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CONJUGACY CLASSES WHOSE SQUARE
IS AN INFINITE SYMMETRIC GROUP

GADI MORAN

Abstract. Let X„ be the set of all permutations £ of an infinite set A of

cardinality N„ with the property: every permutation of A is a product of

two conjugates of i, . The set X0 is shown to be the set of permutations c\

satisfying one of the following three conditions:

(1) S, has at least two infinite orbits.

(2) S, has at least one infinite orbit and infinitely many orbits of a fixed

finite size n .

(3) {  has: no infinite orbit; infinitely many finite orbits of size k,l and

k + I for some positive integers k, I ; and infinitely many orbits of size > 2 .

It follows that í € Xq  iff some transposition is a product of two conjugates

of i , and £,  is not a product o i, where a has a finite support and i is an

involution.

For u > 0, £, 6 Xv iff { moves N¡, elements, and satisfies (1), (2) or

(3'), where (3') is obtained from (3) by omitting the requirement that £, has

infinitely many orbits of size > 2 . It follows that for v > 0, { e Xv iff £

moves Nt/ elements and some transposition is the product of two conjugates of

Í.
The covering number of a subset A' of a group G is the smallest power

of X (if any) that equals G [AH]. These results complete the classification

of conjugacy classes in infinite symmetric groups with respect to their covering

number.

0. Background and results

Let A be a countably infinite set, and let S = SA denote the group of all

permutations of A . For X, Y ç S let X ■ Y = {£77: £ e X, r\ e Y} and let

X1 = X, Xn+l = X" ■ X. For f € S let [(] = {r]c;n~l : n e S} denote the

conjugacy class (coc) of £ in S1, and consider the equation

(i) m2 = s.

Let XQcS be the set of all £ e S satisfying (1). We shall establish

Theorem 1. Let t; e S.   Then <\ <E XQ  if and only if £,  satisfies one of the

following three mutually exclusive conditions:

( 1 ) £ has at least two infinite orbits.
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(2) (a) £ has precisely one infinite orbit.

(b) £ has infinitely many orbits of a fixed finite size n .

(3) (a) t\ has no infinite orbit.

(b) For some positive integers k ,1, Ç has infinitely many orbits of size

n, for n = k ,n = I and n = k + I.
(c) t\ has infinitely many orbits of size greater than 2.

Much of the knowledge and technique accumulated in evaluating products of

cocs in S is used in a full proof of Theorem 1. Recently Droste [D3] combined

these to establish Theorem 1 for those £ e S which have at least one infinite

orbit, or fix infinitely many elements. To complete the argument one more new

theorem is needed, namely, Theorem A, which we state below.

Let INF ç S be the set of all £, e S that move infinitely many elements.

Call t\ G INF almost involution if Ç has no infinite orbit and finitely many

finite orbits of length > 2 (hence £ has infinitely many orbits of size 2). Let

AI ç INF be the set of all almost involutions.

Theorem A. Let £ ,r¡ e INF have no infinite orbit, but infinitely many finite

orbits of length at least k, k e {3,4}.

(1) If k = 3 then INF-AI ç [{]. [r¡].
(2) Ifk = 4 then INF ç [{]. [n].
(3) The value k = 3   (k = 4) in (1) (in (2)) cannot be reduced.

Our tool for establishing Theorem A is the use of bicolored planar maps, first

introduced in [M4] (see also [M5]). This technique is reviewed in §2.

A brief history about the search for X0 is in order. In 1951 Ore [O] proved

that every member of 5 is a commutator. Since [¿¡] = [£_ ] holds in S,

r\ = At\Ç~ t\~ implies r\ e [£] and so Ore's result shows that S is a union of

squares of conjugacy classes.

In 1960 Gray [G] showed that if ¿; e S has infinitely many infinite orbits

and no finite orbits, then S = [Ç] , and so XQ ̂  0. He also noted that the

obvious necessary condition £ e INF is not sufficient for £ e XQ .

In 1973 Bertram [B] showed that if f e S has infinitely many orbits of length

n for n = 1,2,3 but no other orbit, then Ç £ XQ. He used it to show that

[¿¡f = S for every i\ e INF (see also [DG1]), and conjectured that actually

[£]3 = S for í e INF.

Shortly afterwards it was noted [Ml; M2, (2), p. 76] (see also [DG1]) that

if p0 e S is a fixed-point-free involution, RQ = [pQ], then R0 =¡¿ S (see [Ml,

M6] for the actual evaluation of 7^0). However, twelve years later Droste [D2]

showed that R0 is the only coc in S for which Bertram's conjecture fails.

In 1980 we determined [M3] the set of t\ e S with parity features, i.e. with

the property that [¿;] contains no finitary odd permutations (¿¡ e S is called

finitary if it moves only finitely many elements). We now formulate as Theorem
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2 an unpublished observation made in the course of that investigation.  This

result turns out to have much significance in the present context.

Let YQ ç S be the set of r¡ 's satisfying:

2
(2) [r¡]  contains a transposition.

Theorem 2. Let £, e S. Then £ G Y0 if and only if £, satisfies one of the

three mutually exclusive conditions (1), (2), or (3)(a) and (3)(b) mentioned in

Theorem 1.

A proof of Theorem 2 is given in § 1.

Comparing Theorems 1 and 2 we conclude:

Corollary 3. Let t\ e INF. Then [£,f = S if and only if:

(i) [if contains a transposition.

(ii) £ is not almost involution.

The first indication that XQ and Y0 are closely related was given in 1982 in

Droste's paper [Dl]. Indeed, Theorem 1 of [Dl], implies that if £ e S has at

least one infinite orbit, then Ç e X0 if and only if t\ e 70. Other interesting

results of this paper fit into the research on covering numbers of groups that

was carried out intensively at the same time (see [AH]). If C is a coc in a

group G, we write cn(C) = n if n is the smallest positive integer such that

C" = G. cn(C) is called the covering number of G by C and, when G is

fixed in context, the covering number of C. If no such integer exists, we write

cn(C) = co. During 1980-1983 these numbers were computed for various

cocs in various groups, and the effort to obtain them in simple factors of the

decomposition chain of infinite symmetric groups led us to the discovery and

use of the method of bicolored planar maps [ACM, M4, M5]. Droste's work

[Dl] has immediate relevance to this work as well (see [Dl, §5]).

Combining his old results on products of cocs in S with the fresh ones ob-

tained in the course of research on the covering numbers, Droste [D2] obtained

the remarkable result mentioned above, that R0 is the only coc C in S with

cn(C) = 4. Theorem 1 determines the cocs C in 5 with cn(C) = 2. The

remaining cocs in INF—including those with Parity Features (see [M3])—all

have covering number 3. Since cn(C) = co for every finitary coc C , we know

now cn(C) for every coc C in S.

Applying this same body of knowledge and some more recent acquaintance

with products of cocs in finite symmetric groups due independently to Boceara

[Bo] and Dvir [Dv], Droste then found that X0 and Y0 are indeed very close.

In [D3, Theorem 2], he shows that if £, has no infinite orbit, and infinitely many

fixed points, then £ € XQ iff ¿¡ e YQ and t\ is not an almost-involution. The

complete determination of XQ is reduced, then, to familiarity with those ¿;'s

in XQ that have no infinite orbit, and only finitely many fixed points. Now,

XQ ç Y0  and Theorem 2 further reduce the search to the ones that satisfy
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conditions (3)(a) and (3)(b), stated in Theorem 1. Theorem A provides us with

the missing link, and closes the argument for Theorem 1.

Let us review some relevant results. For an arbitrary group G, let XQ denote

the set of g e G satisfying [g] = G. For an arbitrary ordinal v , let Sv denote

the group of all permutations of a set of cardinality Wv , and let Xv = Xs . Let

Si ç Su be the normal subgroup of S^ consisting of permutations moving less

than KT elements and let H" =Sl+i/Szv, x = 0, ... , v . Then we have

Proposition 4 [M4, ACM]. Let v > 0.   Then XG U {1} = G if G = H",

x = 0, ... ,v + I. Also, XG u {1} = G if G = Jx, where Jx  is the smallest

Janko group.

Jx is the only finite group G known to satisfy XG U {1} = G. Infinite groups

G satisfying XQ u {1} = G were noted earlier (see e.g. [H]).

Fix an ordinal v. For any ordinal x let Yxv denote the set of all £ e Szv

satisfying (2), that is, [£] contains a transposition. Obviously, Theorem 2

implies its generalization obtained by replacing "¿; e 5"' by "£ e S".

Corollary 5. Let v > 0, let 0 < x < v, and let ¿¡ e S*+ .  The following are

equivalent:

(a) tex„.
(b) ^eF   and t\ moves NT elements.

This corollary is established by Droste [D3, Corollary 3] for the case 0 <

T < v from the restricted formulation of Theorem 1. Theorem 1 in full easily

implies it for the case 0 < x = v , by the same argument.

The paper is organized as follows: In §1 we introduce some convenient no-

tation, and use it to reformulate Theorems 1, 2 and A as Theorems 1 ', 2' and

A'. We then prove Theorem l' using Theorem 2', and Theorem A . A proof

of Theorem 2' is also given there.

Theorem A', the main new result of this paper, is established in §§2-4. In

§2 we review the method of using bicolored planar maps. In §3 Theorem A' is

reduced to two theorems, Theorem B and Theorem C, whose proof relies on

the use of bicolored planar maps.

Theorem B provides the inclusion claimed in Theorem A(l) and (2) for per-

mutations C i» INF-AI (in case (1)) or in INF (in case (2)) that have no infinite

orbit, and is proved in §3.

Theorem C takes care of the most difficult case—when Ç has at least one

infinite orbit (where one easily sees that precisely one infinite orbit is the crucial

case). It is proved in §4.

1. Vocabulary

In this section we introduce our notation and use it to reformulate our results.

Z denotes the set of integers, N denotes the set of positive integers, and

N0 = {0} UN, N+ = Nu{H0} .  \A\ denotes the cardinality of the set A and SA
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the group of all permutation of A . For a e A and ÇgSa we let ¿¡(a) denote

the value taken by £ at a. Hence the composition ¿\A is to be computed

by acting first with Ç, then with Ç. lA e SA is the identity permutation:

lA(a) -a for all a e A. If B ç A, £\B denotes the restriction of £ to B.

If c]\B e SB then B is called ¿¡-invariant. If A = BXUB2, Bxf)B2 = 0,

Bx and B2 are ¿¡-invariant and ¿\i e SB is ¿¡\Bj, i = 1,2, then we write

¿J = ¿jj + ¿¡2. More generally, if {Bt: i el} is a partition of A into ¿¡-invariant

sets, £. = £|5(., ¡e/, then we write £ = £.g/f..

For ^e5^ and ii6/l let (a)« = {¿¡"(a): net}. (a), is called the ¿¡-orbit

of a. Let (/4)- = {(a^: a e A} be the partition of A into ¿;-orbits, and for

n e N+ let (^4), a = {56 (^ : |5| = «} . We define the cardinal number ¿](n)

by

¿j(/i) = \(A)( J = cardinality of the set of £ -orbits of cardinality n.

By a type we mean a cardinal valued function t defined on N+. Thus,

for any permutation ¿j e SA , 1 is a type. Moreover, for ¿\, r\ e SA we have

[£] = [tf] iff £ = */ (see e-8- [S])- For types 5, í and a cardinal number /c we

define the types s + t and /:? by (s + t)(n) = s(n) + t(n) and (kt)(n) = k ■ t(n)

(n 6 N+). More generally, if i; is a type for all / e /, then a type £/€J i; is

defined by

E'i w = E'i(")    («gn+).

Obviously we have _

16/ ¿6/

Given three types r,5,í we write P(r,s,t) for the following statement:

There is a set A and £,t],r e SA such that f = r , 7/ = 5 ,

C = i and ¿t7C= lA .

We have [i]ç[i/][(] iff P(£,n,l).
The main properties of P are (see [M4]):

Symmetry.  P(tx,t2,t3) iff P(tä{X),te{2),tg{J)) for some GeS{x23},

ifr pih(\). V) > ?e(3)) for fl// ö e S{, ,2,3}-

Superadditivity. If P(r¡,s¡, t¡) for all / e /, then

V/e/       /e/       i6/    /

From superadditivity follows also

Homogeneity.  P(r,s,t) implies P(kr,ks,kt) for any cardinal number k .

For n e N+ define the types n , h by:

«*(«) = !,        n(m) = 0   for m ^ ai,        « = N0 • n  .
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Then for any type   /   we have   t  =  2„6N+ t(n) • n  .    Define also   \t\   =

E„eN+ *(") " n ■  Then f0r  ^ G SA   We haVe   1^1 = 1^1 •

If K ç N+ , t a type, we set /[/("] = E„€A: t(n). We adopt the usual conven-

tions for intervals in N+ :   if k, I e N+ then:

(rc,/) = {«eN+:ri<«</},       [k, I) = {n e N+ : k < n < 1},

(k,l] = {neN+:k<n<l},       [k ,/] = {" G N+ : k < n < 1}.

Let ¿\ e SA . We define M(£) ç /Í by M(£) = {a e A: £(a) ¿ a).

A permutation £ e SA is finitary if M(¿;) is finite, and a type ? is finitary if

f = £ for some finitary ¿J . So ? is finitary iff i(N0) = 0 and t[(l, Nn)] < NQ .

Let x0 = {£,: ¿I e XQ} . Thus, t e x0 iff P(t,s, t) holds true for every type 5

with |s| = N0 .

We formulate Theorem 1, Theorem A and Theorem 2 as follows:

Theorem l'. Let t be a type. The following are equivalent:

(i) tex0.

(ii) |f| = K0 and t satisfies one of the following three mutually exclusive

conditions:

(!')   t(%)>2.

(2')   (a) f(N0) = 1 .

(b) t(n) = N0 for some n e N.

(3')   (a) f(N0) = 0.

(b) i(/c) = /(/) = f(fc + /) = n0 for some k,leN.

(c) /[(2,N0)] = K0.

Let inf = {£: ¡A e INF}. Thus t e inf iff |/| = KQ and t(H0) > 0 or

i[(l ,K0)] = N0 . Define ai ç inf by ai = {¿¡:¿¡e AI} . Thus ? e ai iff t(2) = N0 ,

Í[(2,KQ)]<K0 and í(N0) = 0.

Theorem A'. Let r, t e inf satisfy r(Nn) = t(H0) = 0.

(1) If r[[3 ,N0)] = t[[3,a0)] = NQ and s e inf-ai, then P(r,s,t).

(2) If r[[4,K0)] = t[[4,N0)] = K0 a«i/ 5 g inf, then P(r,s,t).

(3) Statement (I) fails if we require only r[[2,N0)] = f[[2,N0)] = N0 . Síate-

ment (2) fails if we require only r[[3, K0)] = t[[3, NQ)] = KQ.

Let y0 = {¿J : ¿I e Y0} . Thus, / e y0 iff P(i, Ï + 2* , t). Obviously, x„ ç y0 .

Theorem 2'. Let t be a type. Then the following are equivalent:

(i) iey0.

(ii) |r| = NQ and t satisfies one of the following three mutually exclusive

conditions:

(!')   '(N0)^2-

(2')   /(N0) = 1 and t(n) = NQ /or some « G N .

(3")   /(K0) = 0 and t(k) = t(l) = t(k + I) = NQ for some k,leN.
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We now reformulate two earlier results and use them, together with Theo-

rem A' and Theorem 2', to prove Theorem 1 '. The first, due to Droste, is a

restricted form of Theorem 1 '.

Proposition 1.1 (Droste [Dl, Theorem 1; D3, Theorem 2]). Let t be a type,

\t\ - N0, and í(n0) > 1 or t(l) = N0. Then the following are equivalent:

(i) tex0.

(ii) / satisfies one of the three mutually exclusive conditions (l'), (2'), (3')

of Theorem 1 '.

(The fact that if t satisfies (l') of Theorem l' then t e x0 was noted

already in 1981 by Droste and Göbel; see [DG2].)

Proposition 1.2 (see [M2, Corollary 2.5; D2, Theorem 4.1]). Let t e ai and let

P(t,s,t). Then s[N+] = K0. Hence t $ x0, as P(t,K*0,t) does not hold, for

instance.

Proof of Theorem l' (assuming Theorems 21 and A').

(i) —► (ii) Let / G x0 . By x0 ç y0 , t e y0 . By Theorem 2', / satisfies one

of the conditions (l'),(2'),or (3"). But (3") is equivalent to (3')(a) and

(3')(b). Thus, it is left to show that if t satisfies (3") it satisfies also (3')(c),

i.e., / ^ ai. But t £ ai follows from Proposition 1.2.

(ii) —► (i) Let t satisfy (ii), i.e., |i| = N0 and t satisfies (l'),(2') or (3'). If

t satisfies (l') or (2') then / G xQ by Proposition 1.1. If t satisfies (3') and

t(l) = N0 then again t e x0 by Proposition 1.1, so assume t satisfies (3') but

t(l) < N0. By (3')(b) t(k) = t(l) = t(k +1) = N0 for some k,l e N, and by

t(l) <N0, 2 < k, 2 < / so k + I > 4. Thus, i[[4,KQ)] = NQ. By Theorem

A'(2) and [D3, Theorem 1], / G x0 .   D

Proof of Theorem 2'. We first make the following observation: Let A — BuB',

B n B' = 0 , b e B , and b' e B1. Let t\ e SA and let B = (b)i , B1 = (b')i (so

B,B' are ¿j-orbits). Let (b,b') be the transposition interchanging b and b'.

Let C = (b, b')¿¡. Then we have:

(1) If |5| = \B'\ = K0 then Í = 2 • N*, i.e. C has two infinite orbits.

(2) If \B\ = N0 and \B'\ = n < K0 then C = Nq , i.e. C has one infinite

orbit.

(3) If \B\ = k and \B'\ = I, k,l < NQ , then Ç =-(k + I)*, i.e. Ç has one
orbit, of size k + I.

Thus we have

(1) P(2-K¡,l + 2*,2-r0).

(2) P{*l,\ + 2*,n*+Kl), neN.
(3) P((k + If , (k + I - 2) ■ 1 * + 2*, k* + l*).

Also:

(4) P(t,\t\ • I* ,t) holds for any type t.
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(ii) -+ (i) Assume that |í| = N0 and t satisfies (l'),(2') or (3"). We show

that t G y0 , i.e., P(t,l+2* ,t).

Incase (l') we have t = 2 ■ N* + /' so by (1) and (4) P(t,l+2* ,t).

In case (21) we have t = v\*0 + h + t' = n + Nq + h + t', so by (2) and (4)

P(t,l+2\t).

In case (3') we have / = k + l + (k + l) + t', and so we have t = (k + lf + t' =

k* + 1* + t', and so by (3) and (4) P(t,\+2* ,t).

(i) —7 (ii) Let t e y0 . Then there are £, Ç g Sa and a transposition (b, b') e

SA such that £ = (b, b')¿¡, and ¿J = Ç = t. We may further assume that b

and b' belong to distinct £-orbits B and B1 (else b and b' belong to distinct

C-orbits and we have ¿J = (b,b')Q. Let £ = ¿¡ + ¿¡', t" = if + f where
¿f ,f G SBuB,.   Then we have £ = (b,b')cf  (where here (b,b') e SBUB,),

r = (CT1 . Hence ? = \Bf + \B'\*, and f = ? .Nowi = ?+?' = ?+f ,
and P(Ç ,(b,b'),A) imply that t satisfies (l'),(2') or (3") as follows.

We know that £ = 2 ■ N* , or t = K + «*, or t = k* +1* (n,k,leU). If

t = 2 • N* then /(n0) > 2 so (l') holds. If t = K + »* then X = K* and so

setting t" = ¿J = £ we have ' = Kq + «* + t" = Nq + /" , so ¿(n0) > 1 , and by

t(n) = t"(n) + 1 = t"(n), we have t(n) — N0 . Thus / satisfies (l') or (2').

If ¿J = k* + l* then Ç = (k + If and we obtain as before t = k* + l* +

t" = (k + If + t", so t(k) = 1 + t"(k) = t"(k),  t(l) = 1 + t"(l) = t"(l),
t(k + l) = l + t"(k + l) = t"(k + I).

It follows that t(k), t(l), t(k + I) > K0 , and t satisfy ( l'), (2') or (3').   D

2. Bicolored planar maps revisited

In this section we review briefly the bicolored-planar-map method introduced

in [M4], and use it to establish Theorem A' in subsequent sections. The fol-

lowing treatment is self-contained and slightly different from the one offered in

[M4].
By a planar graph we mean a pair G — (VG, EG) where V — VQ is a set of

points in the plane, called the vertices of G, and E — EG is the set of edges of

G. Each edge e e E is the range of a continuous mapping / of the closed unit

interval [0,1] into the plane, whose restriction to the open unit interval (0,1)

is a homeomorphism. f(0) and /(l) are called the endpoints of e. They

should be vertices, and may be nondistinct. If f(0) = f(l) we call e a loop.

Two distinct edges may have the same set of endpoints (multiplicity of edges

(including loops) is allowed). An edge e meets V by the set of its endpoints,

and the intersection of two distinct edges is a set of vertices (so two edges meet

at common endpoints). In addition to those usual conditions, we impose two

more assumptions as follows:

(a) every bounded set meets only finitely many edges.
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The degree d(v) of v e V is defined as the number of times v occurs as an

endpoint of an edge (so a loop contributes two to this count). It follows from

(a) that every vertex has a finite degree.

We let Gf = V u (U E) denote the set of all points of the plane in V or in

e for some e e E. Our second assumption is:

(b) C7t is connected.

It follows from (a) that the complement Gct of Gt is open. A connected

component of Gct is called a G-region. It further follows from (b) that every G-

region is simply connected, and so homeomorphic to an open disc. Let F = FG

denote the set of all G-regions.

By a map we mean a triple (V,E,F), where G — (V,E) is a planar graph

and F = FG is the set of (/-regions.

By a bicolored planar map (bpm) we mean a quadruple (V ,E ,B ,W), where

(V,E,B U W) is a map, and for distinct b,b' e B (w,w' e W) we have

cl(b)C\cl(b') ç V (cl(w)C\cl(w') ç V). Here cl(X) is the closure of the set X

in the plane.  B   ( W) is the set of black (white) regions of the map.

Let (V,E,B,W) be a bpm, e e E. Then there is a unique be e B and a

unique we G W such that e G cl(be) n cl(we). For a region / G B U W, let

F'f = {e G E: f= fe} be the set of edges in its closure, and let s(f) = \E.\.

We say that / is of size s(f).

We now use the orientation of the plane to define three permutations ß, o,

co e SE as follows. Orient e e E by requiring that a traveller moving on e

as oriented sees be to his left and we to his right. (Thus, the boundary of a

bounded b e B is oriented counterclockwise.) Define the tail t(e), and that

head h(e), of e e E to be the endpoint travelled from and to by this traveller

on e.

Let us say that e follows e around b e B (w e W) iff b = be = be,

(w = we = w ,) and h(e) — t(e').

Let v e V, and let Ev denote the set of edges e e E satisfying t = v

(so Ev is the set of edges emenating from v). By (a) Ev is a finite set. Let

s(v) = \Ev\. Thus, s(v) the out-degree of v . We have d(v) = 2s(v), as our

orientation makes ( V, E) into an Eulerian graph. We say that v is of size

s(v).

Let e, e e Ev . We say that e follows e around v if for any small enough

circle C centered at v , Pe, follows Pe in the clockwise sense on C, where Pe

(Pe,) is the first point on C met by a traveller on e (e) moving from t(e) = v

to h(e)   (t(e') = v to h(e')).

Define ß, o and co to be the black, vertex and white permutations respec-

tively acting on the set of edges E. That is:

ß(e) = e    iff   e follows e around be = b ,,

v(e) = e    iff   e follows e around te = te,,

co(e) = e    iff   e follows e around wg = we,.
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One readily verifies:

Proposition 2.1. Let (V ,E ,B ,W) be a bicolored planar map. Then ß ,u,co e

SE defined above satisfy:

( 1 ) {Eb : b G B} is the partition of E into ß-orbits.

(2) {Ev : v g V} is the partition of E into o-orbits.

(3) {Ew: w g W} is the partition of E into co-orbits.

(4) ß = uco;  hence, P(ß,v,w).

(5) Let G = (ß , v) = (ü , co) = (co, ß) be the group of permutations of E

generated by any two of the three permutations ß ,u ,co. Then G acts

transitively on E.

Figure 1

The edges of this bicolored planar map—marked here

1 to 12—oriented as marked define the associated three

permutations:

The black permutation /?:

/3 = (1)(2)(3)(4,5,6)(7,8,9)(10,11,12)
The vertex permutation u :

v = (1,5,7)(2,8, 10)(3, 11,4)(6, 12,9)
The white permutation co:

w = (\, 7,2, 10,3,4)(5,9)(6, 11)(8, 12)

which satisfy ß = veo.

The relation P(3-(\* + 3*),4 • 3*,6* + 3-2*) follows.

Figure 1 displays Proposition 2.1 in a particular case, where the bicolored

map M has 12 edges, oriented as required to define the permutations ß ,o,co.

Establishing P relations on countable sets by means of bpms proved useful

in the past. Here we shall use such maps to demonstrate that such relations can
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be established, while some extra side conditions are imposed. Figure 2 is an

example. One concludes from it that permutations ß ,o,co of a countable set

exist such that:

(1) l = oco.
(2) ß = 3, v=l + 3-2* + 3,W=~5.

(3) Every crj-orbit contains precisely one ofixed point and v has no other

fixed points.

Figure 2

3. Proof of Theorem A

In this section we reduce the proof of Theorem A to the establishment of

Theorem C, below. Theorem C is proved—using bicolored planar maps—in

§4.
We first establish Theorem A(3), which asserts that in a sense Theorem A(l)

and (2) is a sharp result.

Let ¿\,r\e INF have no infinite orbit but infinitely many orbits of length at

least k.

(a) If k = 2, INF-AI ç [¿¡] ■ [r¡] does not necessarily follow.

Indeed, let ¿I = 77 be a fixed-point-free involution. Then [¿¡] = RQ, and so

[£] • il] - jRfj is the set of nicely even permutations, i.e. permutations £ G S

with Ç(n) an even cardinal for all n G N+ (see [M2]); and so, if Ç e INF has

a single infinite orbit, then £ cf. R2Q = [¿¡] • [ti].

(b) If k — 3 , INF C [¿I] ■ [r¡] does not necessarily follow.

Indeed, if ¿I, r] e INF satisfy cf = tf = 1 and [{] ¿ [n], then ß] • [n]
contains no involution (see [M5, Proposition 3.4]).   (Even if [¿¡] = [r]] then
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[¿t][tj] = [I]2 may omit some nonfinitary involutions; see [D3, Example 4.6].)

Theorem A(3) is proved.

Theorem A(l) and (2) follow from the following two theorems.

Theorem B. Let l,r\e INF have no infinite orbit, but infinitely many orbits of

length at least k, and let I e INF have no infinite orbit. Then:

(1) If k = 3 and Ç has infinitely many orbits of length at least 3, then

C e KIM.
(2) // k = 4, then le[l][r,].

Theorem C. Let l,t] e INF have no infinite orbit, but infinitely many orbits of

length at least 3. Let Ç e INF have at least one infinite orbit. Then Ç G [¿¡] • [t]].

Let us restate these theorems, using the terminology developed in §2.

Theorem B'. Let r,s,t be types satisfying

(i) |r| = |i| = |f| = Ko-
(ii) r(N0)=s(N0) = i(N0) = 0.

(iii) r[[*,N0)] = i[[fc,N0)] = /[[/,K0)] = V

Then

(1) if k = l = 3, then P(r,s,t).
(2) If k = 4 and 1 = 2, then P(r,s,t).

Theorem C'. Let r,s,t be types satisfying:

(i) |r| = |i| = V
(ii) r(N0) = s(K0) = 0.

(iii) r[[3,K0)] = 5[[3,N0)] = K0.

(iv) |r|=K0, f(N0) > 1 .

Then P(r,s,t).

Theorem C' is the main technical result here, and will be proved in §4. The

next two lemmas are special cases of Theorem B', from which Theorem B

easily follows.

Lemma Bl. Let m G N, and let r,s,t be types satisfying:

(i) M = kl = |i| = V
(ii)  r(N0)=i(N0) = r(N0) = 0.

(iii) r[[3,N0)] = s[[3,N0)] = /[[3,N0)] = V

(iv)  r(l) = r(2)=s(l) = s(2) = t(l) = t(2) = 0.

Then P(m* + r,s,t), P(r,m*+s,t), P(r,s,m* + t).

Lemma B2. Let m e N, and let r,s be types satisfying:

(i) |r| = |s| = V
(ii) r(K0) = s(X0) = 0.

(iii) r[[4,K0)] = i[[4,K0)] = N0.

(iv) r(l) = r(2) = r(3) = s(l) = s(2) = s(3) = 0.



CONJUGACY CLASSES 505

Then P(m* + r,s,2), P(r,m* + s,2) and P(r ,s,m* + 2).

Proof of Theorem B' from Lemmas Bl and B2.

Let r,s,t,be types satisfying (i)-(iii) of Theorem B'.

Case 1.   Assume that k = I = 3.   By (iii) we can select three disjoint sets

/, J,K ç N, and positive integers /( for i e I, m   for j e J, nk for k e K;

and types r , s , t   for p e IU J U K such that

(a) r ,s , t   satisfy (i)-(iv) of Lemma Bl for p e IliJuK.

(b)

76/ j€J keK

¿6/       jeJ kex

t = Eti + J2tj + J2(nl + tk)-
iei        jeJ        keK

By Lemma B1 and (a), P(l* + ri,si,t¡),P(rj,m* + Sj ,tf,P(rk ,sk,n*k + tk)

hold for i e I,j e J,k e K. Hence by superadditivity of P, P(r,s,t) follows

from (b).

Case 2. Assume now that k = 4 and 1 = 2. If ¿(2) < NQ then by (iii)

*[[3,N0)] = N0 and so, P(r,s,t) follows from Case 1.

If ¿(2) = NQ then we select again disjoint subset I,J,K C N, positive

integers /. ,m.,nk for i el ,j e J ,k e K and types r■ , s , for p e IU / u K

so that:

(a) r , sp satisfy (i)-(iv) of Lemma B2.

(b)

r=E(/r+o+Er/ + Er*'
(6/ jeJ        kex

5 = E5i + E(w*+57) + E57V'
16/ jGJ keK

t = \I\.2 + \J\.2 + J2« + 2)-
keK

By Lemma B2, (a), (b) and the superadditivity of P, P(r,s,t) follows.   D

Lemmas B1 and B2 are proved by constructing an appropriate bicolored pla-

nar map and using Proposition 2.1. In fact, they follow from the following

proposition on planar bicolored maps, which only slightly generalizes Proposi-

tion 5.1 of [M4]. (By the symmetry of P and the conditions of these lemmas,

only three P-relations need to be verified.)

PropositionB. Let meN and let (lj)ieN,(mj)jeN and (nk)k€N be sequences

of integers, satisfying at least one of the following three conditions:

( 1 ) mx=m; 2<li,mj,nk for i,j,keN, j > 1.

(2) mx=m; 3<li,nk,  I < mj for i,j ,keN, j > 1.

(3) lx= m; 3 < lj,nk,  1 < mj for i ,j ,k G N,  i > 1.
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Then there is a bicolored planar map M and enumeration (b¡)JeN , (v.-).-eN ,

(wk)keN °f iis black regions, vertices and white regions respectively, so that

\Eb¡\ = li> \Evj\ = mj> \£Wk\ = nk for i,j,keN.

Hence P(T,i€N I*, E,6n m* > E,-€N ",*) holds, by Proposition 2.1.

(Recall that Eb   (Ew ) is the set of edges in the closure of the black region

bi (the white region wk) and 2\EV\ is the degree of vt.)

Proof. See Proposition 5.1 in [M4], which is Proposition B for m = 1 , and

cases (1), (3). To obtain a proof for Proposition B in general we need only to

modify the base of inductive construction of the bicolored map given there. In

cases (1) and (2), the base consists of the unit disc, partitioned radially into m

white and m black alternating regions, sharing the origin as a common vertex

(Figure 3(a)), while in case (3) it consists of the unit disc as a black region, with

m vertices on its boundary (Figure 3(b)).

(a) (b)

Figure 3. Base of induction for proof of Proposition B.

(a) Cases (1), (2), with:   m = 3,(/,,/2,/3) = (5,4,3),

(nx,n2,n3) = (3,4,5).

(b) Case (3), with m = 3 .

4. Proof of Theorem C'

First notice that we may assume in Theorem C that Ç has precisely one

infinite orbit, i.e., enough to prove the following special case of Theorem C .

Theorem C" . Let r ,s ,t, be types satisfying:

(i) |r| = |5| = N0.

(ii) r(N0)=s(N0) = 0.

(iii) /-[[3,K0)] = 5[[3,N0)] = V

(iv) |f|=N0,f(N0) = l.

Then P(r,s,t).



CONJUGACY CLASSES 507

Indeed, assume Theorem C" and let r, s, t satisfy assumptions (i)-(iv) of

Theorem C', with ¿(Kg) = k > 1. Let K ç N be a set of cardinality k . Then

one can associate with each i e K types ri, si, ti satisfying (i)-(iv) of Theorem

C" and r = \ZieKri>s = E/e*:5/'' = E/eJr'r BV Theorem C", P(r¡yst,tt)
holds for each i e K, and so by superadditivity of P, P(r,s,t) holds as well.

The rest of this section is devoted to the proof of Theorem C" . We assume

that r,s,t are types satisfying (i)-(iv). In particular, t = \CQ + t", where

t"(H0) = 0. Let A be a set of cardinality N0. Our goal is to define ¿\, r\, Ç e SA

such that Ï = r,Jj = s,C = t and Ç = rjC■ This is achieved in four steps as

follows.

Step 1. Select types r , r", s', s", t , t" so that:

(1.1) r = r + r  , s = s + s   , t = t + t  .

(1.2) r'[[3,N0)] = r"[[3,HQ)] = s'[[3,N0)] - s"[[3,N0)] = NQ .

(1.3) t' = r0.

Let Ax,A2,AitA4ç A satisfy:

(1.4) A = \j=xAi,AinAj = 0 for 1 </<7<4.

(1.5) 1^1 = 1^1 = 1^1 = ̂ , \A4\ = \t"\.

We let A¡ j = A¡ U Aj and A¡jk = A¡ U A. U Ak ,  1 < i,j,k < 4.  Also, let

li=lA¡>í'ij=lA,j>llJk = lAiJk> l<í.7,fc<4.

Step 2. Define <f G SA¡ , n' e SAn , C' G SAm , 6' e A2i so that:

(2.1) ¿f = r',~iï = s',~if = X;,~d7 = 7.
(2.2) ¿¡' + e' = (r,' + l3)l'.

Step 3. Define l" e S,    , r¡" e S.   , C" g S.   so that:
/Ï234 /i34 -^4

(3.1) ¿f = r",7 = s",C = t".
(3.2) i" = (l2 + r,")(d' + C).

Step 4. Let ¿I = l' + ¿¡" ,n = rj' + rj" ,C = C' + C" ■ Then

(4.1) ï = r,rj = s,X = t.

(4.2) ¿\ = nr.

Theorem C" follows from (4.1) and (4.2).

Details. Step 1 is obviously possible, and needs no further comment. Step 4

follows from the previous steps as follows: (4.1) follows from (1.1), (2.1) and
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(3.1). We establish (4.2):

nr = (n" + n')(r' + c") = [(i12 + n"){n + hM? + Wm + C")l
= (112 + V")[((ri' + 13) + 14)(C' + 14)](1123 + C")

= (112 +V)[(('7' + 13)C + 1414)](1123 + C")

= [(1, + l2 + i7")(^ + ö'-r-l4)](ll + l23-r-C")
= (11^ + (12 + ^")(Ö/+14))(11 + 123 + C")

= l1^l1-r-(l2 + V')[(ö' + l4)(123 + C")]

= l' + (l2 + n")(e' + C") = l'+l" =1.

Here we used (2.2) for the fifth equality and (3.2) for the last-but-one equality.

Steps 2 and 3 form the core of the argument, and follow from two slightly

more general Propositions 4.1 and 4.2 that we formulate next.

Proposition 4.1. Let r+ ,s+ , t+ be types satisfying:

(i)  |r+| = l*+l = l'+l = V
(ii)  r+(N0) = /(N0) = /+(N0) = 0.

(iii)  r+[[3, N0)] = s+[[2, N0)] = t+[[2, N0)] = KQ .

Then there are cf G S. ,n e S.   , f e S.    , O1 G S.    such that:
A\ ^12 -^123 -^23

(4.1.1) ¿f = r+,~n1 = s+,C = **,,¥ = t+.

(4.1.2) {' + ô' = (ij'+13)C'.

(4.1.3)7/0 is any 6'-orbit then Df)A2 contains a single element aD (hence

A2 = {aD: D is a 6 -orbit}).

Proposition 4.2. Let r++ ,s++ , t^+ , t^+ be types satisfying:

W k++l = k++l = lCl = V l'í+l = M4l<V
(u) /-++(n0) = s++(*0) = í0++(n0) = ?;+(h0) = o.

(iii)  7"++[[3,N0)] = 5++[[3,N0)] = i0++[[7,K0)] = N0, /0++[[l,6]] = 0.

Let further d' G SA    be given so that:

(W)¥ = t+0 + .

(v) If D is any d'-orbit then Df)A2 contains a single element aD (hence

A2 = {aD: D is a d'-orbit}).

Then there are l" e S,    , n" G S,   ,l"eS,   such that* ^234       ' -134     ' AA

,.   -,   ,,    "J77 ++     "77 ++     ~pi . + +(4.2.1) l   =r     ,r¡   =s     ,Ç   =tx   .

(4.2.2) l" = (l2 + r1")(9' + C").

Let M = (V,E,B, W)  be a bicolored planar map.   For B' ç B,V' ç

V, W' ç W, the types tB, = tB,, tv, = ty,, tw, = t™, are defined as follows.
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Let n G N+ . Then

tB,(n) = number of black regions b e B' of size n,

tv,(n) = number of vertices v e V of size n ,

lw'(n) — number of white regions w e W of size n .

(Recall that the size of a region f is \Ef\, where Ej is the set of edges in its

closure, and the size of a vertex v is \EV\, which equals half its degree.)   tB

(tv, tw) is called the black (the vertex, the white) type of M.

Propositions 4.1 and 4.2 follow from their respective counterparts, Proposi-

tions 4.1' and 4.2', that provide the necessary bicolored maps, using Proposi-

tion 2.1. We start with:

Proposition 4.l'. Let r+ ,s+ ,t+ be types satisfying (i)-(iii) of Proposition 4.1.

Then there is a bicolored planar map M = (V,E,B,W), and partitions

[Ex,E2,Ef¡ ofE, {B',B"} ofB, {V',V"} of V such that:

(4.1'.1) Ex=\Jb€B,Eb, E2öE3 = [Jb€BIIEb, ExuE2=l)veV,Ev, E, =

(4.1'.2) tB, = r+, tB„ = t+ , tv, = s+, tv„ = 1, tw = Nj .

(4.1'.3) If b G B" then Eb n E2 contains a single element.

Proof of Proposition 4.1 from 4. l'. Let S: E —► Ax23 be any bijection that maps

Ej onto A¡, i = 1,2,3. Let ß, v and co be the black, vertex and white

permutations of M. Let ß' = ß\Ex,ß" = ß\E2 uE3,o' = o\Ex uE2,o" =

o\E3, and define if, r¡',if, d' by ¿f = Sß'S~l, r{ = ôu'ô~l, if = ôcoô~], 6' =

oß"o~[ . Then (4.l.l)-(4.1.3) hold. (See Proposition 2.1 for (4.1.2).)

Proof of Proposition 4.1'—The Caterpillar Map. A bicolored planar map M =

(V ,E ,B ,W) is called a one way infinite caterpillar map—or, briefly, a cater-

pillar map—if it satisfies the following conditions:

All black regions have finite size (hence are bounded) and the set B of black

regions is a disjoint union B = B+ u B++ where:

(C.l) B+ = {bn: n e N} where cl(2>„) n cl(bm) = 0 if \n - m\ > I , while

cl(bn)ncl(bn+x) = {vn} , vn g V (n e N). The regions bn e B+ are called links

and the vertices vn are called joints. Other vertices of bn are called nonjoints.

(C.2) Every b" G B++ has a unique vertex vb„ such that cl(b") n cl(bn) =

{vb„} for some n e N (vb„ may be a joint or a nonjoint). The regions b" G

B++ are called toes.

It follows that W = {w} , i.e. there is only one (unbounded) white region.

Assume now that r+ ,s+, t+ are types satisfying (i)-(iii) of Proposition 4.1.

We shall show that a caterpillar map M = (V ,E ,B ,W) exists with partitions

{Ex,E2,Efs of E, {B',B"} of B and {V1 ,V"} of V such that (4.1'. 1)-

(4.l'.3) hold.

(a) Let {bn : n e N} be a sequence of disjoint translation of the unit disc in

the plane such that (C.l) holds. Let Cn denote the boundary of b and let vn

be the point of intersection of Cn with C +1.
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Figure 4. A caterpillar map

The black faces bx , ... ,b¡, ... are links.
The black faces b[, ... ,b'}0, are toes.

The vertices vx , ... , u4 , ... are joints.

The infinite region w is the only white face.

(b) Let (rn)neN be a sequence of integers satisfying rn > 1 and r+ =

r+( 1 ) • 1 * + J2„eN rn ■ Make bn into a black region of size rn by adding, if nec-

essary, extra vertices on its boundary Cn. Notice that, for n > 1, bn already

has vn_x and vn as vertices in its closure. We add more vertices if rn> 2, and

this is true of infinitely many n's by t"+[[3,N0)] = NQ. Let B'0 = {bn: n G N}

be the set of links of M.

(c) Let (sk)keN be a sequence of integers satisfying sk > 0 and s+ =

2^>keNsl • ^et (wtcWn be an enumeration of all vertices defined so far, such

that:

1. If sk = 1 then uk is not a joint.

2. sk > 1 for infinitely many nonjoint vertices uk .

(d) Add loops lying in the unbounded region, each enclosing a black region

and pending at a vertex uk as necessary to guarantee that the degree of uk

is 2sk (and so its size is sk). Select a coinfinite subset B'x of black regions

enclosed by these loops of cardinality \BX\ = r+(l), and set B1 = B'Q U B'x (so

tB, = r+). Let (b")leN be an enumeration of the black regions enclosed by the

other loops.

(e) Let (i/)/gN be a sequence of integers satisfying /+ = ¿~2¡eN t*. Add

vertices on the loop enclosing b" so as to make the size of b\ equal t¡. Notice

that by ?+[[2,oc)] = NQ , t, > 1 for infinitely many /'s. Let B" = {b'¡': l G N}

(so tB„ = t+).

The caterpillar map M = (V,E,B,W) is now complete. (Its "body" con-

sists of the links bn of B'0 ; its "toes" form B\ U B" .) We let V' = {uk : k e N}

be the set of vertices that lie is the closure of some link b' e B1 and  V   =
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V - V'. Then Ex ,E2,Ei are defined by (4.l'-l). A straightforward checking

verifies (4.l'.l)-(4.l'.3).

Proposition 4.2'. Let r++ ,s++ , tç +, t*+ be types satisfying (i)—(iii) of Proposi-

tion 4.2. Then there is a bicolored planar map M = (V ,E ,B, W) and partitions

{E2 ,E3,E4} of E, {V', V"} ofV, {W', W"} of W such that:

(4.2'.l)   E2UE3 = \JweW,Ew,  E4 = \JW€W„EW,   E}uE4 = {jveV,Ev,

E2 ~ UtigK" Ev •

(4.Z    .Z) tB    =    r ,       ty,     =   S ,       tyu    =     1   ,       lW,    =    ÍQ ,       tfyu    =    t j

(4.2'.3) If w G W1 then cl(iu) contains a unique distinguished vertex vw e

V" of degree 2.

(4.2'.4) Let w eW1 and let E„   = {e,„}.1   Then E„   = E,n n E1 (hence

E2 = {ew:weW}).

Proof of Proposition 4.2 from 4.2'. Let M be the map provided by Proposition

4.2', and let ß ,o ,co e SE be its black, vertex and white permutations, respec-

tively (see §2).   Let d' e SA    satisfy (iv) and (v) of Proposition 4.2.   Since

6' = tç+ = tw, there is a bijection 73 from W' onto the set (A2f)e, of all

ö'-orbits, satisfying s(w) = |e(u;)| (i.e., e preserves sizes).

Define a bijection ô : E —► A2M as follows: For each w eW1, set

(*) SK ) = as(w)>

where ew e E and a, ,, G A are guaranteed by (4.2'.4) and 4.2(v), respectively.

Thus, (*) defines S\E2 as a bijection of E2 onto A2.

Extend ô to E2UE3 — \JweW, Ew by the requirement:

(**) d'ô(e) = Sco(e),       ee£2u£,.

By (**), a' = S\E2 llEj is a bijection of E2UE3 with ^23 = \JDe,A x , D, and

letting co' = co\E2 uE^ we have d' = ô'co'(ô'y{ .

By (4.2'.1) and (4.2'.2) we have \Ef\ = \tw„\ = \tfr\ = \A¿ . Let S\E4 be an

arbitrary bijection of E4 with A4 . Define cf G ̂ 4234 , r¡" e A34 , f e A4 by

„77      .   ».-i , n        . „
"   = oco 0     ,    where co   =co\E4,J4

,3u^

f' = (l2 + r1")(d' + f).

n   =ôo S    ,    where 0   = o\E, u E4,

'2

Since E2 = {ew: w e W1} we have o\E2 = lE by (4.2'.3), (4.2'.4) and Propo-

sition 2.1. Thus ôoô~] = ô(lE + o")ô~~ = l2 + r¡". Similarly, ôcoâ~l =

ô(co + co")S~  = d' + f . Hence we have

í" = ôocoô~l =Sßo~l.

1 By §2, whenever v has degree 2,  E„  is a singleton  {e} , where e is the unique edge along

which one can travel from v with a white region w on the right-hand side.
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Thus, l" = ß = tB = r++,  n" = o" = tv, = s++ and if' = co" = tw„tx++.

(4.2.1) and (4.2.2) are established and Proposition 4.2 follows.

The rest of this paper is dedicated to the

Proof of Proposition 4.2'. Let r++ ,s++, ig + , ?*+ satisfy (i)—(iii) of Proposition

4.2, and let

ro+ = Hr(n)-n*'       r+x + = r(l)-l* + r(2)-2\
3<71

so that

sl+ = ^s(n) ■ n*,       S["+ = 5(1) • 1* +s(2) ■ 2*,
3<77

++      ++ ,   ++ ++      ++ ,   ++
r     = rQ    +rx    ,        s     = sQ   + sx   .

By (ii) and (iii) of Proposition 4.2 there are three sequences of integers:

b = (li)l€N,    v = (mfjeN,    w = (nk)keN

satisfying 3 < /;, m •   (ij'eN) and 7 < nk   (k e N) such that

++       v^ 7* ++       V"*      *        A+       V*    *
ro    =E//'    so    =l^mj'    *o   =l^nk-

iCN 7'6N keN

Also, there are disjoint (possibly empty) subsets TB,TV ,TW ç N and a re-

sequence b' = (l'i)ieT , a ^-sequence v' = (m'f) eTy and a Tw-sequence

w' = (n'k)k€T   of positive integers such that

ri = E li> 5i = E mt . h = E nk
ieTB jeTv keTw

(so />;€{1,2} for ieTB,jeTw).

We shall construct a bicolored planar map M = (V,E,B,W) with parti-

tions {K0',K1',K"} of V, {B0,BX} of B, {W',W"} of W and a bijection

/: w' — K" such that:
(4 2" 1)   i     - r++    /     - r++    ?     = 9++    /     - ç++    ?      - t++    ty*.z.   .1)     lBo  — '0     >   lBt   ~     I      '     V¿        °0     '   lV¡  ~ ä\      >    lW   ~  '0     '    lW"   —

t++lx      .

(4.2".2) If w G W' then f(w) G V" is a vertex of degree 2 that belongs to

cl(w).

Proposition 4.2' then follows. (Define E2 = \JveV„ Ev , E3 = (\JweW, Ew) ~

E2, E4 = E-(E2UE3), V' = V¿UV;.)

Outline of the construction of M. M will be obtained as the increasing union

of maps M , where M is drawn on the closed disk Dn of radius n centered

at the origin. The inductive extension of Mn to Mn+X involves the addition of

extra black regions, extra vertices and extra white regions. The sizes of black

and white regions are dictated mostly by the sequences b, w, and the fresh

vertices lie mostly on the circle Cn+X  of radius n + 1  centered at the origin.
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In the process of extending Mn to Mn+X , vertices on Cn obtain their degrees

as dictated by the list v . As a rule, a white region w introduced during the

extension is provided with the vertex f(w) = vw which lies strictly between

the circles Cn and Cn+X, and supports a black triangular region with apex vw

with a circular arc—a segment of Cn+X—as an opposite side (see Figure 2).

For the above inductive construction to proceed smoothly, the occurrences

of regions of small size and vertices of small degree should be limited. Such

occurrences are forced upon us by the need to construct the black regions in

5,, the vertices in V'x (which are of size 1 or 2) and possibly some of the white

regions in W" (which are of arbitrary finite size). We overcome this difficulty

by constructing these map-components one at a time—that is, at most one at

an inductive extension of Mn to Mn+{ .

The construction of a map-element from Bx U V[ U W" is referred to in the

sequel as accomplishing a task. The tasks are in one-to-one correspondence with

the set r=Tfiuri/u7'H,ÇN. We take care of the first task in proceeding from

Mx to M2, and if a task is accomplished in the transition from M to Mn+X ,

the next one is accomplished in the transition from M { to Mn+2 or from

Mn+2 to Mn+i. Thus, the «th task is already accomplished in M2n , hence all

tasks are eventually accomplished in M.

Details. We identify for the sake of brevity the plane with the set of complex

numbers C. For r > 0, let Ur = {z e C: \z\ < r}, Cr = {z e C: \z\ = r}

and Dr = Ur U Cr. For a subset X ç C let [X] denote its convex closure.

For xx, ... ,xn eC let [xx, ... ,xn] = [{xx, ... ,xn}]. Thus [x ,y] is the line

segment connecting x and y .

Let x ,y e Cr, say x = re"p ,y = re'v, 0 < \p - tp < 2n. Then [x, y\ =

{re'x : tp < x < ip} denote the arc on Cr leading from x to y in the positive

sense, i.e., counterclockwise. c\(X) and lnt(X) denote as usual the closure and

the interior of X ç C .

Let M = ( V, E, B, W) be any bicolored planar map, and let r be a positive

real number. Define Vr = VC\Dr, Er = {enDr: e e E} , Br = {bnDr: b G B] ,

W = {wr\Dr: w eW} and set Mr = (V ,Er ,Br ,Wr). We have Cr ç [J£

if and only if Cr ç \J Er. If Cr ç (J Er we say that Mr is an r-disk-map or,

briefly, that Mr is an r-map.

Assume that Mr is an /--map. Then (Vr ,Er) is obviously a planar graph,

Br ç B, Wr ç W. We call v eVr an inner vertex iff |w| < r, and a rim vertex

if \v\ = r. Inner vertices have the same (even) degree in M and in Mr, and

the degree of a rim vertex is at least 2.

The required map M = ( V, E, B, W) will be defined as the increasing union

of disk maps, namely, its restrictions Mn = (V" ,E" ,B", W") to the disks

Dn. To help verify (4.2". 1) and (4.2".2) we shall further specify partitions

{"V^,nV'x,nV"} of V" -Cn, {nB0,"Bx} of B" and fw'fw") of Wn,

which eventually define the partitions {V^ , V'x , V"} , {BQ,BX} and {W1 ,w"}
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of V,B,W respectively. In fact, nV'x ,nBx ,nW" will be obtained as estab-

lished tasks, as follows.

For p e T = TB U Tv u Tw , we shall define in the course of the construction

the pth task T(p) to be a particular map element—a black region of size /' if

p e TB , a vertex of size m'p (i.e., degree 2m') if p e Tv , and a white region

of size n'p if p e Tw. The task T(p) will always have specified task vertex

v(p) associated with it. If p e TB u Tw then v(p) belongs to cl T(p), and if

p eTv then actually T(p) = v(p).

It follows from the fact that M" is a disk-map, that for every n e N, Cn is

a union of edges in E, in fact in E" . In addition, the set of positive integers

N = {1,2, ...} will be a subset of V , and its convex closure, the ray [1, oo),

will also occur as a union of edges in E. In general task vertices v(p) will

occur on this ray as half-integers,  v(p) = n   + \  for some n   e N.   (The

only exceptions are some of the tasks T(p) with p e Ty , m = 1 ; i.e., some

vertices in V[ of degree 2.)

We say that a black region b (a vertex v ; a white region w) accomplishes

the integer k if s(b) = k   (s(v) = k;s(w) = k).

Base of the inductive construction. Let M  = (V ,E ,B , W ) where

V1 = {vx = l,v2,...,vh},    withvk = e{2ni/l,Hk-l), k=l,...,lx,

El = {ex, ... ,eh},    wither = [vk,vk+x\, k=l,... ,/,, (vl¡+x =vx),

Bl = {Ux},        W]=0.

Figure 5.  Mx with lx = 3
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We further let:

V0' = f',     V1' = V = 0,        lB0 = Bl,    '5,=0,        w' = W" = 0.

Thus,   £/,   accomplishes /,  and let ¿r     denote the sequence (/f)/eN_Mj.

Let also tr=t/,i(;=u;. Let r = / = (tp)peT denote the task-sequence

b'uv'u w   (i.e., tp = l'p if p G TB , tp = m'p if peTv, tp = n'p if p e Tw).

Induction hypothesis. Assume that Mn = (Vn , En, B" , Wn) is already defined,

and so are the sequences of positive integers b ,v ,w ,v . These are

obtained from the sequences b,v ,w ,t by omitting a finite number of terms

from each, namely, the terms accomplished in Mn ; that is, the terms omitted

from the sequence b (v;w;t) stand in one-to-one correspondence with the

regions in "BQ (the set "Vq of inner vertices of Vn ; the set nW' of white

region of Mn ; the task-set nBx u nV[ U nW") that accomplish them. Also,

each w e W' has an inner vertex vw e " V" of degree two in its closure, and

nV" = {vw:weW'}.

Let vx = n,v2, ... ,v e V" enumerate the rim vertices of Mn in the

positive sense, and let 2 < dn(vA) denote the degree of v¡ in Mn. We assume

that one of the following two cases hold:

Case a. dn(vA) <4 for i = I, ... ,q .

Case b. dn(vx) = 5 and <af„(f,) < 4 for i = 2, ... ,q .

Induction Step. The extension of M" to Mn+ is made in several steps. In

general, the 1-skeleton of the extension (i.e., the union of its edges) is defined,

being divided by inserted vertices into edges later on, to obtain the required

sizes for fresh map elements. The actual extension depends on whether Mn

obeys Case a or Case b and whether any tasks are left. Thus, we distinguish two

cases:

Case 1. Case b occurs, or no tasks are left.

Case 2. Case a occurs, and some tasks are left.

In Case 1 a "smooth" extension leads to Mn+, , where Case a occurs. In Case

2, the first nonaccomplished task is accomplished in the course of the extension.

We turn to the details.   Recall that v. = /t.v,, ... ,v   e C   are the rim
1 l 7 77 71

vertices of M" , and dn(vA) is the degree of t/( in M" , i = I, ... ,q . We let

Vi = v\ and ei = K'-vt+iJ ' » = 1, .• - ,flf, eq+x =ex. For / = 1, ... ,q we
define Xi e{B_,W) as follows: AT(. = B (X¡ = W) iff e¡ lies in the closure of

a white (black) region of Mn . Thus, X¡ = B (X¡ = W) iff the region of M

touching ei and lying outside Dn should be black (white). We now proceed by

the two cases as follows:

Case 1. dn(vx) = 5, dn(v() < 4 for i = 1,2, ... ,q or t(n) is an empty

sequence.
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Step 1.1 (assigning sizes to new map elements supporting edges on Cn).

Declare s(vx), ... ,s(v) to be the first q members of the sequence vw (so

s(v¡) > 3, i = 1, ... ,q). Let f denote the Mn+l region lying outside Dn

and having e¡ in its closure (to be determined in full later), i = I, ... ,q . Let

gx, ... ,g , (hx, ... , h ,,) be the subsequence of fx, ... ,f consisting of all

f¡ with Xi = B_ (Xi = JV). Let s(gx), ... ,s(g ,) be the first q members of

the sequence b(n), and let s(hx), ... ,s(h „) be the first q" members of the

sequence w(n) (so s(g¡) > 3, i= I, ... ,q , and s(h¡) > 6,2   / = 1, ... , q").

Step 1.2 (determination of all edges connecting Cn with C ,). Declare

Cn+X to be part of the 1-skeleton of Mn+X. Declare u¡ = (1 + \)vi e Cn+X

to be a vertex in Vn+ , and [v¡, u¡] to be an edge in En+ . Let 1 < i < q,

and consider the number d'l = 2s(v¡) - dn(v¡) (which may be called "the degree

of v¡ outside Dn "). Since s(vt) > 3, dn(v¡) < 4 for i = 2,... ,q, we have

d'¡ > 2 for i = 2, ... ,q. In general, d'(vx) > 2 as well. If, however, Case b

holds, then dn(vx) = 5, so if in addition s(vx) = 3, we have d'(vx) = 1 . We

proceed according to two possible options.

Case 1.2.1. d\ >2,or s(fx) >3.

(1.2.1.1) For i = I, ... ,q choose a vertex u\ e [u¡,ul+x\ (where uq+x = ux)

and an edge e\ e En+ connecting v¡ to u\ as follows: If s(f¡) > 3 , let u¡ ^

u¡, ui+x be an internal point of the arc [u¡, u¡+x\ such that [vt ,u+i]C\Un = 0 .

Let e\ = [v-,«t]. If s(f) = 3 (in which case Xi = B, i.e., f is to be a

black region) let u* = ui+x, and let e\ be a straight line segment or any circular

arc connecting vi to u[ meeting Dn at vt and lying in Dn+Xn[{vi,vj+X}u

\u¡,ui+x\] j that meets [vj, u¡] at nonzero angle.

(1.2.1.2) Declare a";'-2 distinct points other than u¡,uf on the arc [unu*\

to be vertices in Vn+ , and the line segments connecting them to vj to be edges

in En+l (these new points u G [u^uf] are chosen so that the line segment

[vj, u] does not intersect e'A).

(1.2.1.3) Let f denote the open region bounded by the curves e'i,el =

L«/.«/+iJ. [vM,u,+i] and [ú¡,ul+l\ (if u*^uM).

Case 1.2.2. d\ = 1 and s(/j) = 3.

(1.2.2.1) For i = 2,... ,q + I choose a vertex u~ e [u¡_l,u¡\ (where

uq+\ = uf and an e^ëe e\ connecting v{ to u~ as follows: If s(fi_f) > 3, let

«7 ^ "i-1 ' ui be an internal point of \ui_x, u¡] such that [vi ,u~]C\Un = 0 .

Let <?,' = [tj;. , u~]. If i(yj_i) = 3 (in which case X. = B_) let u~ = ui_x and let

e\ be a straight line segment or any circular arc connecting vi to u~ meeting

Dn at v¡ and lying in Dn+X n [{»¡.ti,.,} U L",_i>",J]> that meet [«,,«,] at

nonzero angle.

2 Actually, s(A/) > 7 ; but in Case 1  s(h¡) > 6 is sufficient.
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Figure 6. Step 1, Case 1.2.1, with q = 5,XX = X2 =

X5 = W_, X3 = X4 = B, d\= d'2 = 2, d\ = d\ = 3,

d'4 = 4.

(1.2.2.2) Declare d\-2 distinct points of the arc [u~ ,u¡\ other than u~ ,u¡

to be vertices in V" and the line segments connecting them to be edges in En+ .

(The new points u e [u~ , u¡] are chosen so that [v¡ ,u]r\e'i = 0.)

(1.2.2.3) Let f. denote the open region bounded by the curves e'j+x,ej =

lvi>vi+\\>lv¡'u7+i\ and K'M/>i] (if ui^u~+l).
Case 1.2.3. We now establish notation and colour for the regions obtained so

far in Dn+X -Dn . For i = I, ... ,q and j = 1, ... ,d\ we define the region f..

and colour X¡J e{B,W} as follows. For X e {B,W} define X' by tí = W,

Uf = B.
In Case 1.2.1, let fid, = fi, Xid, = Xi. Let fiJ_x be the neighboring region

to fj to the right. Let X¡._x = X\. (see Figure 6).

In Case 1.2.2, let fiX = f¡,X¡x = Xi. Let fi]+x be the region to the left of

fjj'Xjj+i = K] (see Fiëure 7)-

Remarks. 1.2.4. The parity of the degrees d(vt) = 2s(i>() and the fact that Mn

is properly colored provide us with the fact that

X, ,xxd,,...,x2x,...,x2d^, ... ,XqX, ... ,Xqd,

is an alternating sequence of B_ and W_.

1.2.5. All vertices on Cn+X defined so far have degree <4. The only vertices

of degree 4 are some of the vertices ux, .. ui has degree 4 only in the

following two cases: Case 1.2.1 and s(f_x) = 3, or Case 1.2.2 and s(f) = 3.

Note that in both cases X.. = B .
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Figure 7. Step 1, Case 1.2.2, with q = 5, X{ = X2 =

X3 = X4 = B, X5 = W, d'x=d'5 = 3, d'2 = d'=d' =
2.

Step 1.3 (determination of all Mn+X-regions in Dn+X - Dn).  Consider the

sequence

■Ml ' • • • ' *\d[ ' -/21 ' - ■ ■ ' Hd', > ■ ■ ■ '*gl ' * * • ' Jqd'q

that enumerates all the regions obtained so far in the ring Dn+X -Dn,ina cyclic

order, from the edge [n , n + 1] in a positive sense.

Let hx, ... ,hr denote the subsequence of those f(. for which Xi} = W_.

We say that hk is triangular if cl(hk) n Cn is a point, i.e., if hk / f¡ for

i — I, ... ,q . Notice that cl(À^) n Cn+1 is a nondegenerate arc on Cn+X (see

1.2.5), and denote it [xk ,yk\ . Next we choose xk ,yk e [xk ,yk\ and zk e hk

(n < \zk\ < n+l) so that xk ,xk ,yk ,yk appear on Cn+X in this order, x^" / yk

and bk = [{zk} U L*£ >y^J] - hk . If hk is triangular, we further assume

xk j¿ xk and yk # yk . If hk is not triangular, we let xk = xk ,yk / yk if

Case 1.2.1 holds and xk ^ xk ,yk = yk if Case 1.2.2 holds.

We declare xf ,yk,zk to be vertices in Vn~ , [zk,xk],[zk,yf] to be edges

in En+X and bk to be a black region in Bn+ .

We set "+1 V" = {zk : k = 1, ... , r} . Let 1 < / < q, 1 < j < d\. If Xi} = B,

we let f   = f   ei"11. If X   =W,let f   = hk and let f   =hk- cl(bk).

3 This ensures that A^-cl(¿»/t ) has no more than six vertices defined so far in its closure, and no

vertex on  C„+x  has degree exceeding 4.



CONJUGACY CLASSES 519

Let / ¡ e Wn+  . Thus we have

Bn+l-Bn = {bk: k = 1, ... ,r}U {ft]: XtJ = B},

Wn+[ -Wn = {fu:Xu = W}.

We declare Bn+l - Bn C BnQ+l , Wn+l - Wn ç W0"+i .

Step 1.4 (completion of Mn+l-additional vertices on Cn+X).

1.4.1. Assign a size s(b) (s(w)) to each region of Bn+X - B" (Wn+X - Wn)

other than fx, ... ,f , whose sizes were already determined in Step 1.1. For

this purpose use the first members of the sequence b(n) (wM) not assigned to

map elements in 1.1. Thus, s(b) > 3 for all b e Bn+ - B" and s(w) > 1 for

all w G Wn+X - W" .

1.4.2. Add vertices on Cn+X so that we have s(b) = \Eb\ and s(w) = \Ew\

for each b e B"+l - B" and w e Wn+X - Wn . Declare the arcs into which

Cn+X is divided edges in En+l . Let

"+V" - V" = {zk: k = 1, ... ,r} Ç U"+l -Dn,

"+V0'-F" = F"+1nC„+1,      n+lv; = 0.

The induction step is complete. Notice that every vertex on Cn+X has degree

2, 3 or 4, i.e., Case a occurs.

Case 2. dn(vt) < 4, i = I, ... ,q, and /(") is not an empty sequence. Let

t be the first member of /("'. The pfh task T(p) will be accomplished in

Dn+X - Dn, in the course of this inductive step. We shall denote the possible

tasks to be considered as T(p) as follows:

Task B.k: peTB and tp = k  (k e {1,2}),

Task V.k: peTv and tp = k  (ke{l,2}),

Task W.k: peTw and tp = k   (k e N).
We proceed in steps:

Step 2.1 (assigning sizes to map elements supporting edges in C ,). Same

as Step 1.1. Notice that d'¡>2, i = I, ... ,q .

Step 2.2 (division of the ring Dn+X —Dn into compartments). Declare Cn+X

to be part of the 1-skeleton of Mn+X. Declare u¡ = (I + l/ni)vi e Cn+X to be

a vertex in Vn+ , and [v¡,w(] to be edges in En+ , i = 2, ... ,q. Declare

[«[,«[] to be part of the 1-skeleton of Mn+X .

Let us call the region enclosed by the curves [v , v2\, [v2, u2], [u , u2\,

[vq, uq] the task-region.

Step 2.3 (accomplishment of the task). This step splits into cases dictated by

the following parameters:

(i) The task to be accomplished.
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B.2

V.1

V.2

W.1

W.2

W. k

Figure 8
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(ii) The values Xx,Xqe{B,W}.

(ii) Sizes preassigned already to map elements in the task region, mainly

d\ = 2s(vx) - dn(vx) ,s(fx) ,s(fq).

We shall describe this step by displaying the actual solution for each of the

possible tasks, under the most tight assumption about (iii), namely: The size of

a nontask black region is 3. The size of a nontask vertex is 3 (i.e., its degree is

6) and the size of a nontask white region is at most 7 (nontask white regions

always possess an arc (possibly degenerated to a point) on Cn+X as part of their

boundary, so their size is always augmentable by adding vertices on that arc).

These cases are displayed in Figure 8. The other (easier) cases can be safely left

to the reader.

With the mentioned assumptions about sizes, we denote the cases as follows:

Let X,Y e{B,W}. B.kX.Y (V.k.X.Y, W.k.X.Y) will stand for task B.k (V.k,

W.k) with Xx = X ,Xq = Y. In addition, the assumption d\ = 1 or d\ = 2 is

utilized for the demonstration. In fact, d'x = 1 is ruled out, as we are in Case

a; but obviously, d'x > 1 only facilitates the construction. In each figure, the

letter "T" denotes the task. We note that once we display a figure for U.kB, W

(U = B ,V or W), a figure for U.k. W.B will be obtained by reflecting on the

real axis.

Step 2.4 (completion of Mn+X). Proceed to define Mn+X outside the task

region as in Case 1, by suitably modifying Steps 1.2-1.4.
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