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THE STRUCTURE OF QUASI-MULTIPLIERS

OF C*-ALGEBRAS

HUAXIN LIN

Abstract. Let A be a C*-algebra and A** its enveloping W'-algebra. Let

LM(/4) be the left multipliers of A , RM(A) the right multipliers of A and
QM(/1) the quasi-multipliers of A . A question was raised by Akemann and

Pedersen [1] whether QM(A) = LM{A) + RM(A). McKennon [20] gave a

nonseparable counterexample. L. Brown [6] shows the answer is negative for

stable (separable) C*-algebras also.

In this paper, we mainly consider cr-unitial C*-algebras. We give a criterion

for QM(/1) = IM(A)+RM(A). In the case that A is stable, we give a necessary

and sufficient condition for QM(A) = LM(A) + RM(/4). We also give answers

for other C*-algebras.

1. Introduction and preliminaries

Definition 1.1. Let A be a C*-algebra and A** its enveloping von Neumann

algebra. An element x in A** is called a multiplier of A if xa e A and

ax e A for all a e A. Similarly, x is a left multiplier if xa e A, for all

a e A, x is a right multiplier if ax e A, for all a e A, and x is a quasi-

multiplier if axb e A , for all a,b e A . We denote the sets of multipliers, left

multipliers, right multipliers and quasi-multipliers by M(A), LM(^4), RM(^)

and QM(^), respectively.

If n: A —► B(H) is a faithful representation, then the extension of n to

A** maps M(A), LM(A), RM(^) and QM(^) isometrically onto the sets of

operators in B(H) that satisfy the appropriate multiplication properties relative

to n(A). Each set M(A), \M.(A), RM(^) and QM(^4) is equipped with a

natural weak topology.

Definition 1.2. Let A be a C*-algebra and A** its enveloping von Neumann

algebra. The strict topology on A** is generated by the seminorms x —> ||;ca||

and x -4 ||ax||, a e A. Similarly, we have the left strict topology, generated

by the seminorms ||.xa||, the right strict topology, generated by ||ax||, and the

quasi-strict topology, generated by \\axb\\, a, b e A .
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M(A) is the strict closure of A, LM(A) is the left strict closure of A,

RM(^4) is the right closure of A and QM(^4) is the quasi-strict closure of A .

For detailed expositions of these results the reader is referred to [ 1, 2, 8 and

21].
LM.(A), RM(,4) and QM(/4) are norm closed subspaces in A** ; QM(,4) is

'-invariant, whereas (LM(A))* = RM(^4). Moreover, LM(^4) and RM(,4) are

Banach algebras. The best behaved class is M(A) which is a C*-algebra. It is

clear that M(A) = 1M(A) nRM(A) and that LM(A) + RM(A) c QM(A). The

question was raised by Akemann and Pedersen [1] in 1973 whether QM(^4) =

LM(^) + RM(/4). McKennon [20] gave a nonseparable counterexample in

1978. Recently, L. Brown- showed [6] that even when A is stable and sepa-

rable, QM(^) may not equal LM(A) + RM(A).

In this paper, we give exact conditions for QM(^4) = LM(^) + RM(^4) and

for QM(^) ¿ LM(A) + RM(A).

Definition 1.3. A topological space X is scattered if every closed subset of X

has a relatively isolated point.

Definition 1.4. Let X be a scattered topological space. We define X[0] = X,

X[xx = X\{isolated points of X} . If X, is defined for some ordinal number

a, define XQ+1] = I,\{ isolated points of X ,} , if >S is a limit ordinal, define

xm = na</} x[a] ■

Definition 1.5. Let X be a scattered topological space. We define X(X) — a, if

a is the least ordinal such that X., is discrete. Since X is scattered, X(X) is

well defined.

Definition 1.6. Let F, = {0, l/n,n = 1,2,...}, a subset of [0,1] with the
usual topology, and let Y2 be the one-point compactification of the disjoint

union of countably many copies of 7,. If Ya is defined for some ordinal

number a, define Ya+X as the one-point compactification of the disjoint union

of countably many copies of Ya. If ß is a limit ordinal, define Y„ as the

one-point compactification of the disjoint union of Ya , a < ß . We also define

Z™' to be the union of m disjoint copies of Ya .

Theorem 1.7 [17] (or see [19, Theorem 1.9]). Let X be a countable, compact

Huasdorff space with X(X) = a > 1 and assume that X., consists of n points.

Then X is homeomorphic to Z("'.

Let {X,^(i),^"} be a continuous field of C*-algebras with X a locally

compact Hausdorff space. Let A = CQ(X, A(t) ,3r) be the set of all continuous

cross sections of {X,A(t),&~} vanishing at infinity. Then A is a C*-algebra.

We say a bounded cross section x in the bundle

{X, LM(A(t))}    ({X, RM(A(t))} , {X, QM(A(t))})

is left-strictly (right-strictly, quasi-strictly) continuous at t0, if for every asF,

xa   (ax, axa)  is continuous at t0 .   We denote by C (X, LM(^(/))LS _,&)
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(Cb(X, RM(A(t))RS,^), Cb(X, QM(A(t))QS,^)) the set of all bounded

left-strictly (right-strictly, quasi-strictly) continuous cross sections in

{X, LM(A(t))}   ({A-, RM(A(t))}, {X, QM(A(t))}).

Let A = C0(X,A(t) ,Sr). Exactly as in [2, 3.3] we obtain

Theorem 1.8 (see [19, §1.3] also).

Cb(X, LM(A(t))hS ,F) = LM(A) ;

Cb(X, RM(A(t))RS ,&) = RM(A) ;

Cb(X, QU(A(t))QS,^) = QM(A).

2. A CRITERION FOR  QM(yl) = IM(A) + RM(^)

Let A be a cx-unital C* -algebra, and a a strictly positive element, 0 <

a < 1. For each n let fn be a continuous function such that fn(t) = I if

t>\/n, fn(t) = 0 if 0<t< l/(« + l) and fn is linear in [l/(n + 1), \/n].

Define e   - f„(a). Then {en} is an approximate identity for A. Moreover

emen = enem = e„,if m>n.

Lemma 2.1. Let A be a a-unital C*-algebra and {en} an approximate identity

for A satisfying emen = enem - en, if m > n. Suppose that y e QM(^l), then

yeLM(A) if and only ifthere exists an increasing sequence {nk} of nonnegative

integers such that
oo

k=\

converges in norm to an element of A where en = 0.

Proof. Assume that y e IM(A). For every m, yem e A. Hence there is

m such that ||(1 - em,)yem\\ < \/2m. Therefore we can recursively define

nx < n2< ■■ ■  so that
1

2k

This implies that J2T= i ( * _ en M^n ~ en. _ ) *s norm convergent to an element

in A.

For the converse, let z — y - ¿ZT=\ ̂  ~ en )y(en ~ en ) • For nxeo" n > 'et

m be the least integer such that nm> n . Then

m

Zen=yen-H{l-en^)y{enk-^_^n
k=\

m

= ¿Z[y ('», - e«k-)en - 0 - O > K - V.) 'J
k=]
m

\{l~enk+1)yenk <   7*

k=\
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Since y e QM(/4), we conclude that zen e A , for all n . Hence z e LM(^).

It follows that
oo

y = z + Y^-\+l)y{enk-enk_i)eLM(A).
fe=i

Lemma 2.2. Let A be a a-unital C*-algebra and {en} an approximate identity

for A satisfying emen = enem = en , if m > n. Suppose that xn e QM(A) with

\\xn\\ < M for some M, j is an integer and 0 < a < 1. Then

oo

¿2(?n+j+i-en+j)ax„(e„-en-i)a

n=\

converges strictly.

Proof. Let Ps be the range projection of (e - es_x) and

ys = (es+J+l-es+j)axs(es-es_x)a.

Clearly Ps • Ps+2+. = 0 for i = 0,1,2, ... . Suppose that A c B(H) and

/ e H. Then

s=2k
s<N

Y.y,f = E ps+J+lysPsf
s=2k
s<N

= E Wps+J+iyspsf\\2 < M2vt
s=2k
s<N

for all N . Similarly

E yJ <M2\\f\\2    for all N.

s=2k + l
s<N

So {|| Z)^=i y„\\} is bounded. For fixed m , if N > m + 1 , then

N+k N+k

em E yn = E ynem = °
n=N n=N

for every k . Hence ¿^L i y„ converges strictly.

Theorem 2.3. Let A be a a-unital C*-algebra and {en} and approximate

identity for A satisfying emen = enem = en, if m > n. Then QM(/1) =

\JM.(A) + RM(A) if and only if for every x e QM(^)sa , there exists an increas-

ing sequence {nk} of nonnegative integers such that

k=\

converges strictly (en — 0).

oo

Y,(l-en)x(enk-enk_)



QUASI-MULTIPLIERS OF C*-ALGEBRAS 151

Proof. Let x e QM(/l)sa and «, < n2 < ■■■ be chosen such that

2X1O -enk)x(enk -enkJ converges strictly. Let xk = (1 -enk)x(e„k -e„kJ.

Since Yik=i xk e RM(^) for all N, we conclude that £~ , xk e RM(A). For

a fixed w , suppose that k0 is the least integer such that n.> m . Then

/ oo        \ k0

*-E x, u„=**-.- > x.ek"m

k=\       / k=\

k0

Hence x-E^L, ^ € LM(/1). This implies that QM(^)sa c LM(^) + RM(^),

and hence QM(y4) = LM(A) + RM(^).

Next assume that QM(A) = LM(^) + RM(A). Equivalently, QM(/l)sa =

RelM(A). Let x e QM(/l)sa . Thus there is y e IM(A) such that x =

y + y*. By Lemma 2.1, we can choose nx < n2 < ■■■ such that the ele-

ments yk = (1 - enkJy(enk - ent¡) satisfy ||yj| < 2~k , whence E~, ykeA-

By Lemma 2.2   Y^kx'=x(en     - en)y(en   - en    )   converges strictly.    Hence

£~i0 -enk)y(enk -*«*_,) converges strictly.

Let

^ = (^-vi)v(«i'-v.)'
y(k] = {enk - «nk-)enkúy (l - enk) [enk ~ V.)

and

>f = («* - enk.)enMy 0 - %) K+l - <W)  •
Then by Lemma 2.2,

oo oo oo   fe+1 oo     k+\

Y/?,      Ei'  and   EE^ = EE^
k=\ k=\ k=\ j=\ k=\ j=k+2

converge strictly. Since

oo      oo oo   k+\ oo oo

E E ^y + EE^^EvK-vJ^-Eiv
k=lj=k+2 k=\ j=l j=\ ;'=1

We conclude that E/tti E^/c^-Vfe./ converges strictly. Thus

oo / OO \

H(enk-enk.) [y-Eyj) {l~enk)
k=\ V        /=*'     J

OO     oo

= E E ('„, - %-) en,J {enj - O (l - %)
*r=I /=1

OO       00 oo oo

EE^)+Eí=Eí
fc=lj=k+2 k=\ k=\
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converges strictly. So

oo / OO \

converges strictly. Since (1 - e   )(en, -en_) = 0 if k > j and

we have
oo /   OO \

£(i-«0i&)*('*-v,)-°-
Finally, since x = y+y*, E^li ■** converges strictly. This completes the proof.

3. Lifting and hereditary properties

Considering the problem QM(/i) = LM(A) + RM(^), one may ask the fol-

lowing questions:

(i) If / is an ideal of A such that QM(A/I) = LM(A/I) + RU(A/I) and
QM(/) = LM(7) + RM(/), does it follow that QM(A) = RM(A) + LM(A) ?

(ii) If QM(A) = LM(A) + RM(A), does it follow tht QM(B) = 1M(B) +
RM(B) for B in A ?

In this section, we shall show that (i) has a positive answer under a suitable

assumption on A, and for some special B 's, (ii) also has a positive answer.

However, in general (ii) has a negative answer, as we shall see in Example 8.2.

Theorem 3.1. Let A be a o-unital C*-algebra and B a C*' -subalgebra of A

such that the hereditary C*'-subalgebra generated by B is A itself If QM(A) =

LM(A) + RM(A), then QM(B) = LM(B) + RM(B).

Proof. Let A and B be C*-algebras obtained by adding identities to A and

B. Since the hereditary C* -subalgebra generated by B is A itself, B contains

a strictly positive element of A, say a. It follows that A and B share a

common approximate identity {en} satisfying enem — emen = en, if m > n.

Since en converges weakly to the identity of A and the identity of B in A**,

A and B have the same identity. Thus

QM(5)sa = [(AJT n [(AJJ- c [(i,,fr n [(4,U~ = QM(il)u

(see [1, Theorem 4.1]). Since A and B have the same approximate identity

{en} , we can apply Theorem 2.3 to obtain the desired conclusion.

Let A be a C-algebra and / a closed ideal. We shall denote M(A) n /**,

LM(^)n/", RM(A)nI** and QM(^)n/" by M(A,I), LM(A,I), RM(A,I)
and QM(/i, /), respectively. If x e M(A, /), and aeA, one can see that ax,

xae I. Moreover, if x e LM(^, /), xael, etc.
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Lemma 3.2. Let A be a a-unital C*-algebra and I an ideal of A. Then

QM(A, /) = IM(A, /) + RM(A, /) if one of the following holds:

(i) QM(A) = IM(A) + RM(A) or
(ii) QM(/) = LM(/) + RM(/).

Proof. Let {en} be an approximate identity of A satisfying emen = enem = en ,

if m > n , and {uj be an approximate identity for /. Let x e QM(A,I). If

we define x¡¡ = (e¡ - ei_x)x/2x(eJ - £,_i)'/2 (e0 = 0), then xt, e An I** - I.

There is a subsequence {un} of {ux} such that

||(l-M/.)x,..||<l/2'+;',       j<i, i =1,2,...,

and

||x¡7(1-M¡)||<1/2'+;',       i<j,j= 1,2,....

Define u = Y^lMi ~ e¡-i)i ui(e¡ ~ ev • **y Lemma 2.2, u e /**, it is

then easy to check that u e M(A,I). Define aji = (1 - ej+x)(ei - e,_,) »

bf] = (ej - e^'2, bf = (ej+x - e¿'\e¡ - ,,_,) and bf =
(<?_, - e,-_2)    (ej ~ ej-\) ■ Since djj = 0 if /' < j + 1, we have

(1 - eJ+x)[(l - u)xu](ej - ?._,) = Y ajM - ui)xuujb?
i=j+\

+ y w-vi)*wuj+ib? + E V«-«/)Vi"Hâ?'
1=7 + 1 i=j+l

Thus

IKl-e^l-u^ej-e^WKl/?-2.

This implies
oo

'£Ml-ej+lj(f-ü)xu(eJ-eJ_l)H<oo.
;=i

By Lemma 2.1,  (1 - u)xu e LM(^).   Similarly,  ux(\ - u) e RM(^) and

(l-u)x(l-u) €LM(^)nRM(^). For every aeA, (1 -u)xu-a e Anl** = I,

a ■ ux(l - u) e I and a( 1 - u)x( 1 - u), ( 1 - u)x( 1 - u)a el. So ( 1 - u)xu e

\M(A,I), ux(l-u)eRyi(A,I) and (1 - u)x(l - u) e M(A,I).

Now we need only show that uxu e LM(A, I) + RM(^, /).

(i) If QM(A) = LM(A) + RM(A), there are yx e LM(A) and z, e RM(^)
such that x = y, + z,, so uxu = uzxu + uyxu. Since u e M(A,1), yxu,uae I

for every aeA. Hence uyx u e \M.(A, I). Similarly, uzx u e RM(^f, /).

(ii) If QM(/) = LM(/) + RM(/), there are y2 e UA(I) and z2 € RM(/)

such that x — y2 + z2, so uxu = uy2u + uz2u . One can easily check, as above,

that uy2u e LM(A, I), uz2u e RM(^, /). This completes the proof.

At this point, one may ask whether QM(^4) = LM(^) + RM(^) implies

QM(/) = LM(7) -|-RM(/). This turns out to be false, as we shall see in Example

8.1. However, we have the following "lifting" theorem.
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Theorem 3.3. Let I be an ideal of a a-unital C* -algebra A, and suppose that

QM(A/I) = LM(A/I) + RM(A/I) and QM(/) = LM(7) + RM(7). Then

QM(A) = IM(A) + RM(A).

Proof. Let <j>: A —> A/1 be the canonical homomorphsim and take x e QM(^4).

So there is y e LM(^/7) and 2 e RM(^/7) such that 4>**(x) = y + z, where

4>**  is the extension of <p to A**.   It follows from [6, 4.13] that there are

y, e LM(^), z, e RM(A) such that (¡)**(yx) = y and 4>**(zx) = zx . Thus

4>**(x - z, - y,) = 0. So we may assume that x e ker</>** n QM(^), hence

x e QM(A, 7). By Lemma 3.2 x e LM(A, 7) + RM(A,7) c LM(A) + RM(A).

Let K be the C*-algebra of all compact operators on / .

Corollary 3.4. Let A be a C*-algebra such that QM(A <g> K) = LM(A ® K) +

RM(A ® K). Then QM(Í® K) = LM(i® K) + RM(J(8 K).

Theorem 3.5. Let A be a C*-algebra such that QM(A <g> K) = IM(A ® K) +

RM(^4 (g> K) and let B be a a-unital C*-subalgebra of A such that QM(5) =

M(B). Then

QM(B ®K) = LM(5 ® K) + RM(B ® K).

Proof. By Corollary 3.4 we may assume that A has an identity. Take x 6

QM(ß (g) K)s¡¡ and let {e( } be a set of matrix units for K. Then x can be

identified with an infinite matrix (a.) which represents a bounded operator,

where a¡¡ is defined by (1 <g> eu)x(l <g> e..) = a¡¡ ® e¡}. Clearly each a¡j €

QM(B) = M(B).
Let {wn} be an approximate identity of B which is quasi-central for M(B),

i.e.

limlltt^-ôwjl = 0   forallbeM(B).

For every i, we have an integer n¿ such that

mM.[|(l-MBi.)Mfc|.|ûlV.||]<l/22,+1

and

Un,a,j - a,jUn, <l/2'+;, i>j.

Let w = (b¡j), where bu = un,, bi} = 0, if i ^ j. Clearly, w is bounded

and so is wx = (unajj). Since atj e M(B), un ai} e B c A . We may view

wx as an element in QM(/1 <8> K). It follows from [6, 4.20] or Theorem 2.3

that there exist n{ <n2< •■■  such that L(wx) is bounded, where

oo

L(wx) = Y(l- 4)»* (4-O
fc=l

and /n = E"=i ! ®e„ • Let cr = -L(wx) + L(wx)* and y = x + a. Then y is

bounded and Rey = x . Let L(y)' = (c( ), where c,.. = a,. .(1 - wn.), if there is

k > I such that nk_x < i < nk , n¡_x < j <n¡, and c¡¡ = 0 otherwise. Then
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L(y) - L(y)' = (d¡..) where ¿7 ss a( m„ - w„ a,-,- if there is k > I such that

nk_x < i < nk, n¡_x < j < n¡ and ¿7 = 0 otherwise. Since ||rf(J|| < l/2'+J,

d¡¡ e B, we see that L(y) - L(y)' e B ®K. For every /V,

k

L(y)'Yuk®ea^B®K>
i=i

because
n        ii     II /i \ ,i  n2i + l

max||a(7||.||(l-MnJu,||<l/2
kj<i"   ,J

Moreover [y - L(y)] • E/=i "¿ ® e„ eB®K. Hence

A:

y ' E M/t ® eiie B ® K f°r a11 ̂ •
1=1

Since {E,=i uk ® *i/} f°rrns an approximate identity for 5 ® A^, we conclude

that y G LM(i4), so x e LM(yá) + RM(A).

4. A CONSTANT ASSOCIATED WITH THE EQUATION

QM(A) = UA(A) + RM(A)

Definition 4.1. Let A be a C*-algebra such that QM(A) = LM(^) + RM(^).

For every x e QM(^), let

a(x) = inf{||y|| :x = y + z, ye LM(A), z e RM(A)} .

Clearly q(x) < oo. Let a(A) = sup,. ,,<x a(x). To see that a(A) < oo, we

consider the mapping (f> : LM(^) —> QM(^)sa defined by 4>(x) = (x + x*)/2.

Then <f> is a bounded real linear map from the real Banach space LM(^4) onto

the real Banach space QM(/l)sa . By the open mapping theorem, </> is open.

Thus the image of unit ball of LM(A) under (f) contains a ball around the

origin. It follows that a(A) < oo.

The following is an immediate consequence of Theorem 1.8.

Proposition 4.2. Let An be C*-algebras satisfying QM(An) = LM(^n) +

RM(An) and a(An) < c, for some c > 0. Then

QM(Z © An) = LM(Z © An) + RM(Z © An)

and supn a(An) < a(L© An) < c.

Lemma 4.3. Suppose that A is a a-unital C*-algebra such that QM(^4) =

LM(A) + RM(A). If {en} is an approximate identity satisfying emen = enem =

en, if m > n, and x e QM(^) with x < 1, then for every e > 0, there is

nx < n2< ■■■  such that

oo

¿2(l-en)x(enk-enk_)
k=\

<7a(A) + 5 + e.
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Proof. Let x = y + z, where y e IM(A),  z e RM(A) and ||y|| < a(A) +

(1/21)«.
As in the proof of Lemma 2.1, there exist nx < n2 < ■ ■ •  such that

oo

ElO-^iM^-v,)
k=l

e
<3

and

¿2\\(enk-enk-l)Z(i-enk+l)\\<r
k=l

Define z.,=(e„ -e„   )z(e„ -e„    ). We have
ik       v  n¡        W/—\'   v  nk        nk—\ß

oo oo

A:=l k=\

<llz|| +

<I|Z|| +

oo     k

EEz*
it=i i=i
oo  k-2

EEzi*
A:=l 1=1

+
£■ A:— l/<

/t = l

+

/t=i
**

For every large N

N  k-2

EEz«¿
k=l i=l

W-2     W

E E z«a
1=1  fc=i+2

tf-2

E(e„   ~e„      ) z (e„    ~e„     )
\ n¡        n¡-\ )      \ nN        «/+!/

i=l

<

Thus, by the proof of Lemma 2.2,

oo

fc=l

<5||z|| + -.

Now we have
oo oo

¿2{X-e»k)X{enk-enk-)     $    Y,{{-enk+)y{enk-enk_)
k=\

oo

k=l

oo

<£ + 2||y|| + 5||z|| + |

e 2 5 e
< _- + 2q(^) + 2]"« + 5a(^) + 2Te + 5 + 3

= la(A) + 5 + e.
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Remark 4.4. From the proof of Lemmas 2.2 and 4.3, we find that if the en 's

are projections, we will have

\\E(l-<'nk)x(enk-enk_>)\\<4a(A) + 3 + e.

Lemma 4.5. Let B be a C*-algebra which has an approximate identity consisting

of countably many projections. Suppose that QM(i?) = M(B) and A = C(X) ®

B, where X is homeomorphic to one of the spaces Yn described in Definition

1.6. Then

QM(A) = LM(A) + RM(A)   and   a(A) < y/h~.

Proof. Let x 6 QM(A) = C(X, QM(B)QS) and ||x|| < 1. Let {ek} be an
approximate identity of B consisting of projections. We use induction.

(l)If'Wl, l, = {0}u{l//n}~=1.
For every k, there is an N such that whenever m> N

\\ek(x(0)-x(l/m))ek\\<l/k.

There is an integer m0 such that for every m> mQ, there is a largest integer

k    such that
m

ek (x(0) - x(l//))<?,     < \/k     for all / > m

(In the trivial case x(\/m) = x(0) for all m > m*, for some m*, define

ek = em .) Hence km —► oo, as m-»oo and km+x > km . Define u(\/m) = ex

if m < m0, u(\/m) = ek and y(0) = x(0), y(l/w) = u(\/m)x(\/m),

z(0) = 0 and z(\/m) = (1 - u(\/m))x(\/m). Then x = y + z . It is easy to

check that for every a and b e A, y(l/m)a -* y(0)a and bz(\/m) —► bz(0).

So y e IM(A), z e RM(A) and

W = IMI<l = vT,

(2) Next we assume that Lemma 4.5 is true for all integers less than n. In

particular, we can choose y 6 LM(^) such that ||y|| < \fk, where k < n .

Notice that Yn is the one-point compactification of the disjoint union of Z;,

where each Z( is homeomorphic to YnX.

Let x¡(t) = x(t)\z . There is an integer i0 such that for every i > i0, there is

a largest integer m¡ suchthat \\em [x(oo)-x¡(t)]em || < \/mi for teZr (In the

case that x¡(t) = x(oo) for all / > /'0, for some z0 , we define em = e{.) Hence

mt■ —> oo, as i —y oo and mi+x > mi. By the induction assumption, there are

yi e C(Zi, LM(ß)L s ) and z, S C(Z¡, RM(5)R s ) such that x¡ = y¡ + z¡ and

||y;-||<\/^T.
Define y(t) = em¡Xi(t) + (1 - em¡)y¡(t)(l - em¡) if t € Z,, y(oo) = x(oo),

Z(0   =   (J - em)ZM) + (l - em)yiem >  if   '  G  Zi   and   Z(°°)   =  °-    Clearly.

x = y + z and y(t)\2¡ e C(Zi,LM(B)LS) and z(t)\z¡ e C(Z¡,RM(B)RS).

Similarly to (1), one can check that y(t) e C(Yn, LM(fi)LS) = LM(A) and
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z(r) e C(Yn , RM(5)RS ) = RM(y4). Hence x e IM(A) + RM(A). Moreover,

let B act on a Hubert space 77 and f e H,

IWO/II2 = K*,(0/|2 + \\{l-em)y,{t) (l -em)jf

<ii/ii2 + (»-i)ii/n2 = »imi2-

This implies that ||y|| < y/ñ.

Lemma 4.6. Let A = C0(X,A(t),A) be a separable C*-algebra, where X is

a countable, locally compact Hausdorff space with X(X) < oo and A(t) are

C*-algebras such that QM(A(t)) = M(A(t)). Then QM(A) = LM(A) + RM(A).

Proof. Let Ik = {f e A,f(t) = 0, if t e X[k]} (cf. Definition 1.4). By
Proposition 4.2, and Theorem 3.3, we can easily prove the lemma by induction.

Remark 4.6. Define f(e'e) = id/n (-n < 6 < n) and let an (n e Z) be

its Fourier coefficients. Then an = (-1)"+ /nn (n ^ 0), a0 = 0. But

2Z„eza\n\e is the Fourier series of the L function 2n log11 + e | which

is not in L°°(T). ( T denoting the unit circle.) Thus the matrix (a¡_ ) repre-

sents an operator on /   of norm 1. But the lower triangle of the matrix is not

bounded. Let Ln = (bt..), where bi} = v-Tu,_, if i > j and i < n, btj = 0

if i > n, or j > i.

Let g e I2, g = (dj), dj = (-l)jl/^ñx/2, j<n, dj = 0, j>n. Then

\\g\\2 = 1 and

llW = -T-èfË7]   ̂ 4-E(l08^)2

1 1 2
> -5-[«log«(logn -2)] > —?(log«)

n n 4n

if n is large enough (n > 15). We conclude that ||LJ| > (1/2tt)log« when n

is large.

Lemma 4.7. LetAn = C(Yn)®K. Then

— logn<a(An)< s/ñ

when n is large enough (n > 20).

Proof. It follows from Lemma 4.5 that QM(^„) = LM(^n) + RM(,4n) and

a(An)<y/ñ.
For every sequence {nk} , nx < n2 < • • • , define the operator a({nk}) = (t¡j)

where
_ f V-l(ak_,),    if / = nk, j = n,,

u     \ 0 otherwise

and an = (-l)n+x/nn, n¿0, neZ, a0 = 0.
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Then  a({nk})   is selfadjoint and   ||a({nfc})||  <   1.    For every  n, define

an({nk}) = (t'ij), where

M l(ak_i),    if i = nk, j = n¡ andk,l < n,

otherwise.

Let Sn = {an({nk}), {nk} c N} , so that each Sn is countable (n e N). We

claim that the cluster points of Sn are

{«,({«*}), 7 <"-l, {«,} c A/} = "Q S,
7=0

(in the weak operator topology).

Let Pm = (eij) where e(( = 1, if / < m , e¡}. = 0, if /' ̂  ; or i > m.

Let y? G U"m) ̂  , say /? = a-({n¿}) for some ; < n - 1 and {nk} C N.

Define n^' = «^ if A: < 7 , «¡^ = «fc + k + s, if A: > j . For every m,if s > m,

Pm[ß -a„{{ni^})]Pm - 0. This implies that a„({nk }) -» ß weakly as s —► 00.

Next let an({mks^}) —> /? weakly as s —> 00. Since for every i there are only

finitely many different elements pian({mk})pi, we see that

¿\Krf)-/?]/>, = o,
when 5 is large. Thus we conclude that

n-l

ß G {«/{«,}) ,;<«- 1,  {«,} C W} = U ^
7=0

unless a„{nk } = ß for s >s0 for some s0 . This establishes the claim.

By induction, we have (Sn)w = (J"=1 S- (where " w " means the weak closure)

and (Sn)yX = \J"I¿ Sj . Hence X(S™) = n . It is also clear, by a similar argument

as the above, that every sequence of Sn has a convergent subsequence. So S™

is compact.

The weak operator topology on bounded subsets of B(l ) coincides with the

quasi-strict topology B(l ) = QM(AT), so we define a continuous mapping Fn

from Yn onto S®, then Fn e C(Yn, QM(K)QS) = QM(An). The existence

of Fn comes from Theorem 1.7. Now let {e( } be a set of matrix units for

K and fm = E/=i 1 ® e¡, (fm can be identified with a constant function:

/^ —► Pm e K ). Then {fm} forms an approximate identity for A . For every

«, < «2 < • • • , we see clearly, by the construction of S™ , that

SO" fnk)*n{fnk "4_,)
<t=l

if « is large enough (« > 15).

>ll¿>)||>¿log«,
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Combining this and Remark 4.4, we have that a(AN) > ¿log«, if n is

large enough (« > 20).

We shall see in Example 8.1 that M(A/I) = QM(A/I) and M(7) = QM(7)
does not imply QM(^4) = M(^) even for very simple algebras. Theorem 3.3

shows that if moreover A is tr-unital, we do have QM(^4) = LM(^4) + RM(^).

Hence the only significance of the following proposition is the estimate of a(A).

Proposition 4.8. Let A be a a-unital C* -algebra and I an ideal of A. Suppose

M(A/I) = QM(A/I) and M(7) = QM(7). Then for every x e QM(A), there are

y e IM(A) and z e RM(^) such that x = y + z, \\y\\ < \\x\\ and \\z\\ < \\x\\,
hence a(A) < 1.

Proof. Let <p: A —> A/1 be the canonical homomorphism, <p** be its extension

to A**. So <j>(x) e QM(A/I) = M(A/I). By [26], there is x e M(A) such that

<j>(x) = q>(x) and xx - x - x € ker </>** n QM(^). Thus x, e Ç>M(A, 7). Let
{e¡} be an approximate identity for A satisfying e{e. = eiej = ei, if i < j,

and put x¡;. = (e¡ - e¡_¡) ' x(ej - e,_,)1/'2 ■ Then x(. e I. Suppose that {ux}

is an approximate identity for 7. There is a subsequence {ux } of {uk} such

that

<^J>        i>j, i= 1,2,....

If u = E/^i(e,-~ei-i) ux (ei~ei-i)l/2,tnen ueM(A,I). As in the proof of

Lemma 3.2 we have

IO-0xu

¿Zp-ei+0(l-u)xM-e,-0
1

< 00.

Hence (1 - u)xx e LM(^4) by Lemma 2.1.

Let y = (1 - u)x = (1 - u)x + (1 - u)xx and put z = ux = uxx + ux'.

Since u e M(A,I), we see that u e LM(^) and ux' e M(A). Since M(7) =

QM(7), xx e M(7). For every a e A, au e I, so auxx e I c A. This

implies that uxx e RM(^). Hence z e RM(A) since 0 < u < 1. We have

ll^ll = ||(1 - M)x|| < ||x|| and ||z|| = ||mjc|| < ||x||. Thus a(A) < 1 .

5. The spectrum of an element in a scattered C* -algebra

In this section, we shall discuss the relationship between the spectrum of a

single element in a scattered C*-algebra A and the spectrum of the algebra A.

Jensen [13] defined a C* -algebra to be scattered if every state on the algebra

is atomic. He showed [14] that a C* -algebra is scattered if and only if it is

type I and has scattered spectrum A . He also showed [14] that a C* -algebra is

scattered if and only if it has a composition series with elementary quotients.

We recall that a C* -algebra A is AF (approximately finite-dimensional) if

for each e > 0 and ax ,a2, ... ,an e A there is a C*-subalgebra B of A and

bx,b2, ... ,bn e B such that B is of finite dimension and \\at - b¡\\ < e, for

all / = 1,2, ... , « .
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Lemma 5.1. Every scattered C*-algebra A is AF.

Proof. Súpose that A has a series of ideals 0 = 70 c 7, c 72 c • • ■ c Ia c ■ • • c

Ix = A , where each 7„+1/7„ is an elementary C*-algebra and Ia = (\Jß<aIß)~

for each limit ordinal a. We prove the lemma by induction on X. Assume

Lemma 5.1 is true for all X < X0 .

If X0 is not a limit ordinal, Ix /IXo-\ is an elementary C*-algebra, hence

7¿ /7¿ _! is an AF-algebra. By the induction hypothesis Ix _x is also an AF-

algebra. It follows from [11] that A is an AF-algebra.

If X0 is a limit ordinal, A is the norm closure of {Jx<¡ Ix ■ For each e > 0

and ax,a2, ... ,ane A, there is X <X0 and b'x,b'2, ... ,b'ne Ix such that

||«( — ¿,|| <«/2,       ¿=1,2,...,«.

Since, by hypothesis, Ix is an AF-algebra, there is a C*-subalgebra B ofIx and

bx,b2, ... ,bne B such that B is of finite dimension and

\\b't- b¡\\ <e/2,       z = l,2,...,«.

Hence ||è( - a¡\\ < e, i — 1,2, ... , « . So A is an AF-algebra.

Lemma 5.2. Let A be a scattered C*-algebra. If X(A) — a, then for every

a G /ísa , we have X[a(a)] < a + 1. If a is a limit ordinal and A., = 0, then

X[a(a)] < a.

Proof. Let 7;. = {x e A;n(x) = 0, Vn e A.¡x}¡<a. Suppose that a e ^sa .

Let B be the C*-algebra generated by a . Define J¡ = B n I¡. Clearly, since

7;+1/7(. and A/Ia are dual C*-algebras [12, 4.7.20], so are Ji+l/J¡ and B/Ja .

Thus B is the union of closed subsets X¡ satisfying Xi D Xj+X, Xi+X c (XXXX

and X,,.\X; is discrete,  i < a.   If A, , = 0, A = I .   Hence X   = 0.
1+1 »    1 ' [a\ a a

Since B = C0(B), it is clear that X(B) < a and if A[a] = 0, B[a] = 0. Thus

A(ít(íi)) < a + 1 and if i,a] = 0 , A(fr(a)) < a .

Lemma 5.3. Let A be a scattered C*-algebra. Suppose that X(A) = a, I„ =

{x e A ; 7r(x) = 0, 7T e A,»,}. Then h+JIg is of infinite dimension, if ß < a.

Proof. We shall use the facts that A is of type I and ß + 1 < a.

^* Jß+\  ~ Iß+i/Iß-   11" "^j+i   ^s an innnite set> tne result is clear.   We

may assume therefore that Jß+X = {ñt ,ñ2.ñm} ■ Let ni be an irreducible

representation of A corresponding to ñ¡. We have A.ßx = U/üií71,}- • Since

^[ß+i] 9e 0> there is ^ e ^[y8+1] and hence there is i < m such that ker^ c

kerrc. This implies that n^A) must be infinite dimensional. Hence ti¡(I„+x)d

K(Hn,) (the compact operators on 77^ ), where dimTf^ = oo. Since 7r,(7j) =

0, we conclude that J„+x is of infinite dimension.

Theorem 5.4. Let A be a scattered C*-algebra with X(A) = a. Then

(i) For every a e Asa   X(a(a)) < a + 1.
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(ii) If a is not a limit ordinal, there is a e Asa  such that X(a(a)) > a.

(iii) If a is not a limit ordinal, then there is a e Asa   such that X(a(a)) =

a + 1   if and only if A/Ia  is of infinite dimension, where Ia = {x e

A;n(x) = 0,7ieA[a]}.

(iv) If a is a limit ordinal and A/Ia is of finite dimension (or zero), then

for every a e A%a , X(a(a)) < a. Moreover, for every ß < a, there is

a e Asa  such that X(a(a)) > ß.

(v) If a is a limit ordinal such that a = lim ßn   (ßn < a) and A/Ia is of

infinite dimension, then there is a e As¡¡ such that X(a(a)) > a.

Proof. We shall use induction.

Assume the theorem is true for all ß < a.

(i) is the same as Lemma 5.4.

(ii) If a is not a limit ordinal, by Lemma 5.5, Ia/Ia_x is of infinite di-

mension. By the induction hypothesis for (iii), there is a e Ia such that a is

selfadjoint and X(a(a)) > (a - I) + 1 = a.

(iii) If A/Ia is of finite dimension, a e Asa , then there is a polynomial p(t)

(p ^ 0) such that p(a) e Ia. By the induction hypothesis X(a(p(a))) < a,

since X(Ia) = a - 1 . By the spectral mapping theorem, one sees easily that

X(a(a)) < a.

If A/Ia is of infinite dimension, there is a sequence of mutually orthogonal

projections pn e A/Ia, pn ^ 0. Let 4> '■ A —> A/Ia be the canonical homo-

morphism. Since 7q is an AF-algebra, by the projection lifting theorem [4],

there is px e A such that (f>(px) = px . Using the projection lifting theorem

on (1 -px)A(l -px)/Ian(l -px)A(l -px) - (1 -px)(A/I)(l -px),and con-
tinuing, we construct a sequence of mutually orthogonal projections {pn} c A

such that n(pn) = pn . Since there is n e A., such that n(pn) ^ 0, we have

n e A\hull(pnApn). It follows from the fact that PnApn is a hereditary C*-

subalgebra of A that (pnApn)A is homeomorphic to A\hull(pnApn). Since

(A\hull(pnApn)) is open and Â[a] n (A\hull(pnApn)) ¿ 0, X((pnApnf) = "•

By (ii), there are an e P„Apn , an = a*n, \\an\\ < 1 and X(a(an)) > a. Taking

an , if necessary, we may assume that 0 < an < 1. Define

OO        j

«=iz

then a is selfadjoint and X(a(a)) = a + 1.

(iv) Assume that a is a limit ordinal and A/Ia is of finite dimension. If

ae I , a = a*, then by Lemma 5.2 X(a(a)) < a. For every a e Asa , there is

a polynomial p(t) (p(t) ^ 0) such that p(a) e Ia . Hence X(a(p(a))) < a . By

the spectral mapping theorem, one can see easily that X(a(a)) < a. For each

ß < a, consider 7„+1 c A . By the induction hypothesis, there is ae A%& such

that X(a(a)) > ß .
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(v) If a is a limit ordinal such that a — lim ßn , ßn < a, and A/Ia is

of infinite dimension, then, as in the proof of (iii), A contains a sequence of

mutually orthogonal projections {qn} such that X[(qnAqn)*] = a. By (iv), there

are an e qnAqn, 0 < an < 1 such that, X(a(an)) > ßn . Define

oo      .

n=\ Z

Clearly a e Asa and X(a(a)) > a.

The proof is complete.

6.  QUASI-MULTIPLIERS OF STABLE   C*-ALGEBRAS

Lemma 6.1. Let A be a separable scattered C*-algebra with X(A) < oo. Then

QM(A) = IM(A) + RM(A).

Proof. Let I¡ = {a € A, %(a) = 0, Vite A[¡x} . Then {0} = 70 c 7, c I2 c • • • C

In C A , « = X(A), and 7//7i_, and A/In are separable dual C*-algebras. Since

A and 7(. are fj-unital and M(7;/7/_1) = QM(7//7/_1), M(A/IH) = QM(A/In),
by Theorem 3.3 and induction; QM(^) = LM(^) + RM(A).

Corollary 6.2. Let A be a separable scattered C*-algebra with X(A) < oo. Then

QM(A ®K) = LM(A ® K) + RM(A ® K).

Theorem 6.3. Let A be a separable C*-algebra. Then QM(A ® K) =

LM(^ ® K) + RM(A ® K) if and only if A is scattered and X(A) < oo.

Proof. By Corollary 6.2, we need only show the "only if part. So we assume

that QM(/1 ®K) = LM(A ® K) + RM(A ® K). It follows from Corollary 3.4
that we may assume that A has an identity. It follows from [6, 4.23] that A

is scattered. If X(A) is not finite, by Theorem 5.4, for every integer m > 0,

there is a e Asa such that X(o(a)) = m. Let B be the C*-algebra generated

by a and 1. It follows from the proof of Proposition 2.4 that QM(B ® K) c

QM(/1 ® K) and A® K and B ® K share a common approximate identity

fn — E"=i 1 ® e,j > where {et¡} is a set matrix units for K. By Lemma 2.16,

there is F e QM(B®K) c QM(A®K) such that for every {«,},«,< «2 <••• ,

EO -fn)F{fnk "/.J
k=\

if m is large enough. It follows from Lemma 4.3 and Remark 4.4 that

1  ,
> — lOgW,

¿n

1
a(A®K) > -—logm

97t

for m large enough. Hence a(A ® K) - oo, a contradiction.

Corollary 6.4. Let A be a separable C*-algebra. Then QM(A ® K) =

LM(A ® K) + RM(A ® K) if and only if there is an integer m > 0 such that for
every ae A    , a(a) is countable and X(a(a)) < m .



164 HUAXIN LIN

Proof. It is an immediate consequence of Theorem 5.1, [14, Theorem 2.2] and

Theorem 6.2.

Corollary 6.5. Let A be a separable stable C*-algebra. Then QM(^) = LM(^4)

+ RM(^) if and only if A is scattered and X(A) < oo.

7.   C*-ALGEBRAS WITH FINITE DIMENSIONAL

IRREDUCIBLE REPRESENTATIONS

In this section we shall consider C* -algebras whose irreducible represen-

tations are finite dimensional. Let Mn denote the C*-algebra of all com-

plex « x « matrices. If. A is a C*-algebra whose irreducible representa-

tions are finite dimensional and A is Hausdorff, then by [9, Theorem 10.54],

A = C0(A,M.tyA). If A = C0(A, M,t), A) is locally trivial, one can easily

show by Theorem 1.3 that QM(^) = M(A). However, even if Â is countable

and Hausdorff, QM(¿) ¿ UA(A) + RM(A), in general.

Proposition 7.1. There is a C*-algebra A such that all of its irreducible repre-

sentations are finite dimensional, A is a countable locally compact Hausdorff

space, and ÇfM(A) ± LM(A) + RM(A).

Proof. Keep the notations in the proof of Lemma 4.5. Let P (t) be the range

projection of Fn(t). By the proof of Lemma 4.5, it is clear that P("\t) is

a weakly continuous mapping from Yn to K. Since P^"\t) is bounded, we

conclude that Pw(t) e QM(C(Yn,K)).

Let X be the disjoint union of Yn , « = 1,2,.... Define

B0 = {xe C0(X,K) : x(t) = P{"\t)x(t)P{n)(t) ;W e YJ.

Clearly, B0 isa "-algebra. Let Mn(t) = P(n)(t)KP(n)(t). Then each Mn(t) is

isomorphic to some Mk . We define A = C0(X, Mn(t),BQ). A is a C*-algebra

all of whose irreducible representations are of finite dimension and A = X, a

countable, locally compact Hausdorff space. Define

k

qk(t) = P{"\t) Y 1 ® euP(n\t),    ifk> m(n) and teYn,
i=i

and qk(t) = 0, if k < m(n) and t e Yn , where m(n) is the largest integer such

that

IIL^a^ilog^+l)^4.

Since m(«)->oo, qk(t) e A. Moreover, {^(0} forms an approximate iden-

tity for A.

Define F(t) = Fn(t), if t e Yn , « = 1,2, ... , so that F(t) e QM(^). By

the proof of Lemma 4.5 we have for every {nk} C N, if n is large, that

||E0-«*)*(«*-«
> — log « - [I

¿n

Thus F $ \M(A) + RM(A)

«*-!,

> ^—log« - [log(n + 1)] (—> oo, as « —» oo)
¿71
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Theorem 7.2. Let A be a a-unital C*-algebra whose dimensions of irreducible

representations are bounded by an integer «. Then

QU(A) = IM(A) + RU(A).

Proof. We shall use induction on n .

Assume that Theorem 7.2 is true for all n < k. Let « = k + 1 and 7 =

{x e A : n(x) = 0, if dim7r < k} . By [21, 4.4.10], 7 is an ideal. Moreover, 7

is a homogeneous C* -algebra of order « = k + 1. So 7 arises from a locally

trivial A^+1-bundle [12]. Hence QM(7) = M(7). Now A/I isa cr-unital C*-

algebra whose irreducible representations have dimensions bounded by k. By

the induction hypothesis, QM(yl/7) = LM(^/7) + RM(^/7). It follows from

Theorem 3.3 that QM(y4) = LM(A) + RM(A).

Akemann and Shultz showed in [3] that a type I C*-algebra is perfect if and

only if every convergent sequence in A converges to at most a countable number

of points. So the algebras in Proposition 7.1 and Theorem 7.2 are perfect.

We shall produce an imperfect C* -algebra A, such that all of its irreducible

representations are finite dimensional and QM(^f) = LM(^) + RM(^4).

Example 7.3. Let 77 be a separable infinite dimensional Hilbert space and {Hn}

a sequence of mutually orthogonal, infinite dimensional subspaces. Let en be

the projection corresponding to Hn . There are sequences of finite rank projec-

tions {p"} together with a collection {q"} of infinite rank projections indexed

by binary strings a of 0's and l's such that

(i) ¿Zp" = en for each « ,

(ii) p"q"a = q"ap" for all i, a and n,

(iii) ql+q" = en for each « ,

(iy) q"a + qI — %ien ~ Pm) f°r a^ a ' where m = |ct| (see [3, Proposition

3.14]). '

Let 7 be the C*-algebra of all compact operators on 77 which commute with

{p("]}. Let A be the C*-algebra generated by 7 and by the set of projections

We claim that A is an imperfect, separable C* -algebra all of whose irre-

ducible representations are finite dimensional (and without identity). Clearly

7 is an ideal of A. Moreover, 7 is the restricted directed sum of finite di-

mensional ideals of A. Since the q"a 's commute with each other, A/1 is

abelian. It follows that every irreducible representation of A is finite di-

mensional. By [3, Proposition 3.14], A is not perfect. By Theorem 3.3,

QM(A) = LM(A) + RM(A).

8. Examples

Example 8.1.  QM(A/I) = M(A/I) and QM(7) = M(7), but QM(A) ¿ M(A).

Let A be the C* -algebra of convergent sequences in M2 with limits of the

form   [Jo] •   Tnen it is easy to see that QM(^)  consists of those bounded
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sequences {xn}™=x in M2 suchthat (xn)xx —> (x00)xx, whereas M(^4) con-

sists of those bounded sequences {xn}™=x in M2 such that (xn)u —► (x0O)n ,

(xn)2x -» 0 and (x„)12 -» 0. Thus QM(A) ¿ M(A).

Let 7 be the ideal of A consisting of sequences {x^}^, in M2 such that

xn -> 0. Then QM(7) = M(7). Since A/I is one dimensional, QM(A/I) =

M(A/I).

Example 8.2. QM(A) ¿ M(A), QM(A) = LM(A) + RM(A) but QM(7) ¿
LM(7) + RM(7).

Let x be a countable compact Huasdorff space with X(x) = ca, where œ is

the first limit ordinal. Let {e¡} be a set of matrix units for K.

Suppose BQ = C(x) ® K, B = BQ. Let A be the C*-algebra of convergent

sequences in B with limits in C(x)®exx . We identify x e B0 with an infinite

matrix (a.j), where atj G C(x) is defined by (l®eij)x(\®ejj) = aij®ejj. Iden-

tifying the identity of B0 with the identity matrix, we can identify elements of

BQ with some infinite matrices. It is easy to check (by Theorem 1.4, for exam-

ple) that QM(/4) consists of these bounded sequences {(à]"))}'^=x in B such

that a["x —> a™ and M(A) consists of those bounded sequences {(ct\"))}'^=x in

B such that a["x] -» a™ and a\f -» 0, if / • ; # 1, clearly QM(/4) ^ M(v4).
It follows from Lemma 4.6 that QM(/1) = IM(A) + RM(A), since B has an

identity and C(x) ®exx is abelian. Let

/={{K(;))C,:K(;,)=o,if«^i>K(;,)e50}.

Clearly 7 is an ideal of A . It follows from Theorem 6.3 that QM(7) ^ LM(7) +

RM(7), since 7 = C(x) ® K .

Example 8.3. There is a separable antiliminal C*-algebra A such that QM(,4)

/ M(A), but QM(yi) = LM(A) + RM(A).
Let B be the nonelementary separable matroid C*-algebra with identity

obtained as the inductive limit of the following

IVIm(\) m(2) m(3)

where g¡(x) = x®p and dim/? = m(2)/m(l) (see [10]). Let /40 be the C*-

subalgebra of 5 generated by the elements a such that a e Mm(k) for some

k, a = (au), au = 0, if «7 / 1. Let A be the C*-algebra of convergent

sequences {«(«)} in 5 with limits in A0 .

(1) A is an antiliminal C* -algebra. Let 7 be a nontrivial ideal of A and

I(k) = {a(k): a e I). There is a smallest integer kQ such that I(k0) ^ {0}.

Clearly, I(k0) is an ideal of B. Since 5 is simple (see [10]), I(k0) = B.

Suppose 70 = {a e I: a(k0) = 0}. Then 70 is an ideal of 7. Moreover

/// = I(k0) = B . Thus 7 is not liminal. So A is an antiliminal C*-algebra.
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(2) QM(^) t¿ M(^4). Let x be the sequence such that x(«) e Mm,k, for

some k and each « , moreover (x(n))¡¡ = 1 for all i, j < m(k), and x(oo) =

(a°°), where a™ = 1, a°° = 0, ij ± 1 . As in Example 8.1 and Example 8.2,

one can easily check that x e QM(/4), but x ^ M(^).

(3) QM(yl) = LM(y4) + RM(i4). Since B has an identity, M(B) = QM(B) =
B. Moreover A0 is abelian, so M(A0) = QM(^0) ■ ̂  follows from Lemma 4.6

that QM(A) = LM(A) + RM(A).

9. The density of IM(A) + RM(A) in QM(^)

We know that QM(^) + LM(^)+RM(^), in general. But is LM(^)+RM(^)

dense in QM(^4) in a suitable topology? (See [6, 7.2].)

Example 9.1.  LM(A) + RM(^4) may not be norm closed.

Let X be the one-point compactification of the disjoint union of Yn , « =

1,2,.... Let A — C(X, K). Use the same notations in the proof of Theorem

6.3. Define

F(t) = Fn(t)/a(An)X/2,    if teYn,        F(oo) = 0.

As in the proof of Lemma 4.7, we see that F e QM(A), but F <£ LM(A) +

RM(A). Let Gm(t) = F(t) ,ifteYn, n<m, Gm(t) = 0, if t E Yn, « > m.

Clearly Gm e IM(A) + RM(A) and ||GM(r) - F(t)\\ < l/a(AJx/2 -► 0, as
m —> oo . Hence LM(^4) + RM(/1) is not norm closed.

Proposition 9.2. Let X be the disjoint union of Yn,  n — 1,2, ..., and take

A = C0(X, K). Then 1M(A) + RM(A) is not norm dense in QM(A).

Proof. Let An = C(Yn,K) s C(Yn) ® K. Take x(n) € QM(^n) such that

\\x(n)\\ < 1 and a(x{n)) > a(C(Yn,K)) - 1/« . Define x(t) = x{n)(t) if t G Yn .

Assume that u = y + z, such that y G LM(^), z g RM(^) and

||x-w|| < 1/16.

Suppose u = u(n)(t), t eYn, y = y(n)(t), t G Yn and z = z(n)(t), t eYn,

n —1,2, ... . Choose an integer N such that

ot(AN) > max( 16,16a),

where a = max(||y||, ||z||).   Suppose x{N) = y[N) + z[N)  and x(N) - u(N)

y[N) + z[N)  such that y\N) ,y[N) e UA(A),   z\"> e RM(A)  and  ||y2'v;||  <

(l/l6)(a(AN) + l/2l).
Let {en} be an approximate identity for A satisfying emen = e e   = e , if

m > n . By the proof of Lemma 2.1 and Theorem 2.3, there exists nx <n2< ■■■

such that
OO j

ul-e«kJyK-enkJ <T2'
k=\
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Y(\-en   )z*(e„ -e„    )
£-^iK "k+\'      v  nk        nk-X>

k=\

<

Yd-e     )v(N)(e   -e I«,

k=\

oo

12'

1

<

12'

J_
12'

i=1,2,and

Thus

k=\

oo

Y^-enk)x(N\enk-enkJ\YNeRU(AN).
k=\

Y(\-en )x{N)(e„ -e„    )L
Z—(v nki ^ nk        nk-,'iYN

k=\

>a(AN)-l--.
N

By the proof of Lemma 4.3,

B1-'»>(*«*-'»*_,)/t=i
<7a + 4,

and

So-sx*""-""». <•- .)!>
fc=l

<^(7a(^) + 6)<ia(V^

But

2«( V + la + 4 < a(AN) - 1 - - .

A contradiction. Hence

||x-m|| > 1/16.

Theorem 9.3. Let A be a C*-algebra. Then LM(.4) + RM(,4) is strictly dense in

QM(y4). Moreover, for every x e QM(^), there is a net {xx} c LM(A)+RM(A)

suchthat \\xx\\ < 2||x|| and xx -» x strictly. If A is a-unital, {xx} can be taken

as a sequence.

Proof. Take x G QM(^) with ||x|| < 1. Let {ex} be an approximate identity

for A . Define xx = exx(l - ex) + xex . Clearly exx(l - ex) e LM(A), xex e

RM(A).
For every e > 0 and a e A, there is X0  such that if X > XQ, then

\\a(\-ex)\\<e/2 and ||(1 - ex)a\\ < e/2. Thus

\\a(xx - x)\\ = \\aexx(l - ex) - ax(l - ex)\\

<\\aex-a\\\\x(l-ex)\\<e/2<e,

and
\\(xx - x)a\\ = \\exx(l - ex)a + xexa - xa\\

<IM|||(l-e>||-rW||(eA-l)û||<e.
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Moreover HxJI < 2. If A is cr-unital, {ex} can be taken as a sequence, so

{xx} is a sequence.

Let X be the disjoint union of Y , n = 1,2,..., and take A = C0(X) ®

K. It follows from Theorem 6.3 that QM(^) ^ 1M(A) + RM(A). However,

for every x g QM(^), if we define xn(t) = x(t) for t e Ym and m < «,

xn(t) = 0 for t e Ym and m > n, then xn e 1M(A) + RM(A) (Lemma 4.7),

and \\n**(xn) - rt**(x)|| -» 0 uniformly on every compact subset of A, with

||x„|| < ||x||. This type of density is stronger than the strict density considered

in Theorem 9.3. Indeed, if a e A , then C = {n e A, ||?r(<z)|| > e} is a compact

subset of A . Thus there is N such that

\\n(a)[n'"(xn)-n*{x)]\\ <e,       neC,

and

||7r(a)[7r**(xJ - n*(x)]\\ < e ■ 2\\x\\,

if n e A\C. From these inequalities, we see that xn —*■ x strictly. The

construction of xn depends largely on the fact that A is Hausdorff. If X is

a countable locally (quasi-) compact space with X(X) < oo, we say X satisfies

condition (C), if for every t e X\X.X there is an open set Ot such that t e Ot

and Ot n X[kx = 0 for some k. Clearly, if X is Hausdorff, then X satisfies

condition (C). If each point in I\I , has a clopen neighborhood, then X

also satisfies condition (C).

Theorem 9.4. Let A be a separable C*-algebra with countable spectrum A and

A[oo] = 0. If A satisfies condition (C), then for every x e QM(^), there is a

sequence {yn} c LM(^) + RM(^) such that \\yn\\ < 3||x|| and n**(yn) = n**(x)

eventually on every compact subset of A .

Proof. Take x G QM(.4) with ||x|| < 1. Put In = {a e A: n(a) = 0, Vtt g

A[n]} , « = 1,2,.... Let {e¡} be an approximate identity for A and {p"m)°^=x

be an approximate identity for In . Define

i \'/2    i ,1/2
xu = (ei-ei_x)< x(ej-ej_x)/ .

Thus xtj e A, and since the norm closure (J„ J„ is A, we can find {p¡} c

{p"m,m,n= 1,2, ...} satisfying:

IIV1-^>II<2¿7'        l-j'

and

11(1 -P,)*vll< ¿Ï+J •       J^L

Define p = E"i(^ - ei_x)x,2pi(ei - f?,_,)1/2. Clearly p e M(A). By Lemma

2.1, we see that (1 - p)xp + x(l - p) e LM(A) + RM(A) (as in the proof of

Lemma 3.2). Without loss of generality, we may assume that pi e 7,.
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Let A = {nx ,n2, ...}. Fix n , and let On be an open set of A such that

nx,n2, ... ,nneOn and On n A.kx = 0 for some k . This is possible since A

satisfies condition (C). Moreover, we may assume that On c On+x .

Let Jn - {a e A;n(a) = O.Vre e On}. Clearly, if (f>n is the canonical

homomorphism from A to A/Jn , then <j>n(Ik) = <f>(A). Let qi be an element

in Ik such that \qf\ < 1 and ^^q/) = <£n(p(.). Thus rc^.) = tt (/>,.) if neÖn.

Define
oo

(")       V"V n1/2     / \l/2

i=i

Then tf(n) G M(^,7fc). Put zn = q(")xq(n). Then z„ G QM(^,7J. It fol-

lows from Lemma 6.1 that QM(7J = lM(Ik) + RM(7fc). By Lemma 3.2,

zn e LM(A, Ik) + RM(A, Ik) c LM(A) + RM(A). Define yn = (1 - p)xp +
x(l - p) + zn . Clearly yn e 1M.(A) + RM(A). Moreover, ||yj < 3||x||.

Let S be a compact subset of A , S = {nx,n2,...}. We have \JnOnD S.

Thus there are «, ,«2, ... ,nm such that \J"=X On D S. Since On C On+x,

there is an integer N, such that On d S. If n> N, n**(zn) = n**(pxp) for

7TGCV Thus ||7r**(yn)-7T**(x)|| = 0 if ne S.

Theorem 9.5. Let A be a separable C*-algebra of type I. Suppose that there is

an integer N such that for every n e A, the closure {n}~ of {n} is countable

and X({n}~) < N. Then for every x e QM(A), there is a bounded net {xa} c

LM(A) + RM(A) such that for every n e A

lim||7t**(xa)-Ä**(x)|| = 0

and xa —» x strictly.

Proof. Let Y be the family of finite subsets of A . Fix a e Y. Then a~ is

countable. Moreover, X(a~) < max{A({7r}~), n e a} < N.

We may assume that ||x|| < 1 . Let Ja = f]neakern. Then (A/Ja) is

countable and X[(A/Ja)A] < N. Let <p : A —► A/Ja be the canonical homomor-

phism from A to A/J . It follows from the proof of Lemma 6.1 that there

are y'a e UA(A/Ja), y"a e RM(A/Ja) such that <p(x) = y'a+y", \\y'a\\ < 3^

and ||y"|| < 3^ . It follows from [6] that there are ya e UA(A) + RM(A) such

that <p(ya) = ya + y"a = <p(x) and ||yj < 2 • 3*. Let za = x - ya, then

||z || < 2- 3   + 1. Suppose that {en} is an approximate identity for A . Define

u   — e, i z ( 1 - e, , ) + z e, ,
Q \a\    av \a\' a   \a\

and xa = ya + ua . Clearly xn e IM(A) + RM(A) and ||xq|| < 4 • 3^ + 2. It is

easy to check that

||*"(x0) - ***(x)||-» 0

for every n e A . Moreover, since x - xa = zn - un , by the proof of Theorem

9.3, we have xa -> x strictly.
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Corollary 9.6. Let A be a separable liminal C*-algebra. Then for every x e

QM(^), there is a bounded net {xx} C IM(A) + RM(^) such that for every

n e A

lim ||^**(xA) - 7t**(x)|| = 0

and x  —y x strictly.
a

Proof.  A is a Tx space.

Note. The problem QM(/1) = LM(A) + RM(^) for simple C*-algebras has

been studied and the results will appear elsewhere.
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