Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

$N$-body Schrödinger operators with finitely many bound states
HTML articles powered by AMS MathViewer

by W. D. Evans and Roger T. Lewis PDF
Trans. Amer. Math. Soc. 322 (1990), 593-626 Request permission

Abstract:

In this paper we consider a class of second-order elliptic operators which includes atomic-type $N$-body operators for $N > 2$. Our concern is the problem of predicting the existence of only a finite number of bound states corresponding to eigenvalues below the essential spectrum. We obtain a criterion which is natural for the problem and easy to apply as is demonstrated with various examples. While the criterion applies to general second-order elliptic operators, sharp results are obtained when the Hamiltonian of an atom with an infinitely heavy nucleus of charge $Z$ and $N$ electrons of charge $1$ and mass $\tfrac {1} {2}$ is considered.
References
  • Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
  • M. A. Antonets, G. M. Zhislin and J. A. Shereshevskii, On the discrete spectrum of the Hamiltonian of an $N$-particle quantum system, Theoret. and Math. Phys. 16 (1972), 800-808.
  • Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
  • H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643, DOI 10.1007/978-3-540-77522-5
  • P. Deift and B. Simon, A time dependent approach to the completeness of multiparticle quantum systems, Comm. Math. Phys. 90 (1983), 389-411.
  • D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
  • V. N. Efimov, Energy levels arising from resonant two-body forces in a three body system, Phys. Lett. B33 (1970), 563-654. —, Weakly-bound states of three resonantly-interacting particles, Soviet. J. Nuclear Phys. 12 (1971), 589-595.
  • Volker Enss, A note on Hunziker’s theorem, Comm. Math. Phys. 52 (1977), no. 3, 233–238. MR 446195, DOI 10.1007/BF01609484
  • W. D. Evans and Roger T. Lewis, Eigenvalues below the essential spectra of singular elliptic operators, Trans. Amer. Math. Soc. 297 (1986), no. 1, 197–222. MR 849475, DOI 10.1090/S0002-9947-1986-0849475-1
  • I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff. MR 0190800
  • Walter Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451–462. MR 211711
  • R. Ismagilov, Conditions for the semiboundedness and discreteness of the spectrum for one-dimensional differential equations, Soviet Math. Dokl. 2 (1961), 1137-1140.
  • Tosio Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc. 70 (1951), 195–211. MR 41010, DOI 10.1090/S0002-9947-1951-0041010-X
  • —, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.
  • Roger T. Lewis, A Friedrichs inequality and an application, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 185–191. MR 751190, DOI 10.1017/S0308210500031966
  • John D. Morgan III, Schrödinger operators whose potentials have separated singularities, J. Operator Theory 1 (1979), no. 1, 109–115. MR 526292
  • J. D. Morgan and B. Simon, On the asymptotics of Born-Oppenheimer curves for large nuclear separation, Internat. J. Quantum Chem. 17 (1980), 1143-1166.
  • Yu. N. Ovchinnikov and I. M. Sigal, Number of bound states of three-body systems and Efimov’s effect, Ann. Physics 123 (1979), no. 2, 274–295. MR 556080, DOI 10.1016/0003-4916(79)90339-7
  • Arne Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand. 8 (1960), 143–153. MR 133586, DOI 10.7146/math.scand.a-10602
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
  • —, Methods of modern mathematical physics, Vol. IV, Analysis of Operators, Academic Press, New York, 1978.
  • Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR 869254
  • Martin Schechter, Operator methods in quantum mechanics, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 597895
  • I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), no. 2, 309–324. MR 676004, DOI 10.1007/BF01254462
  • I. M. Sigal, Geometric parametrices and the many-body Birman-Schwinger principle, Duke Math. J. 50 (1983), no. 2, 517–537. MR 705038, DOI 10.1215/S0012-7094-83-05023-8
  • I. M. Sigal, How many electrons can a nucleus bind?, Ann. Physics 157 (1984), no. 2, 307–320. MR 768234, DOI 10.1016/0003-4916(84)90062-9
  • Barry Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274. MR 496073, DOI 10.1007/BF01614550
  • Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
  • Jun Uchiyama, Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system, Publ. Res. Inst. Math. Sci. 5 (1969), 51–63. MR 0253686, DOI 10.2977/prims/1195194752
  • S. A. Vugal′ter and G. M. Žislin, Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations), Teoret. Mat. Fiz. 32 (1977), no. 1, 70–87 (Russian, with English summary). MR 449304
  • Clasine van Winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964), no. 8, 60 pp. (1964). MR 0201168
  • D. R. Yafaev, Funktsional. Anal, i Prilozhen. 6 (1972), 103-104; English transl. in Functional Anal. Appl. 6 (1972), 349-350. —, On the theory of the discrete spectrum of the three-particle Schrödinger operator, Math. USSR-Sb. 23 (1974), 535-559. G. M. Zhislin, Discussion of the spectrum of Schrödinger operator for systems of many particles, Trudy Mosov. Mat. Obshch. 9 (1960), 81-128. —, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 590. —, On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions, Teoret. Mat. Fiz. 7 (1971), 332-341; English transl. in Theor. Math. Phys. 7 (1971), 571-578. —, Finiteness of the discrete spectrum in the quantum $N$-particle problem, Theor. Math. Phys. 21 (1974), 971-980.
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 322 (1990), 593-626
  • MSC: Primary 35P15; Secondary 35J10, 47F05, 81U10
  • DOI: https://doi.org/10.1090/S0002-9947-1990-0974515-X
  • MathSciNet review: 974515