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THE JACOBIAN MODULE OF A LIE ALGEBRA 

J. P. BRENNAN, M. V. PINTO AND W. V. VASCONCELOS 

ABSTRACT. There is a natural way to associate to the commuting variety C(A) 
of an algebra A a module over a polynomial ring. It serves as a vehicle to 
study the arithmetical properties of C(A), particularly Cohen-Macaulayness. 
The focus here is on Lie algebras and some of their representations. 

INTRODUCTION 

Let V be a variety defined over an algebraically closed field k, equipped 
with a structure of k-algebra. The commuting variety, '6'(W) , of a subvariety 
W c V, is the variety of commuting pairs of points of W. In the case that 
V and Ware linear varieties, the coordinates of the commutator [ xy ] of two 
generic elements of W provide an obvious set of equations for '6'(W). 

Our aim here is to analyze this set of equations with regard to three questions: 
(i) Whether it gives the ideal of definition of '6'(W); (ii) to describe the ring of 
regular functions on '6'(W); and (iii) to study depth properties of this variety, 
in particular whether it is Cohen-Macaulay. 

The answers will be shown to depend on an analysis of the fibers of the canon-
ical projection '6'(W) ---+ W. We introduce a module E over the affine ring of 
W -to be called the Jacobian module of '6'( W)-that plays an important role 
in capturing its reduced ideal of definition. It is an ancestor of the module of 
relative differentials of the morphism. 

In §§ I and 2, we define E, derive some of its elementary properties-e.g. 
it may have any projective dimension-and give a mechanism for translating 
facts about the dimension of the components of '6'(W) into ideal theoretic 
data on the matrix of presentation of E (Theorem 2.5). In the next section, as 
an application, we find the reduced equations for the commuting variety of the 
space of symmetric matrices along with other associated varieties, and prove 
they are Cohen-Macaulay (Theorem 3.1). 

With the emphasis shifting to commuting varieties of Lie algebras, we study 
in §4 semisimple Lie algebras. A description of the ring of regular functions 
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of their commuting varieties is given in Theorem 4.4, based on the so-called 
generic Cartan subalgebras. 

The last section contains the construction of the generic Cartan subalgebras 
for the classical Lie algebras (and partly for algebras of type G2 ), and as a 
consequence it is shown that E has projective dimension two (Theorem 5.1). 
It exploits the classification theory of such algebras but still leaves out most of 
the exceptional algebras. Large-scale computer experiments suggest that these 
commuting varieties are always Cohen-Macaulay. 

We would like to thank J. Herzog and S. Washburn for many helpful and 
stimulating discussions. 

1. THE JACOBIAN MODULE 

This section introduces the Jacobian module attached to a commuting variety. 
It is focused on linear varieties. Throughout k is an algebraically closed field, 
of characteristic zero. This is not strictly required since we could, often, get 
away with fields of characteristic different from two. It will make however for 
a uniform setting. For basic terminology and facts of commutative algebra, we 
shall use [15]. 

Let V be a linear variety with an algebra structure and let W be one of its 
linear subvarieties. Let {e l , e2 , ... , en} and {~, 1;, ... , !'n} be bases of W 
and V, and consider two independent generic elements of W: x = L: xiei and 
Y = L:Yiei. Denote by [xy] the commutator of x and y. When written out 
in terms of the basis of V the coefficients are forms of degree two that generate 
a defining ideal J(W) for the commuting variety of W, ce'v(W) = ce'(W) , in 
the affine space k 2n . It is clear that this ideal does not depend on the choices 
of bases. 

Denote by rp the Jacobian submatrix of J(W) with respect to the subset 
{Y1 ' Y2' ... , Yn}· rp is a matrix of linear forms of the ring 

R = k[xi ' x 2 ' ... , x n]. 
Definition 1.1. The Jacobian module of the commuting variety of W is the 
R-module E = cokernel( rp) • 

Whenever W = V, by abuse of terminology, we call E the Jacobian module 
of V . In this case there is a more direct description of the Jacobian module. Let 
{e 1 ' ••• , en} be a basis of V, and denote by R the ring of regular functions 
on V, R = k[x1 ' ••• , x n]. Put x = L:xiei . The exact sequence 

(adx)' 
V®R ---. V®R--+E--+O, 

adx(a) = [ax] defines the Jacobian module. 
To show the signifIcance of E we recall the definition of the symmetric 

algebra of a module. Let R be a Noetherian ring and E a finitely generated 
R-module. When E is given by the presentation 

m tp n R --+R --+E--+O, 
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its symmetric algebra S(E) is simply the quotient of the polynomial ring 
R[TI , ... , Tn] by the ideal J(E) generated by the I-forms in the Ti's-variables 

fj = alj TI + ... + anj Tn ' j = 1 , ... , m. 
The following identification is now obvious: 

Proposition 1.2. ~(W) = Spec(S(E))red. 

By way of illustration, let us consider 

Example 1.3. (a) Let L be the 3-dimensional Lie algebra {e, f, g} defined 
by 

[ef]=O, [eg]=e, [fg] = f· 
W = V is affine 3-space. The ideal J(W) is defined by the forms X I Y3 - X 3Y I 

and X 2Y3 - X 3Y2. The Jacobian module E has a presentation 
2 'I' 3 O--+R --+R --+E--+O, 

rp=(-;3 -~3). 
XI x2 

It is easy to see that S(E) is reduced, so that ~(W) = Spec(S(E)). It has 
two irreducible components. 

(b) Denote by DSn the space of all n x n square matrices with equal line 
sums-that is, essentially doubly stochastic matrices. If n = 3, a calculation 
with the Bayer and Stillman Macaulay program shows that the Jacobian module 
E of ~(DS3) has projective dimension two and S(E) is a Cohen-Macaulay 
integral domain. (We do not know what happens for arbitrary n.) 

(c) Let V be an n-dimensional vector space over k. There is a natural Lie 
algebra structure on L = V EB /\2 V that makes /\2 V the center of L. The 
Jacobian module of L is the direct sum of a free module of rank n(n - 1)/2, 
corresponding to its center, and the module that has n generators and for 
relations the forms xiYj -XjYi' 1 ~ i < j ~ n-that is, the ideal (XI' ... , x n). 
The projective dimension of Jacobian modules can thus attain any value. 

(d) Finally, let Hn be the Heisenberg algebra of dimension 2n + 1. The 
commuting variety ~(Hn) is defined by a single equation 

i=n 

LXiYn+i - Xn+iYi · 
i=1 

It is a factorial variety for n ~ 2. 

There are also examples showing S(E) with components of different dimen-
sions. 

Remark. The connection between the Jacobian module of ~(W) and its 
module of differentials is the following. Let B be the affine ring of ~(W), 
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B = C / I, C = R[y, ' ... , Yn]' The module of relative differentials .nB/R is 
given by the exact sequence 

2 d 1/1 --+ QC / R ® B --+ Q B/ R --+ O. 
Since J(W) c I, there exists a canonical surjection 

E ® B ---+ Q B/ R ' 

which is another way of expressing the fact that the set of equations in J(W) 
provides an approximation of I. 

2. THE FIBERS OF THE COMMUTING VARIETY 

We shall now begin to show the naturality of the Jacobian module of ~(W) 
by proving a result that translates information about its irreducible components 
into ideal theoretic data on the determinantal ideals of the matrix rp. For this 
end, we recall how the dimension of a symmetric algebra may be calculated. It 
appeals to a reformulation in [22] of a result of [11]. 

The following notion plays an important role in the analysis of the fibers of 
the canonical morphism Spec(S(E)) ---+ Spec(R) (cf. [11, 22]). Let R be a 
Noetherian domain and let rp: Rm ---+ Rn be a presentation of the R-module 
E. More generally, R could be a reduced ring and E an R-module with a 
rank, that is for each minimal prime P, Ep is a free Rp-module of constant 
rank. For each integer t 2:: 1 denote by II (rp) the ideal generated by the txt 
minors of rp. For a nonnegative integer k, the condition ~ is defined by the 
sliding requirements on the sizes of the II(rp) 's (cf. [9,22]): 

heightll(rp) 2:: rank(rp) - t + 1 + k, 1 :::; t :::; rank(rp). 
The condition ~-or rather, how deeply it is violated-reads the Krull di-

mension of See) . To be precise, set mo = rank( rp) , so that rank(E) = n - mo . 
Define the following measure on [1, rank( rp)]: 

{ mo - t + 1 - heightl/(rp) if ~ fails at t, 
d(t) = o otherwise. 

Put d (E) = sup I {d (t) I 1 :::; t :::; rank( rp)} ; one has the following dimensio!1 
formula (see [22]). 
Theorem 2.1. Let R be a reduced equidimensional catenarian ring and let E be 
a finitely generated R-module with a rank. Then the Krull dimension of See) 
is dimR + rankE + d(E). 

It follows that if the Krull dimension of See) has the expected value, 
dim R + rank E , then ~ is satisfied. The case that we are interested in is: 
Proposition 2.2. Let E be a finitely generated graded module over R = 
k[x" ... , x n ]. Then Spec(S(E)) is irreducible if and only if E satisfies g;-
and all the minimal prime ideals of See) have the same dimension. 
Proof. One of the minimal prime ideals of a symmetric algebra See) is the 
R-torsion submodule T of S(E). Since the Krull dimension of S(E)/T is 
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dimR+rankE (cf. [11,22]), it follows that if S(E) is equidimensional then by 
Theorem 2.1 the condition Yo is automatically satisfied. Thus both conditions 
in the assertion imply Yo ' and that E is free in codimension one. In particular, 
for any nonunit x of R rankR/(x)(EjxE) = rankR(E). 

Suppose Spec(S(E)) is irreducible; then for each nonzero element x of 
R, as x fI. T, dimS(E) ® Rj(x) = dimS(E) - 1. But SR(E) ® Rj(x) ~ 
SR/(X)(EjxE) , so that the algebra S(EjxE) will satisfy the condition of The-
orem 2.1 if Rj(x) is reduced. It is not difficult to see that we can pick a 
square-free element x contained in all the associated primes of the I t ( rp )'s . 
Then g;- will follow. 

Conversely, suppose g;- holds and M is a minimal prime of S(E) other than 
T. According to [11] M has the following description: If P = MnR, then M 
is the inverse image in S(E) of the RIP-torsion sub module of SR/p(EjPE). 
If however P f:. 0 , reducing E modulo a prime element x of P would, in the 
presence of g;- , yield an Rj(x)-module ElxE whose Rj(x)-rank is still rank 
E, so that the dimension of S(EjxE) , by Theorem 2.1, is one less than that 
of S(E) . The equidimensionality hypothesis on S(E) rules this out. 0 

There are some immediate consequences for commuting varieties. 

Corollary 2.3. If ~(W) is Cohen-Macaulay, and its Jacobian module satisfies 
g; then ~ (W) is irreducible. 

The condition that Spec(S(E)) be irreducible does not suffice to ensure it is 
also reduced. On the affirmative side, one has (see [1,9, 10,21, Theorem 3.4]): 

Theorem 2.4. Let R be a Cohen-Macaulay domain and let E be a finitely 
generated R-module of projective dimension one. Then S(E) is an integral 
domain if and only if E satisfies g;-. In this case S(E) is a local complete 
intersection (over R). 

We embed this discussion into the following basic result: 

Theorem 2.5. If the commuting variety ~(W) is irreducible, then 
(1) heightlt(rp);::: rank(rp) - t + 2, for 1 ::; t ::; rank(rp). 
(2) If E has projective dimension 1 then S(E) is a domain. 
(3) If E has projective dimension 2 then E is torsion-free. 

Proof. The first two parts having been proven above, we turn to the proof of 
(iii) . 

Let 
o ---> Rl ---> R m .!!!.. R n ---> E ---> 0 

be a projective resolution of E . If P is an associated prime ideal of E , it must 
have height at most two (cf. [15, Theorem 19.1]). We claim that P = (0). 

Denoting still by R the localization at P, we assume that the resolution 
above is minimal. Since E satisfies the condition g;-, height II (rp) ;::: (m - l) -
1 + 2; thus if E is not free, height P = 2 and m - I = 1. This means that 
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there is an exact sequence 

o -+ / -+ R r -+ E -+ 0 , 

where / is a rank one, nonfree module and E is free in codimension one; 
/ may be identified to an ideal of height two. We claim that the symmetric 
algebra S(E) has at least 2 minimal primes. If / = (ai' ... , as)' denote by 
!; the image of ai in R r = RTI E9 ... E9 RTr • The symmetric algebra of E 
is R[Tp ... , Tr1/(/i' ... , Is). Since height(l) = 2, for any ai there exists 
an element bi E / such that {ai' bJ is a regular sequence. If we denote by 
gi the image of bi , we must have aigi = bi!; since they are both the image 
of the element aibi . This implies that !; must be a multiple of ai . Thus 
(/1' ... , Is) = (/ f), for some I-form f. 0 

It follows that if E has projective dimension two, then all forms linear in 
the sets of x or y variables in the ideal of definition of ~(W) have been 
accounted for-in particular all quadrics and cubics. 

3. SYMMETRIC MATRICES 

Let k be an algebraically closed field, of characteristic 0, and let Sn(k) be 
the affine space of all symmetric matrices of order n with entries in k. The 
commuting variety of Sn(k) is defined by the ideal generated by the entries of 

Z = [X, Y] = X . Y - Y . X, 

where X and Yare generic symmetric n x n matrices in n(n + 1) indetermi-
nates. Z = [zij] is an alternating matrix of 2-forms. 

The main application of this section is 

Theorem 3.1. The entries of Z form a regular sequence generating a prime ideal. 

The proof will follow from Theorem 2.5, once certain details of the structure 
of the Jacobian module are made clear. 

Lemma 3.2. The Jacobian module of ~(Sn(k)) has projective dimension one. 
Proof. It suffices to show that the presentation matrix qJ of E has rank 
n(n - 1)/2. If we specialize the matrix X to a generic diagonal matrix, it 
is easy to see that the forms Zij specialize to 

* ( .) Zij = Xii - Xjj Yij' 

so that the corresponding matrix has full rank. 0 

The next result is a key geometric ingredient. It was pointed out to us, 
independently, by Robert Guralnick and David Rohrlich. 

Proposition 3.3. ~(Sn(k)) is an irreducible variety. 
Proof. It suffices to show that if W is a generic symmetric matrix commuting 
with X then the pair (X, W) is a generic point of ~(Sn(k)). This is a formal 
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consequence of the proof of [6, Theorem 1, pp. 341-342] once Lemmas 3.4 and 
3.5 have been established. 

We recall that a square matrix is nonderogatory provided its minimal poly-
nomial is its characteristic polynomial. 

Lemma 3.4. Let A be a square matrix. Then the following are equivalent. 
( 1) A is nonderogatory. 
(2) If B is a matrix and [A, B] = 0, then there is a polynomial p(t) with 

p(A)=B. 

Proof. This is [6, Proposition 4]. 

Lemma 3.5. Let B be an element of Sn(k). There exists a nonderogatory ele-
ment of Sn(k) that commutes with B. 
Proof. By [5, Corollary 2, p. 13] and the Jordan decomposition theorem, there 
exists an orthogonal matrix 0 such that 

s 
dBO = EB(A/i + N), 

i=1 

with Ni nilpotent, symmetric, and A/i + Ni irreducible. (Mt is the transpose 
of the matrix M.) The matrix 

o (~(,U/i + Ni)) d, 

with distinct Pi'S, is nonderogatory and commutes with B. D 

Here is an application, in the manner of [7, 8 and 18]. For each integer 
o S r S n define 

M~ = {(A, B) E Sn(k) x Sn(k)1 rank[A, B] S r}. 

Corollary 3.6. M~r = M~r+1 is an irreducible Gorenstein variety of codimension 
(n - 2r - 1) (n - 2r) 12. Its reduced equations are the Pfaffians of Z of order 
2r + 2. 
Proof. The entries of Z = [ziji 1 s i < j S n], are homogeneous elements 
forming a regular sequence in A = k[xpq ' ypql 1 s p S q S n], so that the 
inclusion R = k[Zi) c A is a faithfully flat homomorphism; see [15, p. 176]. 
Furthermore, by Theorem 3.1 the irrelevant maximal ideal of R, p = (Zi) , 
extends to a prime ideal of A, P = pA . 

Denote by I the ideal of R generated by the Pfaffians of order 2s of the 
matrix Z. According to [14, Theorem 17], I is a prime, Gorenstein ideal of 
R, with the codimension given by the formula above. In addition, the singular 
locus of this variety is given by the ideal of Pfaffians of order 2(s - 1); in 
particular it is normal. 

We now show that the homogeneous ideal J = I A is prime. We claim that 
the zero divisors of AI J all lie in P. Because the associated primes of AjJ 
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are graded, we only have to check that for homogeneous polynomials f E A\P. 
By the graded version of [15, Theorem 22.5] 

0---> A LA ---> A/(f) ---> 0, 
is an exact sequence of flat R-modules, since f is regular mod p. Therefore 
multiplication by f is also regular on any module M EB R A. 

To verify that J is prime it suffices therefore to check primality in the lo-
calization Jp . We show that J Ap is analytically irreducible. By going over to 
the completion B of Ap at the maximal ideal, the question reduces to veri-
fying a local version of [14, Theorem 17(i)]. Precisely, if B = K[[zij]] (K is 
the appropriate coefficient field), as IB is defined over K[zij] , the normality 
hypothesis sets up the conditions for an application of Zariski's theorem on 
analytical normality (cf. [17, Theorem 37.5]). 0 

Remarks. 1. In contrast, in the case of arbitrary (or skew-symmetric) matrices 
one does not know the reduced equations for these varieties. The explanation 
seems to lie, as we shall discuss in the next section, in the more complicated 
structure of the Jacobian modules for these varieties. 

2. Note that the proof above does not establish the normality of M~; 
!j?(Sn(k)) = M~ itself is factorial for n ~ 4. To establish that !j?(Sn(k)) 
is factorial for all n, the condition 9; must hold for its Jacobian module E. 
This would be a consequence of the following geometric statement. Let f be 
a nonzero form contained in the highest fitting ideal of the presentation matrix 
of E. Then the assertion of Lemma 3.5 remains valid for the hypersurface 
(f = 0) of Sn(k). 

3. Craig Huneke has pointed out to us that the use above of Zariski's theorem 
is not really needed, since homogeneous prime ideals are always analytically 
irreducible at the irrelevant ideal. The extra structure suggests that all these 
varieties are, at least, normal. 

4. GENERIC CARTAN SUBALGEBRAS 

From now on L is a semisimple Lie algebra over an algebraically closed field 
k, of characteristic zero. Denote by R the polynomial ring k[x l , ••• , x n ], 

n = dimL, and let 2' = L ® R. The Jacobian module of L is given by the 
presentation 

where QJ(a) = [xa] . 
In the Lie algebra 2' ® K ,K = field of quotients of R, x is a regular 

element, so that its centralizer H is a Cartan subalgebra. Since the dimension 
of Hover K is equal to the rank 1 of Land !j? = H n 2' ,!j? is a finitely 
generated R-module of rank I. 

Definition 4.1. !j? is the generic Cartan subalgebra of L. 
To make use of this complex we must know considerably more about the 

mapping QJ and the algebra !j? Regarding the determinantal ideals of QJ, 
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the following result of Richardson [19] is crucial to our understanding of the 
Jacobian module of Lie algebras. (The case of n x n matrices was proved earlier 
by Motzkin and Taussky [16] and Gerstenhaber [6].) 

Theorem 4.2. The commuting variety of a semisimple Lie algebra is irreducible. 
We can apply Proposition 2.2 to obtain 

Proposition 4.3. If L is a semisimple Lie algebra, then its Jacobian module 
satisfies the condition g;. 

There are two direct consequences of the semisimplicity of L that we shall 
make use of. Denote by B( , ) the Killing form of L. If a basis {e l , ••• , en} 
of L is chosen so that B(ej , ej ) = Ojj' it follows that the structure constants 
Cijk of L satisfy the equation Cjjk = Ckjj . A simple calculation shows that 
in such basis the matrix qJ is skew-symmetric. This permits identifying the 
R-module ~ with the R-dual E* of E. 

The other observation is that since x is a semisimple element, ker( qJ) = 
ker( (/) , so that using the snake lemma on the composition of qJ with itself, we 
get the exact sequence 

2 2 o - ker( qJ) - ker( qJ ) - ker( qJ) - coker( qJ) - coker( qJ ) - coker( qJ) - 0 
and therefore 

2 o - ~ - E - coker( qJ ) - E - O. 
This yields a canonical map from the symmetric algebra of ~ into S(E). 

A set of generators for the affine ring of the commuting variety of L can 
be obtained in the following manner. We are grateful to J. Herzog for several 
conversations on this matter. 

Let Z I ' ... , z/ be a basis for the Cartan subalgebra of L ® K ; pick the Zj'S 
lying in Y . Let TI , ••• , If be a set of I new indeterminates. The symmetric 
algebra S(E) = k[X, Y]/ II ([XY]) maps onto the subring D of R[TI ' ... , If] 
generated by coordinates of the element Z = L::~ T j Z j by specializing Y 1-+ Z . 

More precisely, write each Zj = L~:~ bjjej and consider the homomorphism 
k=/ 

But 

cI>: S(Y) - R[TI' ... , If], 

j=n 

ej 1-+ 'LbkjTk . 
k=1 

'L J;jbkj = B([ejx] , x) = O. 
j=1 

Since <I> vanishes on the image of ad(x) , it induces the desired map from S(E) 
to D. 



'92 J. P. BRENNAN, M. V. PINTO AND W. V. VASCONCELOS 

Theorem 4.4. ~ (L) = Spec( D) . 
Proof. D has obviously transcendence degree dim L + lover k. By Richard-
son's theorem and Proposition 1.2, the nilradical of S(E) must be the kernel 
of the homomorphism. 0 

D has a more natural description when the Z i generate all of ~. <l> re-
stricted to ~ induces mappings 

S(~) '--t D '--t R[T, ' ... , ~]. 

The composite is the mapping of symmetric algebras derived from the ho-
momorphism of free modules A: RI - RI associated to the Cartan matrix 
[B(zi' z)]. Note that none of these algebra homomorphisms is finite. 

5. CLASSICAL ALGEBRAS 

The main result of this section is 

Theorem 5.1. Let L be a semisimple Lie algebra of type AI' BI , CI , DI or G2 · 

Its generic Cartan subalgebra ~ is a free R-module.' 

The proof appeals to the classification theorem (see [2, 12]). In each instance 
we pick an appropriate representation. There must exist a single proof dealing 
with all algebras, rather than the case-by-case approach we are going to take. 
One advantage of this approach, however, is to obtain additional information 
on how ~ embeds into .5? . 

1. Algebras of type AI. We may assume that L = gl(l + 1). In this and 
the other cases, the method we use is the following. First, to exhibit a free 
submodule Co of C of rank I; then to show that the ideal generated by the 
minors of maximal order of the embedding If!: ~ -.5? has codimension at 
least two; in other words, the embedding splits in codimension one. That this 
suffices follows from the acyclicity lemma (see [3]). 

Here ~ is the subring S = R[x] of .5? , viewed as a matrix algebra over 
R. 
Lemma 5.2. S is regular in codimension two. 
Proof. S is a complete intersection, S = R[T]j(f(T)) , where f(T) is the 
Cayley-Hamilton polynomial of the generic matrix x: 

1+' I 1+' f(T) = T + G, T + ... + (-1) GI+, , GI+, = det(x). 

Let us estimate the co dimension of the Jacobian ideal of the polynomial 
f(T) : 

J = (f(T) , /(T), 8f(T)j8xij , 1 ~ i, j ~ 1+1). 
To prove the assertion we must show that the codimension of this ideal in S 

is at least three. If we add T to J, by Krull's theorem, it is enough to show 

I The authors have extended this result to all semisimple Lie algebras. 
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that the codimension of (J, T)jT is at least four. But this is the ideal of R 
generated by the partial derivatives of the determinant of the generic matrix x, 
in other words, the determinantal ideal of the submaximal minors of x-which 
has height four by the classical formula (see [4]). 0 

Finally we show that C?f' = S. More in fact will be proved: The embedding 
of S into 2' splits in codimension less than three. Indeed, we can view 2' 
as an S-module (with multiplication of the left, say) and show that for each 
prime ideal M of S , of codimension at most two, the localization S M splits 
off 2'M. 

If we put P = R n M, observe that since S is integral over R, the depth 
of 2'M over SM equals the depth of 2'p over Rp , that is 2'M is a free SM-
module. In the exact sequence 

o ---+ S M ---+ 2'M ---+ H M ---+ 0, 

we show that HM is a free SM-module, in other words, Tor~(HM' k(M)) = 0, 
where k(M) is the field of quotients of SjM. Tenl'oring the sequence with 
k(M) yields 

s Tori (H, k(M)) "# 0 {::} I E M2'M. 

In other words, there exists S E S\M such that S E M 2'. This however, 
upon multiplication on the right by 2', yields s2' c M 2' and therefore 
2'M = M2'M' contradicting Nakayama's lemma. 0 

2. Algebras of type BI • L is the algebra of skew-symmetric matrices of order 
21 + I. ~ will be the Lie subalgebra generated by odd powers of x; it is a 
free R-module of rank I. 

To prove the assertion it is enough to verify that the ideal [ generated by 
the I x I-minors of the embedding ~ c 2', after some specialization, has 
codimension at least two, that is, it is not contained in any principal ideal. The 
specialization we choose places O's everywhere in the generic element x, except 
near the main diagonal: 

0 I I 0 0 0 
-II 0 12 0 0 

* x = 

0 0 0 0 121 
0 0 0 -12/ 0 

The minimal polynomial of the matrix x* has degree 21, even if we further 
specialize one of the Ii to zero. This means that the specialization [* of the 
ideal [ is not divisible by any of the Ii. We may now invert all these variables. 

To show that [* is the unit ideal, let us look at the generator given by the 
minor corresponding to the basis vectors eij ,j even, of M 2/ (R*). Thus x* 
has nonzero component (= I I) at e 12 and zeros in the rest of the top row. 
In general, (X*)2i-1 has a nonzero component at el 2i and zeros beyond that 
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position. This follows simply by looking at the connected path that must be used 
to find that entry in (X*)2i-1 . Furthermore, that component is a monomial in 
the ti's. This suffices to prove the assertion. 

3. Algebras of type DI • The representation chosen for L will be as the skew-
symmetric matrices of order 21. ~ is the Lie subalgebra of odd powers of 
x up to order 21 - 3, together with the canonical matrix x' made up of the 
Pfaffians of x of order 21 - 2; it is a free R-module of rank I. 

The argument of the preceding case goes through up to assuming that [* is 
not divisible by any of the ti's. The rest uses the fact that (x*)' has a nonzero, 
monomial, entry at e l 2/' 

4. Algebras of type CI • The representation for the symplectic Lie algebra will 
be that as square sl x 2/-matrices (cf. [2, p. 200]) 

(~ -s~ts)' 
where s is the I x I-matrix with 1 's along the antidiagonal, and A, B, Care 
matrices of order I such that B = sBt sand C = sct S • 

This time we define ~ to be the submodule generated by x, x 3 , ••• , 

x 2/- 1. It sits as a R-direct summand in the subalgebra S = R[x] of M 2/ (R). 
Because Y itself is a direct summand of M 2/ (R) ,it suffices to show that the 
embedding of S into M 2/ (R) splits in codimension at most one. To this end, 
we argue as in the case of AI' 

Take the Cayley-Hamilton's polynomial of the generic element x of L: 
21 2/-1 21 f(T)=T +O'IT + .. ·+(-1) 0'2/' 0'2/=det(x). 

As for Al let us estimate the co dimension of the Jacobian ideal of f(T). 

Lemma 5.3. S is regular in codimension one. 
Proof. It suffices to show that the ideal generated by the partial derivatives of 
~ = det(x) , with respect the set of variables xi} 's, corresponding to the chosen 
representation, has codimension at least 3. 

Effect the following transformation on x: Change the signs of its last I 
columns and multiply the resulting matrix on the left by 

J = (~ ~) 
to obtain the symmetric matrix 

( sC 
sA 

Its determinant differs from ~ at most in the sign. We thus must show that 
for a given generic, symmetric n x n matrix X, the ideal J generated by the 
derivatives of its determinant has co dimension at least 3. This is obvious if X 
is a 2 x 2 matrix. Assume n > 2 and that P is a minimal prime of J of 
codimension 2; one of the diagonal variables, say XII' does not lie in P. 
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The induction step is set up as follows. Passing over R localized at the 
powers XII' there exists a matrix M such that 

MtXM = (XOI ~I)' 
with X' a symmetric matrix whose entries are 

I /. . 2 
xij = xij - XliXlj XII l, ] 2: 

and M has determinant 1 (see [13, p. 596] for full details). 0 

5. Algebras of type G 2' For these algebras we have been unable to exhibit '?f 
except over fields of characteristic p > 0 for which 2 is a quadratic residue. 
One nonetheless has 
Proposition 5.4. The generic Cartan subalgebra of an algebra of type G2 is a 
free R-module. 
Proof. Let X be a generic element of L. We claim that the module Rx splits 
off '?f. Since '?f is a reflexive module of rank two, this will imply that it is 
R-free. 

Consider the embeddings of Rx into both :? and '?f, and the resulting 
commutative diagram provided by the snake lemma: 

o 0 
i i 

'PE(:?) B 
i i 

o - Rx - :? - D - 0 
II i i 

o - Rx - '?f -A-O 
D is a module of projective dimension one that is free in codimension at 

least two; it is thus reflexive (see [20, Proposition 3]). But B is a torsion-free 
module so that A is a rank one reflexive module and therefore free since R is 
factorial. 0 

For the algebras above therefore the Jacobian module is torsion-free by The-
orem 2.5. It is comparable to the assertion that in a semisimple Lie algebra, 
the set of elements a whose centralizer has dimension 1= rank(L) is not con-
tained in the complement of a hypersurface. Another consequence is that the 
ideal J(L) contains all the quadrics and cubics of its radical. 

Calculations using Macaulay showed that the commuting varieties of the clas-
sical Lie algebras, for I ~ 2, are Cohen-Macaulay domains. On the other hand, 
since the projective dimension of the Jacobian module is two (outside of trivial 
cases), '?f(L) cannot be factorial (cf. [9, Proposition 7.2]). 
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