the algebras in Proposition 7.1 and Theorem 7.2 are perfect.
We shall produce an imperfect C*-algebra A4, such that all of its irreducible
representations are finite dimensional and QM(A4) = LM(A4) + RM(4).

Example 7.3. Let H be a separable infinite dimensional Hilbert space and {H,,}
a sequence of mutually orthogonal, infinite dimensional subspaces. Let e, be
the projection corresponding to H, . There are sequences of finite rank projec-
tions {p;'} together with a collection {q:} of infinite rank projections indexed
by binary strings ¢ of 0’s and 1’s such that

(i) p] =e, foreach n,
(i) p/q, =4q,p; forall i, ¢ and n,
(iii) q; + 4, =e, foreach n,
(iv) 4, +4, =4d,(e, —p,) forall g, where m = |g| (see [3, Proposition
3.14)).

Let I be the C"-algebra of all compact operators on H which commute with
{pf”)} . Let A be the C"-algebra generated by I and by the set of projections
{q;}.

We claim that 4 is an imperfect, separable C*-algebra all of whose irre-
ducible representations are finite dimensional (and without identity). Clearly
I is an ideal of 4. Moreover, I is the restricted directed sum of finite di-
mensional ideals of 4. Since the q: ’s commute with each other, A/l is
abelian. It follows that every irreducible representation of A is finite di-
mensional. By [3, Proposition 3.14], A is not perfect. By Theorem 3.3,
QM(A4) = LM(A) + RM(4).

8. EXAMPLES

Example 8.1. QM(A4/I) = M(A/I) and QM(I) = M(I), but QM(A) # M(4).
Let A be the C™-algebra of convergent sequences in M, with limits of the
form [(‘) 3] . Then it is easy to see that QM(A) consists of those bounded




166 HUAXIN LIN

sequences {x,} -, in M, such that (x,),, — (x_),,, whereas M(4) con-
sists of those bounded sequences {xn}:';l in M, such that (x,),, — (x),»
(x,),; — 0 and (x,),, — 0. Thus QM(4) # M(4).

Let I be the ideal of 4 consisting of sequences {xn}:’;l in M, such that
;\cg(;/;)) Then QM(I) = M(I). Since A/I is one dimensional, QM(A4/I) =

Example 8.2. QM(A4) # M(A4), QM(A4) = LM(A4) + RM(4) but QM(I) #
LM(I) + RM(I).

Let x be a countable compact Huasdorff space with A(x) = w, where w is
the first limit ordinal. Let {e;;} be a set of matrix units for K.

Suppose B, = C(x)® K, B= §0. Let A be the C*-algebra of convergent
sequences in B with limits in C(x)®e,, . We identify x € B, with an infinite
matrix (a,.j.) , Where a;; € C(x) is defined by (1®e,.,.)x(1®ejj) =a,,Qe,;. Iden-
tifying the identity of §0 with the identity matrix, we can identify elements of
§0 with some infinite matrices. It is easy to check (by Theorem 1.4, for exam-
ple) that QM(A) consists of these bounded sequences {(a("))}:‘;I in B such

ij
that a\7 — 4% and M(4) consists of those bounded sequences {(af.;'))}:’;l

B such that a{} — af} and a7’ — 0, if i-j # 1, clearly QM(A4) # M(4).
It follows from Lemma 4.6 that QM(A4) = LM(A4) + RM(4), since B has an
identity and C(x)®e,, is abelian. Let

in

I={{(@")}, :(@)=0,ifn#1,(a)eB}.
Clearly I is an ideal of 4. It follows from Theorem 6.3 that QM(J) # LM(I)+
RM(/),since I=ZC(x)®K.

Example 8.3. There is a separable antiliminal C*-algebra 4 such that QM(A4)
# M(A), but QM(A4) = LM(4) + RM(4).

Let B be the nonelementary separable matroid C~-algebra with identity
obtained as the inductive limit of the following

Mm(l) 5 Mm(2) 5 m(3) H
where g(x) =x®p and dimp = m(2)/m(1) (see [10]). Let 4, be the C*-
subalgebra of B generated by the elements a such that a € Mm(k) for some
k, a= (al.j), a; = 0,if ij # 1. Let A be the C*-algebra of convergent
sequences {a(n)} in B with limits in 4.

(1) A4 is an antiliminal C*-algebra. Let I be a nontrivial ideal of 4 and
I(k) = {a(k): a € I}. There is a smallest integer k, such that I(k,) # {0}.
Clearly, I(k,) is an ideal of B. Since B is simple (see [10]), I(ky)) = B.
Suppose I, = {a € I: a(k)) = 0}. Then [, is an ideal of I. Moreover
I/1,=1I(k;) = B. Thus [ is not liminal. So 4 is an antiliminal C *.algebra.
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(2) QM(A4) # M(A4). Let x be the sequence such that x(n) € M, for
some k and each n, moreover (x(n));; =1 forall i, j <m(k),and x(o0) =
(af’;’) , where 4y =1, a:.’;’ =0, ij # 1. As in Example 8.1 and Example 8.2,
one can easily check that x € QM(4), but x ¢ M(4).

(3) QM(A4) = LM(A4)+RM(4A). Since B has an identity, M(B) = QM(B) =
B . Moreover A, is abelian, so M(4,) = QM(4,). It follows from Lemma 4.6
that QM(A4) = LM(4) + RM(4).

9. THE DENSITY OF LM(A4) + RM(4) IN QM(A)

We know that QM(A4) # LM(A)+RM(A), in general. Butis LM(A4)+RM(4)
dense in QM(A) in a suitable topology? (See [6, 7.2].)

Example 9.1. LM(A4) + RM(4) may not be norm closed.

Let X be the one-point compactification of the disjoint union of Y, , n =
1,2,.... Let A= C(X,K). Use the same notations in the proof of Theorem
6.3. Define

F(t)=F,()/a(4,)'?, ifteY,, F(oo)=0.

n n

As in the proof of Lemma 4.7, we see that F € QM(4), but F ¢ LM(A4) +
RM(4). Let G, (t)=F(¢t),if teY,, n<m, G, (1)=0,if teY, , n>m.
Clearly G, € LM(4) + RM(4) and |G, (2) — F(2)]| < 1/a(4,)"* — 0, as
m — oo. Hence LM(A4) + RM(4) is not norm closed.

Proposition 9.2. Let X be the disjoint union of Y,, n = 1,2, ..., and take
A= Cy(X,K). Then LM(A4) + RM(A) is not norm dense in QM(4).

Proof. Let 4, = C(Y,,K) = C(Y,) ® K. Take x” € QM(4,) such that
X <1 and a(x™) > a(C(¥,,K)) — 1/n. Define x(t) = x"(1) if te¥,.
Assume that ¥ =y + z, such that y € LM(4), z € RM(A4) and

Ix —ull < 1/16.

Suppose u = u'" (1), t € Y, y= y), te Y, and z = "0, te Y,
n=1,2,.... Choose an integer N such that

a(4y) > max(16,16a),

(N (N)

where a = max(||y|l,||z||). Suppose x ) = ny) +z,"’ and x™ ™ =
ygN) + ng) such that ny),ygN) € LM(4), z(lN) € RM(4) and ||y§N)|| <
(1/16)(a(A4y) + 1/21).

Let {e,} be an approximate identity for 4 satisfying e, e, =e,e, =e,, if
m > n. By the proof of Lemma 2.1 and Theorem 2.3, there exists n, < n, <---
such that

N) (N)

<L
2’

Z(l - e"k+1)y(e”k - e"k—l)
k=1
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L

<12’

oo
Z(l - e"lm)z (e"k - e”k—l)
k=1

= ) 1
;(1 -eﬂku)yi (e'lk _enk—l)lyN < ﬁ’
= ™) 1
kX:l(l —e"kn)(zi ) (e”k _enk—l)lyN < ﬁ’
i=1,2,and
= (V)
d(1-e,)x (e, —e, )y, €RM(4,).
k=1
Thus
= (N) 1
(=g, )x e, —e, Dyl Zaldy)-1-+.
k=1
By the proof of Lemma 4.3,
oo
Z(l - enk)u(enk - enk_.) <7a+4,
k=1

and

< —116-(7a(AN) +6) < %a(AN).

(e o]

Z N N

k (1 —enk)(x( '~ ))(e"k - e"k—l)IYN
=1

But ) .
Ea(AN)+7a+4<a(AN)— 1 - e
A contradiction. Hence

llx —ul| > 1/16.

Theorem 9.3. Let A bea C*-algebra. Then LM(A)+RM(A) is strictly dense in
QM(A) . Moreover, for every x € QM(A), there is a net {x,} C LM(A4)+RM(4)
such that || x,|| < 2||x|| and x, — x strictly. If A is o-unital, {x,} can be taken
as a sequence.
Proof. Take x € QM(A) with ||x|| < 1. Let {e,} be an approximate identity
for A. Define x;, = e,x(1 —e;) + xe,. Clearly e,x(1 —¢;) € LM(4), xe, €
RM(4A).

For every ¢ > 0 and a € 4, there is A, such that if 4 > 4;, then
lla(1 —e,)|l <&/2 and ||(1 —¢,)all <&/2. Thus

”a(x;. -x)|l = "ae;_x(l —e) - ax(1l- e),)"
< llag, - all Ix(1 &)l < /2 < ¢,

and

l(x; — x)a|l = |le;x(1 — e;)a + xe;a — xal|
< llegx i1 = ey)all + lIxllli(e; — Dall <.
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Moreover ||x;|| < 2. If 4 is o-unital, {e,} can be taken as a sequence, so
{x,} is a sequence.

Let X be the disjoint union of Y,, n=1,2,..., and take 4 = C,(X)®
K . Tt follows from Theorem 6.3 that QM(4) # LM(4) + RM(4). However,
for every x € QM(4), if we define x,(¢) = x(¢) for t € Y, and m < n,
x,(t)=0 for t€Y, and m > n, then x, € LM(4) + RM(4) (Lemma 4.7),
and ||z**(x,) — 7**(x)|| — O uniformly on every compact subset of A, with
llx,ll < |lx||. This type of density is stronger than the strict density considered
in Theorem 9.3. Indeed, if a€ 4, then C ={n € A, |lm(a)|| > €} is a compact
subset of 4. Thus there is N such that

Iz(a)x™(x,) -2 (x)ll <&, =meC,
and
Iz(@)z™ (x,) — =" (Ol < &-2lx],
if # e /T\C. From these inequalities, we see that x, — x strictly. The

construction of x, depends largely on the fact that A is Hausdorff. If X is
a countable locally (quasi-) compact space with A(X) < oo, we say X satisfies
condition (C), if forevery t€ X \X[m] there is an open set O, such that ¢ € O,
and 5, nX[k] = @ for some k. Clearly, if X is Hausdorff, then X satisfies
condition (C). If each point in X \X[oo] has a clopen neighborhood, then X
also satisfies condition (C).

Theorem 9.4. Let A be a separable C*-algebra with countable spectrum A and
A[oo] = @. If A satisfies condition (C), then for every x € QM(A), there is a
sequence {y,} C LM(A)+RM(A) such that |y, || < 3||x|| and z**(y,) = n""(x)
eventually on every compact subset of A.

Proof. Take x € QM(4) with |x|| < 1. Put I, = {a € 4: n(a) =0, Vn €
AAM} ,n=1,2,.... Let {¢;} be an approximate identity for 4 and {p,':,}:=l
be an approximate identity for 7, . Define

1/2 1/2
X =(e;,—¢_y) / x(e;—e;_,) 2.

Thus x;; € 4, and since the norm closure |J, I, is 4, we can find {p;} C
{p, ,m,n=1,2,...} satisfying:

1 ..
"xij(l_pj)"<5m1 1<,

and .
”(l_p,')xij”<ﬁa JS’

Define p = Y0, (¢, — e,._])'/zpi(ei - ei_,)'/z. Clearly p € M(4). By Lemma
2.1, we see that (1 — p)xp + x(1 — p) € LM(4) + RM(4) (as in the proof of
Lemma 3.2). Without loss of generality, we may assume that p, € I;.
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Let 4 = {m,,m,,...}. Fix n, and let O, be an open set of A such that
m,,m,,...,n, €0, and 5” N A[k] = @& for some k. This is possible since A
satisfies condition (C). Moreover, we may assume that O, C O, _, .

Let J, = {a € A;n(a) = 0,Vn € 5,,}. Clearly, if ¢, is the canonical
homomorphism from 4 to 4/J,, then ¢, (I,) = ¢(4). Let g, be an element
in [, such that g/l <1 and ¢,(q,) = ¢,(p;). Thus n(q,) ==(p,) if n€O0,.
Define - '

2 2
q" = > (e - e)” q;(e; ~ e’
i=1
Then ¢ € M(4,1,). Put z, = ¢"'x¢"™ . Then z, € QM(4,1,). It fol-
lows from Lemma 6.1 that QM(/,) = LM(/,) + RM(/,). By Lemma 3.2,
z, € IM(4,1,) + RM(4, 1) C LM(4) + RM(4). Define y, = (1 - p)xp +
x(1-p)+z,. Clearly y, € LM(4) + RM(4). Moreover, ||y,|l < 3||x]|.

Let S be a compact subset of A, S = {m,,n,,...}. Wehave J,0,DS.

Thus there are n,,n,,...,n, such that U;."=1 0, > 8. Since 0, C O,,,,
there is an integer N, such that Oy, D> S. If n > N, n"°(z,) = n"*(pxp) for
n€O0y. Thus |2 (y,)—n""(x)| =0 if n€S.
Theorem 9.5. Let A be a separable C:-algebra of type 1. Suppose that there is
an integer N such that for every n € A, the closure {n}~ of {n} is countable
and A({n} ) < N. Then for every x € QM(A), there is a bounded net {x } C
LM(A) + RM(A) such that for every m € A

lim ||7z“(xa) -7 (x))| =0
and x,— x strictly.

Proof. Let T" be the family of finite subsets of A. Fix a €. Then o is
countable. Moreover, A(a” ) < max{A({n} ), t€a} < N.

We may assume that [|x|| < 1. Let J =, kern. Then (4/J)" is
countable and A[(A4/ Ja)A] < N. Let ¢:4— A/J  be the canonical homomor-
phism from 4 to A4/J, . It follows from the proof of Lemma 6.1 that there

are y' € LM(4/J,), 7 € RM(4/J,) such that ¢(x) = 7, + 7", |7.]| < 3"
and ||y”|| < 3". It follows from [6] that there are y_ € LM(4) + RM(4) such
that ¢(y.) = §. + 7" = ¢(x) and |y || < 2-3". Let z, = x —y,, then
llz,Il < 2-3" +1. Suppose that {e,} is an approximate identity for 4. Define

u,= elulza(l - elal) + Zaelul

[¢

and x, =y +u,. Clearly x, € LM(4) + RM(4) and |x || <4-3" +2. Itis
easy to check that

7™ (x,) = 2" (x)]| = 0

for every 7 € A. Moreover, since x —x, =z -—u,, by the proof of Theorem
9.3, we have x_ — x strictly.
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Corollary 9.6. Let A be a separable liminal C*-algebra. Then for every x €
QM(A), there is a bounded net {x,} C LM(A) + RM(A) such that for every
ned

lim||z™* (x,) ~ 2™ (x)]] = 0

and x_ — x strictly.
Proof. A isa T, space.

Note. The problem QM(A4) = LM(A) + RM(A4) for simple C*-algebras has
been studied and the results will appear elsewhere.
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