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METRIC TRANSFORMS AND EUCLIDEAN EMBEDDINGS

M. DEZA AND H. MAEHARA

Abstract. It is proved that if 0 < c < 0.72/« then for any «-point met-

ric space (X, d), the metric space (X,dc) is isometrically embeddable into a

Euclidean space. For 6-point metric space, c = j log2 | is the largest exponent

that guarantees the existence of isometric embeddings into a Euclidean space.

Such largest exponent is also determined for all «-point graphs with "truncated

distance".

1. Introduction

One of the fundamental problems in distance geometry is the isometric em-

bedding problem, that is, to determine conditions for metric spaces to be isomet-

rically embeddable in a given class of spaces, say /^-spaces (e.g. [1-5, 8, 11, 12,

18, 23]). For finite metric spaces, there also arises the minimum dimensional

embedding problem, that is, to decide the minimum dimension m = m (n)

such that any «-point subset of an /p-space can be isometrically embedded in

If . Except for the case p = 2 (in this case, m2(n) = n - 1), the problem is

not trivial. For some bounds on mp(n), p ^ 2, see e.g. Ball [6], Witsenhausen

[24].
In this paper, we consider deforming the distance function of a metric space

so that the resulting space can be embedded in a certain space, say l2. This

problem has its origin in the 1930s (e.g. [7, 16, 19, 22]).

Throughout this paper, X stands for a finite metric space and Xn stands

for an «-point metric space. The distance between two points x,y of a metric

space is denoted by the juxtaposition xy. If A is isometric to a subset of a

Euclidean space, then A is said to be Euclidean. Let F(t) be a continuous,

monotone increasing, concave function of t > 0 with F(0) = 0. Then, replac-

ing the distance xy in X by F(xy), we have another metric space with the

same point set as X. This new metric space is called the metric transform of

X by F(t), and it is denoted by the symbol F(X).

Blumenthal [8, p. 131] proved that if 0 < c < \ then the metric transform

(Xfc by F(t) = tc is Euclidean. Further, he showed that c = \ is the largest

exponent that guarantees (Xff to be Euclidean for all A4. We are going to
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consider similar problems for Xn, n > 4, in connection with "hypermetric"

spaces (e.g. [3, 11, 13]).

We will prove that if 0 < c < 0.7213... ¡n , then (Xff is always Euclidean.

In particular, c = \ log2 \ = 0.2924... is the largest exponent that guarantees

(Xff to be Euclidean.
The vertices of a connected graph G constitute a metric space with the short-

est path distance. We denote this metric space by the same letter G. Winkler

[23] gave a characterization of the connected graphs G whose metric transforms
1II

(G)     are Euclidean.

For a graph G, define the truncated distance between two vertices x, y of

G by
'0    if x = y,

xy = <   1     if x and y are adjacent,

2    otherwise.

The metric space consisting of the vertices of G with truncated distance is

denoted by GT. If G is a graph with diameter < 2, then G and GT are the

same space. Isometric embeddings of GT into Hamming hypercubes and /,

were considered in [2, 3].

We will prove that cn , the largest c such that (GT)C are Euclidean for all

«-point graphs G, is given by

C =
Mog2(Ac/(Ac-l)) if« = 2Ac,2'"62

2-lOg-,ilog2(2/c(rC+l)/(2Ac  -1))     ifn = 2k+l.

2. Preliminaries

A space A is said to be hypermetric if

X&X x ,y€X

where ax are integers. A space A is of negative type if the above holds with

1 replaced by 0. Schoenberg [18] proved that (X)i/2 is Euclidean if and only

if A is of negative type. This characterization goes back to Cayley, but was

first stated in this form by Schoenberg in the 1930s. A space X is said to

be /j-embeddable if there is an isometric embedding of A into R" with the

/,-metric, i.e. the metric

d(x,y) = \xx -yx\ + ■ ■ ■ + \xn -yn\.

A metric space is called ultrametric (see e.g. [1]) if it satisfies xz < max(xy ,yz)

for any three points x ,y, z. In Maehara [15], an ultrametric space A is called

an irreducible space, because any metric transform of A requires (|A| - 1)-

dimensional Euclidean space for an isometric embedding. In particular, [15,

Theorem 7] implies that ultrametric spaces are Euclidean (see also [1, Theorem

6.7]).



METRIC TRANSFORMS AND EUCLIDEAN EMBEDDINGS 663

There is the following hierarchy in finite metric spaces (see, e.g. [2-4, 10-13,

15, 17. 23]):

X is ultrametric

=> X is Euclidean

=► A is /j -embeddable

=> X is hypermetric

=> X is of negative type

=> The distance matrix of X has only one positive eigenvalue.

The conditions for hypermetricity and for negative type can be described

by the polygonal inequalities. A space A is said to be (2A + e)-gonal if the

(2A + e)-gonal inequality

(0 Y.xtX]+llypj^YixPi
i<j i<j i J

holds for any (2A + e)-sequence of points of A,

(2) xx,...,xN,yx,...,yN+£,

where e = 0 or 1. These 2A + e points are not necessarily different. The 3-

gonal inequality is just the triangle inequality. Then a space A is hypermetric

if and only if it is (2 A -l- l)-gonal for all A > 1, while A is of negative type if

and only if it is 2A-gonal for all A > 1 (e.g. [3]).

In this paper the function log2(l + 1/s) appears frequently, so we denote this

function by y :

y(s) = log2(l + l/s).

First we prove two lemmas.

Lemma 1. Suppose that 0 < c < y(s), s > 1. Then, in the metric transform
(X)c, xy <yz implies that

xz < (xy)/s + yz.

Proof. Denote the distance in the space A by xy. Then xy = (xy)c by

definition. Since xy + yz > x~z, it is enough to show that

(xyfls + (yzf -(xy+ yzf > 0.

Dividing the left-hand side by (xy)c and letting t = (yz)/(xy), we have

f(t):=l/s + tc-(l+t)c.

Thus it remains only to show that f(t) > 0 for t > 1. Now, since the condition

0 < c < y(s) implies that (1 + l/s) > 2C, we have /(l) > 0. And since c < 1,

we have

- f(t) = cf~x -c(l+ t)c~{ > 0    for t > 1.

Therefore f(t) > 0 for t > 1.   D



664 M. DEZA AND H. MAEHARA

Let (2) be a (2A + l)-sequence of points of (X)c. By changing suffixes if

necessary, we may assume that

(3) xkyk < xpj    for / > Ac,    j > k,    k = l, ... ,N

holds in the sequence (2). If i < k then by (3) and Lemma 1,

x(xk < (x,.y,)/5 + xky, < (xkyk)/s + xkyt,

y¡yk < (x^f/s + X¡yk < (xkyk)/s + xtyk.

Hence we have the following lemma.

Lemma 2. Suppose that 0 < c < y(s) and k < N. If i < k < j, then

xlxk<(xkyk)ls + xkyi,

XjXk<(xkyk)/s + xjyk,

yjyk<(xkyk)/s+xkyj.

Therefore, for any i,k < N,

(4) xixk+yiyk<2(xkyk)ls + xlyk + xky¡.   u

3. The polygonal inequalities

Theorem 1. If 0 < c < y(N), then the metric transform (X)c is M-gonal for

all M < 2A + 2, and if c > y(N) then there is a space X such that (X)c is

not (2A + 2)-gonal.

Proof. Suppose that 0 < c < y(N). It is known that if a metric space is

(2A + l)-gonal, then it is M-gonal for all M < 2A + 2 (see e.g. [11]). Hence

we show that (X)c is (2A+l)-gonal.

Let (2) be a (2N + l)-sequence taken from (X)c. We may suppose that (3)

holds for this sequence. Fix Ac < A + 1 and sum (4) over /' / Ac to obtain

N N

J2(xixk+ytyk) z ^{xfa + xky¡)
i=i i=i

-2(xkyk) + 2(N-l)(xkyk)/N.

Summing over k < N + 1 gives

N     N N     N N

E!>/** + JWk) ̂ EEi-VA + xky¡) - 2^(xkyk)/N.
k=\ 1=1 k=\ 1=1 k=\

Dividing this inequality by 2, and adding the inequality

N N

k=\        k=\
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we have

N     N N

E xixi + E y¡yj ̂ £ £ w + E ^v™ = E *¿v
i<7 i<j i'=l A:=l A:=l (J

This is (1), proving the first part of the theorem. For the second part, consider

the complete bipartite graph K(N+1, N+1 ) with vertex classes {xx, ... , xN+x}

and {yx, ... , yN+x} ■ Then all the vertices of K(N+1, A+1 ) constitute a metric

space X by the usual graph distance. Suppose c > y(N) = log2(l + 1/A). Then

2C >(N+ 1)/A. Hence, in (X)c,

E xixj + E Wj = N(N+l)2c>(N+lf;
i<j i<j

on the other hand

¿>,.y. = (A+l)2.

ij

Thus the (2A + 2)-gonal inequality fails in (X)c.   D

Deza [11] proved that X5 is /,-embeddable if and only if it is pentagonal

(=5-gonal). Hence we have the following corollary.

Corollary 1. The metric transform (Xfc is I\-embeddablefor 0 < c < y(2),

and y(2) is the largest exponent that guarantees (Xfc to be lx-embeddable for

all X5.     a

4. Repeating numbers

In a sequence of points, some points may appear repeatedly. Define the

maximum repeating number of a sequence as the maximum value of the number

of times a point appears in that sequence. For example, the maximum repeating

number of the sequence

a,b,c,a,b,b,c,b,c

is 4 provided that a,b,c are all different.

Lemma 3. Suppose that 0 < c < y(s) and (X)c is (2A - l)-gonal. Then,

in (X)c, the (2A + l)-gonal inequality holds for any (2N + l)-sequence with

maximum repeating number at least 2N/(s + 1).

Proof. Suppose that (2) is a (2 A-l-1 )-sequence with maximum repeating number

r>2A/(i+l).

First, we consider the case {xx, ... , xN} (~\{yx, ... yN+x) ¥" 0 • Suppose, say,

x2= y3. Then since the (2A - l)-gonal inequality is valid for

X],Xj,x4,... ,xN,yx ,y2,y4,...,yn+x

and since

E xix2 + E ^3 = E *^3 + E x2 y i >
'¥2 75*3 m j¿3
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the (2A+ l)-gonal inequality (1) is valid for the (2A + l)-sequence (2).

Now, suppose that {xx, ... ,xN} n{yx, ... ,yN+x) = 0 • Changing suffixes

of x¡ ,yj if necessary, we may assume that (3) holds in the sequence (2). Let Ac

be the smallest suffix i such that the maximum repeating number r equals the

repeating number of z., where z. = xi or yi. In the following we assume that

zk= xk. (The case zk = yk is similar, and is omitted.) Since (2A - l)-gonal

inequality is valid in (X)c, we can apply it to the sequence left when xk and

yk are removed, to wit

E *,-*,-+ E y,yj< £*,>•,■
i<j i<j ijjift

Hence, in order to prove the (2A+ l)-gonal inequality (1) for the sequence (2),

it is enough to show that

(5) E xixk + E y,yk z E *<?* + E w •
i€l+J jjík i j¿k

where

I = {i: i <k, x¡¿ xk},       J = {/: /' > k, x¡ / xk}.

Note that since {xx, ... ,xN} n{yx, ... ,yN+x} = 0, it follows that |/| + \J\ =

N - r. Now applying Lemma 2, we have

iv+i

E xixk + E y,yk ̂  £«w)/s+xky,y + Eí^j/j+x,yk)
iel+J j=\ i€I i€J

fe-1 N+l

+ J2^xkyk)/s+xjyk}+ E {(^fc)A+^^}.
;=i /=*+l

Since Ac is the minimum value of i such that x¡ appears r times in the

sequence (2), it follows that

/={l,2,...,Ac-l}.

Hence the right-hand side of the above inequality is

(\I\ + \J\ + N)(xkyk)ls+ J2 xiyk + Ydxkyj
lei+J jftk

= (2A - r)(xkyk)/s + £ x,yk + Y,xkVy
i€l+J jjik

Since

£*,:■>* =rto)+ E xiVk>
i i€I+J

inequality (5) follows if we show (2N - r)/s < r. But this inequality is equiv-

alent to the assumption r > 2N/(s + 1).   D

Theorem 2. The metric transform (X2n)c is (2« + l)-gonalfor 0 < c < y(n - 1).

Proof. Suppose 0 < c < y(n - I). Then by Theorem 1, (A2n)c is (2« - 1)-

gonal. To prove that (A2Je is (2« + l)-gonal, let 5 = « - 1, A = « in Lemma
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3. Since the maximum repeating number of any (2« + l)-sequence from (A2n)c

is at least |"(2« + 1 )/(2«)] = 2 = 2«/(s + 1 ), the (2« + 1 )-gonal inequality holds
in (X2n)c by Lemma 3.   D

Thus (A6)e is heptagonal (7-gonal) for 0 < c < y(2).

Recently, Avis [5] proved that A6 is /,-embeddable if and only if it is hep-

tagonal. Hence we have the following corollary.

Corollary 2. The metric transform (Xff is lx-embeddable for 0 < c < y(2),

and y (2) is the largest exponent that guarantees (Xf)c tobe lx-embeddable for

all X6.   D

Theorem 3. The metric transform (Xff is hypermetric for 0 < c < y(n - 1).

Proof. We show that (Xff is (2A + l)-gonal for all A > 1. This is done

by induction on N. Since (Xn)c is a metric space, it is 3-gonal by definition.

Suppose that (Xff is (2A - l)-gonal, A > 2. Then since the maximum

repeating number of any (2A+l)-sequence from (Xff is at least (2N+l)/n,

the (2A+l)-gonal inequality holds in (Xff by Lemma 3.   D

5. Euclidean embeddings

Since a hypermetric space is of negative type, its "square root" is Euclidean.

Hence, from Theorem 3, we have the following.

Corollary 3. The metric transform (Xff is Euclidean for 0 <c< y(n-l)/2.   D

Let e(n) be the supremum of c such that (Xff is Euclidean for every

Xn. Since any «-point metric space can be isometrically embedded into an

(« + l)-point metric space, we have e(n + 1) < e(n). By Blumenthal,

c(4)=l/2 = y(l)/2.

Using the inequality

loge(l + l/s) > 1/5 - (l/s)2/2 > l/(s + 1) ,

we have

Ilog2(l + l/(«-l))>i(log2c)(l/«) = 0.7213.../«.

Thus

c(«)> 0.7213.../«.

By Corollary 1, c(5) > y(2)/2. But this is the exact value of e(6).

Theorem 4.  e(6) = y(2)/2 = 0.2924... .

Proof. By Corollary 2, (A6)c is /,-embeddable for 0 < c < y(2). Hence (X6)c

is of negative type for "that range of c, and hence, applying the result of Schoen-

berg, we have e(6) > y(2)/2. On the other hand, if c> y(2) then, by Theorem

1, there exists a metric space A6 whose metric transform (Xff is not hexago-

nal. Therefore, e(6) < y(2)/2.     a
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Table 1. Values of e(n) for small «

«        2      3       4       5 6 7

e(n)     oo     1      1/2     ?     y(2)/2     ?

Conjecture.

c(2«) = y(«-l)/2,

c(2« + 1) = y(2n(n + l)/(2« + 1) - l)/2.

These are true for the known values of c(«). Further, as will be seen in the

next section (Theorem 6), if we restrict ourselves to graphs with "truncated

distance", the conjecture is also true.

Denote by /'(«) the sup of c such that (Xn)c has property (i) for every

Xn. Then it may be also an interesting problem to determine '(«) for such

properties as:

(a) < «-gonal,

(b) hypermetric,

(c) negative type,

(d) /,-embeddable.

6. Graphs with truncated distance

Here we consider the following problem: Given a graph G, up to what value

of c is the metric transform (GT)C Euclidean?

Let tp(G;x) be the characteristic polynomial of a graph G, that is tj>(G ;x) =

det(x/ - A(G)), where A(G) is the adjacency matrix of G. Define the poly-

nomial P(G;x) by

P(G;x) = <j>(G; - x) - (-lfl<t>(G;x - 1),

where G denote the complement of the graph G. Then the following result

was proved in Maehara [14]:

A graph G can be embedded in Euclidean space in such a way that adjacent

vertices have distance 1 and nonadjacent vertices have distance t > 1 if and

only if

(6) l-l/'2<l/^ax>

where zmax is the maximum root of the polynomial P(G;x).

From this result the next follows easily.

Theorem 5. For a graph G, the metric transform (Gff is Euclidean if and only

Proof. The inequality (6) is equivalent to

'<(l + l/(^max-l))1/2.
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Since the truncated distances between nonadjacent vertices of G are 2, letting

t = 2° and applying the above result, we have that (Gff is Euclidean if and

only if

c<ilog2(l + l/(zmax-l)) = y(zmax-l)/2.   D

Corollary 4. For a graph G, the truncated metric space GT is of negative type

if and only if zmax < 2.   G

If G is a regular graph of degree d, then the polynomial P(G) is given by

P(G;x) = (\G\/(x + d))<p(G;-x)

(see [14]). Hence, for a regular graph G,

zmax = -(minimum eigenvalue of G).

Corollary 5. For a regular graph G, GT is of negative type if and only if the

minimum eigenvalue of G is > -2.     D

The graphs with least eigenvalue > -2 were characterized by Cameron,

Goethals, Seidel and Shult [9] in terms of root systems. In the same terms,

Terwillinger and Deza [21] gave a characterization of more general class of

connected finite distance spaces of negative type [21, Theorem 1 ] and of hyper-

metric spaces between them [21, Theorem 2].

Example 1. Let G be the Petersen graph. Then

(f>(G;x) = (x-3)(x-l)5(x + 2)4

(see e.g. [20]), and hence GT is of negative type. Further, since the diameter

of G is 2, we have G = GT, and hence the Petersen graph is of negative type.

Example 2. Let G = K(m, n), the complete bipartite graph. Then

j-tr.       \        i    2 ,    m+n — 2
tp(G: x) = (x  - mn)x ,

<p(G;x) = (x-m+ l)(x + \)m~\x -n + l)(x + l)""1

(see e.g. [20]), and hence

P(G;x) = (-x)m+n~2{(m + n)x - 2mn}.

Therefore, zmax = 2mn/(m + n). Thus (C7)c = (GT)C is Euclidean if and only

if c < y(2mn/(m + n) - l)/2.

Theorem 6. The sup cn of c such that (GT)C are Euclidean for all n-point

graphs G is given by

c   _(y(k-l)/2 ifn = 2k,

C"     \y(2k(k+l)/(2k+l)-l)/2        ifn = 2k+l.

Proof. Consider the 2A-gonal inequality (1) in the metric transform (GT)C.

The left-hand side of ( 1 ) does not decrease when the nonzero terms are replaced

by 2C 's, and the right-hand side of ( 1 ) does not increase when the nonzero
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terms are replaced by l's. Hence the worst case (i.e. the most difficult case

for 2A-gonal inequality to hold) will be attained by a complete bipartite graph.

However, by Example 2, it will be easy to see that the sup of c for «-point

complete bipartite graphs is given by (7). Hence the theorem follows.   D

Winkler [23] proved that the graph G = K2 + Kn (= the complement of the

disjoint union of K2 and Kn ) is not of negative type for « > 4 (though G

has only one positive eigenvalue). Applying Corollary 4, let us present a shorter

proof of this result.

Example 3 (cf. Winkler [23]). Let G = K2+Kn . Applying Cvetkovic's theorem

[10, p. 57], we have

and hence

<p(K2 + Kn;x) = x"  fx* - (2n + l)x - 2n),

P(G;x) = (-*)"  '{-(/i + 2)x2 + 2(2« + l)x - 3«}.

Hence the maximum root is zmav = 3«/(« + 2). Thus, if n > 4, then zm„ > 2,
max ' v ' mdx

and hence G  (= GT) is not of negative type.

The distance matrix D of G is

0   1111
10   111

1

110   2     2
112   0     2

112   2

Using the spectral resolution

2     0

> n

( -x     Ac      k

k     -x     k

v Ac       k

Ac \
Ac

-x)

= (Ac« - Ac - x)(l/n)J - (x + k)(I - (l/n)J)

(where J is the matrix with all entries 1 and / is the identity matrix), and the

formula

det(p""e)= det(M)det(ö"PM 'N)'

the charateristic polynomial of D is calculated as

(—1)"(jc + l)(x + 2)"~fx2 - (2« - l)x - 2).

Thus G has one positive eigenvalue but is not of negative type if « > 4.
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