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RESONANCE AND THE SECOND BVP

VICTOR L. SHAPIRO

Abstract. Let fi c M be a bounded open connected set with the cone prop-

erty, and let 1 < p < oo . Also, let Qu be the 2mth order quasilinear differ-

ential operator in generalized divergence form:

Qu=    J2    (-l)MD°Aa(x,tm(u)),
X<\a\<m

where for u € Wm'p , Çm(u) = {Dau : \a\ < m).   (For m = 1,  Qu =

- J2i=\ ^¡(x, u,Du).) Under four assumptions on Aa—Carathéodory,

growth, monotonicity for |q| = m, and ellipticity—results at resonance are

established for the equation Qu = G + f{x, u), where G € \Wm'"(Çï)]m and

f(x, u) satisfies a one-sided condition (plus others). For the case m = 1 , these

results are tantamount to generalized solutions of the second BVP.

1. Introduction

Let ficE , N > 1, be a bounded open connected set with the cone prop-

erty, i.e., there exists a finite cone C such that each point x in Q is a vertex of

a finite cone Cx contained in Ci and congruent to C (see [2, p. 11 or 1, p. 66]).

The points of the open set fi will be designated by x = (xx, ... , xN), and the

elementary differential operators by Da = fT^l\{d/dXjfJ for an ordered 7V-

tuple a = (ax, ... , aN) of nonnegative integers with the order of the operator

Da being written as |q| = ]£/Li Q, ■ To write nonlinear partial differential oper-

ators in a convenient form, we introduce the vector space R¡m whose elements

are £m = {c¡a : \a\ < ra}, and divide each t\m into two parts t\m = (nm_x, ÇJ ,

where nm_x = {n» : \ß\ < m - 1} £ RSm~l is the lower order part of t\m and

Cm = {Ca '■ \ct\ = m} is the part of £m corresponding to the rath derivatives.

For u £ Wm'p(Çl), tm(u)(x) = {Dau(x) : \a\ < ra}. (Note /j>(0'0>--°>M = M.)

In this paper, we shall study the 2rath order differential operator in generalized

divergence form:

(1.1) Qu=    Y,   (-l)lalDaAa(x,c:m(u)).

X<\a\<m
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For the functions Aa(x,tlm), we shall suppose

(A-l) Each Aa : Q x RSm —» R satisfies the Carathéodory conditions (i.e.,

Aa(x, im) is measurable for x in Q for every fixed t\m £ RSm and

continuous in t\m for a.e. fixed x G Q).

(A-2) 3 constants p and c, 1 <p < oo, c > 0, and a nonnegative function

À G l/(Q)   (// = p/(p - 1)) such that

K^.ÉJI^AM + cKj'-1,        l<H<m,

»mfor a.e. xefl and for all £m G

(A-3)   E|a|=mK(^ » ?m-l . CJ - 4»(* - f«-l - OKCa - O > °  f0f a'e-  X G
ß and for all faM_,, ÇJ e R*- with Cm / C. where ¿a(x, £J =

4,(*, 9m_i. CM) with <fm = (nm_x, Cm) •

(A-4) There exists a positive constant c0 and a function Z £ L (£2) such

that

l<|a|<m l.l<|a|<m J

for a.e. x G Í2 and for all <Zm £ RSm , where p is the same constant as

in (A-2).

Next, we introduce the semilinear form

(1.2) €(u,v)=    ¿2    f Aa(x,clm(u))Dav
X<\a\<mJa

which because of (A-l) and (A-2) is well defined on Wm'p x Wm'p . (For ease

of notation, we henceforth designate Wm'p(Q) by Wm'p .)

Theorem 1 which we will present shortly will also deal with a function

f(x ,():Qxl^l of the following nature:

(f-1) f(x,t) meets the usual Carathéodory conditions.

(f-2) 3K' > 0 and 3hx £ Lq'(il) s.t.  \f(x, t)\ < hx(x) + K'\t\q~x  for a.e.

x £ Í2 and for all t £ R, where q = pN/(N - mp) for p < Nm~x and

q > p forp> Nm~x, and where q = q/(q - 1).

Also hx(x) > 0 for a.e. xefl.

(f-3) 3A G Lq'(Q) s.t. f(x, t)t < h(x)\t\ for a.e. x £ Q and for all t £ R,
where h(x) > 0 for a.e. x £ £2.

In the sequel [Wm'p]* will designate the dual space of Wm'p , i.e., the space

of real bounded linear functionals defined on Wm'p .

We intend to prove two existence theorems at resonance for the differential

operator Q introduced in (1.1). These theorems will deal with generalized

solutions of Q given in terms of the semilinear form tf(u, v) introduced in

(1.2). The first theorem we prove is the following.
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Theorem 1. Let 1 < p < oo and let CI be a bounded open connected set with

the cone property. Suppose S(u,v) is given by (1.2) where Aa(x,c¡m) sat-

isfies (A-l)-(A-4) for 1 < \a\ < m and f(x,t) satisfies (f-l)-(f-3). Also
suppose that G £ [Wm'p]*. Set f+(x) = limsup,^ f(x, t) and f_(x) =

liminf/_>_00 f(x, t) and suppose furthermore that

(1.3) [ f+(x) <-G(l) < I f_(x).
Ja T Ja

Then Su* £ Wm'p suchthat

(1.4) t$(u ,v) = G(v)+ f f(x,u)v   Vv£W
Jn

Theorem 2 is a corollary to Theorem 1 and is presented at the end of this

section.

From (1.2) and (A-4), we see that

(1.5) &(u,u)>c0[
Jsï

for u £ Wm'p . Hence, we see that

(1.6) liminf cf(u, u) / \\u\\pP>0,        u£Wm'p.
II"IILP— oo

Also, we see that if u = constant, then S(u, u) = 0. Therefore, if we compare

(1.6) and this last fact with the situation that would arise if Q were a linear

operator (see [6, p. 213; 4, p. 3]), we are well motivated to call Theorem 1 a

theorem at resonance with the first eigenvalue A, = 0 (i.e., if G = 0, (1.4) gives

a generalized solution of the problem Qu = kxu + f(x, u)). Also we note that

if u ^ constant then

liminf¿f(íw, tu)/\\tufLp > 0.

Hence kx = 0 acts as a simple eigenvalue.

Theorem 1 is motivated by the resonance theorems in [8, p. 611; 4, p. 13].

Condition (1.3) is usually referred to as a Landesman-Lazer condition. The

connection between the above theorem and generalized solutions of the 2nd

BVP (= Neumann BVP) for Q in (1.1) becomes apparent if we temporarily

restrict ourselves to the case p = 2, ra = 1 . It is well known in this situation

that if the Q we are dealing with also has the C1-regularity property (see [1,

pp. 67 and 114]), then u £ Wx ' (Q) has a trace on the boundary of Q, i.e.,

(1.7) 37í>0s.t.   f   udo<K\\u
Jdii

2WU2   Vug IT1'2
dO.

Here, o represents the natural Borel measure on the boundary of our C -

regular domain Q. In the sequel, when we say g £ L2(dQ), we shall mean

ha g2do <oo.
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Since we are dealing with the ra = 1 case, Çx = (n, Q, where n £ R

and C = (Ci > ••• > CN) £ RN. Hence we can write Q in (1.1) as Qu =

Y;tx-DiAi(x>u>Du)> where AM^x) - Ai{x,n,t), Df = d/dxt, and

D = (Dx,...,DN).lf At(x,n,Q = £*,a/y(Jc)Cj and

is strictly elliptic in £2 (see [6, p. 178]), and if furthermore g £ L (<9£2) and

/(x, t) meets (f-1), (f-2), and (f-3), then the 2nd BVP for Q in £2 becomes

Qm = /(x, w)   a.e. in £2,

(1.8) ÍZ\JlaÍJDju)vi = 8   a.e.ondQ,

where v = (vx, ... ,vn) is the outward pointing unit-normal for 9£2. We

say u £ Wx' is a generalized solution of the 2nd BVP (i.e., of (1.8)) if the

following prevails:

(1.9) @(u , v)= í f(x,u)v+ f   gvdo   to g IT1,2,
Ja Jda

where @(u , v) is given by (1.2), i.e., @(u*, v) = /nCC¡j,, aij(x)DjuDiv).

This definition corresponds to the usual one for generalized solutions of the 2nd

boundary value problem (see [6, p. 215; 7, p. 160]).

Using (1.7), we see from Schwarz's inequality that ¡dC¡ gv do = G(v), where

G £ [IT1,2]*. Therefore (1.9) becomes

(u ,v)= [ f(x, u)v + G(v)   Vv G Wx
Ja

J{X , U  )V + Lr(V)     TO £ vY  '
la

which is the same as (1.4). This gives the connection between Theorem 1 for

the p = 2, ra = 1 case and generalized solutions of the 2nd BVP.

For the case of general p , 1 < p < oo, and ra = 1, consider for example

N

At(x, n, C) = 2>¡7(x)C,.|Cr-2,        i = l,...,N,
j=i

where a'J(x) = 0 for i ^ j and a"(x) = a(x) > e0 > 0 for i = 1, ... , N

(i.e., Ax(x,n,c\) = a(x)C.x\Qp~2 for £ ¿ 0, = 0 for C = 0). It is easy to see

that Ai so defined meets conditions (A-l)-(A-4). If g = 0 in (1.8), the second

condition in (1.8) becomes

N

^7)^^ = 0   a.e. on f9£2

i=i

and ( 1.8) in this case can be viewed as the 2nd BVP with homogeneous boundary

conditions (or the Neumann problem with homogeneous boundary conditions).
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g = 0 gives rise to the case G = 0. Hence, for £2 a bounded open set with the

cone property, Theorem 1 with G = 0 can be viewed as giving a generalized

solution to the 2nd BVP with homogeneous boundary conditions for the case

ra = 1 and 1 < p < oo. Generalizing from this case, we see that in a certain

sense we can view Theorem 1 as giving generalized solutions to the 2nd BVP for

a bounded open set with the cone property all at resonance for our differential

operator of order 2ra and 1 < p < oo.

In order to state Theorem 2, we need a different hypothesis than (f-3) given

above, namely the following:

(f-4) Given e > 0, 3 a nonnegative function h* G Lq (£2) and a constant

i0(e) s.t.

tf(x,t)<e\tf + h*E(x)\t\   forl</?<oo

for |i| > t0(e) and a.e. x G £2.

We note that (f-4) is a generalization of the notion

limsup/(x, t)/sgnt\t\p~  <0
|f|—oo

uniformly for x G £2. Motivated by [4, p. 1], we set

(1.10) ^L(x) = limsup/(x, í)/sgnr|í|p_1,
r-.±oo

and note that if f(x, t) meets (f-4) above, then A?±(x) < 0 a.e. in £2.

We intend to establish the following theorem.

Theorem 2. Let 1 < p < oo and let £2 be a bounded open connected set with

the cone property. Suppose that (S(u, v) is given by (1.2) where Aa(x, £m)

satisfies (A-l)-(A-4) and f(x, t) satisfies (f-1), (f-2), and (f-4). Also suppose
that G £ [Wm'p]*. Let &±(x) be defined by (1.10), and suppose furthermore

that

(1.11) /"^(x)<0   and    [&L(x)<0.
Ja Ja

Then 3u  £ Wm'p suchthat

(1.12) @(u ,v) = G(v)+ ( f(x,u)v   \/v£Wm'p.
Ja

Theorem 2 is essentially a corollary of Theorem 1 and will be established in

§4 of this paper. The t\m = (<]m_x, Cm) notation introduced at the beginning

of this section comes from Browder [3, p. 1]. Also, the author would like to

acknowledge conversations with Professor James Stafney on the subject matter

of this paper. Furthermore, the author would like to note that the proof of

Proposition 1 given below has incorporated the use of property (S+) at the

suggestion of the referee.
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(2.2) fn(x,t)

2. A FUNDAMENTAL PROPOSITION

Throughout this paper, we use the familiar notation

Í 1 '"
(2.1) NI»"».* = < E H0""!!// )

{\a\<m J

for the norm in Wm'p, where ||i>||L/> = {JQ\v\p}1/p. For our fundamental

proposition, we set

' f(x, n)      if t > n,

f(x, t)       if - n < t < n,

f(x, -n)   if t < -n.

Also, we observe that for q as in (f-2), it follows from [1, p. 97] that there

exists a constant Kx such that

(2.3) lh>llL*<tfilMlr».'   Vv£Wm'p.

We next prove the following proposition.

Proposition 1. Let n be a positive integer and £2 be a bounded open connected

set with the cone property. Suppose (i)  1 < p < oo;  (ii) &(u, v) is given by

(1.2) where Aa'x,Zn) satisfies (A-l)-(A-4) for 1 < \a\ < ra; (iii) f(x,t)

satisfies (f-l)-(f-3); and (iv) G£[Wm'p]*. Then 3un£Wm'p which solves the

following equation:

(2.4) S(u, v) + n~X [ sgnu\u\p~Xv- [ f"(x, u)v = G(v)   TO G IT
Ja Ja

To establish the above proposition we think of « as a fixed positive integer

and observe from (f-2) that

(2.5) \f"(x,u)\<hx(x) + K'nq~l   \lu£Wm'p,

where hx£ Lq . Hence, we see from Holder's inequality, (A-2), (1.2), (2.3), and

(2.5) that for u £ Wm'p there exists a constant K(u) such that the absolute

value of the left-hand side of (2.4) is majorized by K(u)\\v\\wm,P. Also the

left-hand side of (2.4) is linear in v . Consequently the left-hand side of (2.4)

defines implicitly an operator T with the following two properties:

(2.6) T:Wmp ^[Wm'p]',

where

(2.7) (T(u), v) =@(u, v) + n~   \ sgnu\u\p~ v -     f"(x,u)v
Ja Ja

TO G Wm'p. It follows also from Holder's inequality, (A-2), (1.2), (2.3), and

(2.5) that T maps bounded sets in Wm'p onto bounded sets in [Wm'p]*.

Therefore,

(2.8) T is a bounded operator.

m ,p
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Next, we observe from (2.3) and (2.5) that there exists a constant K2 such

that

(2.9) /l/V,")II"I<*2IMIw'»-'  ^u£Wm'p.
Ja

Also, we see from (A-4) that

P/2

(u,u)>cQf\    £    \Dau\2\     -f
Ja   ,Jrr^m Ja

Z(x).

X<\a\<m

Consequently, since n is a fixed positive integer, there exists a constant K3 > 0

such that

(2.10) @(u,u) + n~x f \u\p >K^\u\\pwm,P- f Z(x)   \/u£Wm'p.
Ja Ja

Since 1 < p < oo , we conclude from (2.7), (2.9), and (2.10) that

(T(u),u)
lim       -j:—¡j-= oo.

||«||H/"i.p-»oo  Hwll^m.p

We record this fact as

(2.11) T is a coercive operator.

Next we show that

(2.12) T is demicontinuous,

i.e., uk->u in Wm'p implies T(uk) - T(u) in [Wm'p]*. To establish (2.12),

let {uk}^Lx be a sequence in Wm'p and suppose

(2.13) \uk - u\\wm.p —' 0   ask—»oo.

Since Wm'p [1, p. 47] is a separable reflexive Banach space, (2.12) will follow

if we can show there exists a subsequence {u. }77    such that
Kj    J—Í

(2.14) lim(T(u,),v) = (T(u),v)   Vv£Wm'p.
j—»oo j

To show that (2.14) holds, we observe from (2.13) that there exists a subse-

quence {uk }°^[ such that

(2.15) lim (m{uk{x)) = ¿m(w(x))   for a.e. x G £2.

Next we observe from (2.13) and (A-2) that 37C4 > 0 such that

(2.16) \\AQ(x^Juk))\\L,<K4

for 1 < | a | < ra and k = 1, 2, ... . But then it follows from this last inequality

that for fixed v £ Wm'p

(2.17) {Aa(x, £m(uk))Dav}kxLx    is absolutely equi-integrable
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m,p

for 1 < |a| < ra, i.e., given e > 0, 3ô > 0 s.t. meas E < ô implies

¡E\Aa(x, uk)Dav\ < e for k = 1,2,... and 1 < |a| < ra. To see this

fact we apply Holder's inequality and (2.16) to obtain

(2.17)' jE\Aa(x,im(uk))Dav\<K,í[jE\(Dav\p^  \

Since v £ Wm'p , (2.17) follows. From (2.15) and (A-l), we also see that

lim[Aa(x,^Juk)) - Aa(x, Sm(u))]Dav = 0   a.e. x G £2

for 1 < |a| < ra. Consequently, it follows from (2.17) and EgorofFs theorem

[11, p. 75] that

(2.18) lim f Aa(x,tlm(uk ))Dav = Í Aa(x, Çm(u))Dav   to g W
j^°°Ja ' Ja

and 1 < |a| < ra .

In a similar manner, it follows that

(2.19) lim / sgnw. |w, \p~Xv   to G Wm'p .
2-00 Jçi Ki     Ki

Likewise using (f-1), (2.3), (2.5), and (2.15), it is an easy matter to show

(2.20) lim / f"(x, u.)v= [ f"(x,u)v   Vt; G Wm'p .
2-oo Ja kj       Jn

From (1.2), (2.7), (2.18), (2.19), and (2.20), we conclude that (2.14) holds.
Hence, it follows that T is a demicontinuous operator and (2.12) is established.

Next we show that

(2.21) T satisfies the condition (S+) ,

i.e., if uk -^ u in Wm'p and lim.(T(uk) - T(u), uk - u) < 0, then wfc -► u

in Wm'p . Once (2.21) is established, it follows from (2.8), (2.12), and Necas

[10, 3.3.17, p. 50] that T is a pseudomonotone operator (see [10, Definition

3.3.9]). Also, Wm'p is a separable reflexive Banach space [1, p. 47]. Hence, it

will follow from the pseudomonotonicity of T, (2.8), and (2.11) in conjunction

with Necas [10, 3.3.6, 3.3.10-11, pp. 48-49] and (2.7) that a solution in Wm'p
exists for equation (2.4). Therefore to complete the proof of Proposition 1, it

only remains to show that (2.21) is indeed true.

Accordingly, we assume that the sequence {w^}^.   has the following two

properties:

(2.22) lim uk = u   weakly in Wm,p ;
k—»oo

(2.23) hm (T(uk) - T(u), uk - u) < 0.
k—»oo

To establish (2.21), it is clearly sufficient to establish the following:

(2.24) there exists a subsequence {uk }°^, such that lim ||m,  - uW^m.„ = 0.
i    ' j—»CO j
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We now show that (2.22) and (2.23) together imply (2.24). To do this, we invoke

the compact imbedding theorem for Sobolev spaces [1, p. 144] and apply this to

the separable reflexive Banach space Wm 'p to obtain from (2.22) the following

five statements for a subsequence (which for ease of notation we take to be the

full sequence):

(2.25) 3K5 >0 s.t. \\uk\\wm,p <K5   for k = 1, 2, ... ,

(2.26) lim \\Dauk - Dau\\LP =0   for |a| < ra - 1,
k—»oo

(2.27) lim / Daukw = / Dauw   Vw £ Lp and |a| = ra,
fc-ooJn Ja

(2.28) lim(T(u),uk-u) = 0,
k—>oo

(2.29) lim nm_x(uk(x)) = nm_x(u(x))   for a.e. x G £2,
k—»oo

where nm_x(u(x)) = {Dau(x) : \a\ < m - 1} .

Continuing with our attempt to establish (2.24), we next observe from (2.3)

and (2.25) that there exists K6 > 0 such that

(2.30) [\uk-u\q<Kq6    fork =1,2,...,
Ja

and from (2.5) that for measurable E c £2

jE \f(x, uk)\ \uk -u\<K6 {j[hx (x) + K'nq-X]q' J
i/?'

for k= 1,2,....

Consequently since « is a fixed integer, it follows that {f"(x, uk)(uk - w)}^!,

is an absolutely equi-integrable sequence. From (f-1), (2.5), and (2.29), the

terms of this last mentioned sequence converge to zero a.e. in £2. Hence, it

follows from Egoroffs theorem [11, p. 75] that

(2.31) lim /[|/"(x,wfc)| + |/'î(x,M)|]|^-W| = 0.

Also, it follows from Holder's inequality, (2.25), and (2.26) that

(2.32) lim /'[|K/-1-i-|«ro~1]|M*-"l = 0.
* — °°7£î

Consequently we conclude from (2.7), (2.23), (2.28), (2.31), and (2.32) that

(2.33) hm(f(uk,uk-u)<0.

Using this fact along with (2.25)-(2.29), we next propose to show there exists

a subsequence {uk }f^=1 such that

(2.34) Hm Cm(ukj(x)) = Çm(u(x))   for a.e. x G £2,
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where Çm(u(x)) = {Dau(x) : \a\ = ra}. Once (2.34) is established it will be

an easy matter to show that (2.24) holds. To establish (2.34), it is sufficient to

establish the following two facts:

(1) There exists a subsequence {wfc }°~2. such that

fe  ^  [A°{X' Im-lfrkj) > Zm(ukj)) - Aa(* > 1m-l(ukj)> UM))1

(2.35) W-"
x [Dauk (x) - Dau(x)] = 0   for a.e. x G £2,

where im(uk¡) = (tim_x(uk), (,m(uk)).

(2) With {uk }°1¡ designating the same subsequence as in (2.35),

(2.36) {|Cm(M/t (x))|}Zi    is pointwise bounded for a.e. x G £2,

i.e., 3 a finite constant K(x) s.t.

\Cm(uki(x))\<K(x)   for j =1,2,....

To see that (2.35) and (2.36) imply (2.34), let £2¡ be the subset of £2 for

which (2.29), (2.35), and (2.36) all hold simultaneously for {uk }°°^x . Conse-

quently

(2.37) meas £2 = meas £2¡.

Suppose there exists x0 G £2¡ for which the equality in (2.34) does not hold.

Hence by (2.36) there exists a further subsequence {Çm(uk (x0))}^¡  and a

Cm e Rim_im-' with

(2.38) £ ji Cm(u(x0))

such that lim,      Cm(^k {x0)) = Cl • Therefore from (2.29)
u

lim   Y, K(*0' 1m-i(uk ),Cm(uk  ))-Aa(x0, t]m_x(uk  ), Ç   («))]
\a\—m

x [Dauk  (x0) - Da(u(x0))]

(2.39)
= E lA(*o> nm-.x{u),Cm)-Aa(xQ, t]m_x(u), CJu))]

\a\=m

x[C*m~Dau(x0)].

From (2.38) and (A-3) we see that the right-hand side of the equality in (2.39) is

strictly positive. Hence the limit on the left-hand side of the equality in (2.39)

is strictly positive. However x0 is in £2t and from the choice of £2j and (2.35)

we see that the limit on the left-hand side of the equality in (2.39) is zero. We

have arrived at a contradiction. Consequently no such point like x0 exists in

£2, . From (2.37), we have that the Lebesgue measure of £2j is the same as that

of £2. We conclude that (2.34) does indeed hold once (2.35) and (2.36) are

established.
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To establish (2.35), we shall show separately that

(2.40) lim f J2 Aa(x,nm_x(uk),um(u))[Dauk(x)-Dau(x)] = 0

and

(2.41) lim /  J2 Aa(x,tm(uk))[Dauk(x)-Dau(x)} = 0.
k   »oo J ci .   .

\a\=m

To see that (2.35) follows from (2.40) and (2.41), we observe from the difference

of these two limits that

lim [  £ K(*> ?«-i("t). CM("fc))-4,(x, rim_x(uk),Cm(u))]

(2.41)'     *""«£»
x[7)aw,(x)-7J)aM(x)] = 0.

But by (A-3), the integrand in this last limit is nonnegative for a.e. x G £2.

Hence the sequence

E I4»(*> ?m-l(M*)> Cm(uk)) - Aa(x, r]m_x(uk), CJu))]
\a\=m

x [Dauk(x) - Dau(x)]

)k=x

converges in L -norm to zero, and (2.35) follows immediately from [11, p. 70].

To establish (2.40), we observe that

Aa(X ' ?m-l("fc) ' Cm(u))[DaUk(x) - D°U(X)]Í
Ja

(2 42) = IalAaiX' n^-^)A^u))~A-{x' Im-M' £«("))]

x [Dauk - Dau]

+ I Aa(x,nm_x(u),t;m(u))[Dauk(x)-Dau}.
Ja

From u £ Wm'p and (A-2), we see that Aa(x, nm_x(u), Cm(")) € Lp for

|q| = ra. Consequently, it follows from (2.27) that the second integral on

the right-hand side of the equality in (2.42) converges to zero as k — oo for

|a| = ra . Therefore (2.40) will follow once we show that

¿'"L L[A°iX' 'm-lí**)' i«("))-4»(*. *«-l(")> Cm("))]

x [Dauk - Dau] = 0

for |a| = ra. From (2.25) and Holder's inequality we see that this last limit

will follow once we show

(2.43)    lim  f[Aa(x, nm_x(uk), ÇJu)) - Aa(x, r,m_x(u), Çm(u))]Pl(p-X) = 0
k->oo Jc¡
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for |q| = ra. To see that (2.43) holds, we observe from (2.29) and (A-l) that

the integrand in (2.43) converges to zero as k ■— oo for a.e. x G £2. Also, we see

from (2.26) and (A-2) that the integrand in (2.43) is absolutely equi-integrable,

i.e., given e > 0, 30 s.t. meas E < ô =►

fE\*a(x> "m-x(^k)^m(u))-Aa(x, nm_x(u), Cm(u))\p/{p-x) <e

for |a| = ra and k = 1,2,... . Consequently, we conclude from EgorofFs

theorem [11, p. 75], that (2.43) holds. But this establishes (2.40). It remains to

establish (2.41).
To establish (2.41), we observe from (A-2) and (2.25) that 3K7 > 0 such

that

(2.44) [ \Aa(x, Zm(uk))\p'< KP'   for\a\ = mandk = l,2,....
Ja

Consequently, it follows from (2.26) and Holder's inequality that

lim  Í Aa(x,tlm(uk))Da(uk-u) = 0   for 0 < |q| < m - 1.
fc—°°Ja

But then we obtain from (1.2) and (2.33) that

(2.45) Um" /  £ Aa(x,clm(uk))[Dauk(x)-Dau(x)] < 0.
k-*°°Jsi\a\=m

Also, since u £ Wm'p , we have from (A-2) that Aa(x, Çm(u)) £ Lp for |a| =

m . Therefore from (2.40), which we have already established, we obtain that

Jîm   /    E   [4»(*.£m("*))-4.(*»*m-l("/fc).im(")N
(2.46) k^°°JaM=m

x[Dauk(x)-Dau(x)]<0.

But from (A-3) it follows that the integrand in this last expression is nonnegative

for a.e. x G £2 for k = 1, 2, ... . Consequently, the integral is nonnegative for

every k, and we conclude that

lim  f  J2 [AMAm(uk))-Aa(x,r¡m_x(Uk)^m^u))x
(2.47) ^°°-Wm

x [Dauk-Du] = 0.

This last limit coupled with (2.40) gives (2.41). Since (2.40) has already been

established, we have that (2.35) is indeed true.

In order to establish (2.34), it remains to show that (2.36) holds. To accom-

plish this we proceed as follows.

Let £22 c £2 be the set where the limits in (2.29) and (2.35) hold, where

f/J"*/*))' £m("(x))> Aa(x> ^m-i("*/*))> Cm(w(x))), h(x),and Z(x) are

finite-valued for  1 < |a| < ra  and  / = 1,2,..., and also where (A-2) and
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(A-4) hold. Then £22 has the same Lebesgue measure as £2, and to establish

(2.36) it is sufficient to show that

(2.48) {\Çm(uk(x))\}h=x   *s Ponitwise bounded for x G £22.

To the contrary, suppose that there exist a point x0 G £22 and a subsequence

{|CmK. (*))|}~, suchthat

(2.49) lim |Cm(wfc. (*o))| = oo.
/—»OO J I

Let e > 0 be such that e < 1 and p - e > 1. Then it follows from (A-4)

that

(2.50)
^    E    AMo^m-X{ukj),ím(uk))Dauk¡(x0) + Z(x0).

X<\a\<m

Also, for fixed k, we have that

Aa(x,Çm(uk(x)))Dauk(x)

= Aa(x>Zm(uk(x)))Dau(x)

(2.51) +Aa(x, tlm_x(uk),Cm(u))[Dauk(x)-Dau(x)]

+ lAa{x,im(uk))-Aa(x,nm_l(uk),Cm(u)))

x [Dauk(x) - Dau(x)].

Next, we observe from (A-2), (2.29), (2.49), and the definition of £22 that both

lim Aa(x0, c\m(uk ))Dau(x0)/\Cm(uk (x0))\p~e = 0,
/—»-00 )\ )¡

(2.52) Hm^^.»/^^   ),Cm(«))
v ' /—»oo i\

x [Dauk (x0)-Dau(x0)]/\C.m(uk (x0))\p~E = 0
u 'i

for 1 < |a| < ra . Also from the same observation we have

lim[Aa(x0,clm(uk ))-Aa(x0, nm_x(uk ),Cm(u))]
(2-53) Mo° a      "

x[Dauk (x0)-Dau(x0)]/\Cm(uk (x0))\p £ = 0

for  1 < |a| < ra - 1 .  Furthermore, from (2.35), (2.49) and the definition of

£22 we have

te ^ {[^(*o' *«(«*)) - A«(Xo> ?*-i("* ), Cm(uk¡))]
(2.54) W=m

x[Dauk (x0)-Dau(x0)]}/\Cm(uk (x0))\p-£ = 0.

Dividing both sides of (2.50) by \ÇJuk (x0))\p~E and using (2.51 )-(2.54), we
u

obtain that

c0 lim \CJuk (x0))|£ = 0.
Í—»OO J I
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Since c0 is positive, this gives that

lim|Cm(%(x0))r = 0.
/—»00 J I

But this fact is a direct contradiction of (2.49). We conclude that (2.48) is true.

Since £2 - £22 is a set of Lebesgue measure zero, (2.36) is established. As we

have shown earlier, (2.35) and (2.36) imply that (2.34) holds. Hence (2.34) is

established.

It remains to show that (2.24) holds. In order to do this we observe that

(2.55) {ICm(Wt (x))\P}%¡    is absolutely equi-integrable.

This fact follows from (2.50) with x0 replaced by x, (2.51), and the following

four observations:

(2.56) {Aa(x, Çm(uk(x)))Dau}°°=x   is absolutely equi-integrable

for 1 < |a| < ra ;

(2.57)
iAa(x > ̂ m-i("fc.) ' Cm(w))[ßawfc. - Dau]}°°=x   is absolutely equi-integrable

for 1 < |a| < ra ;

{[Aa(x,im(ukj))-Aa(x, r,m_x(ukj), Cm(u))][Dauk]-Dau]}%x

is absolutely equi-integrable

for 1 < |a| < ra - 1 ;

(2.59) the integrand in (2.41)   is nonnegative.

Next, we observe from (2.34) that

lim |7J)qm. (x) - Dau(x)\p = 0   a.e. in £2
)->oo j

for |a| = ra . From (2.55), we have that

{\Dauk - Dau\p}c°=x    is absolutely equi-integrable for |a| = ra.

Hence, it follows from Egoroffs theorem that

lim [ \Dauk - Dau\p = 0   for lal
2—oo Ja Ki

m

This fact coupled with (2.26) gives (2.24). Hence T satisfies condition (S+),

and the proof of the proposition is complete.

3. Proof of Theorem 1

To prove Theorem 1 we invoke Proposition 1 and obtain a sequence {un)°^=x

such that

(3.1) m   £Wm'p   satisfies (2.4) for n = 1, 2,... .



RESONANCE AND THE SECOND BVP 377

We claim that

(3.2) {llMJ>*"""}^li   is a uniformly bounded sequence.

Suppose the claim in (3.2) is false.  Then without loss in generality, we can

assume

(3.3) Urn \\un\\wm.P = oo.

Replacing v with un in (2.4), we notice the first integral on the left-hand side

is nonnegative, and apply (A-4) and (f-3) to obtain

Í Y'2
ci\    E    I^Xl2?     <G(un)+ f h(x)\un\+ ( Z(x),

Ja [x<\a\<m J Ja JSÏ

where h G Lq   and c > 0. From (2.3), this last inequality, and the fact that

G £ [Wm'p]*, we see there is a constant K% such that

í Y'2
(3.4) f\    £    \Daun\2\      <K&\\un\\wm.P+ [ Z(x).

Ja ll<N<m J Jii

Setting

(3.5) vn = un/\\un\\wm.P

and dividing both sides of (3.4) by ||wj|^>»,j>, we obtain

Í Y12
I \    E    I^Xl2        $ K»\K\\#-> + I Z(x)\\un\\-wpm,P.
Jn{x<\a\<m J Ja

Now p > 1, and we conclude from (3.3) and this last inequality that

(3.6) lim  f \Dav\p = 0   for 1< \a\ <
»-0%'       "' "

Next, from (3.5) we see that

(3.7) \\vn\\wm,P = l    for n = 1,2,....

Hence, ||v„||^»..i = 1, and from (2.1) we obtain that

i-ii*X+ E lililí-
l<|a|<m

We infer from (3.6) and this last equality that

(3.8) hm|h;J|L, = l.

Next, we see from (3.7) that {H^JI^™.P}^LX is a uniformly bounded se-

quence. Consequently we obtain from the compact imbedding theorem [1, p.

144] and the fact that Wm'p is a separable reflexive Banach space [1, p. 47]

ra.
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the existence of a subsequence (which for ease of notation, we take to be the

full sequence) and a function v0 with the following properties:

ra.

(3.9) v0£W'""J,

(3.10) lim \\Davn - Dav0\\LP = 0   for \a\<m-I,

(3.11) lim / Davw= / Davnw   Vu» G Lp and |a| =
"— Ja Ja      °

(3.12) limG(vn) = G(v0),
n—»oo " u

(3.13) lim Dav (x) = DavJx)   for a.e. x G £2 and |q| < ra - 1.
n—»oo

Also from (2.3),

(3.14) {IIuJIl«}^Li    is a uniformly bounded sequence.

With h as in (f-3), i.e., h £ Lq , it follows from (3.14) and Holder's inequal-

ity that the sequence {hvn}°^=x is absolutely equi-integrable. Consequently, it

follows from (3.13) and Egoroffs theorem that

(3.15) limjnhK\ = fah\v0\.

i
Next, we observe from (3.6), (3.10), and (3.11) that faDav0w = 0 for w £ Lp

and 1 < |a| < ra. Consequently, Dav0 = 0 a.e' in £2 for 1 < |a| < ra. Since

£2 is a bounded open connected set, we conclude that v0 = constant a.e. in £2.

From (3.8) and (3.10), we obtain that \\v0\\Lp = 1. Hence this constant is not

zero. Therefore, this constant is either positive or negative. We shall assume

it is positive. A similar argument will work in case it is negative. Hence, we

assume

(3.16) vo = c4   for a.e. x g £2,

where c4 = [meas£2]_1/p . Continuing with the proof, we invoke (3.1) and put

vn = un/\\un\\xvm.P in place of v in (2.4) and observe from (1.2) and (A-4) that

(3.17) -\\un\\-wl.P [ Z(x) < G(vn)+ [ f"(x, un)vn
Ja Ja

for « = 1,2,.... Consequently, using (f-3), we infer from (3.17) that

f[h(x)\vn\-fn(x, un)vn}- f h(x)\vn\ < G(vn) + \\un\\-^m.P f Z(x).
Ja Ja Ja

Since Z g Lx(Çï), we obtain from (3.3), (3.12), and this last inequality that

(3.18) liminf|^[/i(x)K|-r(x,M„)i;J-£A(x)|i;n|}<G(Vo).
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From (f-3) we have h(x)\vn\-fn(x, un)vn > 0 a.e. in £2. Hence, using Fatou's

lemma [11, p. 24] in conjunction with (3.13), (3.15), and (3.16), we obtain from

(3.18) that

(3.19) -c4 / limsup/"(x, un) < G(c4).
Jil   n-»oo

Now un = ^„||w„||pf"«-i" • Therefore we have from (3.3), (3.13), and (3.16) that

limn^ooun(x) = oo a.e. in £2. It is an easy matter to check from (2.2) that

limsupn_>oo/'!(x, un) < f+(x). (Note also from (f-3) that f+(x) < h(x) a.e. in

£2.) Consequently, we conclude from (3.19) and the fact that c4 is a positive

constant that -<7(1) < /fi/+(x). But this fact contradicts the first inequality

in assumption (1.3). Hence (3.3) is false and claim (3.2) is established.

One notes from (3.2) there exists a constant K9 such that

(3.20) \\un\\wm.P<K9   for « = 1,2.

It therefore follows from the compact imbedding theorem [1, p. 144] and the

fact that Wm'p is a separable reflexive Banach space that there exists a sub-

sequence (which for ease of notation we take to be the full sequence) and a

function u   such that

(3.21) u£Wm'p,

(3.22) lim \\Dau-Dau\\,P = 0   for |a| < ra - 1,
n—»oo "

(3.23) lim  ( Dauw= f Dauw   TOj g Lp and |q| = ra,
n^°°Ja Ja

(3.24) lim G(un) = G(u),
n—»oo '

(3.25) lim nm_x(un(x)) = nm_x(u(x))   for a.e. x G £2.
n—»oo

We next propose to show there exists a subsequence {un }^LX s.t.

(3.26) lim Cm(u„k(x)) = Cm(u*(x))   for a.e. x G £2.

As in the proof of Proposition 1, once (3.26) is established, it will be an easy

matter to establish Theorem 1 from (3.20)-(3.26).

To establish (3.26), it is sufficient to establish the following two facts:

(1) 3 a subsequence {un }^, s.t.

¿im    J2   K(^.?/m-l(%)'Cw(^))-^a(x,^_1(^),Cm(M#))]
(3.27)      "X\°\=m

x [Daun (x) - Dau (x)] = 0   for a.e. x G £2,

where ZJu   ) = (r]m_x(u   ), (Ju   )).
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(2) With {un }£1, designating the same subsequence as in (3.27),

(3.28) {ICm(w„ (x))l}fcli   is pointwise bounded for a.e. x G £2.

The proof that (3.27) and (3.28) imply (3.26) is the same that is used in the

proof of Proposition 1 to show that (2.35) and (2.36) imply (2.34).

To establish (3.27) we show separately that

(3.29) Urn [ £ Aa(x, nm_x(un), Çm(u*))[Daun(x) -Dau*(x)] = 0

a\a\=m

and

(3.30) ÏÏm [ £ Aa(x,tlm(un))[Daun(x)-Dau*(x)] < 0.

Once again the proof that (3.29) and (3.30) imply (3.27) is similar to that which

was used in Proposition 1 to show that (2.40) and (2.41) imply (2.35) using

(A-3) and [11, p. 70]. We leave the details to the reader. Also the proof that

(3.29) holds is the same as the proof given for (2.40) in Proposition 1. We leave

the details to the reader.

We now establish (3.30). We observe from (A-2) and (3.20) that there exists

a Kxo such that

(3.31) I \Aa(x, Zm(un))\Pl(p-x) < Kpxo   for 1 < H < m and « = 1,2,....
Ja

Consequently, we obtain from (3.22) and Holder's inequality that

Um J Aa(x,tlm(un))[Daun - Dau] = 0   for 1 < |a| < ra - 1.

Hence (3.30) will follow once we show

(3.32) ml    £   ^,<>„))[I>X-i>V]<0.
aX<\a\<m

Now from (1.2), we see that (3.32) is the same as

(3.33) hmcf(un,u-u)<0.
v ' n->oo     v   "       " ' —

Hence, (3.30) will follow once we show that (3.33) holds. To establish (3.33),

we use (3.1) and replace v in (2.4) by un - u   to obtain

(3.34)

€(un , un - u) = G(un -u)+ ¡ fn(x, un)(un - u)
Ja

-n     \ sgnwjwj     (un-u).
Ja

From (3.20), we see that {||m„||lp} is a uniformly bounded sequence. Also from

(3.22) we have that limn_>oo \un - u*\LP = 0. Hence it follows from Holder's

inequality that

(3.35) limn     / sgn« \u f l(un-u) = 0.
"-°°       Ja
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We claim

(3.36) lim [ f(x, un)(un -u)<0.
"-*00 Ja

To establish (3.36), we observe from (2.3) and (3.20) that there exists a constant

Kxx such that

(3.37) ll«JUf<*n    for «=1,2,....

Next we observe from (f-1) and (3.25) that lim/I_f0o/"(x, un) = f(x, u#) a.e.

in £2. Hence it follows from (3.25) that

(3.38) lim f(x,un)(un-u) = 0   a.e. in £2.

Also given e > 0, we observe 3¿ > 0 such that if (meas E) < ô then

nm W   fE\f(x,un)u*\<e   for« = l,2,...,
1 •    ; (ii)    IEf(x,un)un<e     forn = l,2,....

To see that (3.39)(i) holds, we observe from (f-2) that \f"(x, un)\ < hx(x) +

K'\un\q~ a.e. in £2 where hx £ Lq for n = 1, 2, ... . Hence it follows

from (3.37) that {¡n \fn(x, un)\q }™=x is a uniformly bounded sequence, and

(3.39)(i) follows immediately from Holder's inequality and the fact that u £

Lq.
To establish (3.39)(ii), we observe from (f-3) and (3.37) that

//(x,«,K</£K<{/tt»r'}",x11.

Since h £ Lq , (3.39)(ii) follows from this last inequality.

To establish (3.36), let e > 0 be given and choose ô > 0 such that if

(meas27) < ô, (3.39)(i) and (ii) hold. Next, using EgorofFs theorem in con-

junction with (3.38), we see 3E with (meas 77) < S such that

lim f"(x, un)(un - u ) = 0   uniformly in £2 - E.

Consequently, 3«0 such that for n> n0

\f"(x, un)(un - u )\ < e(meas£2)~     for x G £2- 27.

It therefore follows from (3.39)(i) and (ii) and this last fact that

/ f"(x, u )(un - u) < 3e   for n > n0.
Ja

Since s is an arbitrary positive number, (3.36) follows immediately from this

last inequality.

From (3.34), (3.24), (3.35), and (3.36), we see that (3.33) does indeed hold.
Since (3.33) implies (3.30) via (3.32), we see also that (3.30) is established.

Since (3.29) is already established, (3.27) follows from (A-3) and [11, p. 70].

It remains to establish (3.28). Now the proof that (3.28) holds is the same as
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the proof that (2.36) holds in the proof of Proposition 1. Replace uk by un ,

uv   by u„ , uk    by u„   , and u by u* and (3.28) follows. Hence (3.28) is
Kj "k Kj, "k,

established. As we have already observed, (3.27) and (3.28) imply (3.26).

To complete the proof of the theorem, we have to show that (3.20)-(3.26)

along with (3.1) gives (1.4). In order to accomplish this, let v £ Wm'p be given.

Then it follows from (3.1), (2.4), and (1.2) that

(3.40) i<l<*l<M
E       [Aa(X ' tm(Unk))DaV + "k"  f Sè^K/   'V

= G(v)+ [ f*(x,u   )v.
Ja k

From (3.20), we see that \\un \\LP < K9 for k = 1,2,.... Hence it follows

from Holder's inequality and v £ Wm'p that

(3.41) lim(«fc)_1 / s%nun \un \p~Xv = 0.

Next, from (f-2) we see that a.e. in £2

(3.42) \f"(x,un)\<hx(x) + K'\un\q-x   for A: = 1,2,...,

where hx £ Lq . Also, we see from Holder's inequality that

r , r r        ï (-i-x)/q ( r      )X/q

(3.43, /,W-'M*{/0W}       {¿W}    ■
where E is a measurable subset of £2. From (2.3) and (3.20), we see that

the first integral on the right-hand side of the inequality in (3.43) is uniformly

bounded in n . Hence it follows from (3.42) and (3.43) that

(3.44) {fix, wjf}^!    is absolutely equi-integrable.

Likewise, we see from (f-1), (2.2), and (3.25) that

(3.45) Urn f"(x, u)v(x) = f(x, u )v(x)   a.e. in £2.
n—»oo "

It consequently follows from Egoroffs theorem, (3.44), and (3.45) that

(3.46) lim f f"k(x, un )v = f f(x, u)v .
k—°° Ja *        Ja

Next, with {un }^°=1  the subsequence given in (3.26), we obtain from (A-l),

(3.25), and (3.26) that

lim Aa(x, £m(u   (x)))Dav(x)

(3.47) ^°°
= Aa(x, £,m(u(x)))Dav(x)   a.e. in £2

for 1 < |q| < ra . Also, we see from (3.20) and (A-2) that (3.31) holds. Hence it

follows from Holder's inequality that (2.17)' holds with Kx0 and nk replacing

K4 and k respectively. Consequently

(3.48) {Aa(x, Çm(un ))Dav}™=x    is absolutely equi-integrable
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for 1 < |a| < ra. Hence it follows from (3.47), (3.48), and EgorofPs theorem

that

(3.49) lim / Aa(x, Çm(un ))Dav = [ Aa(x Am(u))Dav
k-KxJa k Ja

for 1 < |a| < ra . From (3.40), (3.41), (3.46), and (3.49), we obtain that

E    I Aa{x,ím{u))Dav = G(v)+ f f(x,u)v   \/v£Wm'p.
X<\a\<mJa JC1

But from (1.2), we see that this last equality is the same as (1.4), and the proof

of Theorem 1 is complete.

4. Proof of Theorem 2

To prove Theorem 2, for n a positive integer, we set

(4.1) fn(x,t) = f(x,t)-sgnt\t\p-Xn-x.

It is clear fn(x, t) meets conditions (f-1). In (f-2) we have q > p forp>

Nm~x and q = pN/(N-pm) for 1 < p < Nm~x. So q > p also in this latter

case. From the fact that f(x, t) meets (f-2), it follows that

|/„(x, 01 <hx(x) + K'\t\q~x + \t\p~xn'x   fora.e. xGQandwGR,

where hx £ Lq . Since q - 1 > p - 1 in all cases, it follows from this last

inequality that fn(x, t) also meets (f-2). Next, taking e = (2n)~ in (f-4), we

see that

tf„(x, t) < h*2n)-i(x)\t\   for a.e. x G £2 and |i| > i0(l/2«).

Consequently, it follows from (f-2) that fn(x, t) also meets (f-3). We record

all this as

(4.2) fn(x> 0 meets conditions (f-1)—(f-3).

Taking s = (2n)~l in (f-4) once again, we see from (4.1) that

fn(x,t)<-tp-x/2n + h¡2n)-Ax)

for t > t0(l/2n) and a.e. x G £2. It therefore follows that

(4.3) limsup/n(x, t) = -oo   for a.e. x G £2.
t—»oo

In a similar manner, using (f-4) for t < -t0(l/2n), we obtain that

(4.4) liminf/ix, t) = oo   for a.e. xg£2.
t—»—oo     "

Next, we observe that C7(l) is always finite-valued. It consequently follows

from (4.1)-(4.4) and Theorem 1 that 3{un}™=x with un £ Wm'p s.t.

tf(un, v) = G(v) - n~x / sgnuju \p~Xv
Ja

(4.5)
/ f(x,un)v
Ja

- I f(x,u)v   W£Wm'p .
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We claim that

(4.6) {llM„lln/m"}^=i    is a uniformly bounded sequence.

Suppose the claim in (4.6) is false.  Then without loss in generality, we can

assume that

(4.7) lim IIw-IIk"».*. = oo.
n—»oo

Replacing v by un in (4.5) and using (A-4), we see that

(4.8) cQ[\    £    \Daun\2\     <G(un)+f f(x,un)un+ f Z(x).

Also, we note 3KX2 such that

(4.8)' \G(w)\<KX2\\w\\wm.P   Wui£Wm'p.

We set

(4.9) vn = uJWun\\wm-'    for « = 1,2,...

and obtain from the last stated inequality on dividing both sides of (4.8) by

in\\tv",,p that

(4.10)     c0\\D\\\pL, < \\unfwpm,f Kx2\\uJwn,.P+ / f(x,un)un+ / Z(x)
Ja Ja

for 1 < |o¡| < ra .

To handle the first integral on the right-hand side of the inequality in (4.10),

we proceed as follows. Given e > 0, we set

(4.11) Bne = {x:\un(x)\<t0(e)},

where tQ(e) is the constant in (f-4). We then have from (f-4) that

/ f(x, un)un < /     f(x,un)un + e / \u/ + / «*(x)|uj.
Ja Jb Ja Jan . t

It consequently follows from (4.11), (f-2), Holder's inequality, (2.3), and (4.7)

all applied to this last inequality that

limsupHwJ^M., / f(x, un)un <e.
n-»oo Ja

Since e is an arbitrary positive number, we conclude

(4.12) limsupllMj^,., / f(x, un)un <0.
n—»oo Ja

Recalling that c0 is a positive constant and that Z g Lx, we see from (4.10)

and (4.12) that

(4.13) lim \\Dav ||,„ =0   for 1 < |a| < m.
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Now from (2.1) and (4.9) we see that

(4.14) l = \\vn\\Pwm,P = \\vn\\PLP+    ¿2    P>XlH"
l<|o|<w

Hence, from (4.13) we obtain

(4.15) Um>JL, = l.
n—»oo

Next, as in the proof of Theorem 1, we use the compact imbedding theorem [1,

p. 144] along with the fact that Wm'p is a separable reflexive Banach space to

obtain (3.9)—(3.14). In particular from (3.10), we have that

lim\\Davn-D\\\LP=0

for |q| = 1. Hence we conclude from (4.13) that Dav0 = 0 a.e. in £2 for

|q| = 1 . Since £2 is a bounded open connected set, it follows that v0 = constant

a.e. in £2. From (3.10) and (4.13)—(4.15) we see that ||«0||L¡> = 1. Therefore

v0 = [meas£2]~1/p or v0 = -[meas £2]~x/p a.e. in £2. We shall suppose the

former case holds and conclude the proof to the theorem on this basis. In case

the latter case holds, a similar proof prevails. Therefore we have that

(4.16) vQ = [meas£2]~       a.e. in £2.

Also from (3.13) we see that

(4.17) lim v(x) = [measQ]-1^   a.e. in £2.
n—»oo    "

Next taking v = un once again in (4.5), we see from (A-4) that

(4.18) 0<G(un)+ f f(x,un)un+ ¡ Z(x).
Ja Ja

i
Also, taking e = 1 in both (f-2) and (f-4), we see that 3«** g Lq   s.t.

(4.19) tf(x,t)<\t\p + h"(x)\t\   WGRanda.e. xg£2.

Using (4.19) in conjunction with (4.18), we obtain

f{\u„f + h**(x)\un\-f(x,un)un}
(4.20) Ja

<G(un)+     [\un\p + h**(x)un]+ / Z(x),
Ja Ja

where all integrands are nonnegative a.e. in £2.

Now, from (2.3), (4.7), and Holder's inequality, we see that

(4.21) lim IImJ^I., f h**(x)\un\=0.
n-»oo      n   n       Ja

Likewise, we see from (4.8)' and (4.7) that

(4.22) limG(W„)||M„||7/m.P=0.
n—»oo "        "   "
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Hence dividing both sides of (4.20) by ||w„||^'»./> and using (4.7), (4.15), (4.21),

and (4.22), we obtain

liminf j \\unW^m,P{\un\p + h**(x)\un\-f(x,un)un}< 1.

From (4.19) we see, for every «, the integrand in this last inequality is non-

negative a.e. in £2. Hence, it follows from Fatou's lemma [11, p. 24] that

/ liminf\\un\\^m.P{\un\p + h**(x)\un\ - f(x, un)un} < I.

From (4.17) we therefore have that

(4.23) / Umeas£2]_1 -limsup/(x, «„)"JMJir"" r - 1-
Ja  I n—oo J

Now un(x) = \\un\\wm,Pvn(x). Consequently it follows from (4.7) and (4.17)

that lim^^ un(x) = oo a.e. in £2. Also,

f(x, un)un(x)\\unW^m,P =f(x, un)\vn(x)\p/sgnun(x)\un(x)\p~x.

We consequently obtain from (1.10), (4.17), and (4.23) that

/ {[meas£2]_1 - [meas£2]"'^(x)} < 1.
Ja

But then /n^(x) > 0 and this is a direct contradiction of the first inequality

in assumption (1.11) in the hypothesis of Theorem 2. We conclude that (4.7)

is false and the claim in (4.6) is true.

The claim in (4.6) in the proof of this theorem corresponds to the claim

in (3.2) and (3.20) in the proof of Theorem 1. A close reading of the proof

of Theorem 1 shows that from (3.20) forward except for (3.39)(ii), the proof

only makes use of conditions (f-1) and (f-2) when dealing with f"(x, un). The

analogue of (3.39)(ii) for the proof of Theorem 2 is: given e > 0, 3¿ > 0 such

that if (meas77) < ô then fEf(x, un)un < e for « = 1,2,.... But this fact

follows easily from (f-4), (4.6), (2.3), and Holder's inequality. Since (f-1) and

(f-2) are part of the conditions in the hypothesis of Theorem 2, we see therefore

that the completion of the proof of Theorem 2 is the same as that for Theorem

1 from (3.20) forward. Hence the proof of Theorem 2 is complete.

5. A CONCLUDING REMARK

In this section, we prove a remark which shows that under certain special

circumstances, condition (1.3) in the statement of Theorem 1 can be both nec-

essary and sufficient for the solution of (1.4).

Remark. Let 1 < p < oo and let Q be a bounded open connected set with

the cone property. Suppose that tf(u, v) is given by (1.2) where AQ(x, <*m)

satisfies (A-l)-(A-4) for 1 < |a| < ra and that f(t) is a bounded continuous

function defined on R. Suppose also that limr_±oo f(t) = /(±) exists and that
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/(+) < /(f) < /(-) for (el. Then a necessary and sufficient condition that

3i/g Wm'p suchthat

(5.1) @(u ,v) = G(v)+ [ f(u*)v   Vv£rVm'p
Ja

is that

(5.2) /(+)<-[meas £2f'(7(1) </(-).

That condition (5.2) is sufficient follows immediately from Theorem 1 be-

cause the conditions in the hypothesis of the remark imply those of Theorem 1

and (5.2) in this case is the same as (1.3).

To see that condition (5.2) is necessary, suppose u £ Wm'p exists satisfying

(5.1). Setting v = 1 in (5.1), we see from (1.2) that

(5.3) -G(l)= [ f(u#).
Ja

By hypothesis /(+) < f(u*(x)) < /(-) for a.e. x G £2. Hence faf(+) <

Jaf(u#) < Jii/(-) • This fact combined with (5.3) gives (5.2) and the proof of
the remark is complete.
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