SUPPORT ALGEBRAS OF σ -UNITAL C^{*}-ALGEBRAS AND THEIR QUASI-MULTIPLIERS

HUAXIN LIN

ABSTRACT. We study certain dense hereditary *-subalgebras of σ -unital C^{*}algebras and their relations with the Pedersen ideals. The quasi-multipliers of the dense hereditary *-subalgebras are also studied.

1. INTRODUCTION

Let A be a C^* -algebra and K(A) its Pedersen's ideal. When A is commutative, that is, $A = C_0(A)$, the algebra of all complex valued continuous functions which vanish at infinity on some locally compact Hausdorff space X, then $K(A) = C_{00}(X)$, the algebra of all complex valued continuous functions with compact support. In [15], we define a dense hereditary *-subalgebra A_{00} (we used the notation $C_{00}(A)$ there) of a σ -unital C^* -algebra which satisfies:

- (i) For every a in (A_{00}) , there is a b in (A_{00}) such that $[a] \le b$, where [a] is the range projection of a in A^{**} .
- (ii) If A is nonunital, $A_{00} \neq A$.
- (iii) When $A = C_0(X)$, $A_{00} = C_{00}(X)$.

Naturally, we may view A_{00} as a noncommutative analogue of $C_{00}(X)$. In fact the algebra A_{00} plays an important role in [15]. In this paper we shall study the relation between A_{00} and K(A). We also study the quasi-multipliers of A_{00} . In the view of [11], where Lazer and Taylor studied the multipliers of K(A) as a noncommutative analogue of (unbounded) continuous functions on locally compact Hausdorff space X, the quasi-multipliers of A_{00} is another noncommutative analogue of C(X). The reason our attention is focused on the quasi-multipliers of A_{00} and not on the multipliers of A_{00} is that the set of multipliers of A_{00} may not contain A and is not closed under a natural topology.

We denote the quasi-multipliers of A_{00} by $QM(A_{00})$. In §2, we give some basic concepts and facts related to quasi-multipliers of A_{00} . In §3, we study the order structure $QM(A_{00})$. We also show that $QM(A_{00}) = LM(A_{00}) + RM(A_{00})$ (a similar equation for A has been studied in [16, 3, 13, 14]). In §4, we

©1991 American Mathematical Society 0002-9947/91 \$1.00 + \$.25 per page

Received by the editors September 2, 1987 and, in revised form, May 15, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46L05.

This work was done while the author was visiting the University of California, Santa Barbara.

HUAXIN LIN

prove an extension theorem in the sense of Tietse. We also give a version of the Dauns-Hofmann theorem for $QM(A_{00})$. In §5, we study the dual and bidual spaces of $QM(A_{00})$. We find that $QM(A_{00})''$, the bidual of $QM(A_{00})$, is isomorphic to the quasi-multipliers of the support algebra of $M_0(A)$, the hereditary C^* -subalgebra of A^{**} generated by A. In §6, we study the problem when $A_{00} = K(A)$. Finally, in §7, we consider the uniqueness of A_{00} for certain C^* -algebras.

We shall be utilizing the following notations throughout this paper. Suppose that A is a C^* -algebra. Then K(A) denotes the Pedersen's ideal (for a definition see [17 or 18, 5.6]), and M(A), LM(A), RM(A), and QM(A) denote the multipliers, left multipliers, right multipliers, and quasi-multipliers of A, respectively (see [18, 3.12]). For the element a in the C^* -algebra A, [a] shall denote the range projection of a in the enveloping W^* -algebra A^{**} . Any other unexplained notation may be found in [18 or 4].

2. Preliminaries

2.1. Let A be a σ -unital C^{*}-algebra. Then A has a strictly positive element e. Let $f_n(t)$ be continuous functions satisfying

(i)
$$0 \le f_n(t) \le 1;$$

(ii)
$$f_n(t) = 0$$
 if and only if $0 \le t \le 1/2n$;

(iii) $f_n(t) = 1 \quad \text{if } t \ge 1/n.$

Define $e_n = f_n(e)$. Then $\{e_n\}$ forms an approximate identity for A. Moreover, $e_{n+1}e_n = e_ne_{n+1} = e_n$ for all n. Let χ_n be the characteristic function of the set (1/2n, ||e||). Then $p_n = \chi_n(e)$ is an open projection of A such that $[e_n] = p_n$ and $e_n \le p_n \le e_{n+1}$.

2.2. **Definition.** Let A and p_n be as in 2.1. Denote the hereditary C^* -subalgebra $p_n A^{**} p_n \cap A$ by A_n . We call $\bigcup_{n=1}^{\infty} A_n$ a support algebra of A and denote it by A_{00} (or $A_{00}(e)$, or $A_{00}(\{e_n\})$).

2.3. By [15, 1.1], A_{00} is a norm dense, hereditary *-subalgebra of A contained in K(A). Since $e \notin A_{00}$, if A is not unital, then $A_{00} \neq A$. Moreover, for every $a \in (A_{00})_+$, there is an n such that $[a] \leq e_n$. Thus, as in [15], we regard A_{00} as a noncommutative analogue of $C_{00}(X)$.

2.4. **Example.** Let X be a locally compact, σ -compact Hausdorff space and let $A = C_0(X)$. (σ -compact means $X = \bigcup_{n=1}^{\infty} X_n$, where each X_n is compact.) Then for any strictly positive element e, $A_{00}(e) = C_{00}(X)$.

2.5. Example. Let H be a separable Hilbert space and let A = K, the compact operators on H. Let $\{H_n\}$ be an increasing sequence of finite-dimensional subspaces of H such that $\bigcup_{n=1}^{\infty} H_n$ is dense in H. Denote by M_n the set of bounded linear operators on H_n . Then $\bigcup_n M_n$ is a support algebra for A = K. We shall see in §7 that, up to isomorphisms, $\bigcup_n M_n$ is the only support algebra for K.

2.6. Lemma. Suppose that A is a C^{*}-algebra. Let $a, p \in A_+$ and $p \le a \le 1$. If p is a projection, the ap = pa = p.

2.7. Lemma. Suppose that $a_n \in A_+$, and p_n are open projections of A. If $\{a_n\}$ forms an approximate identity for A and $a_n \leq p_n \leq a_{n+1}$ for each n, then there is a support algebra A_{00} of A such that

$$A_{00} = p_n A^{**} p_n \cap A \, .$$

2.8. By 2.7, we may define A_{00} by an approximate identity $\{e_n\}$ together with open projections $\{p_n\}$ satisfying:

$$e_n \le p_n \le e_{n+1}$$
 for all n .

If $e_n \leq p_n \leq e_{n+1}$ for each *n*, then $e_{n+1}e_n = e_ne_{n+1} = e_n$. Conversely, if $e_{n+1}e_n = e_ne_{n+1} = e_n$, then $e_{n+1} \geq [e_n]$. Thus we will always assume that every support algebra A_{00} of *A* is defined by an approximate identity $\{e_n\}$ which satisfies $e_{n+1}e_n = e_ne_{n+1} = e_n$.

We now fix a σ -unital C^{*}-algebra A and a support algebra $A_{00} = A_{00}(\{e_n\})$.

2.9. **Definitions.** A linear map $\rho: A_{00} \to A_{00}$ is called a left, respectively right, multiplier if $\rho(ab) = \rho(a)b$, respectively $\rho(ab) = a\rho(b)$. A multiplier is a pair (ρ_1, ρ_2) consisting of a right multiplier ρ_1 and a left multiplier ρ_2 such that $\rho_1(a)b = a\rho_2(b)$ for all $a, b \in A_{00}$. A quasimultiplier is a bilinear map $\rho: A_{00} \to A_{00}$ such that for each fixed $a \in A_{00}$ the map $\rho(a, \cdot)$ is a left multiplier and the map $\rho(\cdot, a)$ is a right multiplier. We denote by $M(A_{00})$, $LM(A_{00})$, $RM(A_{00})$, and $QM(A_{00})$ the sets of multipliers, left multipliers, right multipliers, and quasi-multipliers of A_{00} , respectively.

2.10. Suppose that $\rho \in QM(A_{00})$, and a and $b \in A_{00}$. Then we denote the element $\rho(a, b)$ by $a \cdot \rho \cdot b$. If $\rho \in LM(A_{00})$, we denote $\rho(a)$ by $\rho \cdot a$ and if $\rho \in RM(A_{00})$, we denote $\rho(a)$ by $a \cdot \rho$. If $z = (\rho_1, \rho_2) \in M(A_{00})$, we denote $\rho_1(a)$ by $a \cdot z$ and $\rho_2(a)$ by $z \cdot a$.

2.11. For $a, b \in A_{00}$, we have the following seminorms:

(i)
$$z \to ||a \cdot z|| + ||z \cdot a||, \qquad z \in M(A_{00});$$

(ii)
$$z \to ||z \cdot a||, \qquad z \in LM(A_{\infty})$$
:

(iii)
$$z \to ||a \cdot z||, \qquad z \in RM(A_{00});$$

(iv)
$$z \to ||a \cdot z \cdot b||, \qquad z \in QM(A_{00}).$$

We define (A_{00}) -, L- A_{00} -, R- A_{00} -, and Q- A_{00} - topologies on $M(A_{00})$, $LM(A_{00})$, $RM(A_{00})$, and $QM(A_{00})$ to be those locally convex topologies generated by the seminorms (i), (ii), (iii), and (iv) (for all $a, b \in A_{00}$), respectively.

2.12. **Proposition.** $QM(A_{00})$ is a locally convex complete topological vector space under the Q-A₀₀-topology.

2.13. We define the following subsets of $QM(A_{00})$:

HUAXIN LIN

 $QM_l(A_{00}) = \{ \rho \in QM(A_{00}) : \text{ for each } k \text{, there exist } N(\rho, k) \text{ such that } \}$ $\rho(e_n, e_k) = \rho(e_m, e_k) \text{ if } n, m > N(\rho, k) \},$

 $QM_r(A_{00}) = \{ \rho \in QM(A_{00}) : \text{ for each } k \text{, there exists } N(\rho, k) \text{ such that } \}$ $\rho(e_k, e_n) = \rho(e_k, e_m) \text{ if } n, m > N(\rho, k) \},$ $\tilde{Q}M_{d}^{''}(A_{00}) = \tilde{Q}M_{l}^{''}(A_{00}) \cap QM_{r}(A_{00})$, and

 $QM^{b}(A_{00})$ is the subset of those elements in $QM(A_{00})$ such that

$$\sup\{\|a \cdot \rho \cdot b\| \colon a, \, b \in A_{00}, \ \|a\| \le 1, \ \|b\| \le 1\} < \infty.$$

2.14. Theorem. There are bijective correspondences between

(i)
$$QM_l(A_{00}) \quad and \quad LM(A_{00});$$

(ii)
$$QM_r(A_{00})$$
 and $RM(A_{00})$;

(iii)
$$QM_d(A_{00})$$
 and $M(A_{00})$;

 $QM_d(A_{00})$ and $M(A_{00});$ $QM^b(A_{00})$ and QM(A).(iv)

2.15. We shall use notations $LM(A_{00})$, $RM(A_{00})$, $M(A_{00})$, and QM(A) instead of $QM_l(A_{00})$, $QM_r(A_{00})$, $QM_d(A_{00})$, and $QM^b(A_{00})$. Thus

$$\begin{split} & M(A_{00}) \subset LM(A_{00}) \subset QM(A_{00}) \,, \\ & LM(A_{00}) \cap RM(A_{00}) = M(A_{00}) \,, \end{split}$$

and

$$A_{00} \subset A \subset QM(A) \subset QM(A_{00}).$$

2.16. Lemma. If A is not unital, then

$$QM(A_{00}) \neq QM^{b}(A_{00}) \quad (= QM(A)).$$

Proof. We may assume that $e_n - e_{n-1} \neq 0$ for all *n*. Define

$$z=\sum_{n=1}^{\infty}n(e_n-e_{n-1}),$$

where the convergence is in $Q - A_{00}$ -topology. Clearly $z \in QM(A_{00})$, but $z \notin QM^b(A_{00}).$

2.17. We notice that, in general, $A \not\subset M(A_{00})$ and $M(A_{00})$ is not complete under A_{00} -topology. These are the reasons why we choose $QM(A_{00})$ and not $M(A_{00})$ as our main subject.

2.18. **Proposition.** A_{00} is L- A_{00} - dense (respectively, R- A_{00} - dense, Q- A_{00} dense, and A_{00} -dense) in $LM(A_{00})$ (respectively in $RM(A_{00})$, $QM(A_{00})$, and $M(A_{00}))$.

2.19. We now define an operation " \cdot " on some of the elements of $QM(A_{00})$. If $\rho \in QM(A_{00})$, $y \in LM(A_{00})$, and $z \in RM(A_{00})$, we denote by $\rho \cdot y$ the element $\rho(\cdot, y(\cdot))$ and $z \cdot \rho$ the element $\rho(z(\cdot), \cdot)$. It is easy to see that " \cdot " is the "natural" extension of the multiplication on M(A).

2.20. Let $\rho \in QM(A_{00})$. The involution ρ^* of ρ is a quasi-multiplier defined by $\rho^*: (a, b) \to [\rho(b^*, a^*)]^*$. It is easy to see that the involution is conjugate linear and $Q - A_{00}$ -continuous. Moreover the involution is the extension of the original involution on QM(A). Thus

$$LM(A_{00})^* = RM(A_{00})$$

An element is called selfadjoint if $\rho = \rho^*$. We denote by $QM(A_{00})_{s.a.}$ the set of selfadjoint elements.

2.21. Example. Let X be a locally compact, σ -compact Hausdorff space, and let B be a unital C^{*}-algebra. Denote by A the C^{*}-algebra of all the continuous mappings from X into B vanishing at infinity. One of the support algebras (in fact, it is the only one) A_{00} is the set of all continuous mappings with compact supports. One can check that $QM(A_{00})$ is the set of all continuous mappings from X into B.

Throughout §§3-7, A will denote a σ -unital C^{*}-algebra, and A_{00} one of its support algebras. e, e_n , and A_n will be the same as in 2.1.

3. Decompositions

3.1. **Definition.** We say that an element $z \in QM(A_{00})$ is positive, denoted by $z \ge 0$, if $a^*za \ge 0$ for all $a \in A_{00}$. We let $QM(A_{00})_+$ denote the set of all positive elements in $QM(A_{00})$.

Suppose that y and $z \in QM(A_{00})$. We say that $z \ge y$ (or $y \le z$), if $z - y \ge 0$.

3.2. Corollary. The set $QM(A_{00})_+$ is a Q- A_{00} -closed real convex cone and $QM(A_{00})_+ \cap (-QM(A_{00})_+) = \{0\}$.

3.3. Proposition. Let $z \in QM(A_{00})$. Then

- (i) If $-y \le z \le y$ for some $y \in QM(A)_+$, then $z \in QM(A)$.
- (ii) If $-a \le z \le a$ for some $a \in A^+$, then $z \in A$.
- (iii) If $z \in LM(A_{00})$ and there is an element $a \in A^+$ such that $z^*z \leq a$, then $z \in A$.

Proof. (i) Since $y - z \ge 0$, $a^*(-y)a \le a^*za \le a^*ya$ for all $a \in A_{00}$. Therefore $a^*za \le a^*ya$. It follows that $z \in QM^b(A_{00}) = QM(A)$.

(ii) By (i), $z \in QM(A)$. Then by [1, Proposition 4.5], $z \in A$.

(iii) For every $b \in A_{00}$, we have $b^* z^* z b \le b^* a b$. Thus $||zb|| \le ||a^{1/2}b||$. Hence $z \in QM(A) \cap LM(A_{00})$. It follows from [1, Proposition 4.5] that z is in A.

3.4. Let $LM(A_{00}, AA_{00})$ denote the set of those linear mappings ρ from A_{00} into AA_{00} satisfying $\rho(xy) = \rho(x)y$ for all $x, y \in A_{00}$. As in §2, we can view $LM(A_{00}, AA_{00})$ as a subset of $QM(A_{00})$. If $x \in LM(A_{00}, AA_{00})$, we define $x^* \cdot x(a, b) = (a \cdot x^*)(x \cdot b)$. Hence $x^* \cdot x \in QM(A_{00})_+$.

Theorem. If $z \in QM(A_{00})_+$, then there is an $x \in LM(A_{00}AA_{00})$ 3.5. $(\subset QM(A_{00}))$ such that $x^* \cdot x = z$. *Proof.* Let $\alpha_k = \|z\|_{A_k \times A_k} \|$. Define $b_k = (1/\alpha_{k+1})(1/2)^k (e_k - e_{k-1})$ for k =1, 2, ... (where $e_0 = 0$), $a_k = \sum_{i=1}^k b_i$, and $b = \sum_{i=1}^\infty b_i$. Let $z_k = a_k z a_k$, $k = 1, 2, \ldots$. Then, if $k \ge m$

$$\begin{split} \|z_{k} - z_{m}\| &\leq \left\| \sum_{i=m+1}^{k} b_{1} z a_{k} \right\| + \left\| \sum_{j=m+1}^{k} a_{k} z b_{j} \right\| \\ &= \left\| \sum_{i=m+1}^{k} \sum_{j=1}^{k} b_{i} z b_{j} \right\| + \left\| \sum_{j=m+1}^{k} \sum_{i=1}^{k} b_{i} z b_{j} \right\| \\ &\leq \sum_{i=m+1}^{k} \sum_{j=1}^{k} (1/2)^{i+j} + \sum_{j=m+1}^{k} \sum_{i=1}^{k} (1/2)^{i+j} \\ &\leq 1/(2)^{m-1}. \end{split}$$

Thus z_k converges to a positive element h in A in norm. It is easy to see that $e_k h e_k = e_k z_{k+1} e_k$ for every k. Take $u_n = h^{1/2} (b^2 + 1/n)^{-1} b$. Then, for every k,

$$\begin{split} \|u_{n}e_{k}\|^{2} &= \|e_{k}b(b^{2}+1/n)^{-1}h(b^{2}+1/n)^{-1}be_{k}\| \\ &= \|b(b^{2}+1/n)^{-1}e_{k}he_{k}(b^{2}+1/n)^{-1}be_{k}\| \\ &= \|b(b^{2}+1/n)^{-1}a_{k+1}e_{k}he_{k}a_{k+1}(b^{2}+1/n)^{-1}be_{k}\| \\ &\leq \alpha_{k}\|b(b^{2}+1/n)^{-1}be_{k}a_{k+1}\|^{2} \leq \alpha_{k} \,. \end{split}$$

So $||u_n e_k||$ is bounded for every k. Put $d_{nm} = (1/n + b^2)^{-1} - (1/n + b^2)^{-1}$. Then, for each k,

$$\|u_{n}a_{k} - u_{m}a_{k}\|^{2} = \|h^{1/2}d_{nm}ba_{k}\|^{2}$$

= $\|bd_{nm}a_{k}ha_{k}d_{nm}b\|$
 $\leq \alpha_{k+1}\|bd_{nm}a_{k}a_{k+1}a_{k}d_{nm}b\|$
= $\alpha_{k+1}\|d_{nm}ba_{k}(a_{k+1})^{1/2}\|^{2}$.

From spectral theory we see that the sequence $\{(1/n + b^2)^{-1}ba_k(a_{k+1})^{1/2}\}$ is increasing to an element in A and by Dini's theorem it is uniformly convergent to it. Consequently

$$||d_{nm}ba_k(a_{k+1})^{1/2}|| \to 0,$$

so that $\{u_n a_k\}$ is norm convergent to an element in A for each k. Since $||u_n e_{k+1}||$ is bounded and $\overline{a_k A} \supset A_k$, it follows that $\{u_n y\}$ is norm convergent for every $y \in A_k$. Thus we have an element $x \in LM(A_{00}, AA_{00})$ defined by

$$x(a) = \lim u_n a$$
 for every $a \in A_{00}$.

It is easy to check that for every k,

$$a_{k+1}x^* \cdot a_{k+1} = a_{k+1}za_{k+1}$$

Therefore $x^* \cdot x = z$.

3.6. The idea of the proof of 3.5 is taken from [3, 4.9; and 18, 1.44]. The element x in 3.5 is in $QM(A_{00})$ but not in $QM(A_{00})_+$. In general, x may not be taken from $LM(A_{00})$.

3.7. Theorem. $QM(A_{00}) = LM(A_{00}) + RM(A_{00})$. *Proof.* Let $z \in QM(A_{00})$. Define

$$x = \sum_{k=1}^{\infty} e_k z(e_k - e_{k-1})$$

and

$$y = \sum_{k=1}^{\infty} (1 - e_k) z(e_k - e_{k-1}).$$

Both sums converge in Q- A_{00} -topology. It is easy to verify that $x \in LM(A_{00})$ and $y \in RM(A_{00})$. For every n,

$$\begin{split} e_n(x+y)e_n &= \left(\sum_{k=1}^{n-1} e_k z(e_k - e_{k-1} + e_n^2 z(e_n - e_{n-1})e_n + e_n z(e_{n+1} - e_n)e_n\right) \\ &+ \left(\sum_{k=1}^{n-1} (e_n - e_k) z(e_k - e_{k-1}) + (e_n - e_n^2) z(e_n - e_{n-1})e_n\right) \\ &= \left(\sum_{k=1}^{n-1} e_n ze_k - e_{k-1}\right) + e_n z(e_n - e_n) + e_n z(e_n^2 - e_{n-1}) \\ &= e_n ze_{n-1} + e_n z(e_n - e_{n-1}) = e_n ze_n \,. \end{split}$$

So x + y = z.

3.8. The problem when QM(A) = LM(A) + RM(A) had been studied in [16, 3, 13, 14]. In general, $QM(A) \neq LM(A) + RM(A)$.

4. The Tietze theorem and Dauns-Hofmann theorem

This section is inspired by [11]. Our results are similar to the corresponding ones in [11].

4.1. Let B be a σ -unital C^{*}-algebra and let ϕ be a *-homomorphism from A onto B. Then $B_{00} = \phi(A_{00})$ is a support algebra of B and ϕ can be extended to a linear map $\tilde{\phi}$ from $LM(A_{00})$ into $LM(B_{00})$ as follows:

(i)
$$\phi(z) \cdot \phi(a) = \phi(z \cdot a)$$

for $z \in LM(A_{00})$ and $a \in A_{00}$. We can further extend $\tilde{\phi}$ from $QM(A_{00})$ into $QM(B_0)$ by

(ii)
$$\phi(a) \cdot \dot{\phi}(z) \cdot \phi(b) = \phi(a \cdot z \cdot b)$$

for $z \in QM(A_{00})$ and $a, b \in A_{00}$. It can be verified that if $z \in QM(A_{00})$, $x \in LM(A_{00})$, $y \in RM(A_{00})$, and $a \in A_{00}$, then

(iii)
$$\phi(a) \cdot \tilde{\phi}(y) = \phi(a \cdot y);$$

(iv)
$$\tilde{\phi}(y \cdot z) = \tilde{\phi}(y) \cdot \tilde{\phi}(z);$$

- (v) $\tilde{\phi}(z \cdot x) = \tilde{\phi}(z) \cdot \tilde{\phi}(x);$
- (vi) $\tilde{\phi}(z)^* = \tilde{\phi}(z^*)$ and $\tilde{\phi}(z) \ge 0$ if $z \in QM(A_{00})_+$.

4.2. **Proposition.** The extension $\tilde{\phi}$ is continuous when $QM(A_{00})$ is considered with Q- A_{00} -topology and $QM(B_{00})$ with Q- B_{00} -topology.

4.3. Next we shall show that the extension ϕ is surjective. In view of 2.20, the following theorem can be regarded as a noncommutative extension of Tietze's theorem. The same results for bounded multipliers M(A) and bounded quasimultipliers QM(A) can be found in [9, 3]. A similar result for (unbounded) multipliers of K(A) can be found in [11].

4.4. Theorem. Let ϕ be a homomorphism from A onto B and $B_{00} = \phi(A_{00})$. Then

(i)
$$\tilde{\phi}(QM(A_{00})) = QM(B_{00});$$

(ii)
$$\tilde{\phi}(LM(A_{00})) = LM(B_{00});$$

(iii)
$$\tilde{\phi}(RM(A_{00})) = RM(B_{00});$$

(iv)
$$\phi(M(A_{00})) = M(B_{00}).$$

Proof. (i) We shall show that $\tilde{\phi}$ is surjective. Let $\overline{z} \in QM(B_{00})$ and $\overline{z}_k = \overline{e}_k \overline{z} \overline{e}_k$, where $\overline{e}_k = \phi(e_k)$, k = 1, 2, ... Suppose that $y_k \in A_{00}$ such that $\phi(y_k) = \overline{z}_k$. Let $z_1 = y_1$,

$$z_{k+1} = y_{k+1} - e_k y_{k+1} e_k + z_k$$
, $k = 1, 2, ...$

Then $z_{k+1} \in A_{00}$; moreover,

$$\phi(z_{k+1}) = \overline{z}_{k+1} - \overline{e}_k \overline{z}_{k+1} \overline{e}_k + \overline{z}_k = z_{k+1}.$$

If k > m, then

$$e_m(z_{k+1} - z_k)e_m = e_m y_{k+1}e_m - e_m e_k y_{k+1}e_k e_m + e_m z_k e_m - e_m z_k e_m.$$

Thus, if k, k' > m,

$$e_m(z_k-z_{k'})e_m=0.$$

So $\{z_k\}$ is a Q-A₀₀-Cauchy sequence. Suppose that $z = \lim z_k$. Then, by the continuity of $\tilde{\phi}$ (4.2),

$$\dot{\phi}(z) = \lim \phi(z_k) = \lim \overline{z}_k = \overline{z}.$$

Then $\tilde{\phi}$ is onto.

(ii) Let $\overline{x} \in LM(A_{00})$ and $\overline{x}_k = \overline{xe}_k$, $k = 1, 2, \dots$. Suppose that $a_k \in A_{00}$ such that $\phi(a_k) = \overline{x}_k$. Define $x_1 = a_1$ and $x_{k+1} = a_{k+1} - a_{k+1} \cdot e_k + x_k$,

k = 1, 2... Then $\phi(x_{k+1}) = \overline{x}_{k+1}$, k = 1, 2, ... As in (i), $\{x_{k+1}\}$ is an L- A_{00} -Cauchy sequence, hence a Q- A_{00} -Cauchy sequence. Let $x = \lim x_k$. Then $\tilde{\phi}(x) = x$. To show that $x \in LM(A_{00})$, take $a \in A_n$. Then

$$x_{k+1}a - x_ka = x_{k+1}e_{n+1}a - x_ke_{n+1}a$$
$$= (x_{k+1} - x_k)e_{n+1}a = 0$$

if k > n + 1. So $x_k a = x_{k+2} a$ for every k > n + 1. Thus $x \cdot a \in A_{00}$. We conclude that x is in $LM(A_{00})$.

We omit the proofs for (iii) and (iv).

4.5. Let $z \in QM(A_{00})$ and $a \in A_{00}$. Then $z \cdot a$, $a \cdot z \in QM(A_{00})$. In fact, $a \cdot z \in LM(A_{00})$, while $z \cdot a \in RM(A_{00})$. The center of $QM(A_{00})$ is the set $Z = \{z \in QM(A_{00}): a \cdot z = z \cdot a \text{ for all } a \in A_{00}\}$.

4.6. **Proposition.** $Z \subset M(A_{00})$. Moreover, Z is the center of $M(A_{00})$. Proof. Suppose that $z \in Z$. Then for every k, if n, m > k,

$$e_n z e_k = e_n e_k^{1/2} z e_k^{1/2} = e_k^{1/2} z e_k^{1/2} = e_m z e_k$$

Thus $z \in QM_l(A_{00}) = LM(A_{00})$. Similarly, $z \in RM(A_{00})$, so $z \in M(A_{00})$. Let $y \in M(A_{00})$. Then

$$z \cdot y \cdot a = (y \cdot a) \cdot z = y \cdot z \cdot a$$
 for every $a \in A_{00}$.

Hence $z \cdot y = y \cdot z$. Z is in the center of $M(A_{00})$. The center of $M(A_{00})$ contained in Z is trivial.

4.7. Lemma. Let $z \in Z$. Then for each $f \in P(A)$, the pure state space of A, $f(z) = \lim f(e_n z e_n)$ exists. Moreover, the function $f \to f(z)$ is a weak*-continuous function on P(A).

Proof. Let f be in P(A), let π_f be the corresponding irreducible representation of A, and let H be the associated Hilbert space. Suppose that $z_n = z|_{A_n}$. Then z_n is in the center of $M(A_n)$. We may assume that $A_n \not\subset \ker \pi_f$. Then $(\pi_f|_{A_n}, \overline{\pi_f(A_n)H})$ is an irreducible representation of A_n . Let q_n be the projection corresponding to H_n , the closure of $\pi_f(A_n)H$. Then

$$\pi_f(z_n)|_{H_n} = \lambda_n q_n$$
 for some scalar λ_n .

Since $\pi_f(z_{n+1})|_{H_n} = \pi_f(z_n)|_{H_n}$, $\lambda_{n+1} = \lambda_n$ for each *n*. Thus $\pi_f(z)$ is a scalar multiple of the identity. Moreover, $\pi_f(z) = f(z) \cdot \mathrm{id}_H$.

Next we shall show that $f \to f(z)$ is continuous. Let $f_0 \in P(A)$. There is k_0 such that $1 \ge f_0(e_{k_0}) > 1/2$. Let $V_0 = \{f \in P(A) \colon |f(e_{k_0}) - f_0(e_{k_0})| < 1/4\}$. Then for every $f \in V_0$, $f(e_{k_0}) > 1/4$.

Let π_f be the associated irreducible representation and H_f the associated Hilbert space. Then, since $\pi_f(z^*z)$ is a scalar, for every unit vector $\xi \in H_f$,

$$\langle \pi_f(z^*z)\xi, \xi \rangle = f(z^*z).$$

Suppose that $f(a) = \langle \pi_f(a)\xi_f, \xi_f \rangle$ for every $a \in A$. Then

$$\begin{split} f(z^*z) &= 1/f(e_{k_0})^2 \langle \pi_f(z^*z) e_{k_0} \xi_f, e_{k_0} \xi_f \rangle \\ &\leq 1/f(e_{k_0})^2 \| e_{k_0} z^* z e_{k_0} \| \\ &\leq 16 \| e_{k_0} z^* z e_{k_0} \| \end{split}$$

for every $f \in V_0$.

Let $M = \max\{1, 16 ||e_k z^* z e_k||\}$. For $\varepsilon > 0$, choose $k \ge k_0$ such that $1 \ge f_0(e_k) > 1 - \varepsilon^2/8M$. Denote

$$V = V_0 \cap \{ f \in P(A) \colon |f(e_k) - f_0(e_k)| < \varepsilon^2 / 8M, \ |f(e_k z) - f_0(e_k z)| < \varepsilon / 4 \}.$$

So for every $f \in V$, $|f(z^*z)| < M$ and $|f(1-e_k)| < \varepsilon^2/4M$. Hence, if $f \in V$,

$$\begin{split} |f(z) - f_0(z)| &\leq |f(z) - f(e_k z)| + |f(e_k z) - f_0(e_k z)| + |f_0(e_k z) - f_0(z)| \\ &< |f((1 - e_k)z)| + \varepsilon/4 + |f_0((1 - e_k)z)| \\ &\leq f(1 - e_k)^{1/2} f(z^* z)^{1/2} + f_0((1 - e_k)^2)^{1/2} f_0(z^* z)^{1/2} + \varepsilon/4 \\ &\leq f(1 - e_k)^{1/2} M^{1/2} + f_0(1 - e_k)^{1/2} M^{1/2} + \varepsilon/4 \\ &< \varepsilon/2 + \varepsilon/8 + \varepsilon/4 < \varepsilon \,. \end{split}$$

4.8. The idea of the proof of 4.7 was taken from [11, 5.41]. However, the proof of [11, 5.41] is not complete. (The number M there depends on the choice of a and a depends on ε , so M depends on ε .) Nevertheless, the proof could be easily completed. The same result as [11, 5.41] is not true for $QM(A_{00})$, as we shall see in 4.14.

4.9. In the proof of 4.7, we see that if π_{f_1} and π_{f_2} are equivalent, then $f_1(z) = f_2(z)$ for $z \in \mathbb{Z}$. Thus every $z \in \mathbb{Z}$ defines a continuous function z on \widehat{A} by $\widehat{z}(\pi_f) = f(z)$.

4.10. **Theorem.** The mapping $z \to \hat{z}$ is a *-isomorphism of Z onto $C(\hat{A})$. Moreover, the mapping is bicontinuous when Z is considered with the A_{00} -topology and $C(\hat{A})$ with the compact open topology.

Proof. Clearly, $z \to \hat{z}$ is a *-homomorphism. If $\hat{z}_1 = \hat{z}_2$ for $z_1, z_2 \in Z$, then $\pi(z_1) = \pi(z_2)$ for every $\pi \in \hat{A}$. Thus $z_1 = z_2$. Hence the mapping is one-to-one.

Suppose that $f \in C(\widehat{A})$. For every k, by [11, 5.39], $\{\pi \in \widehat{A} : \pi(e_{k+1}) \neq 0\}$ is contained in a compact subset of \widehat{A} . Thus \widehat{A}_k is contained in a compact subset of A. Thus $f|_{\widehat{A}_k}$ is bounded and by the Dauns-Hofmann theorem (we use the version [18, 4.4.6]), for every $a \in A_k$, there is $\rho(a) \in A_k \subset A_{00}$ such that

$$\pi(\rho(a)) = f(\pi)\pi(a) \quad \text{for } \pi \in A_k.$$

Hence, the above equality holds for all $\pi \in \widehat{A}$, and ρ defines a linear map from A_{00} into A_{00} . Let $a, b \in A_{00}$. We have

$$\pi(a\rho(b)) = f(\pi)\pi(a)\pi(b) = \pi(\rho(a)b)$$

for all $\pi \in \widehat{A}$. Thus $z = (\rho, \rho) \in M(A_{00}) \subset QM(A_{00})$ and, clearly, $z \in Z$. It is then easy to see that $\widehat{z}(\pi) = f(\pi)$ for each $\pi \in \widehat{A}$. Thus the mapping is surjective.

The proof of the bicontinuity is essentially the same as the proof of [11, 5.44] with the obvious minor modifications.

4.11. Corollary. Let $f \in C(\widehat{A})$. Then, for any $z \in QM(A_{00})$, there is $y \in QM(A_{00})$ such that $\pi(y) = f(\pi)\pi(z)$ for all $\pi \in \widehat{A}$.

4.12. By [18, 4.417], we may replace \widehat{A} by Prim(A) in 4.10 and 4.11.

4.13. We shall denote $FQM(A_{00}) = \{z \in QM(A_{00}): f(z) = \lim f(e_n z e_n) \text{ exists for each } f \in P(A)\}$. Clearly, $FQM(A_{00})$ is a *-invariant linear space containing QM(A).

4.14. Theorem. (i) If $z \in FQM(A_{00})$, then $\tilde{\pi}(z) \in QM(\pi(A))$ for every $\pi \in \widehat{A}$.

- (ii) If $C^{b}(\widehat{A}) \neq C(\widehat{A})$, then $FQM(A_{00}) \neq QM(A)$.
- (iii) $FQM(A_{00}) = QM(A_{00})$ if and only if $\pi(A)$ is unital for each $\pi \in \widehat{A}$.

Proof. (i) We may assume that $z = z^*$. Let $\pi \in \widehat{A}$, H be the associated Hilbert space, and ξ be a unit vector in H.

Since $\langle \pi(e_n z e_n) \xi, \xi \rangle$ converges, we may assume that there is a positive number M_{ξ} such that

$$|\langle \pi(e_n z e_n) \xi, \xi \rangle| \le M_{\xi}$$
 for all n .

Hence

$$|\langle \pi(e_n z e_n)_+ \xi, \xi \rangle| \le M_{\xi}$$
 for all n .

So

$$\|(e_n z e_n)_+^{1/2} \xi\| \le M_{\xi} \quad \text{for all } n.$$

by the uniform boundedness theorem, $\{\|(e_n z e_m)^{1/2}_+\|\}$ is bounded. Hence $\{\|(e_m z e_n)_+\|\}$ is bounded. Similarly, $\{\|(e_n z e_n)_-\|\}$ is bounded, thus $\{\|(e_n z e_n)\|\}$ is bounded. This implies that $\hat{\pi}(z) \in QM(\pi(A))$.

(ii) If $C^{b}(A) \neq C(A)$, then, by Theorem 4.10, there is $z \in Z \subset QM(A_{00})$ such that z is not bounded. Thus $z \notin QM(A)$. However $z \in FQM(A_{00})$.

(iii) Suppose that $\pi \in \widehat{A}$ and $\pi(A)$ has no unit. By taking a subsequence if necessary, we may assume that

$$\pi(e_{nm}) - \pi(e_{n-1}) \neq 0.$$

Thus there are $\xi_k \in H$ such that $\|\xi_k\| = 1$, and $\xi_k \perp \xi_j$ if $k \neq j$; and

$$\|(\pi(e_{2k+2}) - \pi(e_{2k}))^{1/2} \xi_k\| = a_k > 0$$

and

$$[\pi(e_{2k+2}) - \pi(e_{2k})]\xi_m = 0 \quad \text{if } m \neq k$$

for every k. Define

$$y = \sum_{k} (k+1)(2^{k+1}/a_k)(e_{2k+2} - e_{2k}).$$

Then it is easy to see that $y \in M(A_{00}) \subset QM(A_{00})$. Let $\xi = \sum_{k=1}^{\infty} (1/2)^{k/2} \xi_k$; then $\|\xi\| = 1$. So $f(\cdot) = \langle \cdot \xi, \xi \rangle$ is a pure state of A. But

$$f(e_{2k+2}ye_{2k+2}) \ge k$$
.

So $y \in FQM(A_{00})$.

Conversely, if $\pi(A)$ is unital for each $\pi \in \widehat{A}$, then $\widetilde{\pi}(QM(A_{00})) = QM(\pi(A))$. The conclusion is obvious.

5. DUALS AND BIDUALS

In this section, we shall study $QM(A_{00})'$, the dual of $QM(A_{00})$ (the latter being considered with the Q- A_{00} -topology), and $QM(A_{00})''$, the bidual of $QM(A_{00})$.

5.1. **Theorem.** $QM(A_{00})' = \{f(a \cdot b) : a, b \in A_{00}, f \in A^*, and ||f|| \le 1\}$. *Proof.* For $a, b \in A_{00}$, denote

$$U_{a,b} = \{ z \in QM(A_{00}) \colon ||azb|| \le 1 \}.$$

Then $\{U_{a,b}\}$ forms a neighborhood base at 0. Let

$$U_{a,b}^{0} = \{ f \in QM(A_{00})' \colon |f(z)| < 1 \text{ if } z \in U_{a,b} \}.$$

Then

$$QM(A_{00})' = \bigcup \{U_{a,b}^0 : a, b \in A_{00}\}.$$

Suppose that $f \in U_{a,b}^0$; then |f(z)| < 1 for each $z \in U_{a,b}$, or, equivalently,

$$|f(z)| < ||azb||$$
 for each $z \in QM(A_{00})$.

Define a linear functional g on the normed linear space $\{azb: z \in QM(A_{00})\}$ of A by g(azb) = f(z). Then g is well defined and |g(azb)| < ||azb||. By the Hahn-Banach theorem, we can assume that g is in A^* and ||g|| < 1. Thus

$$U^0_{a,b} \subset \{ f(a \cdot b) \colon f \in A^*, \ \|f\| \le 1 \}.$$

This completes the proof.

5.2. Let $g \in A_n^*$ and $p_n = [e_n]$. For every $a \in A$, define $f(a) = g(p_n a p_n)$. Then $f \in A^*$ and ||f|| = ||g||. Moreover,

$$f(e_{nm+1}ae_{n+1}) = g(p_ne_{n+1}ae_{n+1}p_n)$$

= $g(p_nap_n) = f(a)$ for every $a \in A$.

840

Define $\tilde{f}(z) = (e_{n+1}ze_{n+1})$; then $\tilde{f} \in QM(A_{00})'$. We denote by L_n the set $\{f: f(a) = g(p_nap_n), g \in A_n^*, \text{ for every } a \in A\}$.

Then $L_n \subset QM(A_{00})'$. If $g \in QM(A_{00})'$, by Theorem 5.1, $g(\cdot) = f(a \cdot b)$ for some $a, b \in A_n$ and some n. Clearly $g(p_n \cdot p_n) = g$, so $g \in L_n$.

5.3. Corollary.
$$QM(A_{00})' = \bigcup_{n=1}^{\infty} L_n$$
.

5.4. By 5.2 we can identify L_n with A_n^* .

5.5. **Proposition.** Let f be a positive $Q \cdot A_{00}$ -continuous functional on $QM(A_{00})$. Then there is a positive functional $g \in (A^*)_+$ and n such that

$$f(z) = g(e_{n+1}ze_{n+1}) \text{ for all } z \in QM(A_{00}).$$

Proof. It is an immediate consequence of 5.3.

5.6. **Proposition.** $QM(A_{00})'$ is the linear span of its positive cone. *Proof.* Since $L_n \ (= A_n^*)$ is the linear span of its positive cone, by 5.3 $QM(A_{00})'$ is the linear span of its positive cone.

5.7. We shall denote by $M_0(A)$ the norm closure of $\bigcup_{n=1}^{\infty} A_n^{**}$ (cf. [15]). Then $\bigcup_{n=1}^{\infty} A_n^{**} = \bigcup_{n=1}^{\infty} p_n A^{**} p_n$ is a support algebra of $M_0(A)$, where $p_n = [e_n]$.

5.8. Let $QM(A_{00})''$ be the bidual of $QM(A_{00})$. The "strong" topology on $QM(A_{00})''$ is the locally convex topology generated by seminorms

$$||F||_{a,b} = \sup\{|F(f)|: f \in U^0_{a,b}\},\$$

where $F \in QM(A_{00})''$, $a, b \in A_{00}$, and $U_{a,b}^0$ as in 5.1.

5.9. **Theorem.** $QM(A_{00})''$ is isomorpic to $QM(\bigcup_{n=1}^{\infty} A_n^{**})$ as topological vector spaces, the former is considered with "strong" topology and the latter is considered with $Q - \bigcup_{n=1}^{\infty} A_n^{**}$ -topology.

Proof. Let L_n be the same as in 5.2. There is a natural isometry from L_n onto A_n^* . We may identify L_n with A_n^* .

"Let $F \in QM(A_{00})$ ". Define $F_n = F|_{L_n} (=F|_{A_n^*})$. So there is $z_n(F) \in A^{**}$ such that

$$F_n(f) = z_n(F)(f)$$
 for all $f \in A^*$

We define a map Φ from $QM(A_{00})''$ into $QM(\bigcup_{n=1}^{\infty} A_n^{**})$ as follows:

 $\Phi: F \to \rho_F$, where $\rho_F(a, b) = a z_n(F) b$

for all $a, b \in A_n^{**}$, n = 1, 2, ... Since $F_{n+1}|_{A_n^*} = F_n$, ρ_F is well defined and ρ_F is in $QM(\bigcup_{n=1}^{\infty} A_n^{**})$. Clearly Φ is a linear map.

If $\rho_F = 0$, then $F_n(f) = 0$ for all $f \in A_n^{**}$ and all n. So F = 0. Hence Φ is one-to-one.

Take $z \in QM(\bigcup_{n=1}^{\infty} A_n^{**})$. Then $p_n z p_n \in A_n^{**}$. For each $f \in A_n^*$ $(= L_n)$ define

$$F_z(f) = f(p_n z p_n)$$
 for $f \in A_n^* (= L_n)$.

Thus we define an element F_z in $QM(A_{00})''$. It is easy to see that $\Phi(F_z) = z$. Hence Φ is onto.

Now suppose that $F_{\alpha}, F \in QM(A_{00})^{\prime\prime}$ such that $F_{\alpha} \to F$ in the "strong" topology.

Let
$$U_n^0 = \{ f \in QM(A_{00})' : |f(z)| < 1 \text{ if } ||e_{n+1}ze_{n+1}|| \le 1 \}$$
. Then
 $\sup\{|F_{\alpha}(f) - F(f)| : f \in U_n^0\} \to 0.$

If $f \in A_n^*$ $(= L_n)$ and $||f|| \le 1$, then

$$|\tilde{f}(z)| = |f(p_n e_{n+1} z e_{n+1} p_n)|| \le ||p_n e_{n+1} z e_{n+1} p_n \le ||e_{n+1} z e_{n+1}||.$$

Hence $f \in U_n^0$. Thus,

$$\begin{split} \|p_n(\rho_{F_{\alpha}} - \rho_F)p_n\| &= \sup\{|f(p_n e_n(z_n(F_{\alpha}) - z_n(F))p_n)| \colon f \in A_n^*, \ \|f\| \le 1\} \\ &= \sup\{|F_{\alpha}(f) - F(f)| \colon f \in L_n, \ \|f\| \le 1\} \\ &\le \sup\{|F_{\alpha}(f) - F(f)| \colon f \in U_n^0\} \to 0. \end{split}$$

Hence $\rho_{F_{\alpha}} \to \rho_F$ in $Q - \bigcup_{n=1}^{\infty} A_n^{**}$ -topology.

Conversely, suppose that $\rho_{F_n} \to \rho_F$ in $Q - \bigcup_{n=1}^{\infty} A_n^{**}$ -topology. For each n, by 5.1,

$$U_n^0 \subset \{ f(e_{n+1} \cdot e_{n+1}) \colon f \in A^*, \ \|f\| \le 1 \} \,.$$

Thus

$$U_n^0 \subset \{ f \in L_n \colon ||f|| < 1 \}.$$

Hence

$$\begin{split} \|p_n(\rho_{F_{\alpha}} - \rho_F)p_n\| &= \sup\{|f(p_n(z_n(F_{\alpha}) - z_n(F))p_n)| \colon f \in L_n, \ \|f\| \le 1\} \\ &\ge \sup\{|f(F_{\alpha}) - f(F)| \colon f \in U_n^0\}. \end{split}$$

Thus $||p_n(\rho_{F_n} - \rho_F)p_n|| \to 0$ implies

$$\sup\{|f(F_{\alpha})-f(F)|\colon f\in U_n^0\}\to 0.$$

So Φ is bicontinuous.

5.10. **Example.** Let K be the C*-algebra of all compact operators on a separable Hilbert space. Let $A_{00} = \bigcup_{n=1}^{\infty} M_n$ be a support algebra of K, where each M_n is isomorphic to the $n \times n$ matrix algebra. Since $M_n^{**} = M_n$, $M_0(A) = A$. Hence $QM(\bigcup_{n=1}^{\infty} M_n^{**}) = QM(A_{00})$. By 5.9, $QM(A_{00})'' = QM(A_{00})$.

5.11. **Proposition.** Every σ -unital dual C^{*}-algebra has reflexive quasi-multipliers.

Proof. Let *e* be a strictly positive element of *A*. By [4, 4.7.20], every nonzero point of Sp(*e*) is isolated. So we may assume that e_n are projections. Consequently, $A_n = e_n A e_n$ and are unital dual C^* -algebras. Thus A_n are finite dimensional. This implies that $A_n^{**} = A_n$. Hence $M_0(A) = A$. By 5.9, $QM(A_{00})'' = QM(A_{00})$.

6. Pseudo-commutative C^* -algebras

In §3, we showed that $QM(A_{00}) = LM(A_{00}) + RM(A_{00})$. We now consider the problem when $QM(A_{00}) = M(A_{00})$. It turns out that the problem is equivalent to the problem when $K(A) = A_{00}$.

6.1. **Theorem.** Let A be a σ -unital C^{*}-algebra and $A_{00}(\{e_n\})$ a support algebra of A. Then the following are equivalent:

- (i) $M(A_{00}) = QM(A_{00})$.
- (ii) For every *n*, there is an integer N(n) < n such that $e_n a = e_n a e_{N(n)}$ for all $a \in A$.

Proof. (i) \Rightarrow (ii). Since $M(A_{00}) = QM(A_{00})$, $A \subset M(A_{00})$. So for every $a \in A$, $e_n a \in A_{00}$, that is, $e_n a \in A_k$ for some k. Thus $e_n a = e_n a e_{k+1}$. If (i) does not imply (ii), there are $a_k \in A$ such that

$$x_{k} = e_{n}a_{k}(e_{n_{k+1}} - e_{n_{k}}) \neq 0$$

for some subsequence $\{n_k\}$. We may assume that $||x_k|| = 1$ for all k. Define $z = \sum_{k=1}^{\infty} (1/2)^k x_k$. Then $z \in A \subset QM(A_{00})$. But

$$e_{n=1}z = e_{n+1}\left(\sum_{k=1}^{\infty} (1/2)^k\right) = \sum_{k=1}^{\infty} (1/2)^k x_k = z \notin A_{00}$$

Hence $z \notin M(A_{00})$, a contradiction.

(ii) \Rightarrow (i) For fixed n,

$$(ae_n)^* = e_n a^* = e_n a^* e_{N(n)}$$
 for all $a \in A$.

So $ae_n = e_{N(n)}ae_n$.

Suppose that $z \in QM(A_{00})$. For fixed k,

$$e_n z e_k = e_{n+1} e_n z e_k e_{k+1} = e_{n+1} e_n e_{N(k+1)} z e_k$$

= $e_{N(k+1)} z e_k$ if $n > N(k+1)$.

Thus $z \in QM_l(A_{00})$. Similarly, $z \in QM_r(A_{00})$, so $z \in M(A_{00})$.

6.2. **Definition.** A σ -unital C^* -algebra A (without unit) is called pseudocommutative if A satisfies (i) or (ii) in 6.1.

6.3. **Proposition.** Suppose that A is a pseudo-commutative C^* -algebra (without identity). Then the following are true:

- (i) The Pedersen ideal K(A) is a support algebra of A.
- (ii) M(A) = QM(A).
- (iii) The spectrum A of A is not compact.
- (iv) For every irreducible representation π of A, $\pi(A)$ has a unit.

Proof. (i) By (ii) of 6.1, A_{00} is a dense ideal of A. Since $K(A) \subset A_{00}$, we conclude that $K(A) = A_{00}$.

HUAXIN LIN

(ii) Suppose that $z \in QM(A)$. Then $z \in M(A_{00})$. For every $a \in A$,

 $e_n a e_n z \in A_{00} \subset A$.

Since z is bounded and $||e_n a e_n - a|| \to 0$, we conclude that $az \in A$. Similarly $za \in A$. So $z \in M(A)$.

(iii) If \widehat{A} is compact, by [11, 10.8], A is a PCS-algebra, that is, $M(A) = \Gamma(K(A))$. It follows from (i) that $\Gamma(K(A)) = M(A_{00})$. Hence $M(A) = M(A_{00}) = QM(A_{00})$. However, by Lemma 2.16, if A is not unital, $QM(A_{00}) \neq QM(A)$. A contradiction.

(iv) By [11, 10.4], $\pi(A)$ is a PCS-algebra, so, as in (iii), $QM(\pi(A)) = QM(\pi(A_{00}))$. By Lemma 2.16, it happens only when $\pi(A)$ has a unit.

The following lemma is taken from [11, 10.7] but in a slightly different setting. The terminology follows from [11].

6.4. Lemma (cf. [11, 10.7]). Let A by a C^{*}-algebra and let $\{x_n\}$ be an orthogonal sequence in $(K(A))_+$ (that is, $x_n x_m = 0$, if $n \neq m$) such that the sequence of partial sum $\{\sum_{k=1}^{\infty} x_k\}$ is K-Cauchy. Let $a \in K(A)$, S be a subset of \widehat{A} , and let $\{\alpha_n\}$ be the sequence defined by

$$\alpha_n = \sup\{\|\pi(a)\| \colon \pi \in S \text{ and } \|\pi(x_n)\| > \|x_n\|_S \|/2\},\$$

where $||x_n|_S|| = \sup\{||\pi(x_n)|| : \pi \in S\}$. If $||x_n|_S|| \to \infty$, then $\alpha_n \to 0$.

Proof. The proof is the same as the proof of [11, 10.7]. We only need to change \widehat{A} and $||x_n||$ into S and $||x_n|_S||$, respectively.

6.5. **Theorem.** Suppose that A is a σ -unital C^{*}-algebra. Then A is pseudocommutative if and only if one of its support algebras $A_{00} = K(A)$.

Proof. Let $A_{00} = A_{00}(\{e_n\})$. For every n, denote

$$F_n = \{\pi \in \widehat{A} : \|\pi(e_n)\| \ge 1/n + 1\}.$$

We claim that there is a $b_n \in A_{00}$ such that

$$\pi(b_n) = 1$$
 for each $\pi \in F_n$.

If not, by taking a subsequence if necessary, we may assume that there are $\pi_k \in F_n$ such that

$$\pi_k(e_k-e_{k-1})\neq 0.$$

Let $x_k = \beta_k(e_{2k} - e_{2k-1})$, where $\beta_k = k \cdot \max(1, 1/||\pi_k(e_{2k} - e_{2k-1})||)$, $k = 1, 2, \ldots$. Then $x_k x_m = 0$ if $n \neq m$ and $\sum_{k=1}^{\infty} x_k$ is A_{00} -Cauchy. By letting $a = e_n$, and $S = F_n$ in Lemma 6.4, we have $||x_k|F_n|| \to \infty$ as $k \to \infty$, hence $||\pi_k(e_n)|| \to 0$ as $k \to \infty$. This contradicts the fact $||\pi(e_n)|| \ge 1/n + 1$ for all $\pi \in F_n$. So we complete the proof of the claim.

Now let $a_1 = b_1$. Then $a_1 \in A_{00}$, so $a_1 \in A_{N(1)}$ for some N(1). Suppose that a_1, a_2, \ldots, a_k have been chosen from A_{00} , and assume that $a_k \in A_{N(k)}$. Then

$$a_k e_{N(k+1)} = e_{N(k)+1} a_k = a_k$$
.

844

So

$$\begin{aligned} \{\pi\in\widehat{A}\colon \pi(a_k)\neq 0\}\subset \{\pi\in\widehat{A}\colon \|\pi(e_{N(k)+1})\|\geq 1\}\\ \subset F_{N(k)+1}.\end{aligned}$$

We choose $a_{k+1} = b_{N(k)+1}$. Thus $\pi(a_{k+1}) = 1$ for all $\pi \in \{\pi \in \widehat{A} \colon \pi(a_k) \neq 0\}$. Hence $a_{k+1}a_k = a_ka_{k+1} = a_k$. For every $a \in A$,

$$\pi(a_k a) = \pi(a_k)\pi(a) = 0$$
 if $\pi(a_k) = 0$.

Thus

$$\pi(e_k a) = \pi(e_k)\pi(a)\pi(a_{k+1})$$

for all $\pi \in \widehat{A}$. We conclude that

$$a_k a = a_k a a_{k+1}$$
 for all $a \in A$ and k .

Clearly $\{a_k\}$ forms an approximate identity for A. By 6.1 we conclude that A is pseudo-commutative.

The converse is (i) of 6.3.

6.6. Theorem. Let A be a pseudo-commutative C^* -algebra. Then K(A) is the only support algebra of A.

Proof. By the proof of 6.5, there is an approximate identity $\{a_n\}$ satisfying $a_{k+1}a_k = a_ka_{k+1} = a_k$ for each k and $a_ka = a_kaa_{k+1}$ for every $a \in A$. Moreover, there are compact subsets F_n of A such that $F_n \subset F_{n+1}$, $\bigcup_{n=1}^{\infty} F_n = \widehat{A}$, and

$$\pi(a_n) = \begin{cases} 1 & \text{for all } \pi \in F_n, \\ 0 & \text{if } \pi \in \widehat{A} \setminus F_{n+1}. \end{cases}$$

Since $a_k a = a_k a a_{k+1}$ for every $a \in A$, $A_{00}(\{a_k\})$ is an ideal. So $A_{00}(\{a_n\}) = K(A)$.

Now suppose that $A_{00} = A_{00}(\{e_n\})$ is any support algebra of A. For every n, there is k(n) such that

$$||e_{k(n)}a_n - a_n|| < 1/2.$$

Hence

$$\|\pi(e_{k(n)}) - 1\| < 1/2$$
 for all $\pi \in F_n$.

Thus $\pi(A_{k(n)}) = \pi(A)$ for all $\pi \in F_n$. Since $\pi(a_{n-1}) = 0$ for $\pi \in \widehat{A} \setminus F_n$, we conclude that $e_{k(n)} \ge a_{n-1}$ for every *n*. Hence

$$A_{00} \supseteq A_{00}(\{a_n\}) = K(A)$$

This completes the proof.

6.7. **Definition.** An approximate identity $\{e_n\}$ of A is said to be central if $e_n a = ae_n$ for all $a \in A$ and all n.

6.8. **Theorem.** Suppose that A is a σ -unital C^{*}-algebra such that Prim(A) is a Hausdorff space. Then A is pseudo-commutative if and only if A has a central approximate identity $\{e_n\}$ satisfying $e_{n+1}e_n = e_ne_{n+1} = e_n$ for all n. Proof. Suppose that A is pseudo-commutative. Let

$$T_n = \{ \pi \in \operatorname{Prim}(A) \colon \|\pi(e_n)\| \ge 1/n \},\$$

$$O_n = \{ \pi \in \operatorname{Prim}(A) \colon \|\pi(e_n)\| > 1/n + 1 \},\$$

and

$$F_n = \{ \pi \in \Pr(A) \colon \|\pi(e_n)\| \ge 1/n + 1 \}.$$

by [18, 4.43 and 4.45], T_n and F_n are closed and compact and O_n is open. The element b_n in 6.5 satisfies $\pi(b_n) = 1$ for all $\pi \in F_n$. Since Prim(A) is a locally compact Hausdorff space, there is $f \in C(\text{Prim}(A))$ such that $0 \le f \le 1$, $f|_{T_n} = 1$, and $f|_{(\text{Prim}A)\setminus O_n} = 0$. By the Dauns-Hofmann theorem (cf. [6, Theorem 3]), there is $x_n \in A_+$ such that

$$\pi(x_n) = f(\pi)\pi(b_n)$$
 for all $\pi \in \operatorname{Prim}(A)$.

Notice that $T_n \subset O_n \subset F_n$; we have

$$\pi(x_n) = f(\pi)$$
 for all $\pi \in Prim(A)$.

Hence x_n is in the center of A. Moreover, $\{x_n\}$ forms an approximate identity for A satisfying

$$x_{n+1}x_n = x_n x_{n+1} = x_n$$
 for all *n*.

The converse follows from (ii) of 6.1.

6.9. **Proposition.** Every homomorphic image of a pseudo-commutative C^* -algebra A is pseudo-commutative.

Proof. Let ϕ be a homomorphism of A, $B = \phi(A)$, and $B_{00} = \phi(A_{00})$. Clearly, by (ii) of 6.1, for every n, $\phi(e_n)\phi(a) = \phi(e_n)\phi(a)\phi(e_{N(n)})$ for every $a \in A$. Thus B is also a pseudo-commutative C^* -algebra.

6.10. **Theorem.** Suppose that A is a σ -unital C^{*}-algebra with continuous trace. Then A is pseudo-commutative if and only if A is a locally trivial continuous field of matrix algebras.

Proof. Assume that A is a pseudo-commutative C^* -algebra. Since A has continuous trace, \widehat{A} is a locally compact Hausdorff space. Fix $\pi \in A$. Let F be a compact (hence closed) neighborhood of π . Let $I = \{a: a \in A, \pi(a) = 0 \text{ for } \pi \in F\}$, and ϕ be the canonical homomorphism from A onto A/I. So $\phi(A)^{\wedge}$ is compact. By the argument used in (iii) of 6.2 and 6.9, $\phi(A)$ has an identity. Thus, $\phi(A_n) = \phi(A)$ for some n. Let $a \in A_n$ such that $\pi(a_n) = 1$. Then $\pi(a_n) = 1$ for all $\pi \in F$. Since $A_n \subset K(A)$, $\operatorname{Tr}(\pi(a_n))$ is continuous. So $\operatorname{Tr}(\pi(a))$ is a constant in some neighborhood of . This implies that A is locally homogeneous of finite rank. By [7, Theorem 3.2], A is a locally trivial continuous field of matrix algebras.

Now we assume that A is a locally trivial continuous field of matrix algebras and $\{e_n\}$ is as usual. Denote

$$F_n = \{\pi \in \widehat{A} \colon \pi(e_n) \ge 1/2n\}.$$

Then F_n is compact. For each point $\pi \in F_n$, there is a neighborhood U_{π} such that A is trivial on \overline{U}_{π} , where \overline{U}_{π} is the closure of U_{π} and we assume \overline{U}_{π} is compact. Thus there is an $a_{\pi} \in A_{00}(\{e_n\})$ such that $\rho(a_{\pi}) = 1$ for all $\rho \in \overline{U}_{\pi}$. Since F_n is compact, we may assume that there are $\pi_1, \pi_2, \ldots, \pi_k$, such that $\bigcup_{i=1}^k U_{\pi_i} \supset F_n$. There is m, such that

$$||e_m a_{\pi_i} - a_{\pi_i}|| < 1/2$$
 for $i = 1, 2, ..., k$.

So

$$\|\pi(e_m) - 1\| < 1/2$$
 for all $\pi \in F_n$.

Thus $\pi(A_m) = \pi(A)$ for each $\pi \in F_n$. Hence $\pi(e_{m+1}) = 1$ for each F_n . Now we can use the argument in 6.8 to construct a central approximate identity $\{a_n\}$ satisfying $a_{n+1}a_n = a_na_{n+1} = e_n$. It follows then from 6.8 that A is pseudo-commutative.

6.11. Examples. Clearly every σ -unital commutative C^* -algebra is pseudocommutative.

Let X be a locally compact and σ -compact Hausdorff space, and let B be a unital C^{*}-algebra. Let A be $C_0(X, B)$, the set of continuous mappings from X into B vanishing at infinity. It is easy to check that A has a central approximate identity $\{e_n\}$ such that $e_{n+1}e_n = e_ne_{n+1} = e_n$. So A is pseudocommutative.

7. Singly supported C^* -algebras

7.1. We see from 6.7 that a pseudo-commutative C^* -algebra has a unique support algebra. It is evident that this may not be true for other C^* -algebras. But must every two support algebras of a given C^* -algebra be *-isomorphic?

7.2. Definition. We say that a σ -unital C^* -algebra is singly supported if every two support algebras are *-isomorphic.

7.3. Corollary. Every pseudo-commutative C^* -algebra is singly supported.

7.4. **Theorem.** Let A be a C^* -algebra with approximate identities $\{e_n\}$ and $\{p_n\}$. Suppose that e_n and p_n are projections and

$$A_{00} = \bigcup_{n=1}^{\infty} e_n A e_n, \qquad A'_{00} = \bigcup_{n=1}^{\infty} p_n A p_n.$$

Then there is a unitary $u \in M(A)$ (the multiplier algebra of A) such that $u^*A_{00}u = A'_{00}$.

HUAXIN LIN

Proof. We claim that there are subsequences $\{e_{n(k)}\}$ of $\{e_n\}$ and $\{p_{m(k)}\}$ of $\{p_n\}$, elements $\{f_k\}$, $\{f'_k\}$, $\{q_k\}$, $\{q'_k\}$, $\{v_k\}$, and $\{w_k\}$ in A, and unitary elements $\{u_k\}$ and $\{\overline{u}_k\}$ in M(A) satisfying the following:

(i) f_k , f'_k , q_k , q'_k are projections in A, where f_k , $q'_k \in A_{00}$ and q_k , $f'_k \in A'_{00}$. (ii) $f_i f_j = 0$, $f_i f_j = 0$, $q_i q_j = 0$, and $q_i q_j = 0$ if $i \neq j$. (iii) $q' f_k = f_k q' = 0$ and $q_i f' = f' q_i = 0$ for all i and k. (iv) $e_1 = f_1$ and $\sum_{i=1}^k f_i + \sum_{i=1}^{k-1} q'_i = e_{n(k)}$. (v) $p_{mk} = \sum_{i=1}^k q_i + \sum_{i=1}^k f'_i$. (vi) $u_k e_{n(k)} u'_k = \sum_{i=1}^{k-1} q_i + \sum_i^k f'_i$ and $u^*_k p_{m(k)} u_k = \sum_{i=1}^k f_i + \sum_{i=1}^k q'_i$. (vii) $v^*_k v_k = f_k$, $v_k v^*_k = f_k$, $w^*_k w_k = q'_k$, and $w_k w^*_k = q_k$. We shall use induction.

Since A_{00} is dense in A, there is a selfadjoint element $a \in A'_{00}$ such that $||a-e_1|| < 1/8$. We may assume that $a \in p_n A p_n$ for some n(1). By [5, Lemma A.8.1], there is a projection $f'_1 \in p_{n(1)} A p_{n(1)}$ such that

$$\|f_1' - e_1\| < 1/4$$

By [5, Lemmas A.8.1 and A.8.3], there is $v_1 \in A$ such that $||v_1 - e_1|| < 1/2$, $v_1^*v_1 = e_1$, and $v_1v_1^* = f_1'$, and there is a unitary element $u_1 \in M(A)$ such that $u_1e_1u^* = f_1'$ and $u_1^*f_1'u_1 = e_1$.

Let $q_1 = p_{n(1)} - f'_1$. Then $u_1^* q'_1 u_1 \in (1 - e_1)A(1 - e_1) \quad (= (1 - f_1)A(1 - f_1))$. Since $(1 - e_1)A_{00}(1 - e_1)$ is dense in $(1 - e_1)A(1 - e_1)$, by the above argument there is a projection $q'_1 \in (1 - e_1)A_{00}(1 - e_1)$ such that

$$\|q_1'-u_1^*q_1u_1\|<1/4$$
.

By [5, Lemmas A.8.1 and A.8.3], there is a $w'_1 \in (1 - e_1)A(1 - e_1)$ such that $(w'_1)^*(w'_1) = q'_1$, $w'_1w_1^* = u_1^*q_1u_1$, and

$$|w_1'-q_1'|| < 1/2$$
.

Moreover there is a unitary u' in $(1-e_1)M(A)(1-e_1)$ such that $(u')q'_1(u')^* = u^*q_1u_1$ and

$$(u')^*(u_1^*q_1'u_1)(u') = q_1'$$

Let $w_1 = u_1 w_1'$ and $\overline{u}_1 = (1 - f_1')u_1 u' + f_1' u_1$. Then $w^* w_1 = q'$, $(w_1)(w_1)^* = q_1'$, and \overline{u}_1 is a unitary in M(A) such that

$$\overline{u}_{1}^{*}p_{n(1)}\overline{u}_{1}=e_{1}+q_{1}'=f_{1}+q_{1}'.$$

Now we assume that we have chosen $e_{n(i)}$, $p_{m(i)}$, f_i , f'_i , q_i , q'_i , v_i , w_i , u_i , and \overline{u}'_i , i = 1, 2, ..., k. Suppose that $q'_k \in e_{n(k+1)}Ae_{n(k+1)}$ and let

$$f_{k+1} = e_{n(k+1)} - \left(\sum_{i=1}^{k} f_i \sum_{i=1}^{k} q'_i\right).$$

Then $\overline{u}_k f_{k+1} \overline{u}_k^* \in (1-p_{n(k)}) A(1-p_{n(k)})$. Since $(1-p_{n(k)}) A_{00}(1-p_{n(k)})$ is dense in $(1-p_{n(k)}) A(1-p_{n(k)})$, there is a projection $f'_{k+1} \in (1-p_{n(k)}) A'_{00}(1-p_{n(k)})$ $(\subset A'_{00})$ such that

$$\|f'_{k+1} - \overline{u}_k f_{k+1} \overline{u}_k^*\| < 1/4.$$

By [5, Lemmas A.8.1 and A.8.3], there is $v'_{k+1} \in (1 - p_{n(k)})A'_{00}(1 - p_{n(k)})$ such that

$$(v'_{k+1})^*(v'_{k+1}) = f'_{k+1}, \qquad (v'_{k+1})(v'_{k+1})^* = \overline{u}_k f_{k+1} \overline{u}_k^*,$$

and a unitary $u'_1 \in (1 - p_{n(k)})M(A)(1 - p_{n(k)})$ such that

$$(u_1')f_{k+1}(u_1')^* = \overline{u}_k f_{k+1}\overline{u}_k^*$$

and

$$(u'_1)^* \overline{u}_k f_{k+1} \overline{u}_k^* (u'_1) = f'_{k+1}.$$

Define $v_{k+1} = v'_{k+1}\overline{u}_k$ and

$$u_{k+1} = (u_1')^* \overline{u}_k \left(1 - \sum_{i=1}^k f_i - \sum_{i=1}^k q_i' \right) + \overline{u}_k \left(\sum_{i=1}^k f_i + \sum_{i=1}^k q_i' \right) .$$

Then $v_{k+1}^* v_{k+1} = f_{k+1}$, $v_{k+1} v_{k+1}^* = f_{k+1}'$, and

$$u_{k+1}e_{n(k+1)}u_{k+1}^* = \sum_{i=1}^k q_i + \sum_i^{k+1} f_i'.$$

Let

$$q_{k+1} = p_{m(k+1)} - \left(\sum_{i=1}^{k} q_i + \sum_{i=1}^{k+1} f'_i\right)$$
$$= p_{m(k+1)} - u_{k+1} e_{n(k+1)} u_{k+1}^*.$$

Then

$$u_{k+1}^{\dagger}q_{k+1}u_{k+1} \in (1-e_{n(k+1)})A(1-e_{n(k+1)}).$$

Since $(1 - e_{n(k+1)})A_{00}(1 - e_{n(k+1)})$ is dense in $(1 - e_{n(k+1)})A(1 - e_{n(k+1)})$, there is a projection $q'_{k+1} \in (1 - e_{n(k+1)})A_{00}(1 - e_{n(k+1)})$ ($\subset A_{00}$) such that

$$\|q'_{k+1} - u^*_{k+1}q_{k+1}u_{k+1}\| < 1/4$$

By [5, Lemmas A.8.1 and A.8.3], there is a $w'_{k+1} \in (1 - e_{n(k+1)})A(1 - e_{n(k+1)})$ such that $(w'_{k+1})^*(w'_{k+1}) = q'_{k+1}$, $(w'_{k+1})(w'_{k+1})^* = u^*_{k+1}q_{k+1}u_{k+1}$, and $||w'_{k+1} - q'_{k+1}|| < 1/2$.

Moreover, there is a unitary u'_2 in $(1 - e_{n(k+1)})M(A)(1 - e_{n(k+1)})$ such that

$$(u'_2)q'_{k+1}(u'_2)^* = u^*_{k+1}q_{k+1}u_{k+1}$$

and

$$(u'_2)^*(u_{k+1}^*q_{k+1}u_{k+1})(u'_2) = q'_{k+1}$$

Define $w_{k+1} = u_{k+1}w'_{k+1}$ and

$$\overline{u}_{k+1} = (1 - u_{k+1}e_{n(k+1)}u_{k+1}^*)u_{k+1}u_2' + u_{k+1}e_{n(k+1)}u_{k+1}^*.$$

Then $w_{k+1}^* w_{k+1} = q_{k+1}'$, $w_{k+1} w_{k+1}^* = q_{k+1}$, and

$$\overline{u}_{k+1}^* p_{m(k+1)} \overline{u}_{k+1} = \sum_{i=1}^{k+1} f_{k+1}' + \sum_{i=1}^{k+1} q_i'.$$

This completes the induction.

Now we define

$$u = \sum_{k=1}^{\infty} v_k + \sum_{k=1}^{\infty} w_k \,.$$

It is easily checked that u is a unitary in M(A) and

$$u^* e_{n(k)} A e_{n(k)} u = (f'_{n(k)} + p_{m(k-1)}) A (f'_{n(k)} + p_{m(k-1)})$$

if $k \ge 2$. Thus

$$u^*A_{00}u = A'_{00}$$
.

7.5. Let A be a C^* -algebra. We denote by Aut(A) the automorphism group of A. If u is a unitary in M(A), we denote the automorphism $a \to u^*au$ by aut(u).

7.6. Corollary. Let A be a C^* -algebra with an approximate identity $\{e_n\}$ consisting of projections. Define

$$G = \{ \rho \in \operatorname{Aut}(A) \colon \rho(A_{00}(\{e_n\})) = A_{00}(\{e_n\}) \}.$$

Then for every $\phi \in Aut(A)$ there are a unitary element $u \in M(A)$ and $\rho \in G$ such that $\phi = aut(u) \circ \rho$.

Proof. Let $A'_{00} = \phi(A_{00}(\{e_n\}))$. It follows from 7.4 that there is a unitary $u \in M(A)$ such that

$$u(A_{00}')u^* = A_{00}.$$

Thus $\rho = \operatorname{aut}(u^*) \circ \phi \in G$. hence $\phi = \operatorname{aut}(u) \circ \rho$.

7.7. Recall that a C^* -algebra A is called scattered if every state of A is atomic, equivalently, if A has a composition series with elementary quotients (cf. [9, and 10]).

7.8. Theorem. Every σ -unital scattered C^{*}-algebra is singly supported.

Proof. It follows from [13, Lemma 5.1; 5, Lemma 9.4] that A has a support algebra $A_{00} = \bigcup_{n=1}^{\infty} e_n A e_n$, where the e_n are projections in A. Let a be any strictly positive element of A and $A'_{00} = A_{00}(a)$. By [12], Sp(a) is countable. Thus there are t_n , $0 < t_n < 1$, such that $t_n \searrow 0$ and $\chi_{(t_n, ||a||]}(a)$ is in A. Let $p_n = \chi_{(t_n, ||a||]}(a)$. Then

$$A_{00}' = \bigcup_{n=1}^{\infty} p_n A p_n \,.$$

By 7.6, A_{00} and A'_{00} are isomorphic.

850

7.9. Let A be a σ -unital C^* -algebra and e_n , p_n be as in 2.1. Let B^{**} be the enveloping Borel *-algebra of A. We denote the norm closure of $\bigcup_{n=1}^{\infty} p_n B^{**} p_n$ by $B_0(A)$. Clearly $B_0(A)$ is a σ -unital C^* -algebra. It follows from [15, Theorem 3.7] that $B_0(A)$ does not depend on the choices of $\{e_n\}$. We denote the norm closure of $\bigcup_{n=1}^{\infty} p_n A^{**} p_n$ by $M_0(A)$. Then $M_0(A)$ is a σ -unital C^* -algebra. By [15, Theorem 3.7], $M_0(A)$ is the hereditary C^* -subalgebra of A^{**} generated by A, hence it does not depend on the choices of $\{e_n\}$.

7.10. Theorem. For every σ -unital C^{*}-algebra A, $B_0(A)$ and $M_0(A)$ are singly supported.

Proof. Clearly, $\bigcup_{n=1}^{\infty} p_n B^{**} p_n$ is a support algebra of $B_0(A)$. Take any strictly positive element x of $B_0(A)$. By [15, Corollary 3.9], for every n, $\chi_{(1/n, ||x||]}(x) \in B_0(A)$. Let $q_n = \chi_{(1/n, ||x||]}(x)$. Then the support algebra associated with the strictly positive element x is $\bigcup_{n=1}^{\infty} q_n B^{**} q_n$. By 7.6, $B_0(A)$ is singly supported. The proof for $M_0(A)$ is similar.

7.11. Corollary. Let A be a σ -unital C^{*}-algebra, and let A_{00} and A'_{00} be two support algebras of A. Then $QM(A_{00})''$ is isomorphic to $QM(A'_{00})''$.

Proof. By 7.10, $M_0(A)$ is singly supported. Therefore (up to isomorphism) there is only one quasi-multiplier space for supported algebras of $M_0(A)$. It follows from 5.9 that $QM(A_{00})''$ is isomorphic to $QM(A'_{00})''$.

7.12. The algebras in 7.8 and 7.10 have a rich structure of projections. Projectionless singly supported C^* -algebras can be found in pseudo-commutative C^* -algebras. The following is an example of a projectionless singly supported C^* -algebra which is not pseudo-commutative.

7.13. Let B be a separable nonelementary simple AF C^* -algebra with unique trace τ . Suppose that p is a nonzero projection of B. Then $pBp \cong B$ (see [2]). Let σ be a nonzero endomorphism of B, and A be the set of continuous functions from [0, 1] into B such that $f(1) = \sigma(f(0))$. We assume that $\sigma(1) = p \neq 0$. By [2], A has no nonzero projections. A is nonunital but is a σ -unital C^* -algebra. Moreover, Prim(A) is homeomorphic to the unit circle. It follows from 6.3 that A is not pseudo-commutative.

Suppose that $\sigma(B) = pBp$ for some nonzero projection p in B. Let

$$e_n = \begin{cases} 1 & \text{if } 1/n < t \le 1; \\ p + n(n+1)(t-1/n+1)(1-p) & \text{if } 1/n+1 \le t \le 1/n; \\ p & \text{if } 0 \le t < 1/n+1. \end{cases}$$

Then $\{e_n\}$ forms an approximate identity for A, and

$$e_{n+1}e_n = e_n e_{n+1} = e_n \quad \text{for all } n.$$

Let $A = [e_n]A^{**}[e_n] \cap A$ and $A_{00} = \bigcup_{n=1}^{\infty} A_n$.

Suppose that $\{b_n\}$ is another approximate identity for A satisfying $b_{n+1}b_n = b_n b_{n+1} = b_n$ for all n. Define $A' = [b_n]A^{**}[b_n] A$ and $A'_{00} = \bigcup_{n=1}^{\infty} A'_n$. For each n, there is an m(n) such that $\|b_m(t)e_n(t)-e_n(t)\| < 1/2$ for all $m \ge m(n)$ and $t \in [0, 1]$. Thus, if $m \ge m(n)$, $\|b_m(t)-1\| < 1/2$ for all $t \in [1/n, 1]$ and $\|b_m(0)-p\| < 1/2$. So if $m \ge m(n)$, $b_m(t) = 1$ if $t \in [1/n, 1]$ and $b_m(0) = p$.

Without loss of generality we may assume that $b_n(t) = 1$ if $t \in [1/n, 1]$ and $b_n(0) = p$ for all n. For each n, there is a number $\alpha_n > 0$ such that $||b_{n+1}(t) - p|| < 1/4$ and $||b_n(t) - p|| < 1/4$ for $0 \le t < \alpha_n$. Thus $\operatorname{Sp}(b_n(t)) \subset [0, 1/4] \cup [3/4, 1]$ for all $0 \le t < \alpha_n$.

The characteristic function $\chi = \chi_{(1/4,1]}$ is continuous on $\operatorname{Sp}(b_n(t))$ and $\operatorname{Sp}(b_{n+1}(t))$ for $0 \le t < \alpha_n$, and thus $q_1 = \chi(b_n)$ and $q_2 = \chi(b_{n+1})$ are continuous on $[0, \alpha_n)$. Moreover.

$$\|q_1(t) - p\| < 1/2, \quad \|q_2(t) - p\| < 1/2 \quad \text{if } 0 \le t < \alpha_n.$$

Clearly,

$$q_2(t) \ge [b_n(t)] \ge q_1(t)$$
.

Since $\tau(q_2(t)) = \tau(q_1(t))$ for $0 \le t < \alpha_n$, we conclude that

$$q_2(t) = [b_n(t)] = q_1(t)$$
 for $0 \le t < \alpha_n$

Furthermore, since b_n is increasing,

$$[b_{n+k}(t)] = [b_n(t)] \quad \text{if } 0 \le t < \min(\alpha_n, \alpha_{n+k}).$$

Let A_1 be the C^{*}-algebra $A|_{[0, (1/2)\alpha_1]}$. Since $[b_1(t)] = \chi_{(b_1(t))}$ for $t \in [0, (1/2)\alpha_1]$,

$$a_1 = [b_1(t)]|_{[0, (1,2)\alpha_1]} \in A_1$$

Put q(t) = p for all $t \in [0, (1/2)\alpha_1]$. Then $q(t) \in A_1$. By [5, Corollary A.8.3], there is a unitary $u_1 \in M(A_1)$ such that

$$u_1^* q u_1 = a_1$$
 and $u_1 a_1 u_1^* = q$.

Define

$$u = \begin{cases} 1, & t = 0; \\ u_1(t), & 0 < t \le (1/2)\alpha_1; \\ u_1(\alpha_1 - t), & (1/2)\alpha_1 < t \le \alpha_1; \\ 1, & \alpha_1 < t \le 1. \end{cases}$$

It is easy to verify that u is a unitary in M(A). Moreover, $ub_n u^* \le e_N$ and $ue_n u \le b_N$, where N > n and $1/N \le (1.2)\alpha_n$.

We conclude that

$$u^*A_{00}u = A'_{00}.$$

So A is a singly supported C^* -algebra.

7.14. We denote $K_0 = \{a \in A_+ : \text{ there is a } b \in (A_+)_1 \text{ such that } [a] \le b\}$.

The following result may help to find a separable C^* -algebra which is not singly supported.

7.15. Theorem. Let A be a separable C^* -algebra with an approximate identity consisting of projections. Suppose that A is singly supported. Then

$$K_0^+ = \{a \in A_+ : a \le p, p \text{ a projection in } A\}.$$

Proof. Suppose that a is a nonzero element in K_0^+ but no projection in A majorizes a. Let b be an element in $(A_+)_1$ such that $0 \le [a] \le b \le 1$. Let B be the norm closure of (1-b)A(1-b) and a' be a strictly positive element of B. We may assume that $0 \le a' \le 1$. Put e = a' + b. Then e is a strictly positive element of A. Since a'[a] = [a]a' = 0, it follows from Lemma 2.6 that [a]e = e[a]. By considering the abelian C^* -algebra generated by e, [a], and 1, we obtain

$$p_n = \chi_{(1/n, e]}(e) \ge [a].$$

Thus $a \in \bigcup_{n=1}^{\infty} p_n A^{**} p_n \cap A$. We also notice that $A_{00} = \bigcup_{n=1}^{\infty} p_n A^{**} p_n \cap A$ is a support algebra of A.

Suppose that A'_{00} is a support algebra of A associated with an approximate identity $\{e_n\}$ consisting of projections. Since A is singly supported, there is an isometry ϕ such that $\phi(A_{00}) = A_{00}$. Thus we may assume that $\phi(a) \le e_k$ for some k. Then $\phi^{-1}(e_k) \ge a$ and $\phi^{-1}(e_k)$ is a projection. A contradiction.

7.16. To conclude the paper, we state the following questions.

(1) Is $QM(A_{00})$ the linear span of its positive cone?

(2) Is every σ -unital C^{*}-algebra singly supported?

If the answer of (2) is negative one may consider (3):

(3) Let A be a σ -unital C^{*}-algebra. We denote by s(A) the number of nonisomorphic support algebras of A. For every n, is there a σ -unital C^{*}-algebra A such that s(A) = n?

(4) Are the dual C^* -algebras the only C^* -algebras which have reflexive quasimultipliers?

(5) Does every pseudo-commutative C^* -algebra have a central approximate identity?

References

- 1. C. A. Akemann and G. K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973), 785-795.
- 2. B. Blackadar, A simple C^* -algebra with no nontrivial projections, Proc. Amer. Math. Soc. **78** (1980), 504, 508.
- 3. L. G. Brown, Close hereditary C*-algebras and the structure of quasi-multipliers, preprint.
- 4. J. Dixmier, C^{*}-algebras, Gauthier-Villars, Paris, 1964; North-Holland, Amsterdam, 1977.
- 5. E. Effros, *Dimensions and C^{*}-algebras*, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.
- 6. G. A. Elliott and D. Olesen, A simple proof of the Dauns-Hofmann theorem, Math. Scand. 34 (1974), 231-234.
- 7. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
- 8. P. R. Halmos, A Hilbert space problem book, Van Nostrand-Reinhold, Princeton, N.J., 1967.
- 9. H. E. Jensen, Scattered C^{*}-algebras, Math. Scand. 41 (1977), 308-314.

HUAXIN LIN

- 10. ____, Scattered C^{*}-algebras. II, Math. Scand. 43 (1978), 308-310.
- 11. A. J. Lazar and D. C. Taylor, *Multipliers of Pedersen's ideal*, Mem. Amer. Math. Soc. No. 109 (1976).
- 12. A. J. Lazar, On scattered C^* -algebras, preprint.
- 13. H. Lin, The structure of quasi-multipliers of C^{*}-algebras, Trans. Amer. Math. Soc. 315 (1989), 147–172.
- <u>—</u>, Fundamental approximate identities and quasi-multipliers of simple AF C^{*}-algebras, J. Funct. Anal. **79** (1988), 32–43.
- 15. ____, On σ -finite integrals on C^* -algebras, Chinese Ann. Math. 10B (1989), 537–548.
- 16. K. McKennon, The quasi-multiplier conjecture, Proc. Amer. Math. Soc. 72 (1978), 258-260.
- 17. G. K. Pedersen, Measure theory for C^* -algebras, Math. Scand. 19 (1966), 131–145.
- 18. ____, C^{*}-algebras and their automorphism groups, Academic Press, London and New York, 1979.
- ____, SAW*-algebras and corona C*-algebras, Contributions to non-commutative topology, J. Operator Theory 15 (1986), 15-32.

DEPARTMENT OF MATHEMATICS, EAST CHINA NORMAL UNIVERSITY, SHANGHAI 200062, CHINA