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LIE SUPERGROUP ACTIONS ON SUPERMANIFOLDS 

CHARLES P, BOYER AND 0, A, SANCHEZ VALENZUELA 

ABSTRACT, Lie supergroups arc here understood as group objects in the cate-
gory of supermanifolds (as in [2, 5, and 15]). Actions of Lie supergroups in su-
permanifolds are defined by means of diagrams of supermanifold morphisms. 
Examples of such actions are given. Among them emerge the linear actions 
discussed in [2, 5, and 12] and the natural actions on the Grassmannian super-
manifolds studied in [6-9 and 13]. The nature of the isotropy subsupergroup 
associated to an action is fully elucidated; it is exhibited as an embedded sub-
supergroup in the spirit of the theory of smooth manifolds and Lie groups and 
with no need for the Lie-Hopf algebraic approach of Kostant in [3]. The notion 
of orbit is also discussed. Explicit calculations of isotropy subsupergroups are 
included. Also, an alternative proof of the fact that the structural sheaf of a Lie 
supergroup is isomorphic to the sheaf of sections of a trivial exterior algebra 
bundle is given. based on the triviality of its supertangent bundle. 

INTRODUCTION 

The first treatise on Lie supergroups and superhomogeneous spaces was given 
by Kostant in his pioneering work [3]. His approach is based on exploiting 
the natural Hopf-superalgebra structure of the universal enveloping algebra of 
a given Lie superalgebra. While very efficient in proving most of the hard 
theorems of Lie theory in the supermanifold setting, Kostant's methods are 
somewhat cumbersome in dealing with specific examples. In fact, the examples 
that have appeared in the literature [6-9 and 13] have been treated along the 
lines of Berezin, Leites, and Manin [2, 4-9] rather than those of Kostant. We 
found, however, that there is still no good differential geometric treatment of 
Lie supergroup actions that parallels Kostant's Lie-Hopf theoretic approach. 

In this paper we approach Lie supergroups and their actions on superman-
ifolds in the spirit of differential geometry; we have been guided by Kostant's 
results but have followed the methods of Berezin, Leites, and Manin (cf. [2, 4, 
5]; see also [15]). Our original intent was to develop a theory of connections in 
principal bundles in the supermanifold setting and eventually give a geometric 
description of the moduli of superinstantons that might complement the coho-
mological picture already developed by Manin (see [6-9]). We were thus led 
to the problem of describing first the isotropy subsupergroup of an action, say 
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IfI : (G, AG) X (M, AM) ----+ (M, AM). Our solution goes as follows: for each 
p EM, we make sense of the partial map, IfIp: (G, Ad ----+ (M, AM) , and of the 
constant map, ~ : (G, AG) ----+ (M, AM) , whose image is the (0, O)-dimensional 
point (p, R) of (M, AM). Then the isotropysubsupergroupat p, (Gp ' AG)' 
is obtained by making sense of the locus in (G, AG) where IfIp = ~. It turns 
out to be an embedded subsupermanifold of (G, AG ) and it inherits naturally a 
Lie supergroup structure. The precise statement is technically somewhat delicate 
(see Theorem 4.6), but we show by concrete examples that it is a straightfor-
ward task to compute the isotropy subsupergroup of a given action; in fact, our 
approach has been designed so as to do this just as in the smooth theory (see 
§5). Then, following the ideas in [3], it is immediate to define a supermanifold 
sheaf, AG/Gp ' on the space of cosets G/Gp ' thus giving rise to a superhomoge-
neous space. There is also a morphism (G/Gp ' AG/G) ----+ (M, AM) naturally 
induced by IfIp . The orbit through p ,( Op , Aop) , is the image of IfIp in the 
category of supermanifolds (cf. 4.9); it is a subsupermanifold of (M, AM) and 
its supermanifold structure is the one that makes (G/Gp ' AG/G ) ----+ (Op' Ao) 

p p 

into a superdiffeomorphism. 
As most of the arguments involve the propagation of germs of superfunctions 

defined over a neighborhood of the identity to the whole group, we provide as a 
technical preliminary the notions ofleft and right translations (resp. invariance) 
in the form that suits our needs. In particular, we prove quite generally that the 
supertangent bundle (in the sense of [11]) of a Lie supergroup is trivial. The 
trivialization is accomplished-as expected-by the existence of a basis of left 
invariant superderivations (i.e., in sheaf-theoretical terms, by proving that the 
Lie superalgebra of a Lie supergroup is isomorphic to a constant sheaf). This 
is then used to pick up function and exterior factors globally [3]; hence, the 
structural sheaf of a Lie supergroup is exhibited from the outset in the trivial 
form of Batchelor [1]. The referee has brought to our attention the fact that this 
result has been known to the experts since 1974 and that it was first proved by 
J. Bernstein in the USSR. The result also appears in Kostant's paper [3] of 1975. 
Our approach has thus provided an alternative proof of it (see Proposition 2.9 
and Corollary 2.1 ° below). 
Acknowledgments. We are deeply grateful to Professor Thomas Schmitt for 
pointing out to us the equivalence between Kostant's definition of superman i-
fold and that of Berezin and Leites (see [2-5]). In our original manuscript we 
had mistakenly stated that Kostant's definition was more general. Also, one of 
us (O.A.S.V.) would like to thank Professor R. Berlanga for some illuminating 
discussions and his most valuable criticism. Finally, we would like to thank the 
referee, whose comments and suggestions contributed to making this work into 
a more concise exposition. 

1. ABSTRACT CHARACTERIZATION OF A LIE SUPERGROUP 

We shall understand supermanifolds and morphisms between them as in [2] 
and [4-7] (acquaintance with references [2-7] will be assumed). A supermani-
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foldmorphism from (M, AM) into (N, AN) is a pair, rp = (rfJ, (l), consist-
ing of a continuous map, rfJ : M ----+ N , and a sheaf homomorphism over N, 
rp# : AN ----+ rfJ*A M , which is local on each stalk. We shall make extensive 
use of the fact that a supermanifold morphism is completely determined by 
the superalgebra morphism on global sections, rp#: AN(N) ----+ AM(rfJ- 1(N)) , 
that the sheaf homomorphism gives rise to (see [2-4]). If (M, AM) is a 
COO supermanifold, J: (M, C'::) ----+ (M, AM) will denote the morphism de-
termined by the canonical projection AM(M) ----+ C'::(M) , ! 1---+ J(f) = J. 
Each point p E M defines a morphism, Jp : ({ *}, R) ----+ (M, AM)' by letting 
J;! = J(p); every superalgebra morphism AM(M) ----+ R is of this form. The 
object ({ * }) , R) is the supermanifold consisting of a single point and the con-
stant sheaf R, the reals, over it. It is a terminal object, for there is only one 
constant morphism, C(M, AIf): (M, AM) ----+ ({ *}), R) , from any supermanifold 
into it, namely the one determined by the R-superalgebra map R ----+ AM(M), 
C .,1=,11 . (M,AIf) AIf(M) 

1.1. Definition. A Lie supergroup is a finite-dimensional supermanifold 
(G, AG ) equipped with the following additional structure (see [2, 5, 15]): 

(i) A supermanifold morphism 

j1: (G, AG) x (G, AG ) ----+ (G, AG ) 

satisfying the associativity property 

j.1o(n 1 xj.1o(n2 xn3))=j.1o(j.1o(n1 xn2)xn3)· 

[Both sides are morphisms (G, AG ) x (G, AG ) x (G, AG ) ----+ (G, AG ); 

n i denotes the projection of (G, AG ) X (G, AG ) X (G, AG ) onto the 
ithfactor (i = 1,2,3).] 

(ii) A distinguished point in the underlying manifold, e E G, and hence a 
distinguished supermanifold morphism 

that satisfies the identity property 

j.1 ° (id x~) = id = j.1 ° (~ x id). 

(iii) An involutive superdiffeomorphism 

a: (G, AG ) ----+ (G, AG ) 

that satisfies the inverse property 

j.1 ° (id xa) = ~ = j.1 ° (a x id). 

Among the first few and easiest examples of Lie groups one finds in the COO 
category are the abelian groups defined by addition of vectors in a vector space. 
Their natural generalization is the following: 
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1.2. Example. Rmln = (Rm, Rmln ) or, following [2], IBn(Rm) with additive 
structure. 

Recall that the sheaf Rmln of the superaffine space Rmln is (cf. [2-5]) 

where {8 I ' ... , 8 n} is a set of generators for an n-dimensional vector space 
over R. Thus, for any nonempty open subset U c Rm , Rmln (U) = C;., (U) Q9 
t\[8 1 , ... , 8n ]· 

Let {e l , ... , em} be a basis of Rm and let {Xl, ... , xl11} be the dual basis. 
Then, {x I , ••• , xl11 ; 81 ' ••• , 81l } is a global coordinate system for the super-
manifold Rmln . We shall keep this coordinate system fixed. 

Associated to the vector spaces RI11 and !\[ 8 I ' ... , 8 n] there is a natural 
morphism 

J.1: (RI11, Rl11ln) x (RI11 , Rl11ln) --t (Rm, RI11IIl) 

defined over each nonempty open subset U c RI11 as the one that corresponds 
to the superalgebra morphism J.1#: R l11ln (C) --t Rl11ln x Rmln(U x U) given in 
terms of the coordinates above by 

# i # i # i 
J.1 X =Plx +P2x , i=l, ... ,m, 

# # # 
J.1 81/=P I 81/+P2 81/' v=l, ... ,n, 

Pi: (RI11 , Rl11ln) x (Rm, Rmln ) --t (Rm, Rl11ln) being the projection morphism 
onto the ith factor (i = 1 , 2) . 

The origin e = (0, ... , 0) E RI1l is obviously a distinguished point for which 
the morphism g;, has the identity property. Furthermore, there is an involu-
.. h' (Rm Rmll1) (Rm Rmlll) h' h' tIve Isomorp Ism (J: , --t, avmg t e mverse property, 

namely the one defined over each nonempty open subset U c Rm via the su-
peralgebra morphism (J#: Rmll1 (U) --t Rl1lln (U) , whose effect on the fixed set of 
coordinates is 

# i I 
(JX=-X, i=l, ... ,m, 

(J# 81) = - 81) , v=l, ... ,n. 

Particular case: m = O. The sheaf RO ln becomes the constant sheaf, 
!\[81 ' ••• , 8n ], over {*} and there is only one choice for g;" J.1, and (J , namely 
those given by the expressions above in the odd coordinates 81/' v = 1 , ... , n . 
What results is then the (0, n )-dimensional abelian Lie supergroup. 

1.3. Example. IB I (R*) = (R*, R II \.), with a multiplicative supergroup 
structure; here, R* = R - {O}:::: GL(l). 

In this case, the morphism J.1 is the supermultiplication morphism of Rill = 
(R, Rill) restricted to the open subsupermanifold (R*, RIIII R.). In terms of 
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the standard coordinate system {X, 8} of R'II it is defined as (see [11]) 
# # # # # 

11 x = P, xP2x + P, 8P28 , 
# # # # # 

11 8=p,xP28+p,P2 X . 

The distinguished point in R* is the unit 1 E R* , and the superdiffeomorphism 
a: (R*, R'I'I R*) --> (R*, R'I'I R*) is given by 

# # 2 
a x = l/x and a 8 = -(1/x) 8. 

1.4. Example. Qj(m+n)2(GL(m + n)) = (GL(Vo EEl ~), GLs(m + n I m + n)), 
the general linear supergroup of transformations of the (m, n )-dimen-
sional supervector space Vo EEl ~. (We shall use the notation GLs(m I n), or 
GLs( Vo I V,), to distinguish this supergroup from the more common 
GL(m I n); see Example 1.5 below and compare with [2].) 

Recall that each (m, n)-dimensional supervector space V = VoEEl V, gives rise 
to the (m, n )-dimensional affine supermanifold S V = (Vo' (C= I v ) Q9 1\ (V,*)) 

o 
(cf. [2-4]). The supermani!oldification of the supervector space V = Vo EEl V, 
is, on the other hand, the (m + n, m + n)-dimensional affine supermanifold 
~ := S(V EEl nV), where n is the change of parity functor of Berezin and 
Leites (see [2, 4, 6]). This notion has proved to be useful while working 
on supervector bundles and superlinear actions (see [11, 12] for details). In 
particular, Hom(V, V\ is the affine supermanifold of dimension ((m + n)2, 

(m + n)2) whose underlying smooth manifold is Hom(V, V). Following [12], 
we can introduce even and odd linear coordinates ({A b) , nrbJ , neBJ , DBJ} 
and {nAb} , rbJ , e BJ , nDBJ} , respectively) on it, arrange them in matrix form, 

( AbJ + nAb) rbJ + nrbJ ) 
(1) eBJ + neBJ DBJ + nDBJ , 

and define the map 11: Hom(V, V)s x Hom(V, V)s --> Hom(V, V)s so as to 
obtain a functorial correspondence between matrix multiplication and compo-
sition of left supermodule morphisms (cf. [14]; see also [12]); thus, 

( /(Ab) + nAb}) 11#(rbJ + nrbJ) ) 
/(eB) + neB}) 11#(DBJ + nDBJ) 

_ (P~(Ah/ + nAb}) p~(rbJ + nrhJ ) ) 
- p~(eBJ + neB}) p~(DBJ + nDBJ) 

( 
p~(.4b) + nAb}) p~(rbJ + nrbJ) ) 

x p~(eB} + neB}) p~(DBJ + nDBJ) 

where Pi: Hom( V, V)s x Hom( V, V), --> Hom( V, V)s denotes the projection 
morphism onto the ith factor (i = 1 , 2) . 

Now, matrix (I) is invertible if and only if (cf. [2-4 J) 

(2) 
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This condition defines the open subset GL( V) = GL( Vo EB VI) of Hom( V, V). 
Therefore, the same condition picks up an open subsupermanifold of 
Hom(V, V)s; such supermanifold is, by definition, GLs(Vo I ~); its struc-
tural sheaf, GLs(m + n I m + n), is R(m+n)2 1(m+n)2 IGL(m+n)' By restricting the 
morphism J1 above to such a supermanifold and defining the inverse morphism 
a in terms of the given coordinates so as to obtain the inverse matrix of (1), 
GLs( Vo I VI) becomes a Lie supergroup. Note that Example 1.3 above corre-
sponds to the special case GLs( 1 I 0) . 

1.5. Example. IB2mn(GL(m) X GL(n)) = (GL(Va) x GL(V1), GL(m In)), 
also denoted by GL(mln), or GL(Vo I VI)' V = Va EB VI being an (m, n)-
dimensional supervector space (cf. [2]). 

For the supergroup of Example 1.4 above, the conditions 
nrbJ = 0, neB} = 0, nAb) = 0, nDBJ = 0, det(Ab)) det(DBJ ) 1: 0 

define an embedded (m 2 + n 2 , 2mn)-dimensional subsupermanifold of 
GLs (Vo I ~). The restriction of the same morphisms J1 and a and the same 
identity element make this subsupermanifold into a Lie supergroup. 

1.6. Definition. Let (G, A G) be a Lie supergroup and let J1G' gG' aG be its 
multiplication, identity, and inversion morphisms, respectively. Let (H, All) 
be an immersed (resp. embedded) subsupermanifold of (G, A G ) and let i: 
(H, All) --+ (G, A G) be the corresponding immersion (resp. embedding). Then 
(H, All) is a Lie subsupergroup of (G, A G ) if (H, A H) is a Lie supergroup 
itself and i is a homomorphism (cf. [5] and [15]); that is, if J1 11' gll' all are 
the multiplication, identity, and inversion morphisms of (H, All)' then 

(3) J1G 0 (ionl xion2)=ioJ111' 

regarded as morphisms from (H,A lI ) x (H,A lI ) into (G,AG)· As usual, n i 

denotes the projection of the product (H, A H ) x (H, A H ) into the ith factor. 

1.7. Remark. Just as in the theory of Lie groups, from the single condition 
above one obtains 

( 4) [ffG ° i = i ° gH and aGo i = i ° all' 
The proof of these properties follows easily from the following two lemmas, 
which we shall have occasion to use again in this work. 

1.8. Lemma. Let (M, AM) be a supermanifold and let p E M be an arbitrary 
point. Let ~: (M, AM) --+ (M, AM) be the composition I5p ° C(M ,All)' Then. 
for any morphism 0:: (M, AM) --+ (M, AM)' 

0: ° g= g,() and goo: = g . p n p p p 

Proof. Note, on the one hand, that for any f E AM(M) and for any q E M 
we have ~# f = j(q) 1 A(M)' On the other hand, (0:# f)~(p) = j(a(p)) (cf. [4]). 
Hence, 
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Similarly, since 0:#: AM(M) ----> AM(M) is a morphism of R-superalgebras, we 
have 

# # # #- - # 
(~oo:) f=o: (~f)=o: (f(p)lA(M))=f(p)lA(M)=~f. 

This verifies that the effect of (0: 0 ~) # (resp. (~o 0:) # ) on the superalgebra 
AM(M) of global sections is the same as that of g;,~P) (resp. ~#). Therefore, 
the morphisms are the same. 0 

1. 9. Lemma. Let (G, AG) be a Lie supergroup and let f.1. be its composition 
morphism. Then f.1. is an epimorphism. More generally, the following cancella-
tion law holds true: for any morphisms 0:, p, y: (G, AG) ----> (G, AG), 

f.1. 0 (0: X P) = f.1. 0 (y x P) =:;. 0: = Y and f.1. 0 (0: X P) = f.1. 0 (0: X y) =:;. p = y. 
Proof. Let (J and ~ be the inversion and identity morphisms of the super-
group. Assume that f.1. 0 (0: X P) = f.1. 0 (y x p) , and consider the composite 

(G, AG) -!:.. (G, AG) x (G, AG)!!'" (G, AG) 

where A = f.1. 0 (0: X P) x (J 0 P . By hypothesis, A = f.1. 0 (,,/ x p) x (J 0 P . If we denote 
by 7r i the projection morphism of the product of three copies of (G, A G ) onto 
the ith factor, we have 

f.1. 0 (f.1. 0 (0: X P) X (J 0 P) = f.1. 0 (f.1. 0 (7r 1 X 7rJ x 7r3) 0 (0: x P X (J 0 P) 
= f.1. 0 (7r 1 X f.1. 0 (7r2 x 7r 3 )) 0 (0: x P X (J 0 P) 
= f.1. 0 (7r I X f.1. 0 (id x (J)) 0 (0: X P X P) 
= f.1. 0 (7r 1 x~) 0 (0: X P X P) = 7r] 0 (0: X P X P) = 0:. 

But the same string of equalities, with 0: replaced by y, shows that 

f.1. 0 (f.1. 0 (y x P) x (J 0 P) = "/. 
Therefore, f.1. 0 (0: X P) = f.1. 0 (,,/ x P) =:;. a = "/. The other cancellation law is 
proved similarly. 0 

1.10. Remark. Another point is worth observing from Definition 1.6. The 
definition, as it stands, allows the irrational flow on the torus (H ::= Rand 
G = S] x S]) to be the underlying manifold of a Lie subsupergroup. This degree 
of generality, on the other hand, keeps the morphism i: (H, AH ) ----> (G, AG ) 

from being a monomorphism (i.e., a left cancelable morphism). It follows, 
however, in a straightfoward manner that i will be a monomorphism if and 
only if (H, A f{) is an embedded subsupermanifold of (G, AG ) , which is true 
if and only if H is a closed Lie subgroup of G and i#: Ac; ----> I.AH is an 
epimorphism; I being the embedding of H into G. 

As pointed out to us by R. Berlanga, this raises the question of classifying the 
different subsupergroup structures i: (H, Af{) ----> (G, A(;) that a given closed 
subgroup H of G can support. We shall deal with the classification problem 
elsewhere. Observe, however, that there can be several different such structures. 
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In fact, taking (G, AG ) = (Rm , R m1n ) and H = {e}::::= {*} from Example 1.2 
above, there are n different additive subsupergroup structures supported at H; 
they are classified by their odd dimension. 

2. LEFT AND RIGHT INV ARIANCE ON LIE SUPERGROUPS 

2.1. Let (G, AG ) be a Lie supergroup. For each point g E G, we define left 
and right translations by g as the supermanifold morphisms 
(1) Lg :=,U 0 (S"g x id) and Rg:=,U 0 (id x,wg) , 

respectively. Here &fg : (G, AG ) -+ (G, AG ) denotes the aorphism J gO C(G, A(i) , 

whose corresponding superalgebra morphism ,wg#: A G( U) -+ Ac( ig- I (U)) is 

(2) S"# f = { j(g) 1 A(;!~_dU)) if g E U, 
g 0 if g tJ. U. 

2.2. Proposition. The morphisms Lg and Rg are superdijfeomorphisms whose 
inverses are respectively given by 

-I d-I (Lg) = Lg-, an (Rg) = Rg-, . 

Proof. We shall prove here only that (Rg)-I = Rg-, ; that is, 

(3) ,U 0 (id X,wg-I) O,U 0 (id x&fg) = id and ,U 0 (id x,wg) O,U 0 (id XS"g-l) = id 
as morphisms from (G, A G ) into itself. We start by making use of the definition 
of the product; thus, 

,U 0 (id X&fg-I) O,U 0 (id XGg) =,U 0 (ido[,U 0 (id XGg)] x ,wg-I 0 [,U(id x,wg))) 

= ,U 0 ([,U 0 (id xS"g)] x S"g-I o,U 0 (id x,wg)). 

It then follows from Lemma 1.8 that 
(4 ) ,w-I O,U 0 (id x &f ) = S" -I • g g g 
Therefore, 

,U 0 (id XS"g-l) O,U 0 (id x&fg) = ,U 0 ([,U 0 (id x,wg)] x ,wg-I) 

= ,U 0 (,U 0 (7r 1 x 7r2) x 7r 3) 0 (id xS"g x S"g-I) 

= ,U 0 (7r I X ,U 0 (7r 2 X 7r 3)) 0 (id x S"g x ,wg -I) 

= ,U 0 (id x,u 0 (,wg X ,wg-I)) ' 
where we have used the definition of the product and the associativity property 
of ,U. Since a(g) = g-I , it follows from Lemma 1.8 again that 
(5) 
Hence 

,w -I =ao&f. g g 

-I 

,Uo(idx,w-,)o,Uo(idxS")=,Uo(idx,Uo(S" xS"g )) g g g 
= ,U 0 (id x,u 0 (id xa) o,wg) 

=,U 0 (id x~ o,wg) 

=,Uo(idx~)=id, 
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where use has been made of the inverse property for (J and of Lemma 1.8 to 
conclude that g;, 0 iffg = g;,. In a similar manner one proves that R g -I is a right 
inverse, too. Thus, (Rg)-l = Rg-I. D 

2.3. Proposition. Let (G, Ac) be a Lie supergroup and let Lg and Rg be the 
left and right translations by g E G, as in 2.1 (1). Then for any other h E G, 

Lg 0 Lh = Lgh and Rg 0 Rh = R hg . 
Proof. This is a straightforward consequence of the definitions and Lemma 1.8. 
In fact, 

Rg 0 Rh = f1 0 (id xiffg) 0 f1 0 (id x~) = f1 0 (f1 0 (id x~) x iffg 0 f1 0 (id x~)) 

= f1 0 (f1 0 (id x~) x iffg) = f1 0 (id Xf1 0 (~ x iffg)) = f1 0 (id x~(h.g)) 

= f1 0 (id X~g) = Rhg . 

The corresponding property for left translations is similarly verified. D 

2.4. In what follows we shall be concerned with left invariant supervector fields 
on (G, Ac)' We shall show that their characterization is exactly the same as 
in the smooth theory. Let Der Ac be the sheaf (over G) of superderivations 
of the structural sheaf Ac' Let Der AG( G) be its corresponding superspace 
of global sections. Recall that Der Ac( G) is the real subsupervector space of 
EndAc(G) , 

where 

(Der Ac( G))I' = {X E EndAc(G) I ('t:/ f, g E Ac(G); f homogeneous) 

X(fg) = X(f)g + (_1)1/11' fX(g)}. 

The supervector space Der AG(G) inherits from EndAc(G) a Lie superalgebra 
structure, the Lie superbracket of which is given on homogeneous elements X 
and Y by 

(6) [X, Y]=XoY-(-l)lxIIYl yoX . 

2.5. Definition. A superderivation, X E Der AG( G), is left invariant if for 
each g E G, Lg.X = X (compare with [2-5]), where 

(7) 
# # L .X = (L -I) 0 X 0 (L ) . g g g 

2.6. Remark. The map g f--+ Lg• defines a representation of the Lie group 
G on Der Ac( G) acting via automorphisms of the Lie superalgebra structure. 
In particular, the subsuperspace consisting of left invariant superderivations is 
itself a Lie superalgebra. It will be denoted by fl (= flo EEl fll) . 
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2.7. Proposition. There exists a supervector space isomorphism 

9 = 90 EB 9, -t (ST)e(G, AG) = {(ST))G, AG)}o EB {(ST)e(G, AG)}I ' 

where, {(ST)e(G, AG)}I' is the space of germs at e ofhomogeneoussuperderiva-
tions of degree f1 of the superalgebra AG( U), with U 3 e . 
Proof. The isomorphism is given by assigning, to each left invariant superderi-
vation, its germ at the identity. Let us verify first that this prescription yields a 
surjection. Let ~ E (ST)e(G, AG) be arbitrary and consider, for each g E G, 
the following morphism induced on the stalk of AG over g: 

(L )# ¢ (L -I)~ 
(AG)g ~g (AG)e -t (AG)e ~ (AG)g' 

~ # # 
Then define the section g f-+ ~ g = (L g -I ) e 0 ~ 0 (L g) g of the sheaf space, 
L Der AG, associated to the presheaf Der AG (cf. [16]). Since Der AG is in 
fact a sheaf, we have 

(8) 
~ ~ 

and therefore g f-+ ~g defines a global section, ~ E Der AG(G). We shall now 
show that this section is left invariant. In fact, for each h E G, 

~ #~ # # ~ # 
(Lh'~)g = {(Lh-,) 0 ~ 0 (Lh) } g = (Lh-, )h-Ig 0 ~h-Ig 0 (Lh)g 

# # # # = (Lh-')h-'g 0 (L(h-'g)-')C o~ 0 (Lh-'g)h-'g 0 (Lh)g 
# # = (L(h-'g)-')C 0 ~ 0 (Lh 0 Lh-'g)g 

# # ~ = (Lg-')e o~ 0 (Lg)g = ~g' 
where use has been made of the contravariance of #, and the multiplicativity 
property of left translations given in Proposition 2.3. 

Finally, to prove that the morphism X f-+ Xe is injective, note that if Xc = 
Ye , then X and Y coincide in some open neighborhood of the identity. By 
left invariance, they coincide everywhere (this means that we cover G by open 
subsets which are left translates of an open neighborhood of e, over each of 
which the restrictions of X and Y coincide; since Der AG is a sheaf, X = 
Y). 0 

2.8. Remark. It has been proved in [3 and 4] that for any (m, n)-dimensional 
supermanifold (M, AM)' the sheaf Der AM is a locally free sheaf of Aw-
modules over M, with m even generators and n odd. Hence, for any point p E 
M , the supervector space of superderivations at p is an (m, n )-dimensional 
supervector space. In particular, (ST)c (G, A(J, and hence 9 is a finite-
dimensional supervector space whose dimension is precisely that of the super-
group. 

More important, via the isomorphism given in Proposition 2.7, one can 
define a global frame on the supermanifold (G, Ac;) consisting entirely of 
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left invariant supervector fields, namely by choosing any homogeneous basis 
{¢I' ... , ¢r; (I"'" (s} of (ST)e(G, Au) and looking at their corresponding 
left invariant superderivations. Thus, we obtain the following. 

2.9. Proposition. Der AG(G) c:::: AG( G) ® g, and therefore the supertangent bun-
dle (G, AG ), is trivial; that is, 

(STG, STAG) c:::: (G, AG) x gs' 

where gs is the supermanifoldification of the Lie algebra g = go EEl g I (cf [11] 
and Example 1.4 above). 
Proof. We include here a brief argument, based on the approach of [11], that 
proves that a frame over some open subset U c G yields a trivialization of 
the supertangent bundle over the same open subset (and hence the statement 
follows). Specifically, we shall see how giving such a frame is the same as giving 
an isomorphism ({J u which makes the following diagram commute: 

(rl(U), ST Aulrt(u)) ~ (U, AGlu) x (goEElgI)s 

(9) ~ / 

(U, AGlv) 

where r denotes the submersion morphism of the supertangent bundle into the 
base supermanifold and PI the projection morphism of the product onto the 
first factor. Now, vector bundles were approached in [11] in such a way that 
supermanifold morphisms a: (U, AGlu) ---+ (rl(U), ST AGlrt(u))' satisfying 
r 0 a = id: (U, AGlu) ---+ (U, AGlu)' correspond in a one-to-one fashion with 
sections a E Der AG ( U). If gl' ... , ¢r; (I' ... ,(s} is a graded frame over 
U, with I¢jl = 0 and I(,ul = I, each a E DerAG(U) can be written uniquely 
in the form a = 'Lt¢j + 'L({J,u(,u where t, ({J,u E AG(U). That is, a is 
uniquely characterized by the order (r + s )-tuple {/ , ... , fr ; ({J I , ... , ({JS} E 
AG( U/ EEl AG( U)s . The key point observed in [11] is that AG( U)' EEl AG( U)s is 
isomorphic to the set of all supermanifold morphisms from (U, AGlu) into the 
supermanifoldification of any (r, s)-dimensional supervector space. That is, 

(10) 

Thus, if we denote by \}lIT the morphism (U, AulL,) ---+ (go EEl gl)s that corre-
sponds to the (r + s)-tuple {/, ... , fr; ({J I, ... , ({Js} E AG ( U)r EEl AG ( U)s that 
a gives rise to, then the trivialization ({Ju is uniquely determined by the pair 
of conditions id = PI 0 ({Ju 0 a and \}lIT = PI 0 ({Ju 0 a, Va E Der A(i( U). 0 

2.10. Corollary. Let (G, AG ) be a Lie supergroup and let g = go EEl gl be its 
Lie superalgebra. Let g~ be the vector space dual of gl' Then 

AG(G) c:::: Coo(G) ® A(g~). 
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Proof. The structural sheaf AG of a supermanifold (G, Ad is, by definition, 
locally isomorphic to the sheaf Gr AG ' where (cf. [7]) 

Gr AG = EBG/ 
k?O 

G k A _ Jk jJk+l 
r G- G G ' 

and AG = J~ :) J i :) J~ :) ., 0 J~ :) 0 0 0 is the J G-adic filtration of AG define 
by the sheaf of ideals over G, JG = ((AG) 1) , generated by the odd subsheaf 
(A G)I' Each Gl AG is a sheaf of Gro AG-modules and, when viewed as a 
sheaf of Gro AG-algebras, Gr AG is generated by Gr 1 AG. Since AM is super-
commutative, Gr A"'l is a homomorphic image of the sheaf I\Gro A Gr1 AG. It 
is isomorphic to it only if Gr 1 AG is finitely generated over Gro AG, i.e., if 
the odd dimension of the supermanifold is finite (recall that, by definition, the 
sheaf Gro AG is isomorphic to the sheaf C;; of real smooth functions over G 
and Gr 1 AG is a locally free sheaf of Gro AG-modules over G whose rank is 
precisely the odd dimension of the supermanifold; cf [7]). 

Now the stalk at any x E G (Grl AG)x = JG,xjJ~,x' can be identified with 
(Jlt,)L .. }) 1 , where Lx is the maximal ideal of AGox consisting of all germs 
vanishing at x. This follows, since (L~)1 = (JGox)1 and the even subspace 
of JG,x is J~,x' In other words, (Grl AG)x :::::: (Hom(Der AG, AG)x)I' Since 
AG,x :::::: C;;jJ3JG,x' it follows that when Der AG(G) :::::: AG(G)®g, (Grl AG)x :::::: 
coo • G,x®gl' 0 

2.11. Remark. Once the triviality of the supertangent bundle of a Lie super-
group (G, AG ) is settled, one may argue as in [4] to conclude that 

COO (G) :::::: {I E AG ( U) I (V J1 = 1, ... , s) '/11 = O} 

and 

( 11 ) 

In fact, let {~1 ' .. 0 , ~r ; '1 ' ... , '5} be the basis of 9 obtained via Proposition 
2.7 from the germs at e E G of the set {OZI, ... , 0z'; 0ljl, ... , Oil'} of su-
perderivationsofthesuperalgebra AG(U) ,with (U, {zl, ... , Zr; 1/ 1 , ... , 1/5 }) 

a coordinate neighborhood around e. Then propagate the supermanifold struc-
ture over U , which is already given locally by definition, to the entire group via 
left translations. G is thus covered by the family of open subsets {Lg( U): g E 
G} , and an easy sheaf-theoretical argument then proves (11). 

3. LIE SUPERGROUP ACTIONS ON SUPERMANIFOLDS 

3.1. Definition. Let (G, AG) beaLiesupergroupandlet (M, AM) beasuper-
manifold. (G, AG) acts on (M, AM) Irom the left if there is a supermanifold 
morphism 
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satisfying the following two identities (cf. [2, 5, 15]): 

(i) ljf 0 (n l x ljf 0 (n2 x n3)) = ljf 0 (/1 0 (nl x n2) x n3) 

[both sides are morphisms (G, Ac) x (G, Ac) x (M, AM) ---+ (M, Aw) and this 
time the projections n i are defined on (G, A(;) x (G, Ac) x (M, A)M)] and 

(ii) 

[as morphisms (G, Ac) x (M, AM) ---+ (M, AM)]. 

3.2. Example. GLs (Va I ~) acting on V2 ' V = Va EEl ~ being an (m, n)-
dimensional supervector space ~ its supermanifoldification (cf. [11, 12] and 
Example 1.4 above). It has been shown in [12] that there is a natural way of 
generalizing the morphism that evaluates linear maps on vectors to the category 
of supermanifolds. The restriction of that morphism to GLs (Va I ~) x ~ yields 
ljf : GLs (Va I VI) X ~ ---+ ~ , which defines a left action of GLs (Va I VI) on ~ 
in the sense just defined. In fact, the work in [12] was developed so as to make 
this happen; we refer the reader there for details. An explicit expression for 
ljf in terms of the (linear) even and odd coordinates in Hom( V, V) 5 as in 

b bJ B BJ b bJ B BJ Example 1:4 above, {A J ,nr ,ne J, D } and {nA J, r ,e J, nD }, 
respectively, and the (linear) even and odd coordinates in ~, {x j , ne} and 
{nx j , e} , respectively, is obtained by multiplying matrix (1) in Example 1.4 
on the left of the column matrix whose rows are x j + nxJ , j = 1 , ... , dim Va ' 
and n¢J + e , J = I, ... , dim VI ' in that order (see Example 5.1 below). 

3.3. Example. GL(m I n) acting on Gklh(Vmln) , the Grassmannian super-
manifold, of (k, h)-dimensional supervector subspaces of the (m, n)-dimen-
sional supervector space V m1n = Va EEl ~ (cf. [6-9, 13]). 

Manin has shown that there is a natural action of the Lie group GL(m) x 
GL(n) on Gklh(Vmln) (cf. [6-9]). But, more generally, it was emphasized in 
[13] that there is also a natural action of the Lie supergroup GL( Va I ~) (cf. 
Example 1.5 above). In fact, one may introduce local coordinates in Gklh(Vmln) 
and arrange them in matrix form as in [6-9]: 

where x = (x ij ) and y = (yab) are the even coordinates and ¢ = (¢/b) and 
, = (,a j ) are the odd ones (I ::; i ::; m - k, 1 ::; j ::; k, 1 ::; a ::; n - h , 
1 ::; b ::; h). It is in terms of this set of local coordinates that the following 
element of GL( Va I VI)' supercoset representative, can be defined: 

(~ I P) 
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The action of the supergroup can be explicitly obtained (under the assumption 
that the transformation takes place within the same coordinate patch) by solving 
for the coordinates Xl , yl , ( , and (' of the new supercoset representative in 
the equation (cf. [13]), 

U ; ~ ~)(~ ~ H) = (~ 1: ~ ~) (~ ~ 1 
01 0001 aWs 

where the matrix on the left belongs to GL(m I n). There is a more succinct 
way of writing the action; the idea (suggested by J. A. Wolf) is to conjugate 
both sides of this equation by the matrix that interchanges the second and third 
rows. The result can then be written as follows: 

ZI = (AZ + B)(CZ + D)-I, 

where 

Z = (~ ; ) and ZI = (~: ;:) 
and A, B, C, and D are block matrices defined in terms of the entries of the 
original element in GL(m I n) as 

B=(b P) p r ' D= (~ ~) 
Therefore, the action morphism is given by 

# # # # # # #-1 
IfI Z = {(Pi A)(P2Z) + (PI B)}{(pi C)(P2 Z ) + (PI D)} , 

where the Pi'S are the projection morphisms of the product supermanifold 
GL(Vo I VI) x Gklh(Vrnln) (see also Example 5.2 below). 

4. THE ISOTROPY SUBSUPERGROUP OF AN ACTION 

4.1. Let (G, AG ) be a Lie supergroup acting on the supermanifold (M, A.'vf) 
via the morphism 

( 1 ) 

and fix some point P EM. Then IfI induces a morphism 

(2) 

by letting 

(3) IfI := lfIo(idx6 oC(C' 4)) = lfIo(idxr%') P PI,. (, P 

where ~ := 6p 0 C(G.Ar.): (G, Ac;) ----> (M , A'vf) is the supermanifold morphism 
whose corresponding map of presheaves is given by 

(4) (IiVcM,open)(Ii!EA\f(V)) ~#!=' .4,.((1). { 
!(x) 1 0 if x E V, 

. 0 If x tI. v. 
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The underlying continuous maps, fiip and ~, of If/p and ~, respectively, are 

fiip: h f---+ fii(h, p) and ~: h f---+ P (constant map). 

In a similar way, each point g E G gives rise to superdiffeomorphism 

defined by 

(5) If/ := If/ ° (J ° C(G A ) x id) = If/ ° (gg x id) g g, r; 

and whose underlying continuous map is fiig : q f---+ fii(g, q). By the methods of 
§2, one proves that 

(6) 
If/poRg = If/.p(g,p) , If/go If/p = If/poLg . 

4.2. Definition. Let (G, AG ) be a Lie supergroup acting on the supermanifold 
(M, AM) via If/ as in( 1). We shall say that the action is transitive if there 
exists a point p E M such that If/p : (G, AG ) ----+ (M, AM) is an epimorphism 
(that is, if for any supermanifold (N, AN) and for any pair of supermanifold 
morphisms 0:, fJ: (M, AM) ----+ (N, AN)' 0: ° If/p = fJ ° If/p :::;. 0: = fJ)· 

Note that if If/p is an epimorphism for some p EM, then If/q is an epi-
morphism for any q EM. Indeed, If/ transitive implies fii transitive and 
hence, :Jg E G such that q = fii(g, p) ; since Rg is a superdiffeomorphism, 
If/q = If/p ° Rg is an epimorphism. 

4.3. Observation. Roughly speaking, one would like to define the orbit through 
p as the image of the morphism If/p and the isotropy subsupergroup at p as the 
locus in (G, AG ) on which the morphisms If/p and ~ coincide. The defini-
tions, however, have to be given through some careful sheaf-theoretic arguments; 
the fundamental reason is that in supermanifold theory the values of a given 
morphism on all the points of the underlying domain do not determine the 
morphism completely, as has been stressed in [2-4, 10]. What does determine 
it is a knowledge of the superalgebra map from the global sections of the sheaf 
of the target into the global sections of the direct image sheaf of the source. 
Taking this fact into account, it is reasonable to expect that if we are given 
an action of (G, AG ) on (M, AM) as in (I), we should be able to extract a 
supermanifold (and, in fact, a supergroup) structure on the underlying isotropy 
subgroup Gp = {g E G: fiip(g) = p} from the condition 

(7) 
# # Image( 7r p) = Image( ~ ) , 

where If/; and ~# are the superalgebra maps determined from their corre-
sponding sheaf morphisms. (At this point, the reader might want to look first 
at the explicit examples given in §5 below and come back for the general argu-
ment later.) 
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Once the problem is put this way, the superalgebra of global sections of the 
isotropy subsupergroup is, if it exists at all, a coequalizer for the diagram 

(8) 

Hence, up to isomorphism, it must be the superalgebra 

(9) (l/ip.Ac)(M)/Im(VI; - ~#)(M) 
where 
(10) 

and, of course, 

(11 ) 

4.4. Observation. What is implied here is that the isotropy subsupergroup of 
the given action must be defined as an object, (Gp ' Ac) , together with a mor-
phism 
( 12) 

that makes the diagram 

(Gp,AC) 
unique ({*}, R) ---+ 

(13 ) i'l 1 1J I' 
(G, Ac) ---+ (M,AH) 

'If" 

commute, and having the following universal property: for any other object 
(H, A H) and morphism j: (H , A /I) --> (G, Ac;) making commutative an anal-
ogous square, the existence of a unique morphism 

f.1.: (H, A H) --> (G p , A c) 
can be deduced, with i p 0 f.1. = j (in particular, the morphism i p is necessar-
ily monic). Therefore, the problem of determining both the superalgebra of 
global sections Ac (G ) and the morphism i is that of constructing a pushout 

~ p p 
diagram for 

Ac(G) 

Or, since ~# is the composition AH(M) ----> R ----> Ac(G) of 6; followed by the 
unique map R --> AG ( G) , the problem is that of constructing a coequalizer for 
diagram (8). Our immediate goal is to prove in the next few paragraphs that, 
indeed, (9) carries all the information needed to define an embedded subsuper-
group of (G, AG ) . The first observation to be made is the following: 
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4.5. Proposition. There is a natural bijection 
G p = {g E G: ljip ( g) = p} 

<-+ {Superalgebra maps (ljip.AG)(M)/Im(lfI; - ~#)(M) ---> R}. 

167 

Hence, if the superalgebra of global sections of the sheaf of a supergroup is to be 
given by (9), its underlying smooth manifold is, up to diffeomorphism, Gp (cf 
[3, 4]). 
Proof. Each superalgebra map (ljip.AG)(M)/Im(lfI; - ~#) ---> R corresponds 
naturally to a superalgebra map (ljip.AG)(M) ---> R whose kernel contains 
Im( lfI; - ~#) . Since the points of G are in natural one-to-one correspondence 
with the superalgebra morphisms Ac;( G) ---> R, via g +-+ J;, it follows that 
J; defines a superalgebra map (ljip.AG)(M)/Im(lfI; - ~#) ---> R if and only if 
Ker J; ::) Im( lfI; - ~#) , that is, if and only if 

(Vf E A,\1(M)) J;(lfI;f - ~# f) = J;(lfI;f) - J;(~# f) = O. 

Hence, if and only if (VJ E Coo(M)) j(ljip(g)) = J(~(g)), which obviously 
holds true, if and only if ljip(g) = p = ~(g) , that is, if and only if g E Gp . 0 

4.6. Theorem. Let Ip: Gp ---> G be the embedding of the closed Lie subgroup, 
G into G. Let AG be the pullback to G , via lp' of the sheafiflcation of the 

p I' P 
presheaf of superalgebras over G, 

U f-> Au(U)/(Iji; Im(lfI; - ~#))(U), 

where Iji; Im( lfI; - ~#) denotes the pullback to G of the sheaf Im( lfI; - ~#) 
under Iji : G ---> M. Then (G ,AG ) is an embedded Lie subsupergroup of p p p 

(G, AG)' The embedding i : (G ,Au) ---> (G, Ac') is defined by the natural p p ~ , 

sheaf morphism obtained from the composition 

Ac; ---> Ac; /Iji; Im( lfI; - ~#) ---> [p'?; {AG/Iji; Im( lfI; - ~#)} . 
The supergroup structure is inheritedfrom (G p , AG/,) by defining the composition 
morphism v: (G ,AG. ) X (G ,A(. ) ---> (G ,AG ) by way of the diagram 

P p P II' P p 

# 
J1 Ac; ----+ 

'#1 I" 

A(J ----7 zJ.(AG xAG )· 
I' II fi 

Furthermore, the embedding i : (G ,A(. ) ---> (G, A(.) has the universal propertv 
P P '{) J ~ 

stated in Observation 4.4 with respect to any other morphism j: (H, AH ) ---> 

(G, AG), such that 
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Proof. We shall keep p E M fixed. The map tfip: G --. M can be thought 
of as a map into the orbit through p, say Op' We shall endow Op with the 
topology and differentiable structures that make the induced map G/Gp --. Op 
a diffeomorphism. In particular, tfip becomes an open map onto Op' This 
condition is sufficient for the natural tfip -morphism, AG --. tfip' AG I Op (cf. 
[16]), to induce isomorphisms on each stalk. In fact, given g E G and letting 
W run through all open neighborhoods of tfip (g) , the stalk (AG) g becomes a 
target for the direct system defined by the sheaf tfip' AG. Hence, we have the 
following commutative diagram: 

where the dashed horizontal arrows can be drawn simply from the continuity 
of tfip . But we can reverse the arrow (tfip.AG)tjt (g) --. (AG)g' Indeed, since 

p 

tfip is open, for each open neighborhood V of g E G there exists an open 
neighborhood V of ijlp (g) E M with ijlp-l (V) c V; hence, the dashed arrows 
may be reversed by means of restriction maps. Therefore, (tfip.AG)tjt (g) is a 

p 

target for the directed system of AG . By uniqueness of direct limits, we get 

(14) (Vg E G) (lfp·AG)tjt (g) c::::: (AG)g' 
p 

Since {Im(lfI: - ~#)}tfip(g) c::::: {tfi; Im(lfI: - ~#)}g' we furthermore have 

(15) (tfip.AG)tjt (g/{Im(lfI: - ~#)}tjt (g) c::::: (AG)g/{tfi; Im(lfI: - ~#)}g 
p p 

for all g E G. In particular, we obtain a sheaf epimorphism 

(16) AG --. AG/tfi; Im(lfI: - ~#). 
Note next that the natural morphism 

(17) AG/tfi;Im(lfI: -~#) --.7p.-i;{AG/tfi;Im(lfI: -~#)} 
is an isomorphism. In fact, since Gp is a closed Lie subgroup of G, the sheaf 
on the right is the extension of AG = 7; {Aa/tfi; Im(lfI: - ~#)} by zero (cf. 

t' 

[16]). Therefore, for any open subset U c G, the map 

7p.l; {AG/ tfi; Im( 1fI: - ~#)}( U) --. 7; {AG/ tfi; Im( 1fI: - ~#)}( Un Gp) , 
zl--->zlunGp ' 

is an isomorphism and the same conclusion holds true stalkwise. In summary, 
we get a sheaf epimorphism. 

(18) ip#: AG --.7p.7;{AG/tfi; Im(lfI: - ~#)}. 
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Now, if this sheaf morphism is to be combined with Ip to define a superman i-
fold morphism, the following compatibility condition must be established: 

# ~ --
(19) (V!EAG(U))(VgEGpnU) Up!) (g)=!oip(g). 

This follows easily: by definition of the pullback sheaf, and taking the isomor-
phism (17) into account, the sections of 1m i; over 1m Ip C G are precisely of 
the form Ip(g) f---+ germ at Ip(g) of some section of the sheaf 

AGlriI; Im('I'; - ~#). 

Since both AG ---> AGlriI; Im('I'; - ~#) and AG ---> C,; I Gp are morphisms of 
sheaves of superalgebras, the compatibility condition follows. 

Now, to show that the supergroup structure {.u, (J, ~} of (G, AG ) restricts 
to (G p , AG,,) in the appropriate manner to yield a subsupergroup, we shall make 

use of the fact that l is a monomorphism (cf. Lemma 1.9) in combination 
with the epimorphism i;. The idea is to show that there is an unambiguous 
way of closing the following diagram to make it commutative for each pair 
(g, h) E Gp x Gp : 

(AG) {l(ip(g), ip(h)) (AG x AG\ip(g), ip(h)) 

U;) I'(iplgl. i" rh II =(i;) i"I'>lg. hi I 1 1 (i,,07C( Xip07C2)~iplgl.iplhll 

- -- - ~ 

(v')';lg ,hi 

Note that, since Gp is already a Lie subgroup of G, its sm~oth c~mposi­
tion map, v: Gp x Gp ---> Gp ' satisfies (V(g, h) E Gp x Gp) jl(ip(g) , ip(h)) = 
Ip(V(g, h)). 

Thus, we shall define (v#)v(g,h) germwise by going first to (AG){l(lI'(g),ip(h)) 
using the surjectivity of U ,), (-( h)) and then to (AG x AG )(g h) by just p II' V g, p p' 

following the arrows in the diagram. The only point that has to be checked is 
that this prescription is well defined; that is, 

(20) ~ E KerU;){l(ip(g),ip(h)) =} Up 0 7r1 X ip 0 7r2)~ip(g),ip(h)/l){l(lp(g),ip(h))~ = 0, 

which amounts to checking that, for any germ Iv E (AM)p' 

(21 ) { 'I' 0.u 0 (i 0 7r 1 X i 0 7r2)}# f. = {g' o.u 0 (i 0 7r 1 X i 0 7r2 )} # f. . p p p pp p p p pp 

This is so because the morphism i; has been defined to have its kernel isomor-
phism to Im( '1'; - ~#). In fact, since (17) is an isomorphism, we have 

KerU;) {l(i,,(g), ip(h)) c:::' (riI; Im( '1'; - ~#)) {l(lp(g), ip(h)) 

(22) # # 
c:::' (Im('I'p - ~ ))IjI({l(i,,(g),ip(h))) 

# # 
c:::' (Im('I'p - ~ ))p' 
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More generally, Ker(/) :::: (Im(ljIp# - W#)) . ( ) holds true for any g E G. In p g p 'III' g 
particular, 

(ljIp 0 ip)# f = i;(IjI;f) = i;(IjI;f - ~# f + ~# f) = i;(~# f) = (~o iptr 

for each f E AM(M), and therefore 

(23) ljIoi=Woi. p p p p 

But now (21) follows when this identity is used in conjunction with the results 
of the following: 

4.7. Lemma. Let (G, AG ) be a Lie supergroup acting on the supermanifold 
(M, AM) via the morphism IjI as in (1), and let p E M be a given point. Let 
{.u, a, s:,} be the multiplication, inversion, and identity morphisms of (G, AG)' 
Let ql and q2 be the projection morphisms of the product (G, A G ) x (G, A G ) 

onto the first and second factors, respectively. Then 

(i) W 0.u = W 0 ql = W 0 q2' P P p 
(ii) IjIp 0.u = IjI 0 (ql X IjIp 0 q2)' 

(iii) IjI 0 (a x IjIp) = IjI 0 (s:, x tt;,) = ~. 

Proof. The proof of (i) reduces to computing the effect of (~o.u)#, (~oq/, 
and (~o q2)# on global sections, but this is simple with the help of (4). Now, 
for (ii), let 'i be the projection morphism of the product (G, A G ) x (G, AG ) x 
(G, AG ) onto the ith factor (i = 1, 2, 3). Then 

IjI 0.u = IjI 0 (id xflf) 0.u = IjI 0 (.u x W 0.u) = IjI 0 (.u 0 (ql x q2) x W 0 q2) p p p p 
= IjI 0 (.u 0 ('I x '2) x '3) 0 ((ql x q2) x ~ 0 q2) 

= IjI 0 (, 1 X IjI 0 ('2 X T 3)) 0 (( q 1 X q2) X ~ 0 q2) 

= ljIo(ql X ljIo(q2 X ~oq2)) = ljIo(ql X ljIo(idx~)oq2) 

= ljIo(ql X IjI oq,). p ~ 

Finally, (iii) is proved similarly; one only has to note that ~ 0 a = ~. 0 

We shall now conclude the proof of Theorem 4.6 with a result of Leites that 
shows that a coordinate neighborhood of the identity can be found in (G, A G ) , 

say (U, {zi ; 1]11}) , for which (G n U ,AG I GnU) exhibits the subsuperman-
p I' p 

ifold property. Note that just as in the smooth theory, it is enough to restrict 
ourselves to such a neighborhood, since we can propagate this local superman-
ifold structure to the entire embedded subgroup Gp via left translations. The 
result that we invoke is the following: 

4.8. Lemma (Leites). Let U c G be some open coordinate neighborhood of 
eEM andlet Iplu be the restriction to U ofthesheafofideals IjJ;Im(IjI:-~#) 
in AG . Let 

Hp = {g E U: Vf E Ip(U), /(g) = O}. 
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For each g E Hp ' there is an open neighborhood V (U ~ V E g) and there 
are homogeneous sections {/ , ... , / ; 1]1, ... , 1]1}, F E (Ip(V))o' and 1]1/ E 

1 k 1 (Ip(V))1 that generate Ip(V). Furthermore, {(df )g'"'' (df )g; (d1] )g'"'' 
(d 1]') g} is a linearly independent set and therefore {/, ... , / ; 1] 1 , ... , 1]'} 

may be extended to a coordinate system {/, ... , / , /+1 , ... , f'n; 1]1 , ... , 
"+1 n} 1] ,1] , ... ,1] on V. 

Proof (cf. [4]). Note that because of Proposition 4.5, Hp above is precisely 
Gp n U. Therefore, noting that the assertion regarding the universal character 
of (G ,AG ) is automatic by the very definition of AG (cf. Observations 4.3 

p p p 

and 4.4), Theorem 4.6 follows. D 

4.9. Observation. Let us briefly discuss how the orbits of an action If/ are to 
be understood. Following [3], the idea is to show that a natural supermanifold 
sheaf can be defined on the space of co sets G / G p and then carry this structure 
over the orbit Op = IjJp(G) eM, via IjJp, so as to have (G/Gp ' AG/ G ) ::= 

p 

(Op' Ao)' 
In this way, it suffices to show that for any supergroup (G, AG ) and a given 

embedding of supergroups i: (H, A H ) ---> (G, Au) (cf. Remark 1.10), there is 
a natural way of defining a supermanifold sheaf over the coset space G / H , say 
AG/II' and a sheaf monomorphism q': AG/II ---> q.Au' where q: G ---> G/H is 
the canonical projection. 

This is obtained as follows (compare with [3]): For any open subset U c 
G / H , the assignment 

(24) 
U f-> {f E AC;(q-l(U)) I (Vh E H)R~f = f} 

= n Ker(R~ - id#)(q-l (U)) 
hEll 

defines a sheaf of superalgebras over G / H. It is, in fact, a subsheaf of q.Ac; . 
This is precisely the sheaf AU/II and l is simply the natural inclusion into 
q.AG' Note, for example, that if i: (H, All) ---> (G, A G) is the embedding of 
the isotropy subsupergroup of a transitive action If/ as in (1) (cf. Definition 
4.2), then the sheaf defined in (24) is isomorphic to 1m If/; ,in view of the third 
relation in (6). 

5. EXAMPLES 

5.1. Example. GLs(I 11) acting on the supermanifold R212 = (R2 , R2I2) (cf 
[12]). Let 

( 1 ) 

be the action in Example 3.2. To simplify the writing, we shall redefine the 
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coordinates introduced in Example 1.4 as follows: 

(2) 
A=a, nT=b; 

nE> = c, D = d; 
nA = ex, 

E> = y, 
r = fJ; 

nD=o. 

Similarly, if {X, n¢} and {nx, ¢} are respectively the even and odd (linear) 
coordinates in R212 introduced in 3.2, we redefine n¢ and nx and write instead 

(3) n¢ =y, nx =,. 
The action morphism of 3.2 is then given by 

(4) 

where we have further omitted the explicit reference to the projection mor-
ph isms of the product supermanifold GLs(1 I 1) x R2I2. If we now fix some 
p E R2 and consider 

we find that 

(5) 

IfIp=lfIo(idxopoc): GLs(1 I 1)-+R212 

lfI;x = ax(p) + by(p) , 

IfI;Y = c.x(p) + dy(p) , 

1fI; , = exx(p) + fJy(p) , 

1fI;¢ = yx(p) + oy(p). 

In particular, note that the map IjIp: GL( 4) -+ R2 is given by 

(6) _ ( ( a b) ) ( a b) (X (p )) 
IfIp c d = c d Y(p). 

N 'd th h' CP GL (1 1) -+ R2I2. AccordI'ng to 4.1, l'tS ow, conSI er e morp Ism 0 p : 5 

effect on the coordinate functions is this: 

(7) ~# X = x(p) IGL(214)' 

~#y = y(p)IGL(214) ' 

Therefore, the condition Im( 1fI;) = Im(~#) imposes the following relations 
among the coordinates of GLs (l I 1): 

(8) 

IfI;X = ax(p) + by(p) = x(p)I GL(214) = ~#x, 

IfI;Y = c.x(p) + dY(p) = y(p) I GL(214) = ~# y, 

1fI;' = ax(p) + fJy(p) = ° = ~#" 
1fI;¢ = yx(p) + oY(p) = ° = ~#¢. 

For example, under the assumption that x(p) = 1 and y(p) = ° (choice of p), 
these equations imply that 

(9) a = I GL(III)' c = 0, ex = 0, y = 0. 
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These conditions indeed define an embedded subsupergroup of GLs (l I 1), for 
the set of all matrices of the form 

(10) (1 GL(III) b+ P) o d +J 
is closed under the composition morphism f1 defined in Example 1.4. Note that 
the underlying Lie group of such subsupergroup is the semidirect product of the 
multiplicative group of the nonzero real numbers (d being a local coordinate) 
with the additive group of the reals (b being the corresponding coordinate). 
Also note that it has odd dimension equal to 2. 

It is worth mentioning that the calculations in this example are only slightly 
simpler than those required in the more general case of the Lie supergroup 
GLs (m In) acting on the supermanifoldification ~ of the (m, n )-dimensional 
supervector space V = Va EB VI . Indeed, one has only to interpret the definitions 
in (2) and (3) as equations between matrices of the appropriate sizes and proceed 
accordingly. For example, the relations (9) look exactly the same in the general 
case, where x(p) and Y(p) represent the column vectors with the coordinates in 
Va and VI of the point p. The relations that define the isotropy subsupergroup, 
and hence isotropy subsupergroups themselves, vary depending on the chosen 
point, as expected. 

5.2. Example. GL(21 2) = GL(Va I ~) acting on Gill (V 212 ), V212 = Va EB VI 
being a (2, 2)-dimensional supervector space. 

This time we shall relabel the coordinates {Ab j , DBJ} and {rbJ, e Bj } of 
Example 1.4 as follows: 

All =a , Al2 = b , rll =0' , r l2 = P, 
A21 = e, A22 = d 21 

r 22 = J, ( 11) , r = y, 
ell = IT, e l2 Dll Dl2 = r, = p, = q, 
e 21 = (J, e 22 = r , D21 = S, D22 = t. 

Let {x, y} and {~, (} , respectively, be the even and odd local coordinates on 
Gill ( V 212 ) defined on the open neighborhood, {x -I O} n {y -I O} . According to 
Example 3.3 (and omitting the projection morphisms of the product) we have 
( 12) 

#(x ~) If! (y 

=((~ ;)(~ ;)+(! ~))((~ ~)(~ ;)+(~ ~))-l 
and the assumption to be made is that we do not leave the same coordinate patch 
after the transformation. That is, the coordinates are constrained in such a way 
that ex +d - y( and sy + t - (J~ are both invertible (see [14] for computations). 
In particular, ex + d and sy + t are assumed to be invertible. 

Since we are interested in comparing the image of If!; with that of ~#, 
we apply the morphism (id x ~) # to both sides of each of (12). After some 
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simplification, we find that 

'II;X = ((aX(p) + b) ((l5:(p) + r) (n.V(p) + fJ)) (I _ ((l5:(p) + r) (iY(P) + r5)) 
(6:(p) + d) + (d(p) + d) (S}'(p) + I) (d(p) + d) (s.v(p) + t) , 

# ((qV(P) + r) + (7LX-(p) + p) (y.V(p) + r5)) (I _ ((l.x-(p) + r) (yv(p) + r5)) 
'IIpY = (sV(p) + t) (d(p) + d) (s.v(p) + t) (d(p) + d) (sv(p) + t) , 

'II#f, = ((n.v(p) + fJ) _ (a.\"(p) + b) (YV(p) + r5)) (I _ ((lX(p) + r) (i.V(P) + r5)) 
p (SV(p) + I) (d(p) + d) (sV(p) + /) (d(p) + d) (s.v(p) + I) , 

'11# (= ((71X(P) + p) _ ((l.x-(p) + r) (P.v(p) + r)) (I _ ((l5:(p) + r) (YV(p) + r5)) . 
p (cx-(p) + d) (cX(p) + d) (sJ'(p) + t) (C"lp) + d) (s.v(p) + I) 

We now choose the point p as that whose coordinates are 

(14 ) x(p) = ° and Y(p) = ° 
so that 

( 15) 

# G?# It is then easy to verify that the condition Im( IfIp) = Im( 0 p ) yields the coordi-
nate relations 

( 16) r l2 = fJ = 0, 12 e = p = 0, DI2 = r = 0. 

But these conditions define an embedded (6, 6)-dimensional subsupergroup of 
the (8, 8)-dimensional supergroup GL(2 I 2) . 

We remark again that most of the computations above remain valid (and 
the final results take exactly the same form) for the more general case of the 
supergroup GL(m I n) acting on the supergrassmannian Gklh(Vrnln). All that 
. . d" A II A 12 D21 D22 . ( 11) bl k . IS reqUlre IS to mterpret , , ... , , m as oc matnces 
of the appropriate sizes. What comes out of the same analysis is that for the 
point p whose coordinates are given by ( 14) (understood as equations between 
matrices), the condition Im( 1fI;) = Im( ~#) yields the same coordinate relations 
(16), to be interpreted as conditions on the corresponding blocks of coordinates 
in the supergroup. The only expressions that look different in the general case 
are those in (13), where we have used quotients and have permuted some of 
the factors, but the reader will have not trouble in finding what the general 
expressions should be. In fact, he/she will note that the common factor on the 
right of (13) is invertible. Taking this into account, it is not difficult to see then 
that (16) defines an embedded subsupergroup of GL(m I n) of dimension 

2 2 (m + n - k(m - k) - h(n - h), 2mn - h(m - k) - k(n - h)). 
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