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ADDITIVE COHOMOLOGY OPERATIONS

JEANNE DUFLOT

Abstract. The bigraded group {//,(!„, Z//?)} becomes a Hopf algebra, if mul-

tiplication is induced by restriction, and comultiplication is induced by trans-

fer. Using Steenrod's method of considering elements of this bigraded group as

mod-p cohomology operations, the primitives of this Hopf algebra correspond

to additive cohomology operations. In this paper we use the results known

about the homology and cohomology of the symmetric groups and the opera-

tions they induce in mod-p cohomology to write down two (additive) bases of

the bigraded vector space of primitives of the above Hopf algebra.

0. Introduction

Let l.n denote the symmetric group on n letters. There is a graded Hopf

algebra Rt — @n>07<c(Xn) where 7vc(Xn) is the complex representation ring

of the symmetric group zZn . The multiplication is given by induction of rep-

resentations, the comultiplication by restriction of representations. Let R"a

denote the graded Z-dual ofRt ; Atiyah [1] shows how R"a embeds in the

set of natural transformations of K (considered as a set-valued functor) and

proves directly that the primitives in 7?fua give additive operations on Tí —

the Adams operations. Moreover, one knows exactly the primitives of 7?t, and

therefore also of 7vfua  since Rt is a self-dual Hopf algebra (see, e.g., [8]).

Now, let p be a fixed prime number. Consider the bigraded group (as in

[3]) Htt, = {H'(Lj)}i>0 j>0. (All homology and cohomology groups, unless

otherwise denoted, have coefficients in Z/p .) In [3], it is pointed out that

(a) 77,, „ is a bigraded Hopf algebra with multiplication induced by transfer;

specifically by the transfer maps induced by the (standard) inclusions X, x

Zm —> X/+m . Comultiplication is given by restriction maps induced by the

above inclusions.

(b) The bigraded dual of Htt is isomorphic as a Hopf algebra to Htt -

{77(X )};>0 >0 , where multiplication is induced by restriction, and comultipli-

cation is induced by transfer.

(c) Using Steenrod's method [21] of considering elements of Ht(Ln) as

mod-p cohomology operations, the primitives of Htt (with respect to the

transfer comultiplication) correspond to additive cohomology operations. (See

Received by the editors May 1, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 55S05; Secondary 20J06.

©1989 American Mathematical Society
0002-9947/89  $1.00+ $.25   per page

Ml



312 JEANNE DUFLOT

McClure [13] for a much more general proof of this fact.) More precisely, a

primitive a E 77((Zn) corresponds to a sequence of additive cohomology oper-

ations à : Hq —> Hnq~l. (Here, for simplicity, we assume that q is even if p

is odd.) From now on, if a G HjCL ) we denote by â or (a) the cohomology

operation corresponding to a. If we wish to specify à as acting only in the

cohomology degree q , we write à  .

In this paper we continue the investigation of [3] by using the results known

about the homology and cohomology of the symmetric groups and the opera-

tions they induce in mod-p cohomology to write down two (additive) bases of

the bigraded vector space of primitives (with respect to the transfer comut'pli-

cation) of Httt .

We also investigate the wreath product on 77t¡t (which corresponds to com-

position of cohomology operations).

1.  TWO BASES FOR THE PRIMITIVES IN   H **

Let Ptt and Q». (resp. Ptt and Qtt ) denote the primitives and indécom-

posables of the Hopf algebra Htt (resp. Htt ). Let V" be a vector space

of dimension n over Z/p ; fix a one-to-one correspondence between V" and

{1,2, ... ,p"}. Using this correspondence, the set of translations En of V" is

embedded in X „ ; say / : En —► Z is the embedding. Of course, En is an ele-

mentary abelian ¿»-subgroup of L of rank« . Let j : E „_, x • • x Zp„_, —> Zp„

be the "usual" embedding.

We will make use of the following lemmas.

Lemma 1 [3].  Q„ v = Pt N = Qt N = Pt N = 0 ifi N is not a power of p.   u

Let q : G —. 77 be an inclusion of groups; we make the following table of

notation t
a     cohomology restriction

at   homology restriction

a    homology transfer

a,   cohomology transfer

Lemma 2. (a) Q. p„ = H*(lpn)/imj,, (b) Ptpn = kerf .

Proof. Statement (a) is Corollary 7 of [3]. Statement (b) follows from (a) by

duality; or can be proved directly using the same methods as for (a),   o

* '
Lemma 3. (a) imj, C ker/ , (b) im/'t ç ker/ .

Proof, (a) is a theorem of Steenrod's; see, e.g., [11 or 16].

(b) follows by duality from (a).    □

We will also need the following details from calculations of Nakaoka [19]

and Cartan [2]. We adopt the notation of the above-cited works of Cartan and

Nakaoka.
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Let Z+ = {n E Z\n > 0}. Let q be a fixed positive even integer. Let

Jrp = (ax,a2,...,a¡, ...) e 1J„>,{(Z+)"|3 /> 1 suchthat a^O, a} > paj+x

for each j > 1 ; a = 0 or 1 mod 2(p - 1)}. If ( ) denotes the empty

sequence of integers, let S* = Sp U {( )} . If 7 = (ax, a2, ... ) E J^ define

d{I) = £°!, ai (the deSree of 7) > eV) = [Pai/(P - 01 - ¿(7) (the excess of

7) ; /(/) = maxOI^. ± 0} (the length of 7) ; and /•(/) = p,(/) (the rank of 7).

Extend these functions to S* by defining d(( )) = e(( )) = /(( )) = 0; so

that r(( )) = 1 . As in Nakaoka [19], define ¿l(p,q) = {I E J^>(/) < q\

and if /(/) = j then a > 1 when I = (a,, ... ,a ,0, ... )}. Define t/(p,a)

to be the Z/p-algebra generated by all elements 7 e Yl(p,q) subject to the

relations IJ = (-l)d{,)d(J)JI for I,JeCl(p,q). The algebra U(p,q) is of

course generated as a vector space by monomials 7"1 ■ • ■/£* ; one can extend

the definition of rank to the set of nonzero monomials so that r(/"' ■ • ■ Ikk) =

¿~2j=l «/(/.) for each nonzero monomial /"' • • - Ikk . One can also define the

g-degree of a nonzero monomial as

k

q-deg(IaxA..^) = Y^M + d(I})).

7=1

(Of course, r(0) = 0 = t7-deg(0).) We then define U(p, q) to be the subspace

of U(p, q) generated by all monomials of g-degree d, and U(p, q)r to be the

subspace of U(p,q) generated by all monomials of ^-degree d and rankr.

Then U(p, q) = ©¿>0 r>0 U(p, q)r becomes a bigraded algebra over Z/p .

As in Cartan [2], for each 7 = (ax, a2, ... ) E J^ , define the natural transfor-

mation St1 : Hn(- ,Z/p) ^ H"+d{I)(- ,Z/p) by St1 = St"1 o St"2 o . ■ •  where

Sta = (Sqa,      p = 2,

{ ßEA?s,    p > 2 anda = 2s(p- I) + e.

For 7 = (    ), define St  = identity.

Now, we consider the symmetric products SPmSq of the ^-sphere for 0 <

m < oo ; let / n : SPmSq —» SPnSq for 0 < m < n < oo denote the usual in-

clusions. Using the Dold-Thom theorem, we recognize SP°°Sq as an Eilenberg-

Mac Lane space K(Z,q). Let im be a generator for Hq(SPmSq) = Z/p for

0 < m < oo ; assume that these generators are chosen so that i* n(in) — % for

0 < m < n < oo.

Nakaoka [19] defined homomorphisms of Z/p-algebras

Tm:U(p,q)^H*(SP'"Sq)    for 0 < m < oo

by TJI) = St'(iJ; notice that TJU(p,q)d) C Hd(SP'nSq). Define the
vector space homomorphisms

<t>am : 77t(XJ -» Hmq-"(SP°°Sq) = Hmq-'\K(Z,q)) = Hmq-\Z,q ,Z/p)
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and

Ka,m ■ H*(Zm) - Hmq-'\SPmSq)    (for 0 < m < oo)

°y  ®tt,JC) = ¿9('oo)   and  K*,JC) = ¿g(lm) ■

Theorem 4 (Nakaoka [19], Cartan [2], Steenrod). Ifi q > a + 1, there exist

vector spaces V „ a«i7 vec/or space homomorphisms £      : V     —► 77 (X  ),
^ a ,777 ^ ^ 'a,771 a ,777 a^     777-'

*q 771 • ^q 777 ~~' ̂ (T7 ' a)2Q~a   (w < 0 ; i^e Nakaoka [19] fior a precise definition

of V     . £  m and y   „ ) such that
J a ,777  '    ^rt ,777 Aa,777'

(a) Z/ze diagrams below commute

V -^2-. 77 (I  )Q ,777 (Jv      771'

Z«,

U{P,d)7~a -► Hmq-a(SPmSq)

Tm = Tm\U(p ,q)Zq-"

V -!----> # (I  )

[m < OO

/'« .in .oo 4>„

t/(p,f )"""'" —- Hmq-a(Z,q,Z/p)
I oo

where Xa ,m ,oo = ^ Xa ,m  with X:U(p, q)mmq~a - t/(p, ? H"" .

(b) Í   m,K   m,X   m a«c7 77   are isomorphisms for m<oo. (For £     .y   m
v     '    'a ,771 '      a ,777 ' r.a ,777 777 f J V ^tt ,777 ' ^a ,771

a«i/ Tm i/z« w í/mé" to Nakaoka [19]; for Ka    , this is due to Steenrod, see [19]J

(c) 77^ is an isomorphism (Cartan [2], Nakaoka [19]).

(d) $>a      is injective (Steenrod; see [19]).

Proof. Nakaoka [19] proves commutativity of the first diagram in (a) directly,

but the same proof works for the second diagram in (a). For (b), (c), (d) refer

to the references cited in the theorem.   D

Corollary 5.  O      = Toko T~ ok   m ; where X:U(p, q)mq a^U(p, q)r'
,mq — a

a,m        "oo JAUJ,7,    u*«,m > ""Kre A. ^ {P , q}m — u \l> , y

is as in Theorem 4.   G

Let Ad(Z,q ,Z/p) be the subspace of Hd(Z,q ,Z/p) consisting of the ad-

ditive natural transformations Hq(- ,Z) -* 77 (- ,Z/p). From now on, fix a ;

assume q is an even integer such that q > a + 1 ; let m = p" for some n > 0.

Corollary 6.

4>a,PÁPa,pn) S Tcx>X(U(p,q)p;„q-")iAAp"q-a(Z,q,Zl

Proof. Corollary 5 shows that

*a,PÁPa,p»)CTooX(U(p,q)p;ra).

Let Ap"q~'\Z,q,Z/p) be the subspace of

H"nq-"(Z/p, q , Z/p) = Hp"q-'\K(Z/p , q), Z/p)
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consisting of the additive natural transformations

Hq(-,Z/p)^Hp"q-a(-,Z/p).

Let Ôap„: Ha(lpn) -» Hp"q~"(Z/p ,q ,Z/p) given by cm cq(i) where / is a

suitably chosen generator of Hq(Z/p, q, Z/p) = Z/p . Then there is a commu-

tative diagram

Hp"q-a(Z,q,Zlp).

Hp"q-a(Z/p,q,Zlp)'

(where /i: K(Z,q) -* K(Z/p,q) is the map defined by the homomorphism

Z - Z/p) such that ß*(Ap"q~"(Z/p,q,Z/p)) C Ap"q~a(Z,q,Z/p). To see

this, choose / so that />*(/) = i^. The diagram then commutes because c

is natural. Also, A*(- ,q,Z/p) defines a functor on the category of abelian

groups (Cartan [2]) so ß*(Ap"q~"(Z/p , q , Z/p)) C Ap"q~a(Z, q, Z/p). Now, by

[3 or 13], ÔQp„(Papn) C Ap"q-"(Z/p,q,Z/p) ; Corollary 6 follows,   o

Define pnHp"q-(Z,q) = TooX(U(p ,q)pplq-").

Corollary 7. For n > 0, and a > 0,

(a)

dim(pnHp"q-u(Z,q)nAp"q-a(Z,q,Z/p))

^ dim(^a,p») = dim(ker/)a > dim(imi.)a,

(b)

dim(p„Hp"q-"(Z,q)nAp"q-"(Z,q,Z/p))

^ dim(pa,p») = dim(ô(ljpJ = dim(cok;,)Q > dim(im/*)Q.

Proof. The first inequalities follow from Corollary 6, the middle equalities from

Lemma 2, and the last inequalities from Lemma 3.   D

In fact, all the numbers in Corollary 7 are equal. It is possible to show

this using results in Mann [11] to construct a proof (by counting bases) that

dim(im7,)Q = dim(ker i*)a for each a > 0 and n > 0. However, we will prove

(by counting bases).

Theorem 8.

dim(im/J(i = dim(imr)Q = dim(;7„77i'"9"a(Z,<?)n^"?"'>(Z,i,Z/p))

for a > 0 and n > 0.

Proof. This theorem follows directly from the following Theorems 9 and 10,

Corollary 11, and Lemma 12 (plus duality for the first equality).    D
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Let A(p,q,n,a) = {lEÍl(p,q)\r(I) = p" , q + d(I) = p"q - a} , if a>0

and n > 0 .

Theorem 9 (Cartan [2, §16, Theorem 1]).

dim [pnHp"q-n(Z, q) n Ap"q~a(Z, q , Z/p)) = #A(p, q, n , a)

for q > 0 and n > 0.   G

In the following theorem and corollary, we use the notation of Mui [16].

Theorem 10 (Mui [16], Mann [11], Milgram-Madsen [10] (for p = 2 )).
■yn_ji

(a) Ifip = 2, then there are elements Qn ¡ E H (En) for 0 < i < n-1 such

that im /* = Z/2[Qn 0, ... ,Qn nX]. (If K is a field, K[xx, ... ,xn] means the

(graded) polynomial ring over K on {xx, ... ,xn} .)

(b) If p is odd, then there are elements Qn : E 772(p ~p \En) for 0 < i < n-l ;

Rn ; e H2(p"~pl)-xiEn) for 0 < i < n- I  and Rnij E H2{p"~p'~pJ)iEn) for

0 < / < j < n — 1 such that

ziPlQn,i>Rn,i>K,iß<l<J<n-^
im i   =

({R2n,i>K,,Rn,J-K,i,JQn,o\Q<><J<«-n)

iThe notation (5) means the ideal generated by the set S. The product here is

the cup product.)   G

Corollary 11. Let  (im/*)a  denote the homogeneous elements of degree a  in

im i*. Then

(a) if p = 2, a basis (over Z/2) of (im/*)a is given by

¡QloQnA ■■■Qr:;n'Sflrt(2n - 2') = a andri >0for0<i<n-i\.

(b) if p is odd, a basis (over Z/p) of (im/*)Q is given by the union of the

following two sets:

Rn MRn JL, M ' ' ■ Rn ,A,,_,A2,0«0,oo«,l ' ' ' Ö7,",«'-1 KA1 • • • • ■ ̂

ç {0,1,2, ... ,n- 1} andO<X0 < A, < ■•■ < X2l < n- 1 ;r > 0for

0 < j < n - 1 ; ¿(/ - 2PX>) + (2(/ -P*°) - I)+ Y2r,(p" ~¿) =
j=\ J=o
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and

Rn,Al,h'"Rn,r.2i-i^ßrnßQrn,l'"Qn7n~MXl' "■ >*2.}

ç {0,1, ... ,n - 1} andO < Xx < ■■■ < X2i < n - l;r;. > 0

27 71-1

for 0 <;<«- 1 ; £>" - 2^) + £ 2r (/ - /)
;=i 7=0

T'roo/. Left as an exercise using Theorem 10.   a

Let

X(2,n,a) = l(r0,rx,...,rn_x)e(Z+)n\Yri(2n-2i) = a\

and if p is odd,

Xx(p,n,a) = \ ({X0,Xx,...,X2j},(r0,...,rn_x))

,77-1
E^2l+x([0,n - 1]) x (ZT|0 < i < (2— - 1);

f>" - 2//') + [2(/ -/°) - 1] + £>.(/ -P]) = a
j=[ 7=0

and

*2(p,n,a) = <((5,(r0,...,r„_1))e^2;([0,«-l])x(Z+)',|0</<2'!  '

if 0< /" andS = {A, , ... ,X2i},

2/ 77-1

then Y(pn - 2páj) + E lrMn - pJ) =a ;
j=\ ;=0

71-1 1

if i = 0 then Y 2rj(p" ~ PJ) = a \ ■
7=0 J

(Here, [0,w-l] = {0, ... ,n-l}; ^([0,n-l]) is the power set of [0,«-l];

•^([0,« - 1]) is the subset of £P([0,n - 1]) consisting of sets of order k.

When we write elements of AP([0,n - 1]) in the form {a,b, ...} we will

always assume that they are written in increasing order.)

Lemma 12. (Compare with May [12], Madsen [9].)

(a) If p = 2 there is a one-to-one correspondence

F : A(2,q ,n,a) <—► X(2,n ,a).
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(b) If p is odd, there is a one-to-one correspondence

F :A(p,q,n,a) <—> Xx(p ,n ,a) U X2(p , n ,a).

Proof. (Recall that q > a + 1 .)  (a)  F(ax , ... , an) = (q - ax + a2 H-A an,

ax-2a2,...,an-2an_x

(b) If SE&>([0,n- 1]) let c(S):[0,n- 1]^Z be the choice function:

(0,    kd-S,

c(s)W = {i,  kls.

Define F by

F(ax,a2, ... ,an) = F(2sx(p- l) + ex, ... ,2sn(p - l) + ej

(S(ex,...,en),

([q-ex(ax, ... ,an)]/2,sx -ps2 -e2, ... ,sn_x -ps„-en))

if #5'(e1, ... ,en) is even;
= <

iSiex,...,en)

([q ex(ax

where

e.(a
1V"1

■ ■ ,an)- l]/2,sx -ps2-E2, ... ,sn_x -psn-en))

if #S(sx, ... ,en) is odd;

= ex(2sx(p- 1)4-6,, ... ,2sn(p- l) + en)
n

= 2sxp + 2ex - Y a, = e(ai » • • • > an) + ei

i-1

and S(ex, ... ,en) ç [0,n - 1] is defined by c(S(ex , ... ,en))(i) = e/-i G

Therefore, one basis for Pa      (which we will call the Dickson basis) is given

as follows.  For any n > 0, 77"(1„) = (ker/'*)a © (im/*)a, as vector spaces.

If p = 2, for each 7? e X(2,n,a), define DR E (77'"(I2„))dual = 77ri(X2„)

by DR\{X,eT¡ = 0, and {DR\{imi.) \R E X(2,n,a)} is the dual basis to the

basis of (imi*)n given by Corollary 11. If p is odd, for each (A,7?) E

Xx(p,n,a)uX2(p,n,a) define D{AR) E (Ha(Zp„))duäX by D(ARj\(keTi,u = 0

and {D,A ̂ J,;.. |(A,7<) e Xx(p,n,a) U X2(p ,n ,a)} is the basis dual to the

basis of (im/*)( given in Corollary 11. Then we have seen that {DR\R E

X(2,n,a)} is a basis for 7^ 2„ and {D{A R)\(A,R) E Xx(p,n,a)UX2(p,n,a)}

is a basis for Pn      if p is odd.

To get a second basis for P   „, we use a theorem of Nakaoka's:

Theorem 13 (Nakaoka [19]). For each I E A(p ,q ,n,a) there exists an element

b(I) in 77(i(X „); moreover {b(I)\I E A(p ,q ,n,a)} is a linearly independent

subset of Hit(I.p„).

Proof. If n = 0, the only nonempty A(p,q,0,a) is A(p,q ,0,0) = {( )}

for any q .   In this case define b((    )) E HQ(1.X)  as a generator for this one
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dimensional vector space. If n > 0, let Q(p,q,n,a) = {(jx,j2, ■■■ ,/„) E

(Z+)"\ for each /, ji = 0 or -1 mod 2(p - 1) ; /,_, < pji for i = 2, ... ,n;

h > (P - 1)(72 + • • • + 7„) ; j'i+j2 + "' + J„ = a; jn< q(p- I)- l). If
C/'i» -.. >7'J e Q(p,q,n,a), define 0(7',, ... ,/„) e 77(<(Sp„) as Nakaoka does

in [19, p. 248].

Nakaoka defines a one-one correspondence

y;: Q(p,q,n,a) -► A(p,q,n,a)

by xUx ,...,j„) = (ii,..., in) where ik = qpn~k(p -l)-jk. Define 6(7) =

a(x~X(I)) ; Nakaoka shows that {a(J)\j E Q(p,q,n,a)} are linearly indepen-

dent.    G

Kahn and Priddy [7, Proposition 3.4] show that {b(I)\I E A(p,q,n,a)} is

a subset of (im iJQ . Therefore, we have:

Corollary 14. (Compare with Kahn-Priddy [7, Proposition 3.7].) A vector space

basis for (imija is {b(I)\I E A(p ,q ,n ,a)}.   a

The basis of Corollary 14 will be called the Nakaoka basis for Pa     .

2. An algebra-coalgebra of "unstable"

additive cohomology operations

There is a "wreath" product on Htt (see, e.g., [19 or 7]) which we review

here. This product is a function H¡(lm) x TT^IJ — H¡+jm(lmn).

If Xt is a chain complex over Z/p, let xfm denote the chain complex

given by the usual m-fold tensor product of Xt. The complex xfm becomes

a Xm-complex by setting

o(xx <g> ■ • • ® xm) = e(o, degx,, ... , degxJ(xa_l(X) ® • ■ • ® xr,w)

for rj e Zm ; here £: Zm x (Z+)'" —» {±1} is a function that makes Xfm a

¿Zm -complex, see [4] for a precise definition of e .

Define the wreath product Zm l I,n as the semidirect product of £ and

(Zn)m ; where ~Lm acts on (£„)'" on the left via permutation of factors. If Mt

is a chain complex over Z/p[Zw] and LA is a chain complex over Z/p[Lm],

then Lt ® M®'" becomes a Z/p[Lm ¿XJ-complex if we define

(C7,T,, ... ,Tm)(l®X, ®---®XWI) = ffl®<T(T,JC1 ® ■ ■ ■ ® TMJCm) .

Proposition 15. If Lt and Mt are as above, A is a Z/p[Lm]-module, and B

is a Z/p[Ln]-module, then there is an isomorphism of chain complexes

ij>:(Lt®Mfm)®^      (A®B®m)^(Lt®y   A) ®     (M. ®. 7i)®'\
¿•»¡(■¿-ri *        ¿-/h ¿-íh *        ¿-/j

TYoo/. Left to the reader.    G

Theorem 16 (see, e.g., [4]). If Lt is a free acyclic ~Lm-complex and Mt is a free

acyclic Zn-complex, then Lt ® Mfm is a free acyclic Z 1 Y.n-complex.   a
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Proposition 15 and Theorem 16 say that we may compute

Ht(lnlln,A®B0m)

by computing the homology of the chain complex

(Lt ®Zm A) ®Ibi (Mt ®In Bfm ;

where L^ and AT are as in Theorem 16. We assume L and M are as in

Theorem 16 from now on.

If c E H,(lm) and d E Hj(Ln) define cId £ Hi+Jm(£m 11„) by cid = the
homology class of

c'® (¿'® ■■■®d');
d times

where c' e L,-®r Z//? is a cycle representing c and î/' e M ®T Z/p is a cycle

representing d. The reader can check that this definition makes sense.

Now,   once  and  for all,   fix  embeddings   pm n : ¿Zm i Zn   —►   ¿Zmn   for

every m,n > 1 .   Then if c,d are as above, define cod E Hi+jmÇZmn) as

(Pm,n)*(Cld)-

Theorem 17 (Nakaoka [19]). If c E 77 (Xm) and d E 77 (Xn), and i and j are

even if p is odd, then (c o d)A = c o d.

Proof. (The assumption that / and j are even if p is odd is used because the

definition of c for c E 77/■(£ ) gives c only as an operation on even degree

cohomology.) We have

(codf =[(pmn)* (cldyT = (cldt(pm n)    (by [21])

= cod    (by Nakaoka [19, Proposition 6.3]).

(We are using the notation of [3].)    a

From now on, assume i and j are even if p is odd.

Theorem 18. (a) 7/(1) is the generator of P0 , then (1) ox = x o (1) = x for

every x E P¡ p„.

(b) IfixE Pipn, y E P]pm and z e Pk pl then

(i)   X o (y o z) — (x o y) o z ,

(ii) xo(y + z) = xoy + xoz, if j = k and m — l,

(iii)  (x + y) o z = x o z + y o z if i = j and m = n .

(c) If x E P. p„ and y E Pj p,„ then xoy e Pl+pnj pn+m .

Proof. We use the following basic fact: if x and y E Htt(Lß) then x = y if

and only if x = y for some (and hence for all) even q < a + 1 (see Theorem

4(b)). So, in what follows, q is a sufficiently large even integer.

It is easy to directly compute that ((1)^)A = identity, so using Theorem 17,

(a) follows.
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By Theorem 17,  ([x o (y + z)] )A = xq o (y + z)  .  But x   is an additive

operation, so

xq°(y + 2)q =xq°yq + xqoèq = [(x°y + xoz)i-

The other equalities in (b) actually hold for arbitrary (bihomogeneous) elements

of Htt, and follow from similar calculations.

By Corollary 5, ®„JH,(I.J) Ç mHm~°t,Z,q). So

4W.(*oy)es„X""'-«+'-«(Z,,).

Since x and y correspond to additive operations, so does xoy. Therefore

®i+P*j,**(x°y)£ p^Hp"+'"q-(i+p"j)(Z,q)

n n + m f.

nAp-q-^\z,q,Z/p).

By Theorem 8, xoy e ?l+pnj pn+,„. This proves (c).   a

We conclude that P    „  = {P(p„}¡>0 „>0   (where  /' is even if p  is odd)

becomes a bigraded Z/p-algebra with multiplication

o-   P        6à P —^ P■     i,p" ^    j ,P"> i+P"j,p"+m ■

(Thus this "bigraded algebra" does not satisfy the usual bigrading conventions.)

From now on we assume that p = 2. There is also a "coalgebra" structure

on Pt 2. = {P(. 2j}¡>0 ;>0 • To discuss this coalgebra structure, we will use the

following theorems of Nakaoka and Hung.   Let At n : Ht (Z2„ ) -+ Ht (L2„ ) ®

//„(£   ) be the homomorphism induced by the diagonal A : X2„ —► X2„ x X2„.

Theorem 19 (Nakaoka [20]). L<?t*  a E 77((£2„)   and suppose that A.   (a) =

^2a ® a" . Then, for any space X and any u,v E Hq(X), we have ä(u Uv) =

Uaf(u)l)(a")A(v).   a

Theorem 20 (Hung [5]). Let {DR\R E (Z+)n ,n > 0} be the Dickson basis of

P,2„.  Then Al<n(DR) = ES+T=R DS®DT; where R = (rQ, ... ,rn_x) E (Z+

is such that £j¡¿ rj(2" -2j) = i.   a

Corollary 21. For i > 0 and n > 0, A,-n(Pt- 2n) C ®k+x=l ?ka„ ® P, 2„.    G

Define an operation

00 •  (   ©   ̂ ,2»®A,2-j ®       0 Pr,2>»®Rs,2»-
\k+\ = i J        \r+s=j

—* (¿7 P,   2"+m  ® Pu ,2"+m

i+«=i+2";

by (z, ® wx) o o (z2 ® iu2) = (Zj o z2) ® (wx o w2) if z,, z^tu, an(l ^ are

bihomogeneous elements of Pt 2. . Let (&k+x=i P¿ 2<» ® ̂ 1 2™ act on H*(x) ®

H*(X) (let X be any nice enough space from now on) by the rule

(a®ß)A(x®y) =a(x)®ß(y).

r+\"
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Lemma 22. [A, ,(0,)]A o [A, t(02)f = [A, ,(0,) o oAt ,(02)f as operations on

77*"(X) ® 77* (X)'s 77* (X x X).    a

Theorem 23. The homomorphisms A; m : P. 2m -» 0Ä+1=/Pfc 2m®Px 2« are such

that Att(xoy) = A„ t(x) o oAt t(y) ./or eac// bihomogeneous pair x ,y E?t 2..

Proof. We mimic Milnor's proof of the existence of the coalgebra structure on

the mod-2 Steenrod algebra [15].

Let c: H*(X) ® H*(X) —> H*(X) denote cup product. Then for each

d E P 2,„ there is a unique element A; m(6) e (¡.k+x=i Pk 2m ® P, 2m such that

ö(c(jf®y)) = c([A. m(0)]A(x®y)) for every space X and every x ,y E H*(X).

Existence is proved by letting A(. m(8) be A(■ m(6), and applying Theorem

19.

For uniqueness, by Theorem 4, <P, 2,„ : 77/(I2m) -» 772 q~'(SP°°Sq) is injec-

tive for í > / + 1 and w > 0. Thus,

*/*.:   0 ^^«P.^-^^'-'^P^^xSP^9)
7C+1 = 7

given by a ® /? i-> O^ 2,„(„1 ® O, 2„,(i) is injective if q > i + 1 and m > 0.

Suppose px,p2 e0/t+i=,PA.i2,n ®Pli2™ and e^R,,2>n are such that

0(c(x®y)) = c(^.(x®y))

for  / = 1,2 and any x,y in any 77*(X).  Letting X = SP°°Sq x SP°°Sq,

x — «¡x, x 1  and y = 1 x iœ , we have cpix ® y) = Ô(. 2m(p A for 7 = 1,2

(by naturality of the operations induced by elements of Pt 2» , and standard

properties of the x and U products). So, px= p2.

Now, since

[dxo62f(c(x®y)) = Ôx(d2(c(x®y)))

= c([[A,t(d])fo[Att(62)f](x®y))

= c([A,J01)°°A^(02)]A(x®)>)),

we have A, ,(0, o 92) = A, ,(0,) 00A, ,(02).    G

4.  A COMPUTATION IN THE ALGEBRA   P     ,*,P

Let
ö(,,o.0) e//2»-i(Z2»)    if7> = 2,

V1.0.oe//2,„»-,)(^)   if^>2;

£>„ is an element of the Dickson basis for Pm for each « > 1 . Define DQ as

(l)e770(I,). If (/-,,..., rn)e(Z+)", let (^' <g • • • <£ )duaI denote the element

of the Steenrod algebra s/ dual to the monomial £['■■■ £r„" in the Milnor basis

of s/* , with respect to that basis.

D..
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The following theorem is a special case of theorems of Mui [17, 18]:

Theorem 24 (Mui). (a) If p = 2,

n\ = {(D

(b) If p > 2, and q is even,

0   ifiq < 1,
Odual <Tff>i-

(0ifq<2,
(Dn)q = {  (í(í-2)/2)dual     ^ > 2 .     D

Therefore,

'   (Z)7,)2'»(í-l)+l°(-Dm)1? = (Í7,

(^oT)
771'(¡I

2m(í?-lKdual     ye^-Kdual°«S
ifp = 2,q > 1;

(73 ) o(t5   )    = ('<^'"(«-2)/2h<lual    (,(9-2)/2,dual
^1Jn>P"'q-(2p>"-2)oylJm>q       VS„ )        " C=m j        ,

if /? > 2, <¡r is even, q > 2.

In particular, if p = 2, (Dn °7>m)A = identity; and if p is odd, (Dn oDm)2 =

identity. So, Dn o Dm ^ 0. But we see that

D  oD   e
71 771

2" + m-l ,2"+ ifj> = 2,

,    if/>>2;l.  -1 2(p"+'"-l),p',+

and by inspecting the Dickson basis for Pt     , that {Dn+m) is a basis for

{'2""*""1— 1 2"+'" ^ '.2(p"+'"-l),p»+m 7" > ¿ -

In any case, Dn o 7)m is a nonzero scalar multiple of Dn+m . Again, comparing

the cohomology operations in degree 1 (or 2 , if p > 2) implies that Dn°Dm =

n+m -

On the other hand, Milnor's formula [15] for computing (£'k)duaX o (£{)dual

says that (a = q - 1 , if p = 2 ;   a = (q - 2)/2, if p > 2

í Etí
/ ¡-¿'"'«ydual      , ¡.(i ,dual(£„    )      o (£J       = <

(a-x)(p" + \) e.y ,dual     , , ,
>£2n)      -b(x,q,p,n)

0<.r<<»

if m = «, and # is even if p > 2,
E.Aa-x)pmM-x^x      .dual

0<x<a

if m ^ n, and # is even if p > 2.

Here, b(x ,q ,p ,n) isa binomial coefficient depending on the indicated param-

eters.
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So, for example, if p = 2 , n ^ m , and q > 1, we have a relation

E «Î
CKjc«?-!

in degree q.

(q-l-x)2m *q-l-x *x      -dual _ „
'777 '77 + 771'' ~~

5. Conclusion

In summary, this paper points out how the work of others on mod-p coho-

mology operations and the mod-p cohomology of the symmetric groups can

be used to compute a basis for an analogue of the Newton primitives (i.e., the

Adams operations) in complex A.-theory.

Although the additive cohomology operations induced by these primitives

are, strictly speaking, unstable, they are essentially stable because Cartan [2]

has told us that every additive operation in degree q in mod-p cohomology is

given by an appropriate element (depending on q) of the Steenrod algebra.

One could ask whether or not the same is true of other cohomology the-

ories. In other words, suppose that (h* ,ht) is a cohomology-homology the-

ory with a transfer, a Kunneth formula, an analogue of Steenrod's power map

and whatever else is necessary so that it makes sense to discuss primitives in

0n>o/2ii(5In) and the cohomology operations they induce. Do you get any

essentially unstable additive operations on h* in this way?
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