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MODULAR REPRESENTATION THEORY OF FINITE GROUPS

WITH T. I. SYLOW /z-SUBGROUPS

H. I. BLAU AND G. O. MICHLER

Abstract. Let p be a fixed prime, and let G be a finite group with a T.I. Sylow

p-subgroup P. Let N = NG(P) and let k(G) be the number of conjugacy

classes of G . If z(G) denotes the number of p-blocks of defect zero, then we

show in this article that z(G) = k(G) -Zc(A'). This result confirms a conjecture

of J. L. Alperin. Its proof depends on the classification of the finite simple

groups. Brauer's height zero conjecture and the Alperin-McKay conjecture are

also verified for finite groups with a T.I. Sylow p-subgroup.

Introduction

Let p be a fixed prime, and let G be a finite group with a T.I. Sylow p-

subgroup P. That is, two different conjugates of P have only the identity

element in common. At the Santa Cruz conference on finite groups J. L. Alperin

[1] stated the following conjecture: If P is T.I. then the number of ordinary

irreducible characters of G not vanishing on the nonidentity elements of P

equals the number of ordinary irreducible characters of the normalizer NG(P)

of P. It is the purpose of this article to show that Alperin's conjecture follows

from the classification theorem of the finite simple groups.

In fact we prove the block version of Alperin's conjecture. In order to state

it we need the following notation. For any p-block B with defect group

ô(B) =G D of a finite group G the numbers of ordinary irreducible charac-

ters, of modular irreducible characters, and of ordinary irreducible characters

X of B with height ht(/) = 0 are denoted by k(B), 1(B) and k0(B), re-

spectively. Let z(G) be the number of /z-blocks of G with defect zero. The

numbers of all ordinary irreducible characters and of all modular irreducible

characters of G are denoted by k(G) and 1(G), respectively. Throughout this

article (F, R, S) denotes a splitting p-modular system for the finite group G,

where R is a complete discrete rank one valuation ring of characteristic zero

with maximal ideal nR > pR, and where F = R/nR and 5 = quot(i<) are

splitting fields for G and all its subgroups.
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Let G be a finite group with a T.I. Sylow /z-subgroup P. Let B be a p-block

with defect group S(B) =G P and Brauer correspondent b in N = NG(P).

Then our main theorem (9.2) asserts that k(B) = k(b), k0(B) = k0(b) and

1(B) = 1(b). In particular, k(G) = k(N) + z(G).

As an application we obtain in Corollary 9.3 that Brauer's height zero con-

jecture holds for groups with T.I. Sylow subgroups. Hence k(B) = kQ(B) if

and only if P is abelian. If P is not normal in G, then k(B) < \P\ and

k0(B) < \P/P'\ by Corollary 9.4.
Since the blocks B and b are stably equivalent F-algebras, Theorem 9.2

supports the long standing conjecture in the theory of finite dimensional algebras

asserting that two indecomposable stably equivalent algebras B and b have

the same number 1(B) = 1(b) of nonisomorphic nonprojective simple modules

(Remark 9.5).

In § 1 the group structure of a finite group G with a T.I. Sylow /z-subgroup

P is described. Here we quote mainly results of Puig [19] and Suzuki [24].

Furthermore, the classification theorem for all finite simple groups G with a

noncyclic T.I. Sylow ¿»-subgroup is restated. Using Fong's reduction theorems

we show in §3 that it suffices to prove the main theorem for those groups X

which are cyclic central extensions of automorphism groups of such a simple

group G.

In §2 methods are presented for counting the block invariants of a block B

and its Brauer correspondent in overgroups A of finite groups G such that

A/G is cyclic. They reduce the problem to counting the fixed points of au-

tomorphisms on the sets of irreducible characters. In order to find them we

determine the conjugacy classes of SL2(<7), SU3(<7 ), B2(q), G2(q) and cer-

tain overgroups of SL2(q) and SU3(^2) fixed by automorphisms in §4. These

subsidiary results are used in §§5 and 6 to determine the block invariants of

the relevant extensions of the finite groups of Lie type having a T.I. Sylow p-

subgroup. Since the Schur multiplier of PSL3(4) is rather large, we study this

case separately in §7. The block invariants of the groups involving the simple

sporadic groups with T.I. Sylow p-subgroups are computed in §8. The final

section (§9) contains the proof of the main theorem and its above-mentioned

corollaries.

For notation and terminology we refer to the books by Aschbacher [2], Carter

[6], Feit [11], Huppert [14] and to the Atlas [8].

1. Structure of groups with T.I. Sylow //--subgroups

Let X be a finite group with a T.I. Sylow p-subgroup P ^ 1. Then PnPx =

1 for all x e X with x <£ NX(P). Suzuki determined the structure of a

group X with a T.I. Sylow 2-subgroup P in his paper [24]. For odd primes p

the following subsidiary lemma and propositions are special cases of results of

Gorenstein-Lyons [12] and Puig [19]. They are restated here for the convenience

of the reader.
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Lemma 1.1. Let X be a finite group with a nonnormal T.I. Sylow p-subgroup

P. Then the following assertions hold:

(a) If X is p-solvable, then P is either cyclic or a generalized quaternion

2-group.

(b) // P is a generalized quaternion 2-group, then either X = 0(X)P or

X/0(X) ~ SL2(3).

Proof. See Puig [19, p. 27] and Suzuki [24, pp. 58 and 63].

Proposition 1.2. Let X be a finite group with a nonnormal T.I. Sylow p-subgroup

P. Suppose that P is neither cyclic nor a generalized quaternion 2-group. Let

H = O"' (X) and U = Op(H). Then the following assertions hold:

(a) Op,(X)<Nx(P).
(b) Op,(H)<U <UP = H.

(c) X = UNX(P).

(d) G = U/O i(H)  is a nonabelian simple group with a T.I. Sylow p-

subgroup.

(e) X/OfX) acts faithfully on G via conjugation.

(f) Op,(X) = Cx(H).

(g) Op,(H) = Z(H).

(h)   H=U unless p = 3 and G ~ PSL(2,8) or p = 5 and G - 2B2(25).

(i)   Z(U) = Z(H) is a factor group of the Schur multiplier of G.

Proof. Assertions (a)-(g) are immediate consequences of Propositions 3-7 of

Puig [19, pp. 26-29].
From Theorems (24.1) and (24.9) of Gorenstein-Lyons [12, pp. 307 and

318], respectively, it follows that H¿U = Op(H) if and only if H/Op,(H) e

{2G2(3), Aut252(25)} and p e {3, 5}, respectively. For details, see Proposi-

tion 2.2 of [3].

By Proposition 5 of Puig [19, p. 28], U is the unique minimal normal sub-

group N of X with /»||./V|. Since G ~ U/Op,(U) is simple and nonabelian,

assertion (g) implies that U is a perfect central extension of G. Thus (i) holds.

Proposition 1.3. Let G be a nonabelian simple group with a noncyclic T.I. Sylow

p-subgroup P. Then G is ismomorphic to one ofthe following groups:

(a) PSL2(#), where q = p" and n>2.

(b) PSU3(tf2), where q = p" .

(c) p = 2 and G ~ 2B2(22m+x).

(d) p = 3 and G ~ 2C72(32m+1) and m>l.

(e) p = 3 and G ~ PSL3(4) or Mxx.

(f) p = 5 and G ~ 2F4(2)' or McL.

(g) p = 11 and G ~ 74.

Proof. This result is a restatement of Theorem 1 of Suzuki [24, p. 58] in the

case where p = 2. For odd primes p it follows from the classification theorem

of finite simple groups and Theorem (24.1) of Gorenstein-Lyons [12, p. 307].
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2. Counting characters

In this section we state some subsidiary results for the computation of the

numbers of the ordinary irreducible characters of a p-block B of finite group

G and of its Brauer correspondent b in N = NGiP), respectively.

The following well-known consequence of Brauer's second main theorem will

be used frequently.

Lemma 2.1. Let G be a finite group with a T.I. Sylow p-subgroup P. Let

B be a p-block of G with defect group 0(B) =G P, and let b be its Brauer

correspondent in N = NG(P). Then k(B) = k(b) if and only if 1(B) = 1(b).

Proof. Since P is a T.I. Sylow p-subgroup of G it is easy to see that CG(y) < N

for every I ¿ye P. Therefore k(B) - 1(B) = k(b) - 1(b) by Lemma 6.6(h)

and (iv) of Feit [11, p. 175], which implies the assertion.

Lemma 2.2. Let a finite group A act as a permutation group on each of the two

finite sets Sx and S2. Let H be a subgroup of A, and let f¡(H) be the number

of fixed points of H in Sj. Let m ¡(H) be the number of points s of S¡ having

H as their stabilizer CA(s) = {a e A\s" = s} in A for i = 1, 2.

If fxiH) = f2iH) M all subgroups H < A, then mx(H) = m2(H) for all
subgroups H of A.

Proof. Clearly m ¡(H) < /¡(H) for all subgroups H < A, and f¡(A) = m¡(A)

for z = 1, 2. Thus mx(A) = m2(A).

To prove the assertion we proceed by induction on \A:H\. Now m ¡(H) =

fjiH)-Y.A>j>HmiiJ) • Let H < A be a proper subgroup of A . Then mx(H) =

ffH) - [Í2a>j>h m\iJ)] ■ Thus by induction

- m2(A) = m2(H).mx(H) = fi2(H)-     ¿2   miiJ)
^4>J>H

This completes the proof.

Proposition 2.3. Suppose X is a finite group, H < G < X with X/G cyclic.

Suppose that y e X generates X/G and normalizes H and that \X : G\ =

\H(y) : H\. Let B be a union of p-blocks of G and b a union of p-blocks of

H for some prime p such that y stabilizes B and b. Let S¡(B) denote either

the set of irreducible characters in B of height zero, the set of all irreducible

characters in B or the set of irreducible Brauer characters in B, as i = 0, 1,2

respectively. Define S\(b) similarly. Suppose that, for some i, for all subgroups

C of (y), the number f(S¡(B), C) of points of S¡(B) fixed by C equals the
corresponding number f(S¡(b), C). Let Bx be the union of all p-blocks of X

which cover B, and bx  the union of all p-blocks of H(y) which cover b.

(a) 0-1 = 1 or 2, then \S¡(Bx)\ = \S¡(bx)\.

(b) // z = 0 and p\ \X/G\, then \S¿BX)\ = \SQ(bx)\.

Proof, (a) Let Y = H (y). Let W equal the set of subgroups C of (y) which

contain (y) nH. Then W is in bijection with the set of subgroups of X which
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contain G and with the set of subgroups of Y which contain H, via the

correspondences CG <-► C <-»• CH.

For every »/ e S¡(BX) there is a constituent x of ^g belonging to 5((5)

such that \p is a constituent of / . As X/G is cyclic, Clifford's theorem and

Theorem 2.14 of [11, p. 102] imply that ^c = Yf¿¡ Xs, where T=Tx(x) is

the inertial subgroup of x in X, and where /, = x, X2> ■■• > ;çe( ̂  belong to

an A"/r-orbit 0(x) of eQf) = \X : T\ inequivalent characters of S¡(B) with

inertial subgroup T. Furthermore, \T/G\ many characters in S¡(BX) cover a

given X/T-orbit.

For each Ce? let zz,(C) and n2(C) be the numbers of X/CG-orbits and

Y/CH-orbits of characters x £ S¡(B) and p e 5¿(¿>) with inertial subgroups

Txix) - CG and TY(p) = CH, respectively. Then by the first two paragraphs

of the proof we have

(*) \S¡(Bx)\=Y,nx(C)\CG :G\,
c&

(**) \Si(bx)\=Yjn2(C)\CH:H\.
cew

By hypothesis, f(S¡(B), C) = fi(S¡(b), C) for all subgroups C of (y). By
Lemma 2.2, the number mx(C) of characters x € S¡(B) with inertial subgroup

CG equals the number m2(C) of characters peS¡(b) with inertial subgroup

CH. Hence

nx(C)\X : CG\ = mx(C) = w2(C) = n2(C)\Y : CH\.

Since \X : CG\ = \Y : CH\, we have nx(C) = n2(C) for all C eW. As

|CC7 : G\ = \CH : H\, (*) and (**) imply that \S¡iB¡)\ = \Sfbf\ for z = 1, 2.
(b) As p\\X :T\ = \Y : H\,a block of G and the blocks of X covering it

have the same defect. So each constituent x of ip,G for »^ e Sj (.Bj ) has height

zero if and only if \p has height zero. Therefore the above argument yields

|S0(-Bi)l = l^o(^i)l • Tms completes the proof.

3. Reduction to almost simple groups

The following result contains most of the main theorem of this paper. Its

proof comprises the next five sections, and is not completed until Lemma 9.1

is established.

Proposition 3.1. Let X be a finite group with a T.I. Sylow p-subgroup P. Let

B be a p-block of X with defect group SiB) =x P and Brauer correspondent

b in N = NxiP). Then the following assertions hold:

(a) k(B) = k(b).
(b) k0(B) = k0(b).
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Let X be a finite group and H = &(X). If Z(X) = Op,(X) = Z(H) =

CX(H) is cyclic and G = H/Z(H) is a nonabelian simple group, then X is

called almost simple (w.r.t. p ).

We show in this section that if X is a counterexample to Proposition 3.1,

then P is neither cyclic nor quaternion and X may be assumed almost simple.

Hence G := H/Z(H) is one of the groups listed in Proposition 1.3. The various

possibilities for G are treated in §§4-8.

All results in this section will be applied to groups which satisfy the hypothe-

ses of Proposition 3.1. Since the assumptions of our lemmas are not always the

same, and since we wish to keep our results unambiguous, we state all hypothe-

ses explicitly with each assertion.

Lemma 3.2. Let X be a finite group with a T.I. Sylow p-subgroup P. Let B

be a p-block of X with defect group S(B) =x P and Brauer correspondent b

in N = NX(P).

(a) // P is cyclic, then k(B) = k0(B) = kfb) = k(b) < \P\.

(b) If P is a generalized quaternion 2-group, then either \P\ = 2m+x, 1(B) =

1(b) = 1 and k(B) = k(b) = 2m~x +3; or \P\ = 8, 1(B) = I, (b) = 3 and

k(B) = k(b) = 1 .In any case, k0(B) = k0(b) = 4 = \P/P'\.

Proof. Assertion (a) is an immediate consequence of Dade's theorem (see [11,

pp. 277 and 278]).
(b) By Lemma 1.1 either X = 0(X)P or X/0(X) ~ SL2(3). In the first

case X and N are 2-nilpotent groups. Hence 1(B) = 1(b) = 1, and the block

ideals B and b are isomorphic to full rings of matrices over the group algebra

FP by Theorems C and H of Kiilshammer [16] and Satz 25.3 of Huppert [14].

Thus k(B) = k(b) = 2m_1 + 3 and kQ(B) = kQ(b) = 4 = \P/P'\.

In the second case the block ideals B and b have the same block invariants

as the group algebra SL2(3) by Theorems C and H of Kiilshammer [ 16] and Satz

25.5 of Huppert [14]. Thus k(B) = k(b) = 7 and kfB) = k0(b) = 4 = \P/P'\.

For every ring A and every natural number m the ring of all m x m matrices

over A is denoted by Am . If y e Z (Y, F*) is a 2-cocycle of the group Y,

then F Y denotes the twisted group algebra of Y over the field F with respect

to the 2-cocycle y .

The next result shows that in order to establish Proposition 3.1 for a group

X, it suffices to assume that OpfX) = Z(X) and Z(X) is cyclic.

Lemma 3.3. Let X be a finite group with a nonnormal T.I. Sylow p-subgroup

P. Suppose that P is neither cyclic nor a generalized quaternion 2-group. Let

H = Op'(X), U = 0"(H), K = Op,(X) and L = KU. Let B be a p-block of

X with defect group 8(B) =x P and Brauer correspondent b in N = NX(P).

Then the following assertions hold:

(a) G = U/O >(U) ~ L/O i(L) is a nonabelian simple group with T.I. Sylow

p-subgroup Px ~PnL.
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(b) B and b cover a p-block fi of K with inertial subgroup T = Tx(f) > P.

(c) H < T. Let Bx and bx be the Fong correspondents of B and b in T

and NT = NT(P), respectively. Then bx is the Brauer correspondent of Bx, and

the Fong correspondences preserve block invariants.

For the remaining assertions assume that X = T, so that Bx= B and bx = b.

Let X = X/K, P = PK/K and Ñ = NX(P).

(d) There exists a 2-cocycle y e Z (X, F*) and asimple FK-module M in

fi with dimFM = m such that fiFX = (fyX)m and fFN = (Fy N)m, where

yx is the restriction of y to N.

(e) There are central extensions

1 -♦ C -► X* -► X -* 1,        1 ̂  C - N* ̂  Â7 -» 1,

such that C is a cyclic p -group with order \C\ equal to the order of the cocy-

cle y, and X* contains a p-block B*2 with defect group P* = P and Brauer

correspondent b2 in N* = Nx * (P*) with B = (B2)m and b = (b2)m .

(f) X* has a nonnormal T.I. Sylow p-subgroup P* which is neither cyclic

nor a generalized quaternion 2-group, and its center Z(X*) = C = Op,(X*) is

cyclic.

Proof, (a) is an immediate consequence of Proposition 1.2.

By Proposition 1.2, K = Op,(X) < N = NX(P). If tp is any modular

irreducible character in B, then <p\N has an irreducible constituent in b, by

[11, Theorem 7.8, p. 131]. Therefore there is a block / of FK which is covered

by B and also by its Brauer correspondent b in N. Let T = Tx(f) = {x e

X\xfx~x = /} be the inertial subgroup of / in X. Then TN = TN(f) = TnN

is the inertial subgroup of f in N. Now P <T since O >(X) < NX(P) implies

that P centralizes O ¡(X). By Fong's first reduction theorem [11, p. 197], there

exists a unique p-block Bx of T with defect group S(BX) =T P =x 6(B) such
y

that B = Bx , and the block ideals of B and Bx have the same block invariants.

Let bx be the Brauer correspondent of Bx in TN = NT(P). Then b = bx and

5(b) = P = ô(bx) by Theorem 1 of [17, p. 34]. Therefore, b and bx have

the same block invariants by Fong's first reduction theorem. Since H < T by

Proposition 1.2(f), both assertions (b) and (c) hold.

For the proof of the remaining assertions we assume that X = T.

Thus the block idempotent / of FK is central in X. As p\ \K\ the block

ideal fiFK contains up to isomorphism only one simple FK-module M. Let

m = dimf M. Then fiFK = (F)m. Since X = X/K, Lemma I of [ 16, p. 1778]

asserts that there exists a 2-cocycle y e Z2(X, F*) such that fiFX = (Fy~X)m .

By Proposition 1.2, K = Op,(X) < NX(P). Hence N/K = Ñ = NX(P), and

fFN = (Fy N)m , where yx is the restriction of y to N. Thus (d) holds.

The construction of the central extension 1 —► C —* X* -> X —* 1 with

respect to the cocycle y e Z2(X, F*) is due to Fong (see [11]). As C is a

central cyclic subgroup of X* with //-order, the normalizer N* = Nx. (P* ) of
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a Sylow p-subgroup P* of X* is a central extension

1 -» C — N* -» TV -» 1

with respect to the cocycle y, e Z2(N, F*). Furthermore, P* = P*C/C =

P = P, and P* is a nonnormal T.I. Sylow p-subgroup of X* which is neither

cyclic nor a generalized quaternion 2-group. From (d), Theorem 2.5 of Cliff

[7], and Theorem 2 of Okuyama and Tsushima [17] follows the existence of a

p-block B2 of X* with defect group P* and Brauer correspondent b*2 in N*

such that

B = (B¡)m   and   b = (b¡)m.

Clearly the center of X* is Z(X*) = C = O >(X*). This completes the proof.

Lemma 3.4. Let X be a finite group with a nonnormal T.I. Sylow p-subgroup

P. Suppose that P is neither cyclic nor a generalized quaternion 2-group. Let

H = Op'(X) and U = 0"(H).
If H ¿ U, then all assertions of Proposition 3.1 hold.

Proof. Let P be a Sylow p-subgroup of A", N = NX(P), K = Op,(X), L =

KU and P2 = P n L. Then by Proposition 1.2 P2 is isomorphic to a Sylow

p-subgroup Px of the nonabelian simple group G = U/Op,(U) ~ L/O >(L).

As H ¿ U we know that Px is cyclic by Proposition 1.2(h), and either p = 3

and G = PSL2(8), or p = 5 and G = B2(25). Furthermore, Proposition 1.2

asserts that X/L is isomorphic to a subgroup of Out(G), which by the Atlas

[8, pp. 6 and 77] is cyclic of order p = 3 or 5, respectively. As P is not cyclic

it follows in either of the two cases that X/L ~ Out(G). Hence X = HK by

Proposition 1.2.
Now G has a trivial Schur multiplier by [8, pp. 6 and 77]. Hence Z(U) =

1 by Proposition 1.2(i). Therefore G = U and L = K x U. There exists

g € X which induces a field automorphism of order p by conjugation on U.

Since gp e K and (\K\, p) = 1, there exists k e K with (gk)p = 1 . Hence

X = K x U(gk). So the blocks B of X with positive defect and their Brauer

correspondents b in N have the same block invariants as the principal blocks

BQ of X and b0 of N, respectively. Thus we may assume that K = 1,

X = Aut(G), B = B0 and b = b0.

Let e be the inertial index of the principal block Bx of G, and let bx be

the Brauer correspondent in Nx = NG(PX). Then e = 2 or 4 if p = 3 or

5, respectively. As Px is cyclic, it follows from [11, pp. 277 and 278] that

k(Bx) = k0(Bx) = (p2 - l)/e + e = k0(bx) = k(bx) and l(Bx) = l(bx) = e.

Furthermore, N is a semidirect product of the cyclic group Px or order p and

a cyclic group Y of order pe. Since bx has e one-dimensional and (p -\)/e

c-dimensional irreducible characters, and since the one-dimensional ones are

also the e modular irreducible characters of Nx, it follows that b = FN has

pe+p + l ordinary irreducible characters with multiplicities and degrees pe x 1,

p x e and 1 x pe . Therefore k(b) = pe+p+l, k0(b) =pe+p and 1(b) = e.
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On the other hand the character table of X given in [8, pp. 6 and 77] shows

that k(B) = pe + p + 1, k0(B) = pe + p and 1(B) = e . This completes the

proof.

In [8, p. xxiii] two groups X and Y are called isoclinic if their centers

Z(X) and Z(Y) can be enlarged so as to get isomorphic groups. This means

that X and Y can be embedded into a larger group W in such a way that

W = Z(W)*X = Z(W)*Y, where Z(W) * X denotes the central product of

X and Z(W) with amalgamated subgroup Z(X) = Z(W) n X.

A finite group X is a stem group if its commutator group X' contains the

center Z(X).

Suppose that X satisfies the hypotheses of Proposition 3.1. Let W<X with

Cf (X) < W. We wish to show that in proving Proposition 3.1 we may assume

either that X is an almost simple group or that X and Z(X) have a very

specific structure as described below in Lemma 3.7. In the argument, it will

be necessary to establish that if an element of X induces by conjugation an

outer automorphism of W of order m (modulo \nn(W)), then there exists

y e X which induces this automorphism and such that ym eW (and not just

that ym e WZ(X)). However, in order to produce such y, we must replace

X by an isoclinic group. Lemma 3.5 shows that this replacement is allowable

in the proof of 3.1. The basic construction is given in Lemma 3.6. Given that

X/WZ(X) is cyclic of order m , we construct a suitable abelian group V and

element y in X * V. Then Y := (W ,y) is shown to be isoclinic to X, and

ym e W. This method is applied several times in the proof of Lemma 3.7 to

yield a stem group which is isocolinic to X, and which is either almost simple

or has the precise structure given in that lemma. Proposition 3.8 examines this

alternative structure.

The following well-known lemma is stated without proof.

Lemma 3.5. Let X be a group with Z(X) a p'-group, let V be an abelian p'-

group with Z(X) < V, and let A = X * V be a central product where V nX =

Z(X).  Then each p-block B of X is covered by \V : Z(X)\  p-blocks B' of
A. Moreover, B and B' have the same defect groups and block invariants, and

so have their Brauer correspondents b and b', respectively.

Lemma 3.6. Let X be a finite group with H = (f (X) such that Op,(X) =

Z(X) = CX(H) is cyclic. Let W > H be a normal subgroup of X such that

X/WZ(X) is a cyclic group of order m.

Then there exists a cyclic p-group V > Z(X), and an element y e X * V

such that

(a) ym eW and Y/W s X/WZ(X), where Y = (W ,y).

(b) H = &(X) = &(Y).

(c) Z(Y) = VnW = Z(W) = CY(W) = Op,(Y).

(d) A = X * V = Y * V.
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Proof. Certainly Z(X) < CX(W) < CX(H) < Z(X). Let u e X generate

X/WZ(X). Since Z(X) = CX(W), u induces an outer automorphism via

conjugation on W and m is its order modulo inner automorphisms of W.

Now um = hz for some heW, z e Z(X), and (p, m) = 1. There is a cyclic

//-group V > Z(X) containing an element v such that vm = z. Let A be

the central product X *V with amalgamated subgroup Z(X) = X nV. Then

Z(A) = V = Op,(A), Cf'(A) = Cf'(X) = H < W and A/WV s X/WZ(X).

In A let y = uv~x . Then y generates A/WV, and ym = (uv~x)m =

umv~m = hzz'x =heW.

Let Y = (W, y) < A. Then Y is normal in A . Hence H = Cf'{X) =

Cf (Y). As v e V = Z(A), y induces the same outer automorphism on W

as does u. In particular, y has order m modulo inner automorphisms of W,

and y'w does not centralize W for all w e W and I < i < m. Hence

cY(W) = z(W) = wnz(X) = wnv = vnY = z(Y).

Thus Op,(Y) = Op,(A)nY = V nY = Z(Y), and

\Y\\V\      m\W\\V\      \X\\V\
1      '      |FnF|       \Z(W)\    - \Z(X)\     '       h

Hence A = Y * V = X * V.

Lemma 3.7. Let X be a finite group with a noncyclic T.I. Sylow p-subgroup such

that G = H/Z(H) is simple, where H = Cf'(X). Suppose that K = Op,(X) =

Z(X) = CX(H) is cyclic.

Then there exists a cyclic p -group V and a stem group W containing H

with X * V = W * V, such that either W¡HZ(W) is cyclic and W is almost

simple, or one of the following exceptional cases occurs:

(a) G 6 {PSL2(pn), PSU3(p2")}, H = Cf'(W). There exists an element

y eW which by conjugation on H induces an outer diagonal automorphism

y of G of order m ^ 1 (modulo Inn(C7)), and there exists an element t e W

which by conjugation on H induces an outer field automorphism x: x —► x" of

order k = nr~   or k = 2nr~   according as G = PSL2(p") or G = PSU3(p ").

Furthermore, ym e H, y' = y"' z for some z e Z(X) with zm = 1, Y =

H(y,z)<W = (Y,t), and W/Y s X/H(u)Z(X) s (x), where u is any

element of X which induces y by conjugation on H.

(b) p = 3, G = PSL3(4), H = Cf'(W). There exists an element y e IV

which by conjugation on H induces the outer graph-field automorphism y of G

of order m = 2, and there exists an element t e W which by conjugation on H

induces the field automorphism x of G, with xm = 1. Furthermore, y e Z(H),

y' = yz for some z e Z(X) with zm = 1, Y = H(y, z) < W = (Y, t) and

W/Y = X/H(u)Z(X) = (x), where u is any element of X which induces y by

conjugation on H.
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Moreover, in both of the cases (a) and (b), either W is almost simple, or

Z(H) = 1, z has order m, Z(W) = (z) and Y = H(y) x (z).

Proof. By Proposition 1.2, X/HZ(X) < Out(G), and H = Cf'(X) is perfect.

If X = X/HZ(X) is cyclic, then by Lemma 3.6 there exists a cyclic //-group

V and an almost simple stem group W such that X * V = W * V.

Therefore we may assume that X is not cyclic. Then

G e {PSL2(p"), PSU3(p2"), PSL3(4)}

by Proposition 1.3.

In the first two cases it follows from [8] that G has an outer diagonal au-

tomorphism y ,¿ 1 of order m e {2,3} and an outer field automorphism

x: x -> x"' of order k = nr~x or zc = 2nr~x if G = PSL2(p") or G =

PSU3(p2"), respectively, such that X = (y,x) < Out(G). If G = PSL3(4),

then by [8] G has an outer graph-field automorphism y of order m = 2 and

an outer field automorphism x ^ 1 such that X = (y, x) < Out(C7) is a Klein

four group. In each case there is an element u e X such that the conjuga-

tion of H by u induces y modulo inner automorphisms. Thus um = hzx

for some h e H and z, e Z(X). As Z(X) = O >(X) is cyclic, there ex-

ists a cyclic //-group Vx > Z(X) containing an element v with vm = zx.

In Xx = Vx * X let y = uv~x .  Then ym = h and XX/HVX S X/HZ(X),

Cf'(Xx) = H, Op,(Xx) = Z(XX) = CX¡(H) by the proof of Lemma 3.6. Fur-

thermore, H(y)Vx <XX and H(y)Vx/HVx =■ (y) < Out(G). Therefore, we may

assume that X = Xx, ym = h e Hx = H, and H(y)Z(X) < X. The unique

lifts of t and y to H are denoted by the same letters.

By the structure of X/HZ(X) < Out(C7) there is a t e X which generates

X/H(y)Z(X) and induces the automorphism x on H.

Now let G e {PSL2(p"), PSU3(p2")} . Then ym is a diagonal matrix of H

or an image of such if H is simple, because H is a central factor group of

a group of matrices over a finite field GF(q). Furthermore, y acts on H as

conjugation by a diagonal matrix M with entries over some finite extension of

GF(q). Note that Mx = Mp , and that y' operates on H as conjugation by

Ml .Let he H. Then

hiy,) = h'"y' = (hT"f = (M-XhT"'A/)'

= (M-Xfhr~>xMT = M-p'hMp = h(/).

Therefore y' = yp z for some z e Z(X) = CX(H). Hence (ymf = (ymf =

(ym)t = ymprzm.Thus zm = 1 .

Let Y = H (y, z). Then Y<X. Since m is a prime number, Z(H) < Z(X),

\Z(H)\ e {1, m}, and Z(X) is cyclic, it follows that either z e Z(H), Y =

H (y) and Z(H) = Z(Y) ; or Z(H) = 1, H = G is simple, and Y = H (y) x (z)

where z f= 1 . In each case, X/YZ(X) is isomorphic to a cyclic group (t) of
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outer field automorphisms of G. Therefore Lemma 3.6 asserts the existence

of a cyclic //-group V2 and an element tx e X *V2 such that  W = (Y, tf

satisfies V2*W =V2*X, Y <W, t\&Y, /' =/z, H = Cf'(X) = Cf'(W),

CW(H) = Z(W) = Z(Y) = Op,(W), and W/Y = X/H(y)Z(X) s <T>.

In the first case we have (z) < Z( W) = Z (H) < H = tí < W'. Hence

W is an almost simple stem group satisfying all the conditions of assertion

(a). In the second case, (z) = Z(Y) = Z(W), and y'> = y±xz (mod H). If

y'< = yz (mod H) then t~xytxy~x = z (mod H), whence (z) < W'. If m = 3

and /' = y~x z (mod H), then pr = -1 (mod 3) and hence (yz)'[ = y" z2 =

(yz)p . So in this situation, we may reduce to the first case by replacing y with

yz. We may assume, then, that the second case implies (z) = Z(W) < W',

hence W is a stem group with all the properties stated in (a).

Let G = PSL3(4). Let y e X induce a graph-field automorphism y of order

2 on H. As y2 e H, y2 e Z(H). Let t be as above. Since Out(t7)/Op(Out((7))

is a Klein four group, x and y commute. Thus y and y yield the same action

on H. Therefore y = yz for some z e Z(X) = CX(H). Let Y = H(y, z).

Then Y < X. As Z(H) < Z(X) and y2 e Z(H), we have

2        ,   2,f        ,   Í.2        ,       .2 2   2
y =iy) =iy) = iyz) =y z .

Thus z2 = 1. If Z(H) ¿ 1, then zeZ(H), because Z(X) is cyclic, Z(H) <

Z(X), and Z(H) is a 2-group by Proposition 1.2 and [8]. In case Z(H) = 1,

Y = H (y) x (z). In each case, X/YZ(X) is isomorphic to a cyclic group (t)

of outer field automorphisms of G of order k = 2. Applying now Lemma 3.6

as above, assertion (b) and the remaining part of the last assertion follow. This

completes the proof.

Proposition 3.8. Suppose the assertions of Proposition 3.1 hold for all almost

simple groups with a T.I. Sylow p-subgroup. Then they hold for all finite groups

X with a T.I. Sylow p-subgroup.

Proof. Let X be a finite group with a T.I. Sylow p-subgroup P. Let B be a p-

block of X with defect group P and Brauer correspondent b in N = NX(P).

Then by Lemma 3.2 we may assume that P is neither cyclic nor a generalized

quaternion 2-group and that P is not normal in X. Let H = Cf (X), U =

Cf(H), K = Op,(X) and L = KU. By Lemma 3.4 we may assume that

H = U. Now Lemma 3.3(a) and Proposition 1.2 imply that G = U/Op,(U) =

H/K n H = L/K is a nonabelian simple group with a noncyclic Sylow p-

subgroup. As the Fong correspondences described in Lemma 3.3(c) and (e)

preserve the block invariants k(B) and k0(B), Lemma 3.3(f) asserts that we

also may assume that O >(X) = K = Z(X) is a cyclic p'-group.

Suppose that X is not almost simple. Then by Lemma 3.7 there exists a

cyclic p'-group V and a stem group W such that X*V = A = W*V,

where W = (Y, t) and Y = G(y) x (z) < W have all the properties described
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in Lemma 3.7. In particular, Z(W) = Z(Y) = (z) has order m = 2 or 3 if

G e {PSL2(p"), PSL3(4)} or G = PSU3(p2"), respectively.

Certainly P is a T.I. Sylow p-subgroup in A and therefore also in W. By

Lemma 3.5 there is a block correspondence between X and W which preserves

defect groups, Brauer correspondence, and block invariants. Hence we may

assume that X = W.

Let G = PSL3(4). Then Lemma 3.7(b) asserts that p = 3 and G = Cf'(X).

Furthermore, there exists an involution y e X which by conjugation on G

induces an outer graph-field automorphism y of G of order m = 2, and there

exists an element t e X which by conjugation on G induces an outer field

automorphism x of G of order k = 2 such that y = yz. Let X = X/(z).

Then, by [8, p. 24], CX(P) = (y)P. So Op,(Cx(P)) = (y, z) = Op,(N) contains

three conjugacy classes of N = NX(P). Hence X has three blocks of positive

defect, two of which have Z(X) = (z) in their kernel, and therefore belong

to the almost simple group X/Z(X) < Aut(G). Thus we may assume that B

is the only faithful block of I. It covers two faithful blocks 5, and B2 of

Y = G(y) x (z) which both have the same block invariants as the principal

3-block B0 of the almost simple group G(y).   From y' = yz follows that
X X

B = Bx = B2 . Hence B has the same block invariants as BQ . Similarly we

can show that the block invariants of b and the Brauer correspondent b0 of

B0 are equal.

Let G e {PSL2(c7), PSU3(#2)} , where q = p" . Then Lemma 3.7(a) asserts

that G = Cf (X). Furthermore, there exists an element y e X which by

conjugation on G induces an outer diagonal automorphism y of G of order

m ^ 1, and there exists an element teX which by conjugation on G induces

an outer field automorphism x: x —► xp of order k = nr~x or zc = 2nr~x,

if G = PSLfq)  or G = PSU3(r72), respectively.   Moreover, ym e G and

y' = yp'z. Let E = G(y). Then E s PGL2(q) or E = PU3(<?2), Y =

E x (z) < X = (Y, t), and X/Y is a cyclic group of order k . Hence tk = z"

for some 0 < u < m, as t   acts trivially on G.

Furthermore, the automorphism which t induces on Y/(z) = E is an ex-

tension of x, which is also denoted by x ; in fact it is a field automorphism of

E = G(y) such that yx = yp . Now E and X = X/(z) S E(x) < Aut(G) are

almost simple groups.

By the character tables of E e {PGL2(í?), PUfq2)} (see [22, 10], respec-

tively), the principal block B0(E) of E is the only block of E with positive

defect. It is also the principal block B0(Y) of Y = E x (z). Let A be a faithful

linear complex character of (z). Then {B¡(Y) = BQ(Y) ® A'|0 < i < m} is the

set of all blocks of Y with positive defect.

Let W = NX(P) and Nx = NY(P). Since Op,(N) = (z), X also has m

blocks B¡ = Bj(X), 0 < i < m , with positive defect. We may choose notation

so that Bj(Y) is only covered by B¡. Furthermore, [B¡(Y)]' = B¡(Y).
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Let b¡(Nx) be the Brauer correspondent of B¡(Y) in Nx = NY(P), and b¡ =

b¡(N) the one of B¡ in N = NX(P). Then {b¡(Nx) = b0(Nx) ®x'\0 < i < m}
is the set of all blocks of Nx, where b0(Nx) denotes the principal block of Nx .

Since E is almost simple and Y = E x (z), it follows for each 0 < i < m that

the blocks B¡(Y) and b¡(Nx) have the same block invariants. By Brauer's first

main theorem, b¡ is the unique block of N covering b¡(Nx). From Proposition

1.2(c) follows that NY(P) = NG(P)(y, z) < NX(P) = (NY(P), t). For 0 < i <

m, each coset Gy' of G in E is a union of conjugacy classes of Y, and any

conjugacy class of Y is of the form CzJ, where C is a 7-class contained in

some coset Gy' .Let g eG and 0 < i, j < m . Then (gy'zJ)' = g'y'p z'zj =

(gy')Tz'+J. Therefore the action of t on the conjugacy classes of Y is given

by

(*) (CzJ)' = Cxzi+j.

Hence Czj with C ç Gy' is fixed by t if and only if i = 0 and CT = C c G.

As N = (Nx, t), the same assertions hold for the action of t on the classes of

Nx , where G is replaced by A^ = NG(P).

Since y e E induces a diagonal automorphism of G by conjugation, the

p-regular classes of E contained in G are precisely the p-regular conjugacy

classes of G. It follows that the numbers of p-regular classes of Y and Nx fixed

by / equal m times the numbers of p-regular classes of G and N2 = NG(P)

fixed by x, respectively. Applying Lemma 3.6 of [11, p. 146] and Brauer's

permutation lemma we get f(Y, t) = mf(G, x) and f(Nx, t) = mf(N2, x),

where fi(W, t) and f(W, x) denote the numbers of modular irreducible char-

acters of a group W fixed by t and x, respectively.

Each modular irreducible character \p of Y is of the form tp = tpk1 , where tp

is a uniquely determined modular irreducible character of E, and 0 < i < m .

Let p be the linear character of E/G such that p(y) = k(z). Then for every

F-class C with C ç Gyk , 0 < k < m , it follows from (*) that

ip'"(C) = ip(CTzk) = <piCx)k\zk) = f1'1 (C)p'(C).

Hence \pl = y/ if and only if tp = tpx pl. The same condition holds also in

Nx.
The Steinberg character St of G has m2 irreducible extensions St p X',

0 < i, k < m, to Y = E x (z). From the character tables of PGL2(i?) and

PU3(<72) of [22] and [10] follows that m of these zn2 blocks of defect zero of

Y are fixed by t. For any block B in a group W let f(B, t) and f(B, x)

be the numbers of modular irreducible characters fixed by t and x, respec-

tively. As the principal block B0(X) of X is the principal block of the almost

simple group X = X/(z) = E(x) whose Brauer correspondent is isomorphic

to b0(N), the conclusion of Proposition 3.1 for almost simple groups implies

that fi(B0(Y), t) = f(b0(Nx), t).  Since G is almost simple, Proposition 3.1
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asserts that fi(G, x) = fi(N2, x) + 1. Recall that f(Y, t) = mf(G, x) and

f(Nx, t) = mf(N2, t). Hence

m-\

fi(Y,t) = m+ f(B0(Y), /) + E Wr) >t) = m + mf(N2, t)
1=1

m-l

= m + f(b0(Nx),t)+J2f(bj(Nx),t).
i=\

If m = 3 , then BX(Y) and B2(Y) are complex conjugate. Thus f(B¡(Y), t) =

f(bj(Nx), t) for 0 < i < m, in any case. The same argument applies for

each power of /. Hence Proposition 2.3 asserts that l(Bf = l(bf for all

0 < / < m - 1. Thus k(Bf = k(bf for all i by Lemma 2.1.
If G = PSL2(q), then all irreducible characters of X have height zero. So

we may assume that G = PSU3(<?2) and that m = 3 divides q + 1. For

any block B(U) of any group U let rh(B(U)) be the number of irreducible

characters / of B(U) with positive height. By the character table [21] we have

rh(B0(G)) = \(q + 1) for the principal block B0(G) of G. Using the character

table [10] of E = G(y) = PVAfq2) and Theorem 2.14 of [11, p. 102], it is easy
to see that each irreducible character of B0(G) with positive height is fixed

by y and has therefore m irreducible extensions XPJ » 0 < y < zn - 1, to

B0(E) = B0(Y). Furthermore, rh(B0(E)) = q+l. From [10] follows also that

the raised height characters of NE(P) occur in triples t¡, c¡p, Çp2, where ¿; is

an irreducible character of positive height in NE(P) and Ç,N = ÇpJ,N , where

7V2 = NG(P).

For any group W and any block B of W let rh(W, a) and rh(2?, a) be

the numbers of irreducible characters with positive height of W and B fixed

by the automorphism a of W, respectively. Applying again Proposition 3.1

to the almost simple groups G, G(x) and E, E(x), we obtain that

(**) rh(C7,T) = rh(/V2,T),

(* * *) rh(50(F), t) = rh(B0(E), t) = rh(bQ(Nx), t).

Each irreducible character tp with positive height of B¡(Y) = B0(Y) <g> kl is of

the form \p = x ® A', where ^ is a uniquely determined character of positive

height in B0(Y). As above it follows that y/' = \p if and only if x = X* P - m

particular, (xlGY = X\G, and ~f = (xx ) = ÍXP~') = XP', where x denotes

the complex conjugate character of x ■ Thus (x <S> A')' = X ® ¿' implies that

iX ® A')' ^ x ® A1' for z = 1, 2, but (J ® A')'|G = ^ <8 A'|G .

The same arguments apply for the raised height characters of N, = NY(P).

It follows from this discussion, (**) and (* * *) that for z = 1 or 2

rh(B¡(Y),t) = i[3rh(t7, x) - rh(B0(Y), t)]

= i[3rh(/Y2, T)-rh(ô0(^), t)] = rh(b¡(Nx), t).
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Hence k0(Bf = k(B¡) - rh(B¡) = k(bf - rh(bf = kfbf forO<i<m-l.
This completes the proof.

4. Conjugacy classes of SLfq), SU3(t72), 2B2(q), 2G2(q)

FIXED BY AUTOMORPHISMS

In this section we study the action of field and diagonal automorphisms on the

conjugacy classes of a finite quasi-simple group of Lie type G with a T.I. Sylow

p-subgroup, and the action of field automorphisms on the conjugacy classes of

an almost simple extension of G by an outer diagonal automorphism. This will

enable us to extend the assertions of the main theorem from simple groups G

of Lie type defined over finite fields with characteristic p to extensions of G

described in Proposition 3.8.

Lemma 4.1. Let G be a simple and simply connected algebraic group with an en-

domorphism o such that G = Ga is a finite group realized over the field GP(ql)

with q' = p elements, where i e {1, 2, 3}. Let x be the field automorphism

of G obtained from the map x —► xp on a suitable algebraically closed field.

Let S be the graph automorphism of G such that either S has order i and

o = ôxk or, if G e {2B2(q),2G2(q),2FA(q)}, Ô2 = x, i = 1, k is odd and

a = dx .  For every r\ki, define wr = (r - l)/2 if ô   = x,  wr = r if

o = Sx and r\k, and wr = ri~x if a = ôx and r\k. Put t = 0 if ô2 = x,

t = rwf   otherwise.

Then the number of semisimple conjugacy classes of G = Ga = G(p' ) fixed

by xr equals the number of all semisimple conjugacy classes of the finite group

GSrwr = G(p'w') which are fixed by ô .

Proof. For H e {G, G} let A9*(H) be the set of all semisimple conjugacy

classes of H. If p is an endomorphism of H, then let A9p(H)p = {C e

A9P(H)\CP = C}. Corollary 3.10 of Springer-Steinberg [5, p. 197] asserts that

C ^ C = CnGa is a bijection from A9'(G)a onto A9P(G). It follows that this

correspondence induces a bijection between A9'(G)X, and A7'(G)anA9p(G)Tr, the

set of fixed points of AA7(G) under the action of the group (a, xr).

If G is of type 2B2(q), 2G2(q) or 2F4(q), i.e. if Ô2 = x and o = ôx{k~X)'2,

we may write rj = k for some odd integer j. Then (k - l)/2 = r(j - l)/2

+ (r- l)/2 implies that ôx{r~X)/2 = ox~rU-X)l2, (ôx(r~x)l2)2 = xr and

(ôx(r-X)/2)J = Sx{k-X)/2, hence that (o, xr) = (ôx(r~X)l2). So

|^(C?V| = ̂ (Ö),^-,,/* | = |^(<V-)/2)|,

again by Corollary 3.10 of [5].

If G is untwisted (S = I) or is twisted of type 2An(q ), Dfq ), E6(q ),

or 3D4(q3), then a = Sxk . As r|zcz we have k = ewr (mod r) by definition

of wr, where e = 1, unless Ga = 3D4(q ) in which case z = 3 and e = ±1.
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Note that GSrcwr = G(pm') because the cases e = 1 and e = -1 yield the same

Steinberg triality. Write k = mr + ewr. Then Sx x~mr = SxeWr implies that

(a, xr) = (Sxew', x). Hence

\A7(G\r\ = \&{G)Sf., nA?>(G)Tr\ = \S?(G(p'w')\r\ = \A7(G(p'w'))s,\

by a final application of Corollary 3.10 of [5].

Remark. With the notation of Lemma 4.1 and its proof, the assertion of this

result can be restated as follows.

(a) If G is untwisted or of type 2B2(q), 2G2(q), 2F¿q), then |^(C7)Tr| =

\f(G(j>r))\ -

(b) If G is a twisted group of Lie type 2Afq2),  2Dfq2),  2E6(q2), or

3D,(q3), then \A?(G)r,\ = \^(G(pr))\ ,ifwr = r/i with i e {2, 3} ; \^(G\,\ =

\S?(G(pir))s,\, if wr = r.

Lemma 4.2. Let G e {SL2(p"), SU3(p2"), 2B2(2n), 2C72(3")}, where p is a

prime and n = 2k + 1 for the exceptional groups of Lie type. Let x be afield

automorphism of G of order n or 2n, if G = SU3(p "). For every r\n or r\2n

let sr be the number of semisimple conjugacy classes of G fixed by xr. Then

sr = P .

Proof. If G is SL2(p"), 252(2") or 2G2(3H), then Lemma 4.1 and the subse-

quent remark (a) yield that sr = \5e'(G(pr))\. This equals pr by Theorem 3.7.6

of Carter [6] (or by [9, 23, 25]). If G is SU3(p2") and r\n then Lemma 4.1

and remark (b) imply sr = |^(SU3(p2(r/2)))| which again equals pr by Theorem

3.7.6 of [6], or by [21]. If G is SU3(p2") and r\n, then sr = |^(SU3(p2r))¿|

by Lemma 4.1 and remark (b), where ô is the inverse transpose automorphism.

So sr=pr by [21, p. 487].

The following notation is used for Proposition 4.3 below and its proof. Let

p be a prime and q = p , k a positive integer. Let o be a primitive element

of GF(tf2). Let a = oq+x (so that a e G¥(q) has order q - 1 ), ß = oq~x ,

u = o(q+X)l2, p = o(<,-X)l2,if q is odd.

Let H = SL2(q) and d = (p - 1, 2). If d = 2 let x = (""' J, so
that conjugation by x generates the outer diagonal automorphisms of H. Let

E = E(q) = H(x). Note that x2 = (<*"' J 6 H and Z(E) = Z(H) = {±1},

where /=(',).

Let t denote the field automorphism of GL2(t72) obtained from c —> <f , all

c e GF(q ). Both H and E are stable under r, as is the Sylow p-subgroup

P = {(lc°x):c e GF(q)} of H (and of E). For any r-stable section X of

H or of E, and integer r, let sr(X) denote the number of semisimple (p-

regular) classes of X which are fixed by xr. In any result about E or Z(H)

in Proposition 4.3 below, we assume of course that d = 2.
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Proposition 4.3. For any positive integer r\k,

(a) sr(H)=pr = sr(NH(P)) + l;

(b) sr(E) =pr+l= sr(NE(P)) + 2 = sr(E/Z(E)) = sr(NE(P)/Z(E)) + 2;
(c)

(pr-l)/2+l    ifk/risodd,

ifk/r is even;

(d) E has two p-blocks of defect zero, both of which have Z(E) in their

kernel and are fixed by xr.

sr(H/Z(H)) = sr(NH(P)/Z(H)) + 1 = | iPr

The proof is broken into several steps.

Step 1. The semisimple conjugacy classes of H are as follows:   there are

(q + d- l)/2 classes C\]), with representative (a~'  ;) in GL2(q2) for 1 <

j < q - 1  (and with c\j) = C[~j)) ; and there are (q+l-d)/2 classes C(2i],

with representative   (ß '   ¡)   in GL2(^2)  for  1 < j < q + 1   with j ^ 0

(mod (q + l)/d) and with C2j) = C2~J).  In particular, distinct classes have

distinct sets of eigenvalues.

Proof. This is clear from [9, p. 228].

Step 2. The semisimple conjugacy classes of E are as follows:  there are q

classes a\j) , with representative ("     ,) in GL2(<?2) for 1 <j<2(q-l) and

with Ax   = Axj) ; and there are q classes A2  , with representative [ß     ¡)

in GL2(tf2) for I <j <2(q + 1) with j £ 0 (mod q + 1) and A2i] = A2

f

Proof. Let / = GL2(#). Since x = ( ' a)(u~ I) € J(vl) and det(vl) = a has

order q - 1, we have that J(vl) = E(vl). Denote the semisimple classes of E

and / by {A A and {Cn} , respectively. Then the semisimple classes of J(ul)

are {A¡v'\0 < i < q - 2} = {Cnu'\i = 0, 1} . The list of semisimple classes of

J in [22, p. 226] now implies the result.

Step 3. Except for the classes A{x9~x)/2) and A2q+X)/2)  (which have the same

eigenvalue set {o±(q ~I)/4} , i.e. 4th roots of unity in GF(<z )), distinct semi-

simple classes of E have distinct eigenvalue sets.

Proof. This is clear from Step 2.

Step 4.  sr(H)=pr = sr(NH(P))+l.

Proof.  sr(H) = pr by Lemma 4.2. Now NH(P) = P(g), where g = («"' J

has order q - 1. The elements gj, 1 < ;' < q - 1, are representatives for the

q - 1 semisimple conjugacy classes of NH(P). So xr fixes the NH(P)-class of

gj if and only if (gj)p = gJ , i.e. gi{p ~x) = 1. Since pr - l\q - 1, there are

pr - 1 solutions ;'.
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Step 5.  sr(E) =pr + l= sr(NE(P)) + 2.

Proof. We have that E < SL2(^2), and except for the two classes A\Jl' and

A2h) (jx = (q-l)/2; j2 = (q + l)/2) with eigenvalues o±iq _1)/4 , exactly one

of which is in H, the semisimple classes of E remain distinct in SL2(i? ) by

Step 3. Furthermore, the semisimple classes of H do not fuse in E. By Step

4, xr fixes pr semisimple classes both of H and of SL2(q ). Since it fixes

Ax'   and A2   , it therefore fixes pr + 1 semisimple classes of E.

Now NE(P) = P(x), where x = (»~l J .   The elements xJ,   1 < j <

2(q - 1), represent the semisimple classes of NE(P), and the class of xJ is

fixed by xr if and only if xi{p _1) = 1. There are pr - 1 solutions j .

Step 6. If k/r is odd then sr(H/Z(H)) = (pr-l)/2+l= sr(NH(P)/Z(H)) + l.

Proof. Let X denote either H or NH(P).   If C is a semisimple class of

X such that Cx = -C, then Cx = C. It follows that 2| order(/) as an

automorphism of X. But order(tr) = k/r, a contradiction. So xr fixes only

the images in X/Z(H) of those semisimple classes of X already fixed by xr.

The preimages of a class of X/Z(H) have the form C, -C, which are distinct

unless X = H and C has eigenvalues o (<? _1)'4. The result follows from

Step 4.

Step 7. If kr~   is even then

sr(H/Z(H)) = pr = sr(NH(P)/Z(H)) + 1.

Proof. Since here p is odd,

2|i+/+p2' + ...+/^-'>' = (/_ !)/(/-!).

Let n = (pk - l)/2(pr - 1). Let s = (Q""a0- Then ^ e SL2(pr) < H.

Note that H > E(pr) = SL2(pr)(i), and that E(pr) is stabilized by xr. Now

anp = -a" implies that sx = -s. As xr is trivial on SL2(pr), it follows

that Cx = ±C for every semisimple class C of E(pr). Only the two classes

of E(pr) with eigenvalues o±(q _1)/4 fuse in H, by Step 3, and E(pr) has

2pr semisimple classes, by Step 2. So there are at least 2pr - 1 semisimple

classes of H which are fixed modulo Z(H) by xr. Hence xr fixes at least

(2pr - 2)/2 + I = pr semisimple classes of H/Z(H). By Lemma 3.6 of Feit

[11, p. 146] and by Brauer's permutation lemma, xr fixes at least pr irreducible

Brauer characters of H/Z(H). But xr fixes a total of pr irreducible Brauer

characters of H, by Step 4. So sr(H/Z(H)) = pr.

Now NH(P) = P(g), where #=(<*"'   ), and xr  fixes the class of gJ

modulo Z(H) if and only if gjp = ±gJ, which is equivalent to a2jiP ~x) = 1 .

Since here 2(pr - l)\p - 1, there are 2(pr - 1) solutions ;', hence pr - 1

semisimple classes of NH(P)/Z(H) fixed by xr.
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Step 8.  sr(E/Z(E)) = pr + 1 = sr(NE(P)/Z(E)) + 2 .

Proof. Let m = (q - l)/(p  - 1).   Let u = xm = (»"" ^ ), so that u   =

(°'"a")'   Where   qW    haS  °rder   pf "   ! •     Then   SL2^r)(")   =   EiPr)   ^   £(«)'

and E(pr) is stable under x. Since rr is trivial on SL2(pr) and ux = z/ =

-w, xr fixes every semisimple class of E(pr) modulo Z(E). The semisimple

classes of E(pr) do not fuse in E(q), by Steps 2 and 3, so xr fixes at least

2pr semisimple classes of E(q) = E modulo Z(E). Since the two classes of

E with eigenvalues o±{q _1)/4 are not equal modulo Z(E), xr fixes at least

(2pr - 2)/2 + 2 = pr + l semisimple classes, and hence Brauer characters of

E/Z(E). Step 5 now implies sr(E/Z(E)) =pr + 1.

In NE(P), the semisimple class of xJ,  1 < j < 2(q - 1), is fixed modulo

Z(E) if and only if x j{p ~X) = 1 . There are 2(pr - 1) solutions for j, and

hence pr - 1 fixed semisimple classes of NE(P)/Z(E).

Step 9. Part (d) holds.

Proof. From the character table for J = GL2(q) in [22, p. 227], and the fact

that J(vl) = E(vl), it follows that E has two characters xM f°r u = 1, 2

such that z(u)(l) = Q an<i tne value of #(u) on any element g: e A2j) (as in

Step 2) is -(-l)"J. The xW comprise the only blocks of defect zero. It follows

that^W2*.
The proof of Proposition 4.3 is complete.

The following notation is used for the statement and proof of the next two

propositions, 4.4 and 4.5. Let p be a prime and q = p , k a fixed positive

integer. In the field GF(<? ), y is an element of order q + 1 ; p = yq ~q+

(so that p e GF(q2) has order q + 1); a is a primitive element of GP(q )

with oq~x = p ; n is a cube root of p in GF(q ) ; and if q = — 1 (mod 3),

w _ p(9+\)ß   Let q _¿ o be any fixed element of GF(<?2) which is not in (ct3) .

Let H = SUfq2) and d = (q + 1, 3). If d = 3, let

Then conjugation by x generates the outer diagonal automorphisms of H. Let

E = E(q2) = H(x). Now

V p
and Z(E) = Z(H) = (œl), where

-(' ■.)

eH,
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Let x denote the field automorphism of GLfq6) obtained from c —► c" , all

c e GF(q6). H and E are stable under x. For any t-stable section X of H or

of E, and any positive integer r, let cr(X), sr(X), hzr(X), dzr(X) denote

the number of conjugacy classes, number of semisimple (p-regular) classes,

number of irreducible characters of height zero, number of p-blocks of defect

zero, respectively, which are fixed by xr. There is a Sylow p-subgroup P of

H (hence of E, when d = 3 ) which is stable under t .

If d = 3, let ô denote any proper outer diagonal automorphism of H. For

r any positive integer, and X any section of H stable under ô and x, let

sr(X), cr(X), hzr(X) denote the number of semisimple classes, number of

conjugacy classes, number of irreducible characters of height zero, respectively,

which are fixed by Sxr.

Note that s2k(X), c2k(X), hz2k(X) give the numbers of fixed points under

the action of ô . Let N = NH(P).

Proposition 4.4. For any positive integer r\2k, the numbers sr, cr, hzr, dzr

of fixed points of xr are given in Table 1   (d = 3 z'zz all cases referring to E or

Z(H)).

Proposition 4.5. Let d = 3 and r\2k. Then

(a)       sSr(X) = sr(X)   forX = H,N,H/Z(H),N/Z(H);

(b) cSr(H) = câr(N)+l = (Cr

**    r

cr(H) ifr\k,

(H)-9   ifir\k;

(c)       cUH/Z(H)) = ct(N/Z(H))+l = {C

(d)

cr(H/Z(H))-3   ifir\k;

u  st^      u  âtAn ,  i       í Pr+l    ifr\k>
hzr(H) = hzr(N)+l = \    r

[p ifir\k;
pr+l       ifr\k,

(e)       hzSr(H/Z(H)) = hzSr(N/Z(H)) + l = \pr ifir\k and 3\f,

. ¿^i! + l    ifr\kandl\^.
Proof of Proposition 4.4. Step 1. The conjugacy classes of H are as in Table 2

(note that each semisimple class is uniquely determined by its eigenvalues).

Proof. See [21, p. 487].

Step 2. The conjugacy classes of E are as in Table 3.

Proof. Let J = GUfq2) and y = ni. Since

x=i       1       \y-xeJ(y)

and det y = p has order q + 1, it follows that J(y) = E(y) and that E
contains precisely those elements of J(y) with determinant 1.  If we denote
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Table 1

cr(X)

H p +(2,p- 1)+1 ifr|zc,

p + pr/2 + d2 + 1 ifrf/c

W) 1 = sr(H) - 1
pr + (2,p- 1) if r|/c

H/Z(H) pr if r\k,

or if rfZcand3|^

¿fi + 1 if r f Zc

and3n^

/ + (2,p- 1)+ 1 ifr|/c

£^±i + 4

if r f Zc and 31 ^

if i- + /cand3|^

r/+//2+4

NH(P)/Z(H) sr(H/Z(H)) - 1 cr(H/Z(H)) - 1

/ ifr|fc,

/ + 2if r-t-zc

p' + (2,p- 1)+1 ifr|Zc

pr+//2 + 6ifrt*

W) pr + (2,p- 1) if r|Zc

p'+pr/2+ 3 if rfzc

£/Z(£) *,(£) pr + (2,p- 1) + 1 if r|Zc

pr + pr/2 + 4 if r \ k

NE(P)/Z(E) / - 1 = sr(NE(P)) p  +(2,p- 1) if r|Zc

pr+pr/2+l if rffc

H /+1 ifr|/c

pr + ¿2 if r t k

1

**C) Azr(/J) - 1

H/Z(H) pr + 1 if r\k,

pr + 3if rt/cand3|^

¿fi + 4 if r f Zc and 3 f *#

NH(P)/Z(H) hzr(H/Z(H)) - 1 0

pr + 1 ifr|Zc

p' + 5 if r \ k

1 ifr|Zc

3 if r\k

NAP) p   \ir\k

p" + 2 if r f Zc

0

£/Z(£) // + 1 if r|Zc

p' + 3 if r + Zc

1 if r|Zc

3 if r f Zc

NE(P)/Z(E) 0
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Table 2

Representative

(in GL3(96)) Parameters

Number of
classes

0 < j < d

0<j<d-\

O'1    coJ

e1   tf
0<j,l<d-l

-V

1 < j < 9 + 1

j?0(mod(q+l)/d)
q+\ -d

1     f
,-y

1 < j < 9 + 1

7=É0 (mod (<?+!)/</)

1 < y, /, m < q + 1

j, I, m distinct

(mod q + 1 )

j + 1 + m = 0

(mod <7 + 1)

i(<?+!)(<?-2)

l < ; < q - l

7^0 (mod 9-1)

(tf ' = C<_,;))

i(i-2)(«+l)

,(«+1)7
-(q+\)qj

y<j<q-q+l

j*0

(mod {q2 -q+\)/d)
i(<z2-<z

+ 1 -d)

(Q ')

the sets of conjugacy classes of £ and / by {yl^} and {Cn}, respectively,

then the conjugacy classes of J(y) are given by L4-}>'|0 < z < q, all ^7} =

{CAny'\0 < i < 2, all Cn}. These observations and the classification of the

conjugacy classes of J given by Ennola [10, p. 29], imply the result.

Step 3. Except for the three classes ^^•2a'3a-0' ( where a = (q + l)/3, and

A^'^ , where i = I or 2 and a = q3 + 1 - z'(c72 -q + l)/3 (which have the same

eigenvalue set {1, at, co2}), distinct semisimple (p-regular) classes of E have

distinct eigenvalue sets.
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Substep 3. L If yanl e (n), where l <a<q3 + l, 0 < z < 2, a£0 (mod tf2 -

q + 1) and a = -i (mod q + 1) then i ¿ 0 and {yV', y~aqn ', yaqln1} =

{1, co, œ2}.

Proof. If ya e (n) then order (ya)\3(q + 1), and hence a = j(q2 -q+l)/3 for

some integer ;'. Now ^2—^-l-1 = (q+l)(q-2)+7> implies that (q2-q+l)/2> = 1

(mod q + 1). So a = -i (mod q + 1) yields ; = -i (mod <? + 1). Put 7 =

t(q + 1) - i for some integer z\ Then a = (t(q + 1) - z')(cj2 - <? + l)/3. So

q2 - q + 1 \a forces i/0. Since y(«3+1)/3 e (w) and y-'<«2-«+1)/3 e »-'(q,) ,

we have yV e (w). Also, y~aqnl = (yanTqn{q+l)i = yanicoi and yö9V =

yan'(o '. The result follows.

Satocp 3.2. Ifl<a,z3<c73-(-l,a,Zz^0 (mod tf2 - q + 1), 0 < i, j < 2,
a = -i (mod q + I), b = -j (mod q + 1) and

r   a   í       -a«    í      aq2    i-,        c   b   j       -bg   j      bo2    /,{y n , y   *7r , y    71 } = {y ^, y   tf7r/,yvr},

then either z = ; and {a, -aq, aq2} = {b, -bq, bq2} (mod q2, + 1), or (up

to permutation of indices) i = I, a = q3 + I - (q2 - q + l)/3, j = 2, b =

q  + 1 - 2(c7  - q + l)/3 and both sets equal {1, œ, œ2} .

Proof. If i = j then we may assume that ya7i' = y nJ, hence a = b and

the result follows. So we may assume that yan' = yhn' and i # j. Then

ya~b = 7tj~i yields (q2 - q + l)/3\a - b .

If y-"V = y-bqn] then *'"' = y(û"è)9 = nu~i)q , hence Äü-0(»+1) = 1.

So /, je{0, 1, 2} implies that i = j , a contradiction. Thus y~aqnl = y q nJ

and yaqn'q = y qnjq , hence

<'(<Z+1)       ,,-a1-'.,<"!-'1 bf „JbljQ b(q2+q)i(q+\)
n        = y     nyn=ynyn=y n

Thus yb(q +q) € (co), whence y* e (n), therefore y" e (n). Then Substep 3.1

implies that i, j j= 0 and

r   a   í       -aq   i      aq2    ;,        r, 2,        f   Zj   j       — bq   j      bq2   7-,
{yn,y   Hn , y    n} = {1, co, co } = {y nJ ,y   Hn',y    n1}.

Now we may assume that z = 1 and yan = 1, hence ya = n~~ . So one of

a, -aq, aq is congruent to -(q -q+ l)/3 (mod q + 1). Then / = 2

and yé7t2 = 1, hence one of b, -bq , bq2 is congruent to -2(q2 - q + l)/3

(modc73 + 1).

Substep 3.3. There are no other repeated sets of eigenvalues among the semisim-

ple classes of E.

Proof. The sets {na, n", n~2a} and {na+i, nib+i, n3c+i} , as parametrized in

Step 2, are clearly all distinct. If cr n = n" for some b, i as in Step 2 and some

u, then order(tr6)|(c72 - 1, 3(q + 1)) = q + 1 . Then q - l\b, a contradiction.
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Table 3

Representative

(in GL3(?6)) Parameters

Number of

classes

0< a < 2

0)

1      of
10

0< a < 2

oj

1 Oí"

1       of
0< a < 2

n

-la

0 < a < 3q + 2

a 0 0 (mod q + 1)
39

n
f    na

0 < a < 3q + 2

0 < ; < 2

i = a (mod 3)

a £ 0 (mod q + 1)

3«

JSa+i)

T(3*+.)

7T
(3e+i)

1 < a, b, c < q+ 1

0 < i < 2

a, b, c distinct (mod 9+1)

a + b + c + i = 0 (mod q + 1 )
,^(a,Z»,f) _ ^(*,c,a)

= ^<*'a'c)etc.)

9(9-l)/2

P     «
<xV

ff_*V

I < ¿> < 9  - 1

0 < ; < 2

¿> ;¡É0 (mod 9-1)

(^-*«'" = ^*'/))

3(9 + 1)

• (q - 2)/2

'yV
y-aV

yai *'.

1 < a < q + 1

0 < í < 2

a té 0 (mod 9  - 9 + 1)

a = —/ (mod 9+I)

(Áa',)=Aif"lJ)=A{A",2'i))

q(q-\)

jc r ~b—ii    Jbi    _-Zjö_1i        rjb'—i'i'       b'   i'       -b'q   ;'■>   c l    l>
If {p n ,0 n ,0 Hn} = {p n ,0 n ,0 qn } for some b,b , 1,

1 as in Step 2, then p ~'n' = p ~' n' forces i = i' and b = b' (mod q + 1).

Now {a* , o-bq} = {ob', o-b'q} so {b, -bq} = {b', -b'q} (mod q2 - 1).
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If {yV, y-aqnl,yaq n1} = {p*"V , txV, cr^V} for some a, i, b, j

as in Step 2, then we may assume yan' = pb~Jnj e (n). So {yanl, y~aqnl,

yaq2n'} = {1, co, co2} = {nq+x, n2{q+X], ni{q+X)} by Substep 3.1. But no set

{p ~'n , a n , o~ qn'} has this form, as shown a few lines above. The con-

tradiction completes the proof.

Step 4.  sr(H) = pr = sr(NH(P)) + 1.

Proof.  sr(H) = pr by Lemma 4.2.  From [14, p.  242], we may assume that

N := NH(P) = P(g), where

'a

g =

P.
2 2

has order q - 1. Now N has q - 1 conjugacy classes of semisimple elements,

with representatives gJ, 1 < j < q2 - 1. So xr fixes the TY-class of gj if and

only if (gi)p = g', which occurs if and only if order(gJ)|(pr - 1, q2 - 1) =

pr - 1 . Thus xr fixes pr - 1 semisimple conjugacy classes of A^.

Step 5.  sr(E)=pr if r\k; sr(E)=p +2 if r\k; sr(NE(P)) = p - 1.

Proof. Since

(n-X

E = H(x),    where x = n  '

V rc2

we have E < SU3(c/-6) = SU3((p3/c)2).

Except for three classes, say A, C and D, of E with eigenvalues {1, co,

co }, the semisimple conjugacy classes of E remain distinct in SU3(c7 ) by

Step 3. The semisimple classes of H do not fuse in E by Step 1. Now E =

HuHx U Hx , each coset is a union of conjugacy classes and Hx = (Hx)~x .

So we may assume (by Step 1) that AC H, C ç Hx and D = C~x . By Step

4, x" fixes pr semisimple classes of both H and SU3(<? ). Since Ax = A and

{C, D}x' = {C, D} , it follows that either Cx' = D and sr(E) = p   or Cx = C

and sr(E) =pr + 2. Now xx' = xp , so Cx = C if and only if Hxp = Hx,

which is equivalent to pr = 1     (mod 3). Since 3|c7 + 1 means that p = -1

(mod 3) and k is odd, we see that sr(E) = pr if and only if r\k .

We may assume that

(-1

on
o~qn~x

pn

Then gx has order 3(<72 - 1), and the elements (gxf , 0 < j < 3(q2 - 1), are
A D

representatives for the semisimple classes of NE(P). Since (gx) = (gx) ,

we see that the class of (gxf is fixed by xr if and only if (gx)j{p ~X) = 1 .
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Since pr - l|3(zj - 1), it is clear that xr fixes exactly pr - 1 semisimple classes

of NE(P).

Step 6. If r\k then sr(Q/Z(Q)) = sr(Q) and sr(NQ(P)/Z(Q)) = sr(NQ(P)) for

Q = H and for Q = E.

Proof. It is implicit here that d = 3, so Z(E) = Z(H) = (col). Let Q denote

either H or E, and let X equal either Q or NQ(P).   If r\k then r odd

and p = -1 (mod 3) imply that (coif = of I = (co/)- . Thus if </ is any

irreducible Brauer character of X with Z(Q) ^ ker ^ , then (vz,q)Y ^ ^z(ß) '

and hence y/T ^ tp. So the number of irreducible Brauer characters of X fixed

by / equals the number of irreducible Brauer characters of X/Z(Q) fixed by

xr. Step 6 now follows by Lemma 3.6 of Feit [11, p. 146], and Brauer's

permutation lemma.

Step!. If r\k and 3 t3* then

sr(H/Z(H)) = (pr-l)/3+l

and

sr(NH(P)/Z(H)) = (pr-l)/3.

Proof. Let X denote either H or NH(P). Now r is even, so of = co. If C
_r i i _3r

is a semisimple class of X such that C = (co )C, then C = C. It follows

that Slorderi/l^). But order(rr|^) = 2k/r, which contradicts our hypotheses.

Hence, xr fixes only the images in X/Z(H) of those semisimple classes of X

which are already fixed by xr. The preimages of a class of X/Z(H) are of the

form C, coC, co C, all distinct unless X = H and C contains

C-J-
The result now follows from Step 4.

5iep 8. If r\k and 3|2zc/r then sr(H/Z(H)) = pr and sr(NH(P)/Z(H)) =

/-I.

Proo/. Since p = -1 (mod 3), k and r/2 are odd and r is even, we have

that
->n r/2   ,     2r/2 (2Zc/r-l)r/2       ,   Zc  ,   , w,   r/2      .,3|l-p'  +p      -+pv =ip  + l)/(p     +1).

Let « = (/ + l)/(3(pr/2 + 1)). Let

Then s3 e SU3(pr) = SU3((pr/2)2) ç H, as (pn)3 is a " p " (of order pr/2 + 1)

for SU3(pr). Note that SU3(pr)(s) equals E(pr) and is stabilized by xr. Now
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p np pn = pV-ïpK<+M implies that /j-i = 0fl   Hence for all h € su3(pr)
r .      r — . .

and z = 1, 2, hx = h and (hs'f = co 'hs'. So for every semisimple conjugacy
r Tr i

class C of E(p ), C = of C for some ;'. Since only the three classes of

E(pr) with eigenvalues {1, co, co2} fuse in H, by Step 3, and E(pr) has 3pr

semisimple classes, by Step 2, we have found 3pr - 2 semisimple classes of H

which are fixed modulo Z(H) by xr. So xr fixes at least (3pr - 3)/3 + 1 =

pr semisimple classes, and hence at least pr irreducible Brauer characters, of

H/Z(H). But xr fixes only pr Brauer characters of H (by Step 4), and so xr

fixes exactly pr semisimple classes of H/Z(H).

Recall from Step 4 that NH(P) = P(g), where

-r-j
has order q2 - 1 . Now xr fixes the class of gj (mod Z(H)) if and only

if (gJ)p = co'gJ for some t, which is equivalent to cr3-7^ _1) = 1. Since

3(pr - l)\q - 1 (as r is even and 3\2k/r), j is a solution if and only if

(q - l)/3(pr - l)\j, and there are 3(pr - 1) such j (mod q2 - 1). Hence xr

fixes pr - 1 semisimple classes of NH(P)/Z(H).

Step 9. If r\k then sr(E/Z(E)) = p + 2 and sr(NE(P)/Z(E)) = p - 1.

Proof. Let m = (q + l)/(p    + 1) (an integer, as noted in Step 8). Let

V n    J

So

u  =\ p
\ P2m)

where pm , of order p'2 + 1 , is a " p " for SU3((pr/2)2) = SU3(pr) < H. Thus

SU3(pr)(«) = E(pr) < E(q ), and E(pr) is stable under xr. Since xr is trivial

on SU3(pr), and since n~mp nm = n(X~p'l2)(q+X) implies that /iz"1 e (col),

it follows that tr fixes every semisimple conjugacy class of E(pr) (modulo

Z(E)). Since the semisimple classes of E(pr) do not fuse in E(q ), by Steps 2

and 3, we have that xr fixes at least 3pr semisimple classes of E(q ) (modulo
2 2 2

Z(E(q ))). Since the three classes of E(q ) with eigenvalues 1, co, co are

not equal (mod Z(E)), we see that xr fixes at least [(3pr - 3)/3] + 3 = pr + 2

semisimple classes, and hence irreducible Brauer characters, of E/Z(E). Step

5 implies that xr fixes at most pr + 2 irreducible Brauer characters of E/Z(E),

and so sr(E/Z(E)) = pr + 2 in this case.
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As before,

on

NE(P) = P(gx),    where gx = \ o~qn

pn

and the matrices (gxf', 0 < j < 3(q   - 1), represent the semisimple con-

jugacy classes of NE(P). Now (gx)JX = (gxf    (mod Z(E)) if and only if

(gxfi(p'~x) = 1. Since 3(pf - l)\3(q2 - 1), there are 3(pr - 1) solutions for j

and sr(NE(P)/Z(E))=pr-l.

Step 10. The number of p-singular classes of H (hence of NH(P), since P is

a T.I. set in H ) fixed by xr is 1 + (2, p - 1) if r\k, or pr' +d + 1 if r \ k.

Proof. Denote the classes C2   , C¡   of Step 1 together as C    , with canonical

representative

V
1 p>

PJ

for I < j < q+l. Then CU)x' = CU) if and only if pj(p'~x) = 1. Since

(q+l, pr -I) equals (2, p - 1 ) if r\ k, pr' +1 if r\k, there are, respectively,

(2, p - 1) or pr'   +1 solutions for j .

If d = 1 then there is only one class C3 '    and it is fixed by xr. If d = 3

(so that p = 2 (mod 3) and k is odd), then xr fixes C^''* if and only if

8 p ~ e (6 ) and coj<J} _1) = 1. But these conditions together are equivalent

to either pr - 1 = 0 (mod 3) (which occurs just when r is even, i.e. r \ k ) or

I = j = 0. The result follows.

Step 11. Let d = 3 . The number of p-singular classes of H/Z(H) (hence of

NH(P)/Z(H)) fixed by xr equals l + (2,p-l) if r\k, (pr,2 + l)/3 + 3 if r\k

and 3f 2k/r, or pr/2 + 4 if r\k and 3\2k/r.

Proof. There are three distinct images of the classes C37 ' ' in H/Z(H), namely

the images of cf '" , / = 0, 1, 2.  But CJ0,/) is fixed by / if and only if

flV-D € <03^     So only one such dass in  H/ZrH^C<fi,0)^   is fixed if rjfc ̂  but

all three are fixed if r\k.

The image of C^' (as in Step 10) in H/Z(H) is fixed by xr if and only

if p;(p _1) e (co), which is equivalent to (q + l)/3\j(pr - 1). The number

of solutions j with 1 < j < q + 1 is 3((q + l)/3,pr - 1), which yields

((¿7 + l)/3, pr - 1) distinct images in H/Z(H) fixed by xr. Since

f(2,p-l)      ifr|zc,

(i±i,/-.) = (pr/2+l)/3   ifrtfcand3t^,

lpr/2 + l ifz-f/c and3|^,

the result holds.
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Step 12. The number of p-singular classes of E (hence of NE(P)) fixed by xr

equals l + (2,p- 1) if r\k, or pr/2 + 4 if r\k.

Proof. Denote the classes A2a), A^ of Step 2 together as A(a'l) with represen-

tative
•    a
n

i        a
n     n

■n-la
n

for 0 < a < 3q + 2, 0 < z < 2, i = a (mod 3). Then x fixes A(aJ) if and

only if na(p~x) = 1. There are (3(q + 1), pr - 1) solutions a, i.e. pr'2 + 1 if

r t k and (2, p - 1 ) if r\k . The class A(q), 0 < a < 2, is fixed by xr if and

only if coa{p _1) = 1, and there are (3, pr - 1) solutions a. The step is proved.

Step 13. The number of p-singular classes of E/Z(E) (hence of NE(P)/Z(E))

fixed by xr equals 1 + (2, p - 1) if r\k , or pr/2 + 2 if r \ k .

Proof. The 3c7 + 3 classes A(a'l) as in Step 12 have q + 1 distinct images in

E/Z(E), and the image of A{a'i] is fixed by xr if and only if na(p'~x) e (co).

Since n3 = p, this is equivalent to pa(p _1) = 1. There are 3(c7 + 1, pr - 1)

solutions for 0 < a < 3q + 2, hence (q + 1, pr - 1) images in E/Z(E) fixed

by xr. The classes A(q' have but one image in E/Z(E), which is clearly fixed

by xr.

All values of sr and cr in Proposition 4.4 have been established by Steps

1-13.

Step 14. hzr(H) = p + 1 if r\k, or p + d2 if r\k ; hzr(H/Z(H)) = p + 1
if z-|zc, pr + 3 if r\k and 3|(2fc/r), (pr - l)/3 + 4 if r\k and 3\2k/r.

Proof. According to [21], H has q+l characters of raised height: one character

Xqiq-\) °f degree q(q - 1), which is clearly fixed by x', and q characters of

degree q(q - q + 1), which we denote here as x > !<"<<?, such that

the value of x °n any g G C5 is -e"J, where e is a complex primitive

(c7 + l)st root of unity. Then

(«)(Tr)~    ,       n (u) , . Ujp'

X igj) = X    igjpf = -e      ,

where we read jpr mod c7 + 1. So x = X if and only if eup = e" , i.e.

g"(p -i) _ j jjjg number of solutions « is (c7+l, pr-l)- 1, i.e. (2, p-1)- 1

if r\k or pr/2 if r\k. Hence Tr fixes either (2,p - 1) (if r\k) or pr/2 + 1

(if r\k) characters of H of raised height.

If d = 3 then Z(H) < kerxq{q_X), and Z(H) < ker^(u)  if and only if

u = 0 (mod 3) (by [21, p. 488]). The number of solutions to eu(p"~l) = 1

for  1 < u < q and u = 0 (mod 3) is (2, p - 1) - 1  if z-|zc, pr/2 if r\k
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and 3\2k/r, or (pr/2 + l)/3 - 1 if r\k and 3f2zc/r. So xr fixes either

(2,p-l) (if r\k), pr/2 + l (if r\k and 3|2zc/r),or (pr/2 + l)/3 (if r\k

and 3\2k/r) irreducible characters of H/Z(H) of raised height. Since xr

fixes cr(h) irreducible characters of H (by Brauer's permutation lemma), and

cr(H/Z(H)) irreducible characters of H/Z(H), the result follows from the now

established values of cr(H) and cr(H/Z(H)).

Step 15. hzr(NH(P))=p if r\k,or p+d2-I if r\k; hzr(NH(P)/Z(H)) =
pr if r\k, pr + 2 if r\k and 3|2zc/r,or (pr-l)/3 + 3 if r\k and 3\2k/r.

Proof. The irreducible characters of N := NH(P) with height zero are clearly

the characters of N/P', where N/P' has the structure of an elementary abelian
/ 2 2

group (P/P ) of order q , extended by a cyclic group of order q - 1, which

induces a fixed-point-free action of order (q - l)/d by conjugation on P/P'

[14, p. 242]. Now N/P1 has q - 1 (linear) characters with P/P' in their

kernel, and pr - 1 of them are fixed by xr.

If d = 1, N/P1 has but one irreducible character £ with P/P' ^ ker Ç and

hence hzfN) = pr. If d = 3 then there are nine characters of N/P' with

P not in their kernels, and they vanish off P x Z(H). So they are uniquely

determined by their values on the nine classes C3     , 0 < j, I < 2. Thus xr

fixes as many of these characters as it does the C3 ' x. This number is nine if

r\k or one if r\k (as in Step 10). The result for hzr(N) follows.

When d = 3, there are (q2 - l)/3 linear characters of N/P'Z(H) with P

in their kernels. It is easily seen that pr - 1 of them are fixed by xr if r\k

or if r\k and 3\2k/r, but only (pr - l)/3 are fixed if r\k and 3\2k/r.

There are three characters of N/P'Z(H) with P not in their kernels, and they

vanish off the images of the three classes C3 ' of N. So xr fixes as many

such characters as it does the C3°' ', i.e. it fixes one if r\k and three if r\k.

Step 16. hzr(E) = pr + 1 if r\k or pr + 5 if r t A: ; hzr(E/Z(E)) = pr + 1 if

r|zt or pf + 3 if z-fzc.

Pz"oo/. Let e again be a complex (q + l)st root of unity, and let p be a cube

root of e . Recall that

n~x

n2)

and let v be the linear character of (x) such that v(x~J) = pJ. It follows

from the character table of / = GUfq2) [10] and the fact that J(nl) = E(nl)

that E has 3q characters xW of degree q(q2 - q + 1), for 1 < u < 3q + 3

with u ^ 0 (mod <? + 1), such that

X{u)(x-j) = (q-l)puj + qp-2uj    ifq+lij,

Xiu)(coI) = q(q2-q+l)pu{q+X).
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Thus

X{%) = (í - 1)"" + W~1U + id- l)2u"R((x)/(coI)),

where R denotes the regular representation. So x^ = X^ if and only if

pu("r~X) = 1. Hence the number of fixed x(u) is (2, p - 1) - 1 if r\k, and

pr/2 - 2 if r\k . Since a given x(u) has Z(ls) in its kernel if and only if 3|w,

we see that all of the xW fixed by xr have Z(E) in their kernel.

Again, the character table of / and the fact that J(nl) = E(nl) yield that

E has three characters ¡a}'] of degree q2 - q ,for 0 < i < 2, such that

CU)(x'J) = -(q-l)p'j{q+X)

for all ; with q + 1 \j and z = 0, 1, 2. So / fixes f(0 if and only if

^/■(p'-D(«+i) = !    Hence all three are fixed if r + >t but only £(0) is if r\k . All

three of the C     have Z(£) in their kernel.

The x and C comprise all of the characters of E of raised height, and

our results show that xr fixes exactly (2, p - 1) such characters (of E and of

E/Z(E)) if r\k, while pr/2 + 1 are fixed if r\k. Step 16 follows from the

established values of cr(E) and cr(E/Z(E)).

Step 17.  hzr(NE(P))=p   if r\k, pr + 2 if r\k; hzr(NE(P)/Z(E)) = p .

Proof. The height zero characters of NE(P) are exactly those with P' in their

kernel.   NE(P)/P' is the semidirect product of the elementary abelian group
/ 2 2

P/P of order q with a cyclic group of order 3(q - 1) which has a fixed-

point-free action of order q2 - 1 on P/P'. So Af£(P) has 3(<?2 - 1) (linear)

characters with P in their kernels, and pr - 1 of them are fixed by xr. Each

such fixed character has Z (E) in its kernel.

Now NE(P)/P' has only three characters with kernel not containing P, and

they vanish off P x Z(E). So they are determined by their values on the classes

A^ , 0 < a < 2. Hence xr fixes all three characters when r\k, and only the

unique such character with Z(E) in its kernel when z-|zc . This completes the

proof of Step 17.

Step 18. dzr(H) = 1 = dzr(H/Z(H)) ; dzfE) = dzr(E/Z(E)) = 1 if r\k, or
3 if r f k .

Proof. H has a unique p-block of defect zero [21], so its character, which has

Z(H) in its kernel, is fixed by xr. Since J(nl) = E(nl), the character table of

J yields three blocks of defect zero for E, with character x¡ (of degree q )

for 0 < i < 2 such that
X,(x-J) = qpUi,,+ l)

for all j with q+ l\j. Each x¡ has Z(E) in its kernel. Now x" fixes x¡ if

and only if /p'-'X«*» = i . Hence dzfE) = dzr(E/Z(E)) is as claimed.

Step 19. Conclusion.
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Since NH(P) and NE(P) can have no p-blocks of defect zero, all entries of

the table have been verified and the proof of Proposition 4.3 is complete.

Proof of Proposition 4.5. (a) This is immediate, since ô fixes every semisimple

class of H and of N.

(b) By Step 1 of the proof of Proposition 4.4, ô fixes every p-singular class

of H (and so of N) except for the C\j ' ]. Here, for each fixed j, ô cycles

the three classes C{3jJ), 0 < I < 2. If r\k, xr fixes each C\iJ). Hence

Sxr fixes none of them and so csr(H) = cr(H) - 9, csr(N) = cr(N) - 9. If

r\k, T permutes co and co , and fixes C3 ; only when j = I = 0. So ôx

fixes just one C$'\ when / = 0 and 1=1 or 2. So csr(H) = cr(H) and

cr(N) = cr(N). The result follows from cr(N) + 1 = cr(H) in Proposition 4.4.

(c) Again, S fixes all classes of H/Z(H), and of N/Z(H), except for the

three images of C3 ' which it cycles. Since xr fixes each C3 if r \ k, and

fixes only C3 '    when r\k , the result follows as in part (b).

(d) The character table for H [21] shows that the characters of raised height

vanish on the classes C3; ' ' which are the only classes not fixed by ô . So ¿

fixes all characters of raised height. So if mr is the number of raised height

characters fixed by x , hz6r(H) = csr(H) -mr = cf(H) - (cr(H) - hzfH)), so

that part (b) and Proposition 4.4 yield the desired values for hzr (H).

Since ô fixes each of the q - 1 (linear) characters of N/P, Sxr fixes pr - 1

such characters. The other nine characters of N/P' vanish off P x Z (H), hence

the number of them fixed by Sxr equals the number of C3J' ] fixed by ôxr.

This number is one if r\k and zero if r\k, as in the proof of part (b). Thus

hzr(N) equals p   if r\k, and p - 1 otherwise.

(e) As in the proof of (d),

hzSr(H/Z(H)) = cr(H/Z(H)) - (cr(H/Z(H)) - hzr(H/Z(H))),

and the values for hzr(H/Z(H)) follow from part (c) and Proposition 4.4.

If r\k or if r\k but 3|2zc/r, then each character of N/P fixed by Sxr has

Z(H) in its kernel. Otherwise only (pr - l)/3 of them have Z(H) in their

kernels.

If r\k then xr fixes only C3°'0) among the C30/). Thus ôxr fixes one

nonlinear character of N/P'Z(H) and hzsr(N/Z(H)) = pr. If r\k then xr

fixes all C3 ' and so 6xr fixes no nonlinear character of N/P'Z(H). Thus

hzsr(N/Z(H)) equals p - 1 if 3|2zc/r, (pr - l)/3 if 3f2zc/r.

Proposition 4.6. Let d = 3, H = SUfq ), E = H(x) as before, where

-i

n~x

n
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and co = nq+ . Let r\2k but r\k and 3\2k/r. Then the following assertions

hold:
(a) There are 3pr semisimple classes of E which are fixed modulo Z(E) by

xr. Exactly pr of them are contained in H, pr of them are classes C ç Hx2k,r

with Cx = co2C, and the other pr are classes C ç Hx~2k/r with Cx = coC.

(b) There are 3pr - 3 semisimple classes of NE(P) which are fixed modulo

Z(E) by xr. Exactly pr - 1 of them are in NH(P), pr - 1 of them are classes

C ç NH(P)x2k/r with Cx = co2C, and the other pr-I are classes C ç Hx~2k/r

with Cx = coC.

(c) There are 3pr' +6 p-singular classes of E which are fixed modulo Z(E)

by xr. Exactly pr/ +4 of them are contained in H, pr/2 + l of them are classes

C ç Hx2k,r with Cx = co2C, and the other pr'2 + 1 are classes C CHx~2k/r

with Cx = coC.

Proof. Let y = x2k,r. Since 3\2k/r, we have E = HuHyöHy~x . Since

r\k implies that pr = 1 (mod 3), xr stabilizes each coset of H in E ; each

coset is a union of conjugacy classes. Let

/      ,   t\u   r/2   ,   in       i r/2   , {2k/r-\))r/2       2k
m = (q+l)/(p    +l) = l-p'  +---+p "'  =—    (mod 3),

and let u = xm e Hy .

As in the proof of Step 9 of Proposition 4.4,   SU3(pr)(w) =- E(pr)  and

-mp'   m (l-///2)(o+l)     , p' x (\-p',2)(q+\) 2 XT
n y n = 7T y )yH ', hence u = u = ny p nq 'u = co u. Now

SU3(pf)w CHu = Hy, and hence for all h e SU3(pr), (hu)x = co2hu. Thus

if C is any conjugacy class of E(pr) with C ç SU3(pr)w, Cx = co2C. Then

C Ç Hu~ and C~ x = coC~ . There are pr semisimple conjugacy classes

of E(pr) in SU3(pr)zz, and none fuse in E by Step 3 of the proof of Proposi-

tion 4.4. So there are at least pr semisimple classes C in Hy with Cx = <y2C.

By Proposition 4.4, xr fixes pr semisimple classes of H (which remain dis-

tinct in E ), and fixes 3pr semisimple classes of E modulo Z(E). (The three

classes of E with eigenvalues {I, co, co } are not multiples of any other class

by an element of Z(E), and are fixed by xr.) Assertion (a) follows.

Now NE(P) = NH(P) U NH(P)y U NH(P)y~x , and NH(P)u = NH(P)y . By

Proposition 4.4, there are pr - 1 elements of the form gJ in NH(P),

o

P.

such that (gJf = g1"' = gJ, hence (g}u)x = co2g]u and (g~Ju~xf =

cog~'u~x. But there are at most 3(pr - 1) semisimple classes fixed modulo

Z(E), as sr(NE(P)/Z(E))=pr - 1. Assertion (b) follows.

There are pr/2 + 1   p-singular classes of E which meet SU3(pr)w, see Step

2 of the proof of Proposition 4.4. There are 3(pr/2 + 2)  p-singular classes of
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E fixed modulo Z(E) by xr, and xr fixes pr' +4 p-singular classes of E,

all contained in H, by Proposition 4.4. Assertion (c) follows.

5. Central extensions involving simple Chevalley groups

In this section it is shown that a counterexample to Proposition 3.1 does not

contain a simple composition factor G isomorphic to PSL2(#) or PSU3(c7 ).

Proposition 5.1. Let X be an almost simple group with a T.I. Sylow p-subgroup

P. Let H = Cf'(X) and G = H/Z(H). Suppose that either G s PSL2(<?) with

\P\ = q=p" or G = PSU3(c72) with \P\ = q3 = p3n. If B denotes a p-block

of X with defect group d~(B) = P and Brauer correspondent b in N = NX(P),

then the following assertions hold:

(a) k(B) = k(b)<\P\;
(b) 1(B) = 1(b) ;

(c) k0(B) = k0(b)<\P/P'\;
(d) l(B)<k0(B);

(e) If G = PSL2(<?), then P is abelian and k0(B) = k(B).

Proof. Since H is quasi-simple, the following holds: if G = PSL2(c7) then

either H = G or H = SL2(q), and if G = PSU3(í72) then either H = G or

H = SUfq2). Let m = 2 if G = PSLfq), and m = 3 if G S PSUfq2), so
that \Z(H)\\m.

If P denotes the image of P in X/Z(H), then X/Z(H) < Aut(G) by

Proposition 1.2. Hence, CX,Z,H)(P) = 1 by [12, p. 311], so that CX(P) =

Z(H). Thus X has at most m blocks of full defect: the principal block BQ ,

and, if \Z(H)\ = m , faithful blocks Z?;. for i = 1, m- 1. Each B¡ then covers

a unique block B'¡ of H. Also, the Brauer correspondents b¡ from N cover,

respectively, the Brauer correspondents b\ from NH(P) of the B'¡.

If g e X, T is a section of X stable under conjugation by g and B is a

block of T stable under conjugation by g, let f(T, g), resp. f(B, g), denote

the number of irreducible Brauer characters of T, resp. of È, which are fixed

by g. By [11, Lemma 3.6, p. 146] and Brauer's permutation lemma, f(T, g)

is the number of p-regular conjugacy classes of T fixed by g .

Suppose first that X/H is cyclic. Then X/H is generated by some y e X

such that y induces an outer automorphism y of H by conjugation. By the

Atlas [8, p. xvi], we may assume that y equals either xr or ôxr, where ö

is a diagonal automorphism of H of order m modulo the group lnn(H) of

inner automorphisms of H, and xr is the field automorphism of H defined

by c -> <f', for all c e GF(qm~x), and some r\(m - l)n . When X = H, then

of course y = t'"1-1'" . By Proposition 1.2 we may assume that y normalizes

P.

Now any power of y must generate a subgroup of Aut(H) which, modulo

lnn(H), has a generator of the form xr  or ô  V  for some r'\(m-l)n. Since
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ô fixes every p-regular class of H, Propositions 4.3 and 4.4 imply that for all

positive integers j,

f(H, yJ) = fi(Nx, yj) + 1,        f(H/Z(H), yj) = fi(Nx/Z(H), yJ) + 1,

where Nx = NH(P). Since H has a unique p-block of defect zero, and this

block has Z(H) in its kernel, by [9, p. 228; 21, p. 488], we have

fi(B'0 ,yj) = fi(H/Z(H), yJ) - 1 = /(TV,/Z(H), yj) = f(b'0, yJ)

for all j. Also,

m—\ m—\

£ fiiB'¡, yJ) = fi(H, yJ) - 1 = fi(Nx, yJ) = £ fi(b'¡, yJ)
i=0 i=0

so that
m—\ m—\

i=i i=i

if these blocks really appear in H. So Proposition 2.3, applied to X/H acting

on B'0, b'0, Ur=T' B\ and U™,1 b'i implies that l(Bf = l(b0) and ¿2?=? l(Bf =

H7=\X libi). If w = 2, we have l(Bx) = l(bx). If m = 3 then Bx and B2 are
complex conjugate blocks, asare bx and b2. So l(Bx) = l(Bf) and l(bx) = l(b2)

implies that l(Bf = l(bf for ¿=1,2.

Now suppose that X/H is noncyclic. If m = 2, let x = (""'   ), where v
■y

is an element of order 2(q - 1) in GF(q ) ; if m = 3, let

where n has order 3(q + 1) in GF(q ) (as in §4). Let E be the group H(x)

defined in §4, and let x be the image of x in E/Z(E). By Lemma 3.7, X/H

is generated by elements y, t such that ym e H, y induces by conjugation

the same automorphism of H as does x. Conjugation of H by t induces

the field automorphism xr on H, where r\(m - l)n , and y' = y" z for some

zeZ(H) with zm = 1. Thus H(y) is normal in X. Now ym and xm both

induce the same inner automorphism of H. Hence ym = xm if Z(H) = 1, and

ym = xmzx , for some z, e Z(H) if Z(H) ¿ 1. By the proof of Lemma 3.7,

X may be replaced by another almost simple group isoclinic to X, in which we

may assume ym = xm . So if Z(H) > 1, we may assume that H(y) = E with y

corresponding to x , and if Z(H) = 1, H(y) = E/Z(E) with y corresponding

to x. So we may identify H(y) with E or E/Z(E), and speak of the field

automorphism xr acting on H(y) with yx =yf . (Of course, xr and t need

not have the same action on y .)

Each Bj covers a unique block B1. of H(y), which in turn covers B'¡. Note

that H(y) has m blocks of defect zero, all with Z(H) in their kernel, as y

fixes the unique defect zero block of H.
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Suppose that Z(H) = 1. H(y) is now identified with E/Z(E), on which

t acts as xr. If dzr(E/Z(E)) denotes the numbers of p-blocks of E/Z(E)

of defect zero which are fixed by xr, then Propositions 4.3 and 4.4, applied to

sr(E/Z(E)), sr(NE(P)/Z(E)) and dzr(E/Z(E)), yield that

f(H(y), t) = fi(NH{y)(P), t) + dzr(E/Z(E)).

Hence, f(B'¿, t) = f(b'¿, t). Applying this result to the subgroup H(y, tJ) for

each positive integer j yields f(B'¿, tj) = /(/30', tJ) for all j. Proposition 2.3

for the group X/H(y) acting on B'¿ and b'¿ gives l(B0) = l(bf).

Now suppose that Z(H) > 1. We still have l(B0) = l(b0) by the above result.

If m = 2 then p > 2, and if m = 3 then p = 2    (mod 3) and n is odd.

If m = 2 then yq~x = -I in SL2(c7). If m = 3, then nq+x = co implies

that yql~x =xql~x = (co~xI)q~x =co~xI. So if we define c<; = -l when m = 2

(and leave co alone when m = 3 ), then y = co~xI in either case.

If m = 3, then the fact that t must act trivially on Z(H) = Z(X) forces
r r

col = (col) = of I. Hence r is even, i.e. r\n. So zp = z whether m = 2

or 3.
Now for either value of m , t{m~x)n/r € CX(H) = Z(X), hence

,<"-•>»/' pri--i)-/r    {m_x]n/r
y = y = y z

qm~'    {m-l)n/r       ,    -lr,      (m-\)n/r
= y      z = (co   I)yz ' .

So z{m~x)nlr = toi. In particular, m = \Z(H)\\(m - l)n/r. Thus H (y) =
Hu((JZ-XHyi{m-x)n/r).

Let C be a conjugacy class of H (y). If C ç H then C' = C if and only if

Cx' = C. Suppose that C ç Hy(m~X)n'r. Let hy{m~x)n/r e C for some heH.

Then

{hy(m-l)n/ry = ht{yt)(m-l)n/r = tf ¡/Zf*-Wr

= (hy{m-l)n/yr z(m-i)n" = (hy{m-X)n,Y icol).

So if C ç Hy{m'x)n/r then C' = œCx'. It follows that C' = C for C ç

jjy(m-i)n/r ¿f an(j onjy jf (jT = œ~xç _ Similarly, if C is a conjugacy class of

NH(y)ip) with C ç NH(P)y(m~x)n'r then C' = C if and only if Cx = co~xC.

Let m = 2. By Proposition 4.3, n/r odd implies that / fixes (pr + l)/2 p-

regular conjugacy classes of (H(y)/Z(H)) - (H/Z(H)), but only one p-regular

class of H (y) - H (the unique class of H(y) - H whose eigenvalues are fourth

roots of unity). Thus Cx = -C for exactly pr classes of H(y) - H. Hence

C = C for exactly 2pr semisimple classes of H(y).

Similarly, Proposition 4.3 implies that xr fixes (pr-l)/2 semisimple classes

of

(NH(P)(y)/Z(H)) - (NH(P)/Z(H)),



454 H. 1. BLAU AND G. O. MICHLER

but no semisimple classes of NH(P)(y) - NH(P). Thus Cx = -C for exactly

pr-l semisimple classes of NH(P)(y)-NH(P). So Cl = C for exactly 2pr-2

semisimple classes of NH(P)(y) = NH,AP).

Let m = 3. Proposition 4.6 shows that there are exactly pr semisimple

classes C ç Hy 'r with  Cx   = co~ C and pr - 1   semisimple classes

C ç NH(P)y(m~X)n,r with Cx =co~xC. Note that C and C'x are in distinct

cosets of H for C ç H(y)-H, and C' = C if and only if C~Xt = C~x . Since

xr fixes pr semisimple classes of H(y) contained in H, and pr-l semisimple

classes of NH,AP) contained in NH(P), by Proposition 4.4, it follows that t

fixes exactly 3pr semisimple classes of H(y) and 3pr - 3 semisimple classes

ofNH{y)(P).

For both values of m , we have established that

fi(H(y),t) = fi(NH{y)(P),t) + m.

Propositions 4.3 and 4.4 imply that m is the number of p-blocks of E (in

fact, of E/Z(E)) of defect zero which are fixed by xr, and hence by t. So we

haveEílo1/«,0 = Er=o'M",0.
Any tJ generates a subgroup whose action on H is generated by some xr> ,

where r\rMm- l)n , so that m\(m-l)n/rj and r.\n if m = 3. Our result in

the above paragraph applied to the group H(y, t1) yields that, for all positive

integers j ,

m—\ m—\

¿2f(B'l',tJ) = YtAb'l',tJ).
i=0 (=0

Since ABq , tj) = f(b'¿[, tJ), as shown above, we have

m—\ m—\

^2fi(B'j',tj) = j2Ab';,tj).
i=i i=i

Now Proposition 2.3, applied to X/H(y) acting on (J,lT K an(* U™7 ^i

implies that YZ? KBf = Y^J^libf. If m = 2 then l(Bx) = l(bx). If
m = 3 then the complex conjugacy of Bx and B2, as well as of bx and b2,

yields l(Bf = l(bf for z = 1, 2.
Part (b) of Proposition 5.1 is now proved. Then k(B) = k(b) by Lemma

2.1.
We will now assume that m = 3 and prove that kQ(B) = kfb) : If g e X,

T is a g-stable section of X and B is a block of T, define hz(T, g), resp.

hz(B, g), to be the number of height zero characters of T, resp. of B , which

are fixed by g .
Suppose that X/H is cyclic. Then X/H is generated by some y e X such

that y induces the automorphism either xr or Sxr of H by conjugation, as
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before. Propositions 4.4 and 4.5 give

hz(H,y) = hz(NH(P),y) + l,

hz(H/Z(H), y) = hz(NH(P)/Z(H), y) + I.

So an argument identical to that used for Brauer characters yields k0(Bf =

k0(bf for z = 0, 1,2.
Suppose that X/H is noncyclic, X = H(y, t) as before. If Z(H) = 1,

then H(y) is identified with E/Z(E), as above, and t acts as xr on H(y).

Proposition 4.4 gives

hz(H(y), t) = hz(NH{y)(P), t) + dzr(E/Z(E)).

So arguing as for Brauer characters, we obtain k0(B0) = k0(bf).

We may now assume that Z(H) > 1 and k0(B0) = k0(b0). Previous argu-

ment showed that t fixes 3(pr - 1) semisimple classes of NH,AP). But these

have representations (gxf , where

g = er-"

P.

as in Step 7 of the proof of Proposition 4.4, NH,AP)/P = (gx), and t stabi-

lizes (gx) as z e (gx). Thus t fixes exactly 3(pr-l) of the linear characters

of NH,AP)/P, i.e. the height zero characters of NH,AP) which have P in

their kernel. There are three other characters of NH,AP)/P', which lie in three

different blocks of NH., (P), and hence are fixed by t. So t fixes exactly 3pr

height zero characters of NH, . (P).
r rl2

Proposition 4.4 implies that x fixes p ' +2 p-singular classes of E/Z(E).

Hence it fixes 3(pr' +2) p-singular classes of E up to multiplication by Z(E),

as can be seen from the list of classes in Step 2 of the proof of Proposition 4.4.

By Proposition 4.6, there are p + 1 p-singular classes C ç Hy n'r with

Cx = co C. There are pr' + 4 p-singular classes of E which are contained

in H, and which are fixed by xr (see Proposition 4.4). It follows that t fixes

exactly 3pr'   + 6 p-singular classes of E.

The characters of E of raised height are 3q characters x > 1 < « < 3q + 3,

with u ^ 0 (mod q + 1), and three characters C(,) > 0 < z < 2, as described in

Step 16 of Proposition 4.4. The characters x correspond to linear characters

v" of (y) (recall y is identified with x), where u"(x~J) = pUJ for p a fixed

complex (3(c7+l))th root of unity.

As r f n , and all of the Ç(,) have Z(E) in their kernel, the proof of Step 16

shows that t fixes all three of the £(,).

Since t stabilizes (y), it is clear that / fixes xW if and only if t fixes u" .

Note that z2n/r = col and 3\2n/r imply z = co2n,rI. Thus y' = yp (co2n/rI).
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So

{u)t tu) «z~[ u u,  p'    2n/r T. u,   ,
yf ' = x     & u       =v   &v(yyco     I) = v (y)

^ ,,~up' ,A2nlrMq+l) -u
o p      p = p

o (pr - l)u = 2nr~xu(q + 1) (mod 3(<7 + 1))

o (p12 -l)u = 2nr~xu(q + l)/(p'2 + 1) (mod 3(q + l)/(p'2 + 1)).

Now (pr/2 - l,q + l) = (2,p-l) and (q + l)/(pr/2 + l) = 1 - pr/2 + ■ ■ ■ +

p{ nr - p/ ^ Q^ an(j congruent to 2n/r (mod 3) (as r/2 is odd here). So

the congruence above is equivalent to u = 0 (mod (q + l)/(pr/2 + 1)). There

are 3pr/ solutions u with u ^ 0 (mod q + 1 ), so 3pr' of the x(u) are fixed

by t. Hence t fixes 3pr'2 + 3 characters of E of positive height. It was shown

above that t fixes 3pr semisimple classes and 3pr/ + 6 p-singular classes of

E. Thus t fixes 3pr + 3pr'   + 6 irreducible characters of E. Hence,

hz(H(y), t) = 3p + 3 = hz(NH(y) (P), t) + dzfE).

So the now familiar argument yields k0(Bf = kfbf for 0 < i < 2.

The inequalities kfb) < |P/P'|, k(b) < \P\ follow from Theorem 7.4 of

Knörr [15], because NX(P)/P is supersolvable. Since every irreducible Brauer

character in b is an ordinary character of N/P and thus lifts to an ordinary

character in b with P in its kernel, it follows that 1(b) < kQ(b). This completes

the proof.

6. Extensions of simple exceptional groups of Lie type

In this section we determine the block invariants of the p-blocks B of the

relevant automorphism groups E of the simple exceptional groups of Lie type

G having a noncyclic T.I. Sylow p-subgroup. If p = 5 , then G = F4(2)'. If

p = 3, then G = 2G2(32m+x), m= 1,2,.... Furthermore, G = 2B2(22m+x)

for p = 2.

Proposition 6.1. (a) The simple group G of Tits 2F4(2)' has trivial Schur mul-

tiplier M = 1. Its outer automorphism group A is cyclic of order 2.

(b) Let E be the simple group G or its automorphism group G - 2 = F4(2).

Let P be a Sylow 5-subgroup of E, and N = NE(P). Then all nonprincipal

5-blocks of E have defect zero.
(c) The number z(E) of 5-blocks of E with defect zero and the numbers of

irreducible characters of the principal blocks B and b of E and N, respectively,

are given in Table 4.

In particular, k(E) = k(N) + z(E), and 1(E) = l(N) + z(E).

Proof. Assertion (a) follows from the Atlas [8, pp. xvi and 74].

(b) Considering the centralizers of 5-elements of E in the character tables

[8, p. 75], it follows immediately that only the principal 5-block B of E has

positive defect.
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z(E) k(B) k(b) k0(B) kfb) 1(B) 1(b)

Ff2)' 2Ff2)'

G-2

16

20

16

20

16

20

16

20

14

16

14

16

A     is îrre-

(c) The numbers z(E) of blocks with defect zero can easily be read from the

character tables of [8, p. 75].

Let G = 2F4(2)'. By Griess and Lyons [13] P ~ Z5 x Z5, and NG(P)/P ~

Z4 * SL2(3), where S = SL2(3) acts transitively on P - {1} , and |Z4 *S\ = 48 .

Now N = NG(P) = P-U, PnU=l, S<U = N/P. S has three irreducible
characters with the following multiplicities and degrees (given last): 3x1,

1x3, 3x2. Thus U has the following multiplicities of character degrees:

6x1, 2x3, 6x2. These are the characters of N which have P in their

kernels. In particular, 1(b) = l(N) = 14.

As S acts transitively on the nontrivial characters A of P, x

ducible of degree 24, for each such A. Now Aj^ has only 24 distinct irreducible

constituents, and so (A , A )N = (A, X,p)p = 2. Therefore, x has two exten-

sions to N. Hence k(N) = k0(N) = 16 = k(b) = k0(b). By the Atlas [8, p.
74], k(B) = 16 = k0(B) and 1(B) = 20 - z(G) = 14.

By Griess and Lyons [13], E = G-2 = 2F4(2), and N = NE(P) = P ■

W, P n W = 1, where W ~ Z4 * GL2(3). Now GL2(3) has the following

multiplicities of character degrees: 2x1, 3x2, 1x4, 2x3. Hence the

numbers for W = NE(P)/P are 4x1, 6x2, 2x4, 4x3. In particular,

l(NE(P)) = 1(b) = 16. Let A and x be as above. Let T = TW(X) be the inertial

subgroup of A in W. Then | T\ = 4, and A has four distinct extensions to

PT. Hence x has four distinct extensions to NE(P), each of degree 24. Thus

k(b) = 20 = zc0(¿>). The Atlas [8, p. 74] implies that k(B) = 20 = k0(B) and
1(B) = 16. This completes the proof.

Proposition 6.2. (a) The simple Ree groups G = 2G2(q), q = 32m+l, m =

1,2,..., all have Schur multiplier M = 1 and a cyclic outer automorphism

group A generated by the field automorphism x of GF(q) with order 2m + 1.

(b) G has the principal 3-block B and one block of defect zero consisting

of the Steinberg character. Let b be the Brauer correspondent of B in NG(P),

where P is the Sylow 3-subgroup of G. Then

k(B) = q + l = k(b)<\P\ = qi

k0(B) = q = k0(b) = \P/P'\,

l(B) = q-l=l(b).
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(c) Let E = G(xr) < AutG, where 3\\E:G\. Then BQ = BE and b0 = bN

are the principal blocks of E and N = NE(P), respectively. Furthermore,

k(Bf = k(b0)<\P\,

k0(B0) = k0(b0)<\P/P'\,

l(B0) = l(bQ)<k0(b0).

In particular, k(E) = k(N) + z(E), and 1(E) = l(N) + z(E), where z(E) =

\E: G\ is the number of blocks of E with defect zero.

Proof, (a) follows from the Atlas [8, p. xvi].

(b) The Steinberg character of degree q3 is by Ward's character table [25,

pp. 87-88] the only projective irreducible character of G. By Ward's Theorem

[25, p. 63] 03fNG(P)) = 1. Therefore, all other irreducible characters of G

belong to the principal block B of G by Theorem 1.5 of Feit [11, p. 416], and

Brauer's third main theorem on blocks. As k(G) = q + % we have k(B) = q + l.

From Ward's character table [25, p. 87] follows that kQ(B) = q. As G has q

3-regular conjugacy classes, 1(B) = q - 1.

Another application of Ward's Theorem [25, p. 63] yields that Nx = NG(P) =

PW, where W = (w) is a cyclic group of order \W\ = q - 1 operating fixed

point freely on P/P' and |P/P'| = q . As Nx has only one block b it follows

that b has q - 1 linear characters and one irreducible character of degree

q - 1. All other irreducible characters of b have positive height. Thus k0(b) —

k[(P/P')W] = (q - 1) + 1 = q, and 1(b) = q - 1 = 1(B). Hence Lemma 2.1
asserts that k(b) = k(B) = q + l.

(c) From the Atlas [8, p. xvi] follows that each outer automorphism of G is a

power xr of the Frobenius automorphism t:x-+x3, and | Out(G)| = 2m + 1.

Let E = G(xr) for some r\2m + 1, where 3f|£ : G\ = (2m + l)r~x . Let

TV = NE(P). By [12, p. 167] CE(P) < P. So B0 = BE and b0 = bN are

the only blocks of E and N with positive defect, respectively. By Lemma 4.2

xr fixes 3r semisimple classes of G. Hence it fixes 3r - 1 irreducible Brauer

characters of B.  The 3-regular classes of Nx = PW are represented by the
rr %r r r

powers of w e W. As w = w , it follows that x fixes 3 - 1 irreducible

Brauer characters of b . Thus Proposition 2.3 asserts that l(B0) = l(bf). Hence

zc(t50) = k(b0) by Lemma 2.1.

Since xr stabilizes P, hence Z(P) and P', and since 2 and 3 do not divide

(2zn + l)r_1 = order(tr), it follows that xr fixes all eight 3-singular classes of

G. So / fixes 3r + 7 irreducible characters of B . The seven characters of B

with positive height differ only on the 3-singular classes. Hence they are fixed by

xr. So xr fixes 3r height zero characters of B . Besides 3r - 1 linear characters

of Nx/P it fixes the unique character of degree q - 1 . Thus Proposition 2.3

yields k0(BQ) = kfbf. Since the Steinberg character St of G has \E : G\

inequivalent extensions, it follows that z(E) = \E : G\ is the number of blocks
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of E with defect zero, and

k(E) = k(B0) + z(E) = k(bQ) + z(E) = k(N) + \E:G\,

1(E) = l(N) + z(E) = l(N) + \E:G\.

Since P is normal in N, each modular irreducible character is liftable to an

irreducible ordinary character of N of height zero. Thus k0(b0) > l(b0).

Furthermore, k0(bf) = k0(N) = k[(P/P')U], where U is the complement of

P in N = NE(P). By Theorem 7.4 of Knörr [15] k[(P/P')U] < \P/P'\ and

k(b0) = k(N) < \P\.

Proposition 6.3. (a) The simple Suzuki groups G = B2(q), q = 2 m+ , have

Schur multiplier M = 1 for m = 2,3, ... , and M ~ Z2 x Z2 for m = 1.

The outer automorphism group A of each Suzuki group G= B2(q) is cyclic

and generated by the field automorphism of order 2m + 1.

(b) G has the principal 2-block B and one block of defect zero consisting of

the Steinberg character St. Let b be the Brauer correspondent of B in NG(P),

where P is the Sylow 2-subgroup of G. Then

k(B) = q + 2 = k(b)<\P\ = q2,

k0(B) = q = k0(b) = \P/P'\,

l(B) = q-l=l(b).

(c) Let E = G(xr) <AutG, where 2\\E:G\. Then B0 = BE and b0 = bN

are the principal blocks of E and N = NE(P), respectively. Furthermore,

k(B0) = k(b0)<\P\,

k0(B0) = k(b0)<\P/P'\,

l(B0) = l(b0)<k0(b0).

In particular, k(E) = k(N) + z(E) and 1(E) = l(N) + z(E), where z(E) =

\E : G\ is the number of blocks of E with defect zero.

Proof, (a) follows immediately from the Atlas [8, p. xvi].

(b) The Steinberg character St of G is by Suzuki's character table [23, p. 143]

the only projective irreducible character of G. Since the Sylow 2-subgroup P

of G is strongly self-centralizing by Suzuki [23], 0(NG(P)) = 1 . Therefore

all other irreducible characters of G belong to the principal block B of G by

Theorem 1.5 of Feit [11, p. 416] and Brauer's third main theorem on blocks.

By Suzuki's character table [23, p. 143] we know that k(B) = q + 2, k0(B) = q

and 1(B) = q-l.

Now Nx = NG(P) = PW, where IF is a cyclic group of order \W\ = q - 1

operating fixed point freely on P/P' of order |P/P'| = q [23, p. 137]. Thus Nx

has q - 1 linear characters and one irreducible character x of degree #(1) =

q - 1, and so k0(b) = q and 1(b) = q - 1 . By [23, p. 142], Nx has two further
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irreducible characters with degrees r¡¡(l) = ^(q-l), I = 1, 2, where r = \f2~q .

Hence k(b) = q + 2 < \P\ = q2.

(c) This assertion is proved in the same way as (c) of Proposition 6.2. We

note here only that, by Lemma 4.2 and [23], the field automorphism xr of

G, where z-|2m + 1, fixes 2r semisimple classes of G, 2r - 1 many 2-regular

classes of NG(P) and all three 2-singular classes of G. Hence / fixes both the

characters of G with positive height.

7. Extensions of PSL3(4)

In this section we determine the block invariants of the 3-blocks B of the

almost simple groups E involving (7 = PSL3(4). Its outer automorphism group

Out(G) ~ Z2 x 63, and its Schur multiplier is M ~ Z4 x Z4 x Z3 (see Atlas [8,

p. 23]). As E is almost simple, E/E' is a 2-group, and the center Z(E) of E

is a cyclic 2-group.

Let P be a Sylow 3-subgroup of G. Then P is a Sylow 3-subgroup of

the groups E considered here. Let B be a 3-block of E with defect group

ô(B) =E P, and let b be the Brauer correspondent of B in N = NE(P). The

number of blocks E with defect zero is denoted by z(E). The numbers of

faithful and unfaithful blocks B of E with ö(B) =E P are denoted by f(E)

and u(E), respectively.

By the Atlas [8, p. 23] the Schur multiplier M of G contains elements 4X

and 42 of order 4 and 2 of order 2. From [8, p. 24] we know that there are

involutions 2¡, 1 < z < 3, in E - 2G or E - G such that 2X induces the

graph-field and 22 the field automorphism on G. Furthermore, in Out(C7) 23

is the product of 2, and 22.
By the Atlas [8, p. 24] we know that 2X = 2B centralizes P and inverts

4X and 42. Neither 22 = 2C nor 23 = 2D centralizes P. Furthermore, 22

inverts 4X and centralizes 42, whereas 23 centralizes 41 and inverts 42. All

involutions 2; centralize the involutions 2, 4, , 42.

The various extensions of G and of the covering groups 2G, 4¡G are de-

noted as in the Atlas [8]. There are two nonisomorphic extensions of 2(7 by

the Klein four group, which are denoted by 2(7(2 x 2) and 2(7(2 x 2)2. With

this notation we state the following.

Proposition 7.1. (a) All irreducible characters of E and of N = NE(P) have

height zero.

(b) The numbers of blocks of E and N, and their numbers of irreducible

characters are given in Table 5 .

In particular, k(E) = k(N) + z(E) and 1(E) = l(N) + z(E).

Proof. By the Atlas [8, p. 24] and by Lemma 3.7 and its proof, it suffices to

study the fifteen different cases given in Table 5.

From the character table of (7 = PSL3(4) follows that G has four blocks of

defect zero consisting of the four characters with degrees 2x45 and 2x63. The
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Table 5
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z(E) f(E k(B) k(b) 1(B) Kb) u(E) k(B) k(b) 1(B) 1(b)

G2,

0-2,

G2,

G(2 x 2)

2G

2G2.

2G2,

2G2.

2G(2 x 2) 12

2G(2 x 2)2

13

remaining six characters of G with degrees 1, 20, 3 x 35 and 64 belong to the

principal 3-block B0 . Since G has nine 3-regular conjugacy classes, l(Bf = 5 .

Now N = NG(P) is a semidirect product of P by a quaternion group Q of

order 8 acting fixed point freely on P. Thus N has only the principal 3-block

b0, and its irreducible characters are of degrees 4x1,2 and 8. In particular,

k(b0) = 6 = k(B0) and l(b0) = 5 = l(B0), which proves assertion (b) in the
case E = G.

Using the Atlas [8] it is now easy to determine the numbers z(E) of blocks

of E with defect zero and the degrees of their characters in the remaining cases

different from 2(7(2 x 2) and 2(7(2 x 2)2.

Suppose E = G2X. Then N = PQ x 2, by the Atlas [8, p. 23]. Therefore,
N has two blocks b isomorphic to the group algebra F[PQ]. Thus 1(b) = 5

and k(b) = 6. Let B be the Brauer correspondent of b in E. From the Atlas

[8, p. 24] we know that k(B) = 6 = k(b). Thus 1(B) = 5 = 1(b) by Lemma
2.1.

In the cases E = (72;, z = 2, 3, N has only one block b because no element

of E - G centralizes P. It follows from Clifford theory that k(b) = 9 and

1(b) = 7 in each case. Using the above arguments we obtain k(B) = 9 - k(b)

and 1(B) = 7 = 1(b).

Suppose that E = (7(2 x 2). By the Atlas [8, p. 24] we may assume that

E = (G22)2, .   Let  N = NE(P).   Then  TV = LPß22] x (2,)  by [8, p.   23].
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Therefore, N has two 3-blocks b which are both isomorphic to the group

algebra F[PQ22]. Hence k(b) = 9 and 1(b) = 7 by the previous case. Let B

be the Brauer correspondent of b in E. Then by [8, footnote of p. xxii and

p. 24], each of the two blocks B of E with <5(B) =E P has nine irreducible

characters with degrees 2x1, 2x20, 2x35, 70 and 2 x 64. Thus 1(B) =

1(b) = 7 by Lemma 2.1. Furthermore, z(E) = 4, and the character degrees in

the blocks of defect zero are 2 x 90 and 2 x 126.

In the remaining cases it suffices to determine the block invariants of the

faithful blocks B with S(B)=EP.
By the Atlas [8] and the previous cases all assertions hold for the three cases

E e {2(7, 4,(7, 42(7} because the faithful blocks of E and N have the same

block invariants as the unfaithful principal blocks of E and N, respectively.

Moreover, all irreducible characters of all occurring central extensions' H of G

have height zero, and so have the irreducible characters of NH(P). If E is an
3'

arbitrary almost simple group, then H = O (E) is such a covering group of

G. As E/H is a 2-group, every irreducible character of E and also of NE(P)

has height zero. Thus (a) holds.

Let E = 2(72, and A^ = NE(P). Then the center Z(E) = (z) has or-

der 2. We may assume that an involution 2, of E -2G induces the graph

field automorphism on G. Hence by [8, p. 24], CE(P) = P x (z, 2f and

N = [P((z) x Qg)](21). Furthermore, 2X and 2xz are conjugate in A^. Thus

2\ = 2,z for some y e Qs, and N has three blocks of full defect, one of

which, b say, is faithful on Z (E). Let B be its Brauer correspondent in E.

By [8, p. 24], E has 24 conjugacy classes, four of which are 3-singular. As

z(E) = 6 and E/Z(E) s G ■ 2, , it follows that k(B) = 6 and 1(B) = 4.
Let   1, g, a, c, d be representatives of the conjugacy classes of Qs, where

2 2 2 2
a = c = d = g and g = 1 . By [8, p. 23], 2, centralizes ßg modulo

Z(E). We may assume that a'=az,c[=cz,d'=d and 2, = 2, z .

Therefore N/P = [(z) x gg](21) has 14 conjugacy classes with representa-

tives I, z, g, gz, a, 2xa, c, 2xc, d, d2x, dz, dz2x,2x and 2xgz. By the

case (72, the two unfaithful blocks of N each have five modular irreducible

characters. Thus 1(b) = 4 = 1(B). Hence k(b) = k(B) = 6 by Lemma 2.1.

Let E e {2G22, 2(723}. Since no element of E - 2G centralizes P by

the Atlas [8, p. 24], we have in each case that Oy(N) = (z) = Z(N), where

N = NE(P). Therefore, A^ has one faithful block b and the principal block

b0. Now N/P = [(z) x Qs](2¡). By [8, p. 24] each 2¡ fuses two 4-classes of Q%

and fixes the third. Hence N/P has 14 irreducible characters. As l(b0) = 7 by

the case (72;, it follows that 1(b) = 7. Let B be the Brauer correspondent of

b in E. By [8, p. 24] in each case E has 27 conjugacy classes, four of which

are 3-singular. As z(E) = 9, 1(B) = 1 and k(B) = 9 by the case G2¡. Thus

k(b) = k(B) = 9 by Lemma 2.1.
Let E e {4,G23, 42G22}. Then 22 and 23 centralize 4, and 42, respec-

tively. But they do not centralize P. Let N = NE(P). Then O3'(A0 = (z) =



MODULAR REPRESENTATION THEORY 463

Z(N) is cyclic of order 4, and N/P = [(z) x ß8](2,). By [8, p. 24] each 2¡

fuses two four classes of ß8 and fixes the third. Hence N/P has 28 irreducible

characters. N has two unfaithful blocks b0 and bx, and two faithful blocks

b2 and b3 which are complex conjugate. By the previous case l(bf = 1 for

j = 0, 1. Thus l(bj) = 1 for j = 2, 3. Let 2?. be the Brauer correspondent

of bj in E. By [8, p. 24] the groups 4,G23 and 42G22 have 45 and 49 con-

jugacy classes and 9 and 13 blocks of defect zero, respectively. Furthermore,

both groups each have eight 3-singular classes. Since B2 and 2?3 are complex

conjugate, it follows from the cases 2G2( that l(Bj) = 7 and k(B,) = 9 for

j = 2,3. Hence k(bj) = k(Bj) = 9 by Lemma 2.1.

Let E/2G= (2,)x(22) and Z(E) = (z) of order 2, where 2, and 22 induce

the graph field automorphism and the field automorphism on G, respectively.

Furthermore, assume that 2, and 22 are involutions in E. Since the different

actions (22)2' = 22 and (22) ' = 22z give rise to two different automorphisms

of 2G22, there are two nonisomorphic almost simple groups E0 = 2G(2 x 2)

and Ex = 2G(2 x 2)2, respectively. Furthermore, if X is an almost simple

group with center Z(X) of order 2, G = PSL3(4) and X/G = (2f x (22), then

by Lemma 3.7 X is isoclinic to either E0 or Ex .

Let E e {E0,EX}. As 2, centralizes P and 22 does not, CE(P) =

P x (z, 2,). Furthermore, by the case 2G2, , we know that 2, and 2,z are

conjugate in N = NE(P). Therefore N has three blocks, one of which, b say,

is faithful on Z(E). Let B be its Brauer correspondent in E.

Now N/P = [((z) x <28)(22>]{21). Using the Cayley system, Dr. G. Schneider

(Essen University) has computed the character tables of N for both cases E =

E0 and E = Ex. If E = E0, then N/P has k(N/P) = 19 classes, and if
E = EX, then k(N/P) = 22. From the case G(2 x 2) follows that 1(b) = 5

and 1(b) = 8 for E0 and Ex, respectively. In any case N has 27 conjugacy

classes, because its number of 3-singular classes is 8 and 5 for EQ and Ex,

respectively. Therefore k(b) = 9 for each group E e {EQ, Ex} .

Let E = Ej for / = 0 or 1. We freely use the notation of [8, p. 24] for

characters and classes of subgroups of E.

From [8, p. 24] 2G2, has a unique faithful irreducible character of degree

20, which therefore has two extensions to E. Also 2G22 has four faithful

characters of degree 10, which hence are fused in pairs by 2, . Now 2, must

fix the unique irreducible character of 2G22 of degree 56.

Let xt denote the two extensions of Xk € Irr(2G) to 2G22 for k =

15, 16, 17, 18. Let 2C be a preimage of the class 2C of G22 in 2G22.

We may assume 22 e 2C. Since X^(22) ^ 0 for k = 15, 16, 18, each such
+ 2

Xk   is fixed by 2, if and only if 22' = 22, i.e. E = EQ.

Let SB, 8C be the preimages of the conjugacy classes SB, SC, respectively,

which are shown in the table for the faithful characters of 2G2, . Now 22 fuses

the classes 4B and 4C of G, by [8, p. 24], so 22 fixes SA and fuses 85 and
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But 22 fixes the extensions of X\SC.

i.e. if and only if j

Suppose that E = En, i.e

to 2G2, if and only if 2,

0. So SB2' = SCz if j = 0 and 8¿?22 = SC
■2,

2 ' - 2z2  - z2 Then SB    = SCz yields that 2

fixes Xu >

if j = 1.

fuses

the two extensions of X„ to 2G2, Then 2X  fuses It follows that 2,

fixes seven of the thirteen faithful characters of 2G2,

XX1   ■       "    XV/HUY.J     lUClt      ^-[

. So the faithful block 5
has the following character degrees: 2 x 20, 2 x 56, 4 x 64, 1 x 140. Then

k(B) = 9 . There are eight faithful blocks of defect zero, with character degrees

4 x 36, 4 x 90. Since z(G(2 x 2)) = 4, we have z(E) = 12.

Suppose that E = Ex, i.e. 2f 22z. Then SB 2 = SC implies that 2, fixes

the two extensions of Xxl to 2G2, Then 2,  fixes So 2,  fixes three of

the thirteen faithful characters of 2G2,
-1   "ÄVO   X\i ■   ""   "X

-2. xf-j and the degree 56 character. Thus

B has the following character degrees: 2 x 20, 2 x 56, 1 x 128, 4 x 70. So

k(B) = 9. There are two faithful blocks of defect zero, with character degrees

1 x 72, 1 x 180. Thus z(E) = 4 + 2 = 6. As k(B) = 9 = k(b), Lemma
2.1 asserts that 1(B) = 1(b). Hence 1(B) = 5 and 1(B) = 8 for E
E = EX, respectively. This completes the proof.

EQ and

8. Extensions of sporadic simple groups

In this section we determine the block invariants of the p-blocks B of the

almost simple groups E involving a simple sporadic group G with a T.I. Sylow

p-subgroup P.

Let A^ = NE(P), and let b be the Brauer correspondent of B in N. The

number of p-blocks of defect zero of E is denoted by z(E). Let a(E) be the

number of p-blocks B of E with defect groups 0(B) =E P. Again the faithful

and the principal block B0 of E have the same block invariants.

Using this and the notation of the Atlas [8] we have

Proposition 8.1. 77zc numbers of blocks of E and N, and their numbers of

irreducible characters are given in Table 6.

In particular, k(E) = k(N) + z(E) and 1(E) = l(N) + z(E).

Table 6

MCL MCL

G2

3G

z(E) a(E) k(B)

19

26

19

k(b)

19

26

19

k0(B)

13

20

13

*<>(*)

13

20

13

1(B) 1(b)

12

12

11 13 49 49 42 42 40 40
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Proof. By the Atlas [8, p. vii] the Schur multipliers M and outer automorphism

groups A of the simple Mathieu group Mx, and Janko group J4 are trivial.

Furthermore, the simple McLaughlin group MCL has M ~ Z3 and A ~ Z2,

and /I does not centralize M by [8, p. 101].

Let G be one of these simple sporadic groups and let P be a Sylow p-

subgroup of G, where p is a prime listed. Then the character table of E

is given in the Atlas [8, pp. 18, 100 and 188]. For E = G the character

tables of N = NE(P) can be found in Ostermann [18]. In each of the cases

E e {Mxx, MCL, Jf) all assertions follow from the character tables. So we

may assume that G = MCL and E e {3G, G2} .

Let E = 3 G. Then E and N each have three blocks B¡ and b¡, i =

0, 1,2, respectively, such that b¡ is the Brauer correspondent of B¡ in N. By

[8, p. 101] each B¡ has the same block invariants as the principal 5-block b0

of N. Since 05>(E) = 05,(N) = Z3 is the kernel of BQ and of bQ, we know

from the case E/05fE) ~ G that BQ and b0 have the same block invariants.

Thus all assertions hold in this case.

Suppose that E = G2. By the Atlas [8, p. 100] no element of E outside

G centralizes P. Thus Os,(N) = 1, and only the principal block B0 of E

has highest defect. Let b0 be its Brauer correspondent in N = NE(P). By [8,

p. 100] we have k(Bf = 26, k0(Bf = 20 and l(Bf = 18. Now b0 = FN.
Using the character table [8, p. 100] and the CAYLEY computer program, G.

Schneider (Essen University) computed the character table of N. It follows

that N has 26 irreducible ordinary characters with degrees 1, 2, 20, 24 and 40

and multiplicities 8, 10, 4, 2 and 2, respectively. In particular, kfBf) = 20 =

k0(bf). Since P is a T.I. Sylow 5-subgroup of E, Lemma 2.1 implies that

l(Bf) = 18 = l(bf). This completes the proof.

9. The main theorem

After all these preparations we can prove the main result of this article in

this section.

Lemma 9.1. All assertions of Proposition 3.1 hold.

Proof. Let X be a finite group with a T.I. Sylow p-subgroup P which is a

counterexample to Proposition 3.1. Let H = Cf (X). Then by Lemma 3.2 and

Proposition 3.8 there is a nonabelian simple group G with a noncylic Sylow p-

subgroup Px and Schur multiplier M such that (a) P, ~ P, (b) G ~ H/Z(H),

(c) Z(H) = O >(X) = Z(X) is a cyclic epimorphic image of M, and (d) X/H

is isomorphic to a subgroup of the outer automorphism group Out(G) of G.

The possible simple groups G are listed in Proposition 1.3.

Now Proposition 5.1 asserts that G is neither isomorphic to PSL2(c7) nor to

PSU3(t72). The simple Suzuki groups 2Bfq) and Ree groups 2G2(q) are ex-

cluded by Propositions 6.3 and 6.2, respectively. From Proposition 7.1 follows
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that G çé PSL3(4) when p = 3. If p = 5 then G gk 2F4(2)' by Proposition

6.1. Finally we have shown in Proposition 8.1 that G is none of the sporadic

simple groups Mx, , McL or J4 .

Therefore, X is not a counterexample by Proposition 1.3.

We now state the main theorem of this article.

Theorem 9.2. Let G be a finite group with T.I. Sylow p-subgroup P. Let B be

a p-block of G with defect group SiB) =G P and Brauer correspondent b in

N = NGiP). Then

(a) kiB) = kib);
(b) k0iB) = k0ib);

(c) HB) = Hb);
(d) kiG) = kiN) + ziG), where ziG) denotes the number of p-blocks of

defect zero in G.

Proof. Assertions (a) and (b) hold by Lemma 9.1 and Proposition 3.1. Now (a)

and (c) are equivalent by Lemma 2.1 because P is a T.I. Sylow p-subgroup.

Theorem 8.14 of [11, p. 135] asserts that every p-block B with defect group

0(B) ±G P has defect zero. By Brauer's first main theorem on blocks the

groups G and N have the same number of blocks with defect group P. Thus

(a) implies k(G) = k(N) + z(G) because every block b of N has defect group

0(b) = P by Corollary 6.9 of [11, p. 127]. This completes the proof.

Theorem 9.2(d) confirms Alperin's conjecture stated in the introduction. Also

Brauer's height zero conjecture holds for groups with T.I. Sylow p-subgroups.

Corollary 9.3. Let G be a finite group with a T.I. Sylow p-subgroup P. Let B

be a p-block of G with defect group 6(B) =G P.
Then every irreducible character x of B has height ht(^) = 0 if and only if

P is abelian.

Proof. Let b be the Brauer correspondent of B in N = NG(P). Then k(B) =

k(b) and k0(B) = k0(b) by Theorem 9.2. Thus k(B) = k0(B) if and only if
k(b) = k0(b). Therefore Theorem 9 of Reynolds [20] completes the proof.

Brauer conjectured that the following result holds in any group G without

any condition on the Sylow p-subgroups P of G. So far, it has not been proved

for groups with a normal Sylow p-subgroup.

Corollary 9.4. Let G be a finite group with a T.I. Sylow p-subgroup P such that

P is not normal in G. Let B be a p-block of G with defect group 5(B) =G P.

Then k(B) < \P\ and k0(B) < \P/P'\.

Proof. By Lemma 3.2 we may assume that P is neither cyclic nor a generalized

quaternion 2-group. By Lemma 3.3 and the proofs of Lemma 3.4 and Lemma

3.7 we may assume that there exists a group X with a T.I. Sylow p-subgroup

Px = P having a p-block Bx  with Ô(BX) =x P,   such that k(B) = k(Bx),

kQ(B) = k0(Bx) and Cf (X)/Z(X) is one of the simple groups listed in Propo-
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sition 1.3. Furthermore, either X is almost simple or X is as described in

the conclusion of Lemma 3.7. In the former case, both assertions hold by

Propositions 5.1, 6.1, 6.2, 6.3, 7.1 and 8.1. If X is not almost simple, as in

Lemma 3.7, let bx , a p-block of Nx = Nx(Pf), be the Brauer correspondent

of Bx. Then k(Bx) = k(bx) and k0(Bx) = k0(bx) by Propositions 3.1 and 3.8.
Also, Lemma 3.7 shows that Nx/Px is supersolvable. The assertions follow

from Theorem 7.4 of Knörr [15].

Remark 9.5. Two finite-dimensional F-algebras B and b are called stably

equivalent if their module categories Mod B and Mod b are equivalent mod-

ulo their projective objects and projective homomorphisms. It has long been

conjectured that two such algebras have the same number 1(B) = 1(b) of non-

isomorphic nonprojective simple modules.

Block ideals B of group algebras with a T.I. Sylow p-subgroup P of a finite

group G as defect group and their Brauer correspondents b in N = NG(P)

form important examples of stably equivalent indecomposable algebras, (see

[11, p. 118]). Theorem 9.2(c) supplies some further support to that conjecture

which in general is still open.

Remark 9.6. All assertions of Theorem 9.2 and its Corollaries 9.3 and 9.4 can be

considered as generalizations of the theory of blocks with cyclic defect groups.

Also the results of [3] and [4] on minimal degrees of faithful irreducible char-

acters in groups with a nonnormal T.I. Sylow p-subgroup P are similar gener-

alizations. But the deepest result on blocks B with cyclic defect groups does

not hold in general for groups with a T.I. Sylow subgroup. Whereas in such a

p-block B all decomposition numbers are zero or one, the principal 5-block B0

of the sporadic McLaughlin group MCL has an irreducible character of degree

3520 in which the modular irreducible character of degree 21 occurs twice as a

constituent. Of course the Sylow 5-subgroup 6(Bf) = P of McL is a T.I. set.

We are grateful to Dr. Hiss (Aachen) for informing us about his work on the

5-decomposition numbers of A^L prior to publication.
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