SUPPORT ALGEBRAS OF σ-UNITAL C^{*}-ALGEBRAS AND THEIR QUASI-MULTIPLIERS

HUAXIN LIN

Abstract

We study certain dense hereditary *-subalgebras of σ-unital C^{*} algebras and their relations with the Pedersen ideals. The quasi-multipliers of the dense hereditary ${ }^{*}$-subalgebras are also studied.

1. Introduction

Let A be a C^{*}-algebra and $K(A)$ its Pedersen's ideal. When A is commutative, that is, $A=C_{0}(A)$, the algebra of all complex valued continuous functions which vanish at infinity on some locally compact Hausdorff space X, then $K(A)=C_{00}(X)$, the algebra of all complex valued continuous functions with compact support. In [15], we define a dense hereditary ${ }^{*}$-subalgebra A_{00} (we used the notation $C_{00}(A)$ there) of a σ-unital C^{*}-algebra which satisfies:
(i) For every a in $\left(A_{00}\right)$, there is a b in $\left(A_{00}\right)$ such that $[a] \leq b$, where [a] is the range projection of a in $A^{* *}$.
(ii) If A is nonunital, $A_{00} \neq A$.
(iii) When $A=C_{0}(X), A_{00}=C_{00}(X)$.

Naturally, we may view A_{00} as a noncommutative analogue of $C_{00}(X)$. In fact the algebra A_{00} plays an important role in [15]. In this paper we shall study the relation between A_{00} and $K(A)$. We also study the quasi-multipliers of A_{00}. In the view of [11], where Lazer and Taylor studied the multipliers of $K(A)$ as a noncommutative analogue of (unbounded) continuous functions on locally compact Hausdorff space X, the quasi-multipliers of A_{00} is another noncommutative analogue of $C(X)$. The reason our attention is focused on the quasi-multipliers of A_{00} and not on the multipliers of A_{00} is that the set of multipliers of A_{00} may not contain A and is not closed under a natural topology.

We denote the quasi-multipliers of A_{00} by $Q M\left(A_{00}\right)$. In $\S 2$, we give some basic concepts and facts related to quasi-multipliers of A_{00}. In $\S 3$, we study the order structure $Q M\left(A_{00}\right)$. We also show that $Q M\left(A_{00}\right)=L M\left(A_{00}\right)+R M\left(A_{00}\right)$ (a similar equation for A has been studied in [16, 3, 13, 14]). In §4, we

[^0]prove an extension theorem in the sense of Tietse. We also give a version of the Dauns-Hofmann theorem for $Q M\left(A_{00}\right)$. In $\S 5$, we study the dual and bidual spaces of $Q M\left(A_{00}\right)$. We find that $Q M\left(A_{00}\right)^{\prime \prime}$, the bidual of $Q M\left(A_{00}\right)$, is isomorphic to the quasi-multipliers of the support algebra of $M_{0}(A)$, the hereditary C^{*}-subalgebra of $A^{* *}$ generated by A. In $\S 6$, we study the problem when $A_{00}=K(A)$. Finally, in $\S 7$, we consider the uniqueness of A_{00} for certain C^{*}-algebras.

We shall be utilizing the following notations throughout this paper. Suppose that A is a C^{*}-algebra. Then $K(A)$ denotes the Pedersen's ideal (for a definition see [17 or $18,5.6]$), and $M(A), L M(A), R M(A)$, and $Q M(A)$ denote the multipliers, left multipliers, right multipliers, and quasi-multipliers of A, respectively (see [18, 3.12]). For the element a in the C^{*}-algebra A, $[a]$ shall denote the range projection of a in the enveloping W^{*}-algebra $A^{* *}$. Any other unexplained notation may be found in [18 or 4].

2. Preliminaries

2.1. Let A be a σ-unital C^{*}-algebra. Then A has a strictly positive element e. Let $f_{n}(t)$ be continuous functions satisfying

$$
\begin{equation*}
0 \leq f_{n}(t) \leq 1 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
f_{n}(t)=0 \quad \text { if and only if } \quad 0 \leq t \leq 1 / 2 n \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
f_{n}(t)=1 \quad \text { if } t \geq 1 / n \tag{iii}
\end{equation*}
$$

Define $e_{n}=f_{n}(e)$. Then $\left\{e_{n}\right\}$ forms an approximate identity for A. Moreover, $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$ for all n. Let χ_{n} be the characteristic function of the set $(1 / 2 n,\|e\|)$. Then $p_{n}=\chi_{n}(e)$ is an open projection of A such that $\left[e_{n}\right]=p_{n}$ and $e_{n} \leq p_{n} \leq e_{n+1}$.
2.2. Definition. Let A and p_{n} be as in 2.1. Denote the hereditary C^{*} subalgebra $p_{n} A^{* *} p_{n} \cap A$ by A_{n}. We call $\bigcup_{n=1}^{\infty} A_{n}$ a support algebra of A and denote it by $A_{00}\left(\right.$ or $A_{00}(e)$, or $\left.A_{00}\left(\left\{e_{n}\right\}\right)\right)$.
2.3. By $[15,1.1], A_{00}$ is a norm dense, hereditary *-subalgebra of A contained in $K(A)$. Since $e \notin A_{00}$, if A is not unital, then $A_{00} \neq A$. Moreover, for every $a \in\left(A_{00}\right)_{+}$, there is an n such that [a] $\leq e_{n}$. Thus, as in [15], we regard A_{00} as a noncommutative analogue of $C_{00}(X)$.
2.4. Example. Let X be a locally compact, σ-compact Hausdorff space and let $A=C_{0}(X)$. (σ-compact means $X=\bigcup_{n=1}^{\infty} X_{n}$, where each X_{n} is compact.) Then for any strictly positive element $e, A_{00}(e)=C_{00}(X)$.
2.5. Example. Let H be a separable Hilbert space and let $A=K$, the compact operators on H. Let $\left\{H_{n}\right\}$ be an increasing sequence of finite-dimensional subspaces of H such that $\bigcup_{n=1}^{\infty} H_{n}$ is dense in H. Denote by M_{n} the set of bounded linear operators on H_{n}. Then $\bigcup_{n} M_{n}$ is a support algebra for $A=K$. We shall see in $\S 7$ that, up to isomorphisms, $\bigcup_{n} M_{n}$ is the only support algebra for K.
2.6. Lemma. Suppose that A is a C^{*}-algebra. Let $a, p \in A_{+}$and $p \leq a \leq 1$. If p is a projection, the $a p=p a=p$.
2.7. Lemma. Suppose that $a_{n} \in A_{+}$, and p_{n} are open projections of A. If $\left\{a_{n}\right\}$ forms an approximate identity for A and $a_{n} \leq p_{n} \leq a_{n+1}$ for each n, then there is a support algebra A_{00} of A such that

$$
A_{00}=p_{n} A^{* *} p_{n} \cap A
$$

2.8. By 2.7 , we may define A_{00} by an approximate identity $\left\{e_{n}\right\}$ together with open projections $\left\{p_{n}\right\}$ satisfying:

$$
e_{n} \leq p_{n} \leq e_{n+1} \quad \text { for all } n
$$

If $e_{n} \leq p_{n} \leq e_{n+1}$ for each n, then $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$. Conversely, if $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$, then $e_{n+1} \geq\left[e_{n}\right]$. Thus we will always assume that every support algebra A_{00} of A is defined by an approximate identity $\left\{e_{n}\right\}$ which satisfies $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$.

We now fix a σ-unital C^{*}-algebra A and a support algebra $A_{00}=A_{00}\left(\left\{e_{n}\right\}\right)$.
2.9. Definitions. A linear map $\rho: A_{00} \rightarrow A_{00}$ is called a left, respectively right, multiplier if $\rho(a b)=\rho(a) b$, respectively $\rho(a b)=a \rho(b)$. A multiplier is a pair $\left(\rho_{1}, \rho_{2}\right)$ consisting of a right multiplier ρ_{1} and a left multiplier ρ_{2} such that $\rho_{1}(a) b=a \rho_{2}(b)$ for all $a, b \in A_{00}$. A quasimultiplier is a bilinear map $\rho: A_{00} \times A_{00} \rightarrow A_{00}$ such that for each fixed $a \in A_{00}$ the map $\rho(a, \cdot)$ is a left multiplier and the map $\rho(\cdot, a)$ is a right multiplier. We denote by $M\left(A_{00}\right)$, $L M\left(A_{00}\right), R M\left(A_{00}\right)$, and $Q M\left(A_{00}\right)$ the sets of multipliers, left multipliers, right multipliers, and quasi-multipliers of A_{00}, respectively.
2.10. Suppose that $\rho \in Q M\left(A_{00}\right)$, and a and $b \in A_{00}$. Then we denote the element $\rho(a, b)$ by $a \cdot \rho \cdot b$. If $\rho \in L M\left(A_{00}\right)$, we denote $\rho(a)$ by $\rho \cdot a$ and if $\rho \in R M\left(A_{00}\right)$, we denote $\rho(a)$ by $a \cdot \rho$. If $z=\left(\rho_{1}, \rho_{2}\right) \in M\left(A_{00}\right)$, we denote $\rho_{1}(a)$ by $a \cdot z$ and $\rho_{2}(a)$ by $z \cdot a$.
2.11. For $a, b \in A_{00}$, we have the following seminorms:

$$
\begin{equation*}
z \rightarrow\|a \cdot z\|+\|z \cdot a\|, \quad z \in M\left(A_{00}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
z \rightarrow\|z \cdot a\|, \quad z \in L M\left(A_{00}\right) \tag{ii}
\end{equation*}
$$

$$
\begin{array}{ll}
z \rightarrow\|a \cdot z\|, & z \in R M\left(A_{00}\right) \\
z \rightarrow\|a \cdot z \cdot b\|, & z \in Q M\left(A_{00}\right) . \tag{iv}
\end{array}
$$

We define $\left(A_{00}\right)-, L-A_{00^{-}}, R-A_{00^{-}}$, and $Q-A_{00^{-}}$topologies on $M\left(A_{00}\right)$, $L M\left(A_{00}\right), R M\left(A_{00}\right)$, and $Q M\left(A_{00}\right)$ to be those locally convex topologies generated by the seminorms (i), (ii), (iii), and (iv) (for all $a, b \in A_{00}$), respectively.
2.12. Proposition. $Q M\left(A_{00}\right)$ is a locally convex complete topological vector space under the Q - A_{00}-topology.
2.13. We define the following subsets of $Q M\left(A_{00}\right)$:
$Q M_{l}\left(A_{00}\right)=\left\{\rho \in Q M\left(A_{00}\right):\right.$ for each k, there exist $N(\rho, k)$ such that $\rho\left(e_{n}, e_{k}\right)=\rho\left(e_{m}, e_{k}\right)$ if $\left.n, m>N(\rho, k)\right\}$,
$Q M_{r}\left(A_{00}\right)=\left\{\rho \in Q M\left(A_{00}\right)\right.$: for each k, there exists $N(\rho, k)$ such that $\rho\left(e_{k}, e_{n}\right)=\rho\left(e_{k}, e_{m}\right)$ if $\left.n, m>N(\rho, k)\right\}$,
$Q M_{d}\left(A_{00}\right)=Q M_{l}\left(A_{00}\right) \cap Q M_{r}\left(A_{00}\right)$, and
$Q M^{b}\left(A_{00}\right)$ is the subset of those elements in $Q M\left(A_{00}\right)$ such that

$$
\sup \left\{\|a \cdot \rho \cdot b\|: a, b \in A_{00},\|a\| \leq 1,\|b\| \leq 1\right\}<\infty
$$

2.14. Theorem. There are bijective correspondences between

$$
\begin{equation*}
Q M_{l}\left(A_{00}\right) \quad \text { and } \quad L M\left(A_{00}\right) ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
Q M_{d}\left(A_{00}\right) \quad \text { and } \quad M\left(A_{00}\right) \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
Q M_{r}\left(A_{00}\right) \quad \text { and } \quad R M\left(A_{00}\right) ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
Q M^{b}\left(A_{00}\right) \quad \text { and } \quad Q M(A) \tag{iv}
\end{equation*}
$$

2.15. We shall use notations $L M\left(A_{00}\right), R M\left(A_{00}\right), M\left(A_{00}\right)$, and $Q M(A)$ instead of $Q M_{l}\left(A_{00}\right), Q M_{r}\left(A_{00}\right), Q M_{d}\left(A_{00}\right)$, and $Q M^{b}\left(A_{00}\right)$. Thus

$$
\begin{aligned}
& M\left(A_{00}\right) \subset L M\left(A_{00}\right) \subset Q M\left(A_{00}\right), \\
& L M\left(A_{00}\right) \cap R M\left(A_{00}\right)=M\left(A_{00}\right),
\end{aligned}
$$

and

$$
A_{00} \subset A \subset Q M(A) \subset Q M\left(A_{00}\right)
$$

2.16. Lemma. If A is not unital, then

$$
Q M\left(A_{00}\right) \neq Q M^{b}\left(A_{00}\right) \quad(=Q M(A))
$$

Proof. We may assume that $e_{n}-e_{n-1} \neq 0$ for all n. Define

$$
z=\sum_{n=1}^{\infty} n\left(e_{n}-e_{n-1}\right),
$$

where the convergence is in $Q-A_{00}$-topology. Clearly $z \in Q M\left(A_{00}\right)$, but $z \notin Q M^{b}\left(A_{00}\right)$.
2.17. We notice that, in general, $A \not \subset M\left(A_{00}\right)$ and $M\left(A_{00}\right)$ is not complete under A_{00}-topology. These are the reasons why we choose $Q M\left(A_{00}\right)$ and not $M\left(A_{00}\right)$ as our main subject.
2.18. Proposition. A_{00} is $L-A_{00^{-}}$dense (respectively, $R-A_{00^{-}}$dense, $Q-A_{00^{-}}$ dense, and A_{00}-dense) in $L M\left(A_{00}\right)$ (respectively in $R M\left(A_{00}\right), Q M\left(A_{00}\right)$, and $M\left(A_{00}\right)$).
2.19. We now define an operation "." on some of the elements of $Q M\left(A_{00}\right)$. If $\rho \in Q M\left(A_{00}\right), y \in L M\left(A_{00}\right)$, and $z \in R M\left(A_{00}\right)$, we denote by $\rho \cdot y$ the element $\rho(\cdot, y(\cdot))$ and $z \cdot \rho$ the element $\rho(z(\cdot), \cdot)$. It is easy to see that "." is the "natural" extension of the multiplication on $M(A)$.
2.20. Let $\rho \in Q M\left(A_{00}\right)$. The involution ρ^{*} of ρ is a quasi-multiplier defined by $\rho^{*}:(a, b) \rightarrow\left[\rho\left(b^{*}, a^{*}\right)\right]^{*}$. It is easy to see that the involution is conjugate linear and Q - A_{00}-continuous. Moreover the involution is the extension of the original involution on $Q M(A)$. Thus

$$
L M\left(A_{00}\right)^{*}=R M\left(A_{00}\right)
$$

An element is called selfadjoint if $\rho=\rho^{*}$. We denote by $Q M\left(A_{00}\right)_{\text {s.a. }}$ the set of selfadjoint elements.
2.21. Example. Let X be a locally compact, σ-compact Hausdorff space, and let B be a unital C^{*}-algebra. Denote by A the C^{*}-algebra of all the continuous mappings from X into B vanishing at infinity. One of the support algebras (in fact, it is the only one) A_{00} is the set of all continuous mappings with compact supports. One can check that $Q M\left(A_{00}\right)$ is the set of all continuous mappings from X into B.

Throughout $\S \S 3-7, A$ will denote a σ-unital C^{*}-algebra, and A_{00} one of its support algebras. e, e_{n}, and A_{n} will be the same as in 2.1.

3. Decompositions

3.1. Definition. We say that an element $z \in Q M\left(A_{00}\right)$ is positive, denoted by $z \geq 0$, if $a^{*} z a \geq 0$ for all $a \in A_{00}$. We let $Q M\left(A_{00}\right)_{+}$denote the set of all positive elements in $Q M\left(A_{00}\right)$.

Suppose that y and $z \in Q M\left(A_{00}\right)$. We say that $z \geq y$ (or $y \leq z$), if $z-y \geq 0$.
3.2. Corollary. The set $Q M\left(A_{00}\right)_{+}$is a Q - A_{00}-closed real convex cone and $Q M\left(A_{00}\right)_{+} \cap\left(-Q M\left(A_{00}\right)_{+}\right)=\{0\}$.
3.3. Proposition. Let $z \in Q M\left(A_{00}\right)$. Then
(i) If $-y \leq z \leq y$ for some $y \in Q M(A)_{+}$, then $z \in Q M(A)$.
(ii) If $-a \leq z \leq a$ for some $a \in A^{+}$, then $z \in A$.
(iii) If $z \in L M\left(A_{00}\right)$ and there is an element $a \in A^{+}$such that $z^{*} z \leq a$, then $z \in A$.

Proof. (i) Since $y-z \geq 0, a^{*}(-y) a \leq a^{*} z a \leq a^{*} y a$ for all $a \in A_{00}$. Therefore $a^{*} z a \leq a^{*} y a$. It follows that $z \in Q M^{b}\left(A_{00}\right)=Q M(A)$.
(ii) By (i), $z \in Q M(A)$. Then by [1, Proposition 4.5], $z \in A$.
(iii) For every $b \in A_{00}$, we have $b^{*} z^{*} z b \leq b^{*} a b$. Thus $\|z b\| \leq\left\|a^{1 / 2} b\right\|$. Hence $z \in Q M(A) \cap L M\left(A_{00}\right)$. It follows from [1, Proposition 4.5] that z is in A.
3.4. Let $L M\left(A_{00}, A A_{00}\right)$ denote the set of those linear mappings ρ from A_{00} into $A A_{00}$ satisfying $\rho(x y)=\rho(x) y$ for all $x, y \in A_{00}$. As in $\S 2$, we can view $L M\left(A_{00}, A A_{00}\right)$ as a subset of $Q M\left(A_{00}\right)$. If $x \in L M\left(A_{00}, A A_{00}\right)$, we define $x^{*} \cdot x(a, b)=\left(a \cdot x^{*}\right)(x \cdot b)$. Hence $x^{*} \cdot x \in Q M\left(A_{00}\right)_{+}$.
3.5. Theorem. If $z \in Q M\left(A_{00}\right)_{+}$, then there is an $x \in L M\left(A_{00} A A_{00}\right)$ $\left(\subset Q M\left(A_{00}\right)\right)$ such that $x^{*} \cdot x=z$.
Proof. Let $\alpha_{k}=\left\|\left.z\right|_{A_{k} \times A_{k}}\right\|$. Define $b_{k}=\left(1 / \alpha_{k+1}\right)(1 / 2)^{k}\left(e_{k}-e_{k-1}\right)$ for $k=$ $1,2, \ldots\left(\right.$ where $\left.e_{0}=0\right), a_{k}=\sum_{i=1}^{k} b_{i}$, and $b=\sum_{i=1}^{\infty} b_{i}$. Let $z_{k}=a_{k} z a_{k}$, $k=1,2, \ldots$. Then, if $k \geq m$

$$
\begin{aligned}
\left\|z_{k}-z_{m}\right\| & \leq\left\|\sum_{i=m+1}^{k} b_{1} z a_{k}\right\|+\left\|\sum_{j=m+1}^{k} a_{k} z b_{j}\right\| \\
& =\left\|\sum_{i=m+1}^{k} \sum_{j=1}^{k} b_{i} z b_{j}\right\|+\left\|\sum_{j=m+1}^{k} \sum_{i=1}^{k} b_{i} z b_{j}\right\| \\
& \leq \sum_{i=m+1}^{k} \sum_{j=1}^{k}(1 / 2)^{i+j}+\sum_{j=m+1}^{k} \sum_{i=1}^{k}(1 / 2)^{i+j} \\
& \leq 1 /(2)^{m-1}
\end{aligned}
$$

Thus z_{k} converges to a positive element h in A in norm. It is easy to see that $e_{k} h e_{k}=e_{k} z_{k+1} e_{k}$ for every k. Take $u_{n}=h^{1 / 2}\left(b^{2}+1 / n\right)^{-1} b$. Then, for every k,

$$
\begin{aligned}
\left\|u_{n} e_{k}\right\|^{2} & =\left\|e_{k} b\left(b^{2}+1 / n\right)^{-1} h\left(b^{2}+1 / n\right)^{-1} b e_{k}\right\| \\
& =\left\|b\left(b^{2}+1 / n\right)^{-1} e_{k} h e_{k}\left(b^{2}+1 / n\right)^{-1} b e_{k}\right\| \\
& =\left\|b\left(b^{2}+1 / n\right)^{-1} a_{k+1} e_{k} h e_{k} a_{k+1}\left(b^{2}+1 / n\right)^{-1} b e_{k}\right\| \\
& \leq \alpha_{k}\left\|b\left(b^{2}+1 / n\right)^{-1} b e_{k} a_{k+1}\right\|^{2} \leq \alpha_{k} .
\end{aligned}
$$

So $\left\|u_{n} e_{k}\right\|$ is bounded for every k.
Put $d_{n m}=\left(1 / n+b^{2}\right)^{-1}-\left(1 / n+b^{2}\right)^{-1}$. Then, for each k,

$$
\begin{aligned}
\left\|u_{n} a_{k}-u_{m} a_{k}\right\|^{2} & =\left\|h^{1 / 2} d_{n m} b a_{k}\right\|^{2} \\
& =\left\|b d_{n m} a_{k} h a_{k} d_{n m} b\right\| \\
& \leq \alpha_{k+1}\left\|b d_{n m} a_{k} a_{k+1} a_{k} d_{n m} b\right\| \\
& =\alpha_{k+1}\left\|d_{n m} b a_{k}\left(a_{k+1}\right)^{1 / 2}\right\|^{2} .
\end{aligned}
$$

From spectral theory we see that the sequence $\left\{\left(1 / n+b^{2}\right)^{-1} b a_{k}\left(a_{k+1}\right)^{1 / 2}\right\}$ is increasing to an element in A and by Dini's theorem it is uniformly convergent to it. Consequently

$$
\left\|d_{n m} b a_{k}\left(a_{k+1}\right)^{1 / 2}\right\| \rightarrow 0
$$

so that $\left\{u_{n} a_{k}\right\}$ is norm convergent to an element in A for each k. Since $\left\|u_{n} e_{k+1}\right\|$ is bounded and $\overline{a_{k} A} \supset A_{k}$, it follows that $\left\{u_{n} y\right\}$ is norm convergent for every $y \in A_{k}$. Thus we have an element $x \in L M\left(A_{00}, A A_{00}\right)$ defined by

$$
x(a)=\lim u_{n} a \quad \text { for every } a \in A_{00} .
$$

It is easy to check that for every k,

$$
a_{k+1} x^{*} \cdot a_{k+1}=a_{k+1} z a_{k+1}
$$

Therefore $x^{*} \cdot x=z$.
3.6. The idea of the proof of 3.5 is taken from [3, 4.9; and 18, 1.44]. The element x in 3.5 is in $Q M\left(A_{00}\right)$ but not in $Q M\left(A_{00}\right)_{+}$. In general, x may not be taken from $L M\left(A_{00}\right)$.
3.7. Theorem. $Q M\left(A_{00}\right)=L M\left(A_{00}\right)+R M\left(A_{00}\right)$.

Proof. Let $z \in Q M\left(A_{00}\right)$. Define

$$
x=\sum_{k=1}^{\infty} e_{k} z\left(e_{k}-e_{k-1}\right)
$$

and

$$
y=\sum_{k=1}^{\infty}\left(1-e_{k}\right) z\left(e_{k}-e_{k-1}\right)
$$

Both sums converge in Q - A_{00}-topology. It is easy to verify that $x \in L M\left(A_{00}\right)$ and $y \in R M\left(A_{00}\right)$. For every n,

$$
\begin{aligned}
e_{n}(x+y) e_{n}= & \left(\sum_{k=1}^{n-1} e_{k} z\left(e_{k}-e_{k-1}+e_{n}^{2} z\left(e_{n}-e_{n-1}\right) e_{n}+e_{n} z\left(e_{n+1}-e_{n}\right) e_{n}\right)\right. \\
& +\left(\sum_{k=1}^{n-1}\left(e_{n}-e_{k}\right) z\left(e_{k}-e_{k-1}\right)+\left(e_{n}-e_{n}^{2}\right) z\left(e_{n}-e_{n-1}\right) e_{n}\right) \\
= & \left(\sum_{k=1}^{n-1} e_{n} z e_{k}-e_{k-1}\right)+e_{n} z\left(e_{n}-e_{n}\right)+e_{n} z\left(e_{n}^{2}-e_{n-1}\right) \\
= & e_{n} z e_{n-1}+e_{n} z\left(e_{n}-e_{n-1}\right)=e_{n} z e_{n} .
\end{aligned}
$$

So $x+y=z$.
3.8. The problem when $Q M(A)=L M(A)+R M(A)$ had been studied in [16, 3, 13, 14]. In general, $Q M(A) \neq L M(A)+R M(A)$.

4. The Tietze theorem and Dauns-Hofmann theorem

This section is inspired by [11]. Our results are similar to the corresponding ones in [11].
4.1. Let B be a σ-unital C^{*}-algebra and let ϕ be a *-homomorphism from A onto B. Then $B_{00}=\phi\left(A_{00}\right)$ is a support algebra of B and ϕ can be extended to a linear map $\tilde{\phi}$ from $L M\left(A_{00}\right)$ into $L M\left(B_{00}\right)$ as follows:

$$
\begin{equation*}
\tilde{\phi}(z) \cdot \phi(a)=\phi(z \cdot a) \tag{i}
\end{equation*}
$$

for $z \in L M\left(A_{00}\right)$ and $a \in A_{00}$. We can further extend $\tilde{\phi}$ from $Q M\left(A_{00}\right)$ into $Q M\left(B_{0}\right)$ by

$$
\begin{equation*}
\phi(a) \cdot \tilde{\phi}(z) \cdot \phi(b)=\phi(a \cdot z \cdot b) \tag{ii}
\end{equation*}
$$

for $z \in Q M\left(A_{00}\right)$ and $a, b \in A_{00}$. It can be verified that if $z \in Q M\left(A_{00}\right)$, $x \in L M\left(A_{00}\right), y \in R M\left(A_{00}\right)$, and $a \in A_{00}$, then

$$
\begin{equation*}
\phi(a) \cdot \tilde{\phi}(y)=\phi(a \cdot y) \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\phi}(y \cdot z)=\tilde{\phi}(y) \cdot \tilde{\phi}(z) \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\phi}(z \cdot x)=\tilde{\phi}(z) \cdot \tilde{\phi}(x) \tag{v}
\end{equation*}
$$

4.2. Proposition. The extension $\tilde{\phi}$ is continuous when $Q M\left(A_{00}\right)$ is considered with Q - A_{00}-topology and $Q M\left(B_{00}\right)$ with $Q-B_{00}$-topology.
4.3. Next we shall show that the extension $\tilde{\phi}$ is surjective. In view of 2.20 , the following theorem can be regarded as a noncommutative extension of Tietze's theorem. The same results for bounded multipliers $M(A)$ and bounded quasimultipliers $Q M(A)$ can be found in [9, 3]. A similar result for (unbounded) multipliers of $K(A)$ can be found in [11].
4.4. Theorem. Let ϕ be a homomorphism from A onto B and $B_{00}=\phi\left(A_{00}\right)$. Then

$$
\begin{align*}
\tilde{\phi}\left(Q M\left(A_{00}\right)\right) & =Q M\left(B_{00}\right) ; \tag{i}\\
\tilde{\phi}\left(L M\left(A_{00}\right)\right) & =L M\left(B_{00}\right) ; \\
\tilde{\phi}\left(R M\left(A_{00}\right)\right) & =R M\left(B_{00}\right) ; \\
\tilde{\phi}\left(M\left(A_{00}\right)\right) & =M\left(B_{00}\right)
\end{align*}
$$

Proof. (i) We shall show that $\tilde{\phi}$ is surjective. Let $\bar{z} \in Q M\left(B_{00}\right)$ and $\bar{z}_{k}=$ $\bar{e}_{k} \overline{z e}_{k}$, where $\bar{e}_{k}=\phi\left(e_{k}\right), k=1,2, \ldots$. Suppose that $y_{k} \in A_{00}$ such that $\phi\left(y_{k}\right)=\bar{z}_{k}$. Let $z_{1}=y_{1}$,

$$
z_{k+1}=y_{k+1}-e_{k} y_{k+1} e_{k}+z_{k}, \quad k=1,2, \ldots
$$

Then $z_{k+1} \in A_{00}$; moreover,

$$
\phi\left(z_{k+1}\right)=\bar{z}_{k+1}-\bar{e}_{k} \bar{z}_{k+1} \bar{e}_{k}+\bar{z}_{k}=z_{k+1} .
$$

If $k>m$, then

$$
e_{m}\left(z_{k+1}-z_{k}\right) e_{m}=e_{m} y_{k+1} e_{m}-e_{m} e_{k} y_{k+1} e_{k} e_{m}+e_{m} z_{k} e_{m}-e_{m} z_{k} e_{m}
$$

Thus, if $k, k^{\prime}>m$,

$$
e_{m}\left(z_{k}-z_{k^{\prime}}\right) e_{m}=0
$$

So $\left\{z_{k}\right\}$ is a $Q-A_{00}$-Cauchy sequence. Suppose that $z=\lim z_{k}$. Then, by the continuity of $\tilde{\phi}(4.2)$,

$$
\tilde{\phi}(z)=\lim \phi\left(z_{k}\right)=\lim \bar{z}_{k}=\bar{z}
$$

Then $\tilde{\phi}$ is onto.
(ii) Let $\bar{x} \in L M\left(A_{00}\right)$ and $\bar{x}_{k}=\overline{x e}_{k}, k=1,2, \ldots$. Suppose that $a_{k} \in A_{00}$ such that $\phi\left(a_{k}\right)=\bar{x}_{k}$. Define $x_{1}=a_{1}$ and $x_{k+1}=a_{k+1}-a_{k+1} \cdot e_{k}+x_{k}$,
$k=1,2 \ldots$ Then $\phi\left(x_{k+1}\right)=\bar{x}_{k+1}, k=1,2, \ldots$. As in (i), $\left\{x_{k+1}\right\}$ is an $L-A_{00}$-Cauchy sequence, hence a $Q-A_{00}$-Cauchy sequence. Let $x=\lim x_{k}$. Then $\tilde{\phi}(x)=x$. To show that $x \in L M\left(A_{00}\right)$, take $a \in A_{n}$. Then

$$
\begin{aligned}
x_{k+1} a-x_{k} a & =x_{k+1} e_{n+1} a-x_{k} e_{n+1} a \\
& =\left(x_{k+1}-x_{k}\right) e_{n+1} a=0
\end{aligned}
$$

if $k>n+1$. So $x_{k} a=x_{k+2} a$ for every $k>n+1$. Thus $x \cdot a \in A_{00}$. We conclude that x is in $L M\left(A_{00}\right)$.

We omit the proofs for (iii) and (iv).
4.5. Let $z \in Q M\left(A_{00}\right)$ and $a \in A_{00}$. Then $z \cdot a, a \cdot z \in Q M\left(A_{00}\right)$. In fact, $a \cdot z \in L M\left(A_{00}\right)$, while $z \cdot a \in R M\left(A_{00}\right)$. The center of $Q M\left(A_{00}\right)$ is the set $Z=\left\{z \in Q M\left(A_{00}\right): a \cdot z=z \cdot a\right.$ for all $\left.a \in A_{00}\right\}$.
4.6. Proposition. $Z \subset M\left(A_{00}\right)$. Moreover, Z is the center of $M\left(A_{00}\right)$.

Proof. Suppose that $z \in Z$. Then for every k, if $n, m>k$,

$$
e_{n} z e_{k}=e_{n} e_{k}^{1 / 2} z e_{k}^{1 / 2}=e_{k}^{1 / 2} z e_{k}^{1 / 2}=e_{m} z e_{k}
$$

Thus $z \in Q M_{l}\left(A_{00}\right)=L M\left(A_{00}\right)$. Similarly, $z \in R M\left(A_{00}\right)$, so $z \in M\left(A_{00}\right)$.
Let $y \in M\left(A_{00}\right)$. Then

$$
z \cdot y \cdot a=(y \cdot a) \cdot z=y \cdot z \cdot a \quad \text { for every } a \in A_{00}
$$

Hence $z \cdot y=y \cdot z . \quad Z$ is in the center of $M\left(A_{00}\right)$. The center of $M\left(A_{00}\right)$ contained in Z is trivial.
4.7. Lemma. Let $z \in Z$. Then for each $f \in P(A)$, the pure state space of $A, f(z)=\lim f\left(e_{n} z e_{n}\right)$ exists. Moreover, the function $f \rightarrow f(z)$ is a weak*continuous function on $P(A)$.
Proof. Let f be in $P(A)$, let π_{f} be the corresponding irreducible representation of A, and let H be the associated Hilbert space. Suppose that $z_{n}=\left.z\right|_{A_{n}}$. Then z_{n} is in the center of $M\left(A_{n}\right)$. We may assume that $A_{n} \not \subset \operatorname{ker} \pi_{f}$. Then $\left(\left.\pi_{f}\right|_{A_{n}}, \overline{\pi_{f}\left(A_{n}\right) H}\right)$ is an irreducible representation of A_{n}. Let q_{n} be the projection corresponding to H_{n}, the closure of $\pi_{f}\left(A_{n}\right) H$. Then

$$
\left.\pi_{f}\left(z_{n}\right)\right|_{H_{n}}=\lambda_{n} q_{n} \quad \text { for some scalar } \lambda_{n}
$$

Since $\left.\pi_{f}\left(z_{n+1}\right)\right|_{H_{n}}=\left.\pi_{f}\left(z_{n}\right)\right|_{H_{n}}, \lambda_{n+1}=\lambda_{n}$ for each n. Thus $\pi_{f}(z)$ is a scalar multiple of the identity. Moreover, $\pi_{f}(z)=f(z) \cdot \mathrm{id}_{H}$.

Next we shall show that $f \rightarrow f(z)$ is continuous. Let $f_{0} \in P(A)$. There is k_{0} such that $1 \geq f_{0}\left(e_{k_{0}}\right)>1 / 2$. Let $V_{0}=\left\{f \in P(A):\left|f\left(e_{k_{0}}\right)-f_{0}\left(e_{k_{0}}\right)\right|<1 / 4\right\}$. Then for every $f \in V_{0}, f\left(e_{k_{0}}\right)>1 / 4$.

Let π_{f} be the associated irreducible representation and H_{f} the associated Hilbert space. Then, since $\pi_{f}\left(z^{*} z\right)$ is a scalar, for every unit vector $\xi \in H_{f}$,

$$
\left\langle\pi_{f}\left(z^{*} z\right) \xi, \xi\right\rangle=f\left(z^{*} z\right)
$$

Suppose that $f(a)=\left\langle\pi_{f}(a) \xi_{f}, \xi_{f}\right\rangle$ for every $a \in A$. Then

$$
\begin{aligned}
f\left(z^{*} z\right) & =1 / f\left(e_{k_{0}}\right)^{2}\left\langle\pi_{f}\left(z^{*} z\right) e_{k_{0}} \xi_{f}, e_{k_{0}} \xi_{f}\right\rangle \\
& \leq 1 / f\left(e_{k_{0}}\right)^{2}\left\|e_{k_{0}} z^{*} z e_{k_{0}}\right\| \\
& \leq 16\left\|e_{k_{0}} z^{*} z e_{k_{0}}\right\|
\end{aligned}
$$

for every $f \in V_{0}$.
Let $M=\max \left\{1,16\left\|e_{k} z^{*} z e_{k}\right\|\right\}$. For $\varepsilon>0$, choose $k \geq k_{0}$ such that $1 \geq f_{0}\left(e_{k}\right)>1-\varepsilon^{2} / 8 M$. Denote

$$
V=V_{0} \cap\left\{f \in P(A):\left|f\left(e_{k}\right)-f_{0}\left(e_{k}\right)\right|<\varepsilon^{2} / 8 M,\left|f\left(e_{k} z\right)-f_{0}\left(e_{k} z\right)\right|<\varepsilon / 4\right\}
$$

So for every $f \in V,\left|f\left(z^{*} z\right)\right|<M$ and $\left|f\left(1-e_{k}\right)\right|<\varepsilon^{2} / 4 M$. Hence, if $f \in V$,

$$
\begin{aligned}
\left|f(z)-f_{0}(z)\right| & \leq\left|f(z)-f\left(e_{k} z\right)\right|+\left|f\left(e_{k} z\right)-f_{0}\left(e_{k} z\right)\right|+\left|f_{0}\left(e_{k} z\right)-f_{0}(z)\right| \\
& <\left|f\left(\left(1-e_{k}\right) z\right)\right|+\varepsilon / 4+\left|f_{0}\left(\left(1-e_{k}\right) z\right)\right| \\
& \leq f\left(1-e_{k}\right)^{1 / 2} f\left(z^{*} z\right)^{1 / 2}+f_{0}\left(\left(1-e_{k}\right)^{2}\right)^{1 / 2} f_{0}\left(z^{*} z\right)^{1 / 2}+\varepsilon / 4 \\
& \leq f\left(1-e_{k}\right)^{1 / 2} M^{1 / 2}+f_{0}\left(1-e_{k}\right)^{1 / 2} M^{1 / 2}+\varepsilon / 4 \\
& <\varepsilon / 2+\varepsilon / 8+\varepsilon / 4<\varepsilon .
\end{aligned}
$$

4.8. The idea of the proof of 4.7 was taken from [11, 5.41$]$. However, the proof of [11,5.41] is not complete. (The number M there depends on the choice of a and a depends on ε, so M depends on ε.) Nevertheless, the proof could be easily completed. The same result as $[11,5.41]$ is not true for $Q M\left(A_{00}\right)$, as we shall see in 4.14.
4.9. In the proof of 4.7, we see that if $\pi_{f_{1}}$ and $\pi_{f_{2}}$ are equivalent, then $f_{1}(z)=$ $f_{2}(z)$ for $z \in Z$. Thus every $z \in Z$ defines a continuous function z on \hat{A} by $\hat{z}\left(\pi_{f}\right)=f(z)$.
4.10. Theorem. The mapping $z \rightarrow \hat{z}$ is a^{*}-isomorphism of Z onto $C(\hat{A})$. Moreover, the mapping is bicontinuous when Z is considered with the $A_{00}{ }^{-}$ topology and $C(\widehat{A})$ with the compact open topology.
Proof. Clearly, $z \rightarrow \hat{z}$ is a *-homomorphism. If $\hat{z}_{1}=\hat{z}_{2}$ for $z_{1}, z_{2} \in Z$, then $\pi\left(z_{1}\right)=\pi\left(z_{2}\right)$ for every $\pi \in \widehat{A}$. Thus $z_{1}=z_{2}$. Hence the mapping is one-to-one.

Suppose that $f \in C(\widehat{A})$. For every k, by [11, 5.39], $\left\{\pi \in \widehat{A}: \pi\left(e_{k+1}\right) \neq 0\right\}$ is contained in a compact subset of \widehat{A}. Thus \widehat{A}_{k} is contained in a compact subset of A. Thus $\left.f\right|_{\widehat{A}_{k}}$ is bounded and by the Dauns-Hofmann theorem (we use the version [18, 4.4.6]), for every $a \in A_{k}$, there is $\rho(a) \in A_{k} \subset A_{00}$ such that

$$
\pi(\rho(a))=f(\pi) \pi(a) \quad \text { for } \pi \in \hat{A}_{k}
$$

Hence, the above equality holds for all $\pi \in \hat{A}$, and ρ defines a linear map from A_{00} into A_{00}. Let $a, b \in A_{00}$. We have

$$
\pi(a \rho(b))=f(\pi) \pi(a) \pi(b)=\pi(\rho(a) b)
$$

for all $\pi \in \widehat{A}$. Thus $z=(\rho, \rho) \in M\left(A_{00}\right) \subset Q M\left(A_{00}\right)$ and, clearly, $z \in Z$. It is then easy to see that $\hat{z}(\pi)=f(\pi)$ for each $\pi \in \hat{A}$. Thus the mapping is surjective.

The proof of the bicontinuity is essentially the same as the proof of [11,5.44] with the obvious minor modifications.
4.11. Corollary. Let $f \in C(\widehat{A})$. Then, for any $z \in Q M\left(A_{00}\right)$, there is $y \in$ $Q M\left(A_{00}\right)$ such that $\pi(y)=f(\pi) \pi(z)$ for all $\pi \in \widehat{A}$.
4.12. By [18, 4.417], we may replace \hat{A} by $\operatorname{Prim}(A)$ in 4.10 and 4.11.
4.13. We shall denote $F Q M\left(A_{00}\right)=\left\{z \in Q M\left(A_{00}\right): f(z)=\lim f\left(e_{n} z e_{n}\right)\right.$ exists for each $f \in P(A)\}$. Clearly, $F Q M\left(A_{00}\right)$ is a $*$-invariant linear space containing $Q M(A)$.
4.14. Theorem. (i) If $z \in F Q M\left(A_{00}\right)$, then $\tilde{\pi}(z) \in Q M(\pi(A))$ for every $\pi \in \hat{A}$.
(ii) If $C^{b}(\widehat{A}) \neq C(\widehat{A})$, then $F Q M\left(A_{00}\right) \neq Q M(A)$.
(iii) $F Q M\left(A_{00}\right)=Q M\left(A_{00}\right)$ if and only if $\pi(A)$ is unital for each $\pi \in \widehat{A}$.

Proof. (i) We may assume that $z=z^{*}$. Let $\pi \in \widehat{A}, H$ be the associated Hilbert space, and ξ be a unit vector in H.

Since $\left\langle\pi\left(e_{n} z e_{n}\right) \xi, \xi\right\rangle$ converges, we may assume that there is a positive number M_{ξ} such that

$$
\left|\left\langle\pi\left(e_{n} z e_{n}\right) \xi, \xi\right\rangle\right| \leq M_{\xi} \quad \text { for all } n
$$

Hence

$$
\left|\left\langle\pi\left(e_{n} z e_{n}\right)_{+} \xi, \xi\right\rangle\right| \leq M_{\xi} \quad \text { for all } n .
$$

So

$$
\left\|\left(e_{n} z e_{n}\right)_{+}^{1 / 2} \xi\right\| \leq M_{\xi} \quad \text { for all } n .
$$

by the uniform boundedness theorem, $\left\{\left\|\left(e_{n} z e_{m}\right)_{+}^{1 / 2}\right\|\right\}$ is bounded. Hence $\left\{\left\|\left(e_{m} z e_{n}\right)_{+}\right\|\right\}$is bounded. Similarly, $\left\{\left\|\left(e_{n} z e_{n}\right)_{-}\right\|\right\}$is bounded, thus $\left\{\left\|\left(e_{n} z e_{n}\right)\right\|\right\}$ is bounded. This implies that $\tilde{\pi}(z) \in Q M(\pi(A))$.
(ii) If $C^{b}(A) \neq C(A)$, then, by Theorem 4.10, there is $z \in Z \subset Q M\left(A_{00}\right)$ such that z is not bounded. Thus $z \notin Q M(A)$. However $z \in F Q M\left(A_{00}\right)$.
(iii) Suppose that $\pi \in \widehat{A}$ and $\pi(A)$ has no unit. By taking a subsequence if necessary, we may assume that

$$
\pi\left(e_{n m}\right)-\pi\left(e_{n-1}\right) \neq 0
$$

Thus there are $\xi_{k} \in H$ such that $\left\|\xi_{k}\right\|=1$, and $\xi_{k} \perp \xi_{j}$ if $k \neq j$; and

$$
\left\|\left(\pi\left(e_{2 k+2}\right)-\pi\left(e_{2 k}\right)\right)^{1 / 2} \xi_{k}\right\|=a_{k}>0
$$

and

$$
\left[\pi\left(e_{2 k+2}\right)-\pi\left(e_{2 k}\right)\right] \xi_{m}=0 \quad \text { if } m \neq k
$$

for every k. Define

$$
y=\sum_{k}(k+1)\left(2^{k+1} / a_{k}\right)\left(e_{2 k+2}-e_{2 k}\right)
$$

Then it is easy to see that $y \in M\left(A_{00}\right) \subset Q M\left(A_{00}\right)$. Let $\xi=\sum_{k=1}^{\infty}(1 / 2)^{k / 2} \xi_{k}$; then $\|\xi\|=1$. So $f(\cdot)=\langle\cdot \xi, \xi\rangle$ is a pure state of A. But

$$
f\left(e_{2 k+2} y e_{2 k+2}\right) \geq k
$$

So $y \in F Q M\left(A_{00}\right)$.
Conversely, if $\pi(A)$ is unital for each $\pi \in \widehat{A}$, then $\tilde{\pi}\left(Q M\left(A_{00}\right)\right)=Q M(\pi(A))$. The conclusion is obvious.

5. Duals and biduals

In this section, we shall study $Q M\left(A_{00}\right)^{\prime}$, the dual of $Q M\left(A_{00}\right)$ (the latter being considered with the Q - A_{00}-topology), and $Q M\left(A_{00}\right)^{\prime \prime}$, the bidual of $Q M\left(A_{00}\right)$.
5.1. Theorem. $Q M\left(A_{00}\right)^{\prime}=\left\{f(a \cdot b): a, b \in A_{00}, f \in A^{*}\right.$, and $\left.\|f\| \leq 1\right\}$.

Proof. For $a, b \in A_{00}$, denote

$$
U_{a, b}=\left\{z \in Q M\left(A_{00}\right):\|a z b\| \leq 1\right\}
$$

Then $\left\{U_{a, b}\right\}$ forms a neighborhood base at 0 . Let

$$
U_{a, b}^{0}=\left\{f \in Q M\left(A_{00}\right)^{\prime}:|f(z)|<1 \text { if } z \in U_{a, b}\right\}
$$

Then

$$
Q M\left(A_{00}\right)^{\prime}=\bigcup\left\{U_{a, b}^{0}: a, b \in A_{00}\right\}
$$

Suppose that $f \in U_{a, b}^{0}$; then $|f(z)|<1$ for each $z \in U_{a, b}$, or, equivalently,

$$
|f(z)|<\|a z b\| \quad \text { for each } z \in Q M\left(A_{00}\right)
$$

Define a linear functional g on the normed linear space $\left\{a z b: z \in Q M\left(A_{00}\right)\right\}$ of A by $g(a z b)=f(z)$. Then g is well defined and $|g(a z b)|<\|a z b\|$. By the Hahn-Banach theorem, we can assume that g is in A^{*} and $\|g\|<1$. Thus

$$
U_{a, b}^{0} \subset\left\{f(a \cdot b): f \in A^{*},\|f\| \leq 1\right\}
$$

This completes the proof.
5.2. Let $g \in A_{n}^{*}$ and $p_{n}=\left[e_{n}\right]$. For every $a \in A$, define $f(a)=g\left(p_{n} a p_{n}\right)$. Then $f \in A^{*}$ and $\|f\|=\|g\|$. Moreover,

$$
\begin{aligned}
f\left(e_{n m+1} a e_{n+1}\right) & =g\left(p_{n} e_{n+1} a e_{n+1} p_{n}\right) \\
& =g\left(p_{n} a p_{n}\right)=f(a) \quad \text { for every } a \in A .
\end{aligned}
$$

Define $\tilde{f}(z)=\left(e_{n+1} z e_{n+1}\right)$; then $\tilde{f} \in Q M\left(A_{00}\right)^{\prime}$. We denote by L_{n} the set $\left\{f: f(a)=g\left(p_{n} a p_{n}\right), g \in A_{n}^{*}\right.$, for every $\left.a \in A\right\}$.
Then $L_{n} \subset Q M\left(A_{00}\right)^{\prime}$. If $g \in Q M\left(A_{00}\right)^{\prime}$, by Theorem 5.1, $g(\cdot)=f(a \cdot b)$ for some $a, b \in A_{n}$ and some n. Clearly $g\left(p_{n} \cdot p_{n}\right)=g$, so $g \in L_{n}$.
5.3. Corollary. $Q M\left(A_{00}\right)^{\prime}=\bigcup_{n=1}^{\infty} L_{n}$.
5.4. By 5.2 we can identify L_{n} with A_{n}^{*}.
5.5. Proposition. Let f be a positive Q - A_{00}-continuous functional on $Q M\left(A_{00}\right)$. Then there is a positive functional $g \in\left(A^{*}\right)_{+}$and n such that

$$
f(z)=g\left(e_{n+1} z e_{n+1}\right) \quad \text { for all } z \in Q M\left(A_{00}\right) .
$$

Proof. It is an immediate consequence of 5.3.
5.6. Proposition. $Q M\left(A_{00}\right)^{\prime}$ is the linear span of its positive cone.

Proof. Since $L_{n}\left(=A_{n}^{*}\right)$ is the linear span of its positive cone, by 5.3 $Q M\left(A_{00}\right)^{\prime}$ is the linear span of its positive cone.
5.7. We shall denote by $M_{0}(A)$ the norm closure of $\bigcup_{n=1}^{\infty} A_{n}^{* *}$ (cf. [15]). Then $\bigcup_{n=1}^{\infty} A_{n}^{* *}=\bigcup_{n=1}^{\infty} p_{n} A^{* *} p_{n}$ is a support algebra of $M_{0}(A)$, where $p_{n}=\left[e_{n}\right]$.
5.8. Let $Q M\left(A_{00}\right)^{\prime \prime}$ be the bidual of $Q M\left(A_{00}\right)$. The "strong" topology on $Q M\left(A_{00}\right)^{\prime \prime}$ is the locally convex topology generated by seminorms

$$
\|F\|_{a, b}=\sup \left\{|F(f)|: f \in U_{a, b}^{0}\right\}
$$

where $F \in Q M\left(A_{00}\right)^{\prime \prime}, a, b \in A_{00}$, and $U_{a, b}^{0}$ as in 5.1.
5.9. Theorem. $Q M\left(A_{00}\right)^{\prime \prime}$ is isomorpic to $Q M\left(\bigcup_{n=1}^{\infty} A_{n}^{* *}\right)$ as topological vector spaces, the former is considered with "strong" topology and the latter is considered with $Q-\bigcup_{n=1}^{\infty} A_{n}^{* *}$-topology.
Proof. Let L_{n} be the same as in 5.2. There is a natural isometry from L_{n} onto A_{n}^{*}. We may identify L_{n} with A_{n}^{*}.

Let $F \in Q M\left(A_{00}\right)^{\prime \prime}$. Define $F_{n}=\left.F\right|_{L_{n}}\left(=\left.F\right|_{A_{n}^{*}}\right)$. So there is $z_{n}(F) \in A^{* *}$ such that

$$
F_{n}(f)=z_{n}(F)(f) \quad \text { for all } f \in A^{*} .
$$

We define a map Φ from $Q M\left(A_{00}\right)^{\prime \prime}$ into $Q M\left(\bigcup_{n=1}^{\infty} A_{n}^{* *}\right)$ as follows:

$$
\Phi: F \rightarrow \rho_{F}, \quad \text { where } \rho_{F}(a, b)=a z_{n}(F) b
$$

for all $a, b \in A_{n}^{* *}, n=1,2, \ldots$. Since $\left.F_{n+1}\right|_{A_{n}^{*}}=F_{n}, \rho_{F}$ is well defined and ρ_{F} is in $Q M\left(\bigcup_{n=1}^{\infty} A_{n}^{* *}\right)$. Clearly Φ is a linear map.

If $\rho_{F}=0$, then $F_{n}(f)=0$ for all $f \in A_{n}^{* *}$ and all n. So $F=0$. Hence Φ is one-to-one.

Take $z \in Q M\left(\bigcup_{n=1}^{\infty} A_{n}^{* *}\right)$. Then $p_{n} z p_{n} \in A_{n}^{* *}$. For each $f \in A_{n}^{*}\left(=L_{n}\right)$ define

$$
F_{z}(f)=f\left(p_{n} z p_{n}\right) \quad \text { for } f \in A_{n}^{*}\left(=L_{n}\right) .
$$

Thus we define an element F_{z} in $Q M\left(A_{00}\right)^{\prime \prime}$. It is easy to see that $\Phi\left(F_{z}\right)=z$. Hence Φ is onto.

Now suppose that $F_{\alpha}, F \in Q M\left(A_{00}\right)^{\prime \prime}$ such that $F_{\alpha} \rightarrow F$ in the "strong" topology.

Let $U_{n}^{0}=\left\{f \in Q M\left(A_{00}\right)^{\prime}:|f(z)|<1\right.$ if $\left.\left\|e_{n+1} z e_{n+1}\right\| \leq 1\right\}$. Then

$$
\sup \left\{\left|F_{\alpha}(f)-F(f)\right|: f \in U_{n}^{0}\right\} \rightarrow 0
$$

If $f \in A_{n}^{*}\left(=L_{n}\right)$ and $\|f\| \leq 1$, then

$$
|\tilde{f}(z)|=\mid f\left(p_{n} e_{n+1} z e_{n+1} p_{n}\right)\|\leq\| p_{n} e_{n+1} z e_{n+1} p_{n} \leq\left\|e_{n+1} z e_{n+1}\right\| .
$$

Hence $f \in U_{n}^{0}$. Thus,

$$
\begin{aligned}
\left\|p_{n}\left(\rho_{F_{\alpha}}-\rho_{F}\right) p_{n}\right\| & =\sup \left\{\left|f\left(p_{n} e_{n}\left(z_{n}\left(F_{\alpha}\right)-z_{n}(F)\right) p_{n}\right)\right|: f \in A_{n}^{*},\|f\| \leq 1\right\} \\
& =\sup \left\{\left|F_{\alpha}(f)-F(f)\right|: f \in L_{n},\|f\| \leq 1\right\} \\
& \leq \sup \left\{\left|F_{\alpha}(f)-F(f)\right|: f \in U_{n}^{0}\right\} \rightarrow 0
\end{aligned}
$$

Hence $\rho_{F_{a}} \rightarrow \rho_{F}$ in $Q-\bigcup_{n=1}^{\infty} A_{n}^{* *}$-topology.
Conversely, suppose that $\rho_{F_{a}} \rightarrow \rho_{F}$ in $Q-\bigcup_{n=1}^{\infty} A_{n}^{* *}$-topology. For each n, by 5.1 ,

$$
U_{n}^{0} \subset\left\{f\left(e_{n+1} \cdot e_{n+1}\right): f \in A^{*},\|f\| \leq 1\right\}
$$

Thus

$$
U_{n}^{0} \subset\left\{f \in L_{n}:\|f\|<1\right\}
$$

Hence

$$
\begin{aligned}
\left\|p_{n}\left(\rho_{F_{n}}-\rho_{F}\right) p_{n}\right\| & =\sup \left\{\left|f\left(p_{n}\left(z_{n}\left(F_{\alpha}\right)-z_{n}(F)\right) p_{n}\right)\right|: f \in L_{n},\|f\| \leq 1\right\} \\
& \geq \sup \left\{\left|f\left(F_{\alpha}\right)-f(F)\right|: f \in U_{n}^{0}\right\}
\end{aligned}
$$

Thus $\left\|p_{n}\left(\rho_{F_{n}}-\rho_{F}\right) p_{n}\right\| \rightarrow 0$ implies

$$
\sup \left\{\left|f\left(F_{\alpha}\right)-f(F)\right|: f \in U_{n}^{0}\right\} \rightarrow 0
$$

So Φ is bicontinuous.
5.10. Example. Let K be the C^{*}-algebra of all compact operators on a separable Hilbert space. Let $A_{00}=\bigcup_{n=1}^{\infty} M_{n}$ be a support algebra of K, where each M_{n} is isomorphic to the $n \times n$ matrix algebra. Since $M_{n}^{* *}=M_{n}, M_{0}(A)=A$. Hence $Q M\left(\bigcup_{n=1}^{\infty} M_{n}^{* *}\right)=Q M\left(A_{00}\right)$. By 5.9, $Q M\left(A_{00}\right)^{\prime \prime}=Q M\left(A_{00}\right)$.
5.11. Proposition. Every σ-unital dual C^{*}-algebra has reflexive quasi-multipliers. Proof. Let e be a strictly positive element of A. By [4, 4.7.20], every nonzero point of $\mathrm{Sp}(e)$ is isolated. So we may assume that e_{n} are projections. Consequently, $A_{n}=e_{n} A e_{n}$ and are unital dual C^{*}-algebras. Thus A_{n} are finite dimensional. This implies that $A_{n}^{* *}=A_{n}$. Hence $M_{0}(A)=A$. By 5.9, $Q M\left(A_{00}\right)^{\prime \prime}=Q M\left(A_{00}\right)$.

6. Pseudo-commutative C^{*}-algebras

In $\S 3$, we showed that $Q M\left(A_{00}\right)=L M\left(A_{00}\right)+R M\left(A_{00}\right)$. We now consider the problem when $Q M\left(A_{00}\right)=M\left(A_{00}\right)$. It turns out that the problem is equivalent to the problem when $K(A)=A_{00}$.
6.1. Theorem. Let A be a σ-unital C^{*}-algebra and $A_{00}\left(\left\{e_{n}\right\}\right)$ a support algebra of A. Then the following are equivalent:
(i) $M\left(A_{00}\right)=Q M\left(A_{00}\right)$.
(ii) For every n, there is an integer $N(n)<n$ such that $e_{n} a=e_{n} a e_{N(n)}$ for all $a \in A$.

Proof. (i) \Rightarrow (ii). Since $M\left(A_{00}\right)=Q M\left(A_{00}\right), A \subset M\left(A_{00}\right)$. So for every $a \in A, e_{n} a \in A_{00}$, that is, $e_{n} a \in A_{k}$ for some k. Thus $e_{n} a=e_{n} a e_{k+1}$. If (i) does not imply (ii), there are $a_{k} \in A$ such that

$$
x_{k}=e_{n} a_{k}\left(e_{n_{k+1}}-e_{n_{k}}\right) \neq 0
$$

for some subsequence $\left\{n_{k}\right\}$. We may assume that $\left\|x_{k}\right\|=1$ for all k. Define $z=\sum_{k=1}^{\infty}(1 / 2)^{k} x_{k}$. Then $z \in A \subset Q M\left(A_{00}\right)$. But

$$
e_{n=1} z=e_{n+1}\left(\sum_{k=1}^{\infty}(1 / 2)^{k}\right)=\sum_{k=1}^{\infty}(1 / 2)^{k} x_{k}=z \notin A_{00}
$$

Hence $z \notin M\left(A_{00}\right)$, a contradiction.
(ii) \Rightarrow (i) For fixed n,

$$
\left(a e_{n}\right)^{*}=e_{n} a^{*}=e_{n} a^{*} e_{N(n)} \quad \text { for all } a \in A
$$

So $a e_{n}=e_{N(n)} a e_{n}$.
Suppose that $z \in Q M\left(A_{00}\right)$. For fixed k,

$$
\begin{aligned}
e_{n} z e_{k} & =e_{n+1} e_{n} z e_{k} e_{k+1}=e_{n+1} e_{n} e_{N(k+1)} z e_{k} \\
& =e_{N(k+1)} z e_{k} \quad \text { if } n>N(k+1) .
\end{aligned}
$$

Thus $z \in Q M_{l}\left(A_{00}\right)$. Similarly, $z \in Q M_{r}\left(A_{00}\right)$, so $z \in M\left(A_{00}\right)$.
6.2. Definition. A σ-unital C^{*}-algebra A (without unit) is called pseudocommutative if A satisfies (i) or (ii) in 6.1.
6.3. Proposition. Suppose that A is a pseudo-commutative C^{*}-algebra (without identity). Then the following are true:
(i) The Pedersen ideal $K(A)$ is a support algebra of A.
(ii) $M(A)=Q M(A)$.
(iii) The spectrum \hat{A} of A is not compact.
(iv) For every irreducible representation π of $A, \pi(A)$ has a unit.

Proof. (i) By (ii) of $6.1, A_{00}$ is a dense ideal of A. Since $K(A) \subset A_{00}$, we conclude that $K(A)=A_{00}$.
(ii) Suppose that $z \in Q M(A)$. Then $z \in M\left(A_{00}\right)$. For every $a \in A$,

$$
e_{n} a e_{n} z \in A_{00} \subset A
$$

Since z is bounded and $\left\|e_{n} a e_{n}-a\right\| \rightarrow 0$, we conclude that $a z \in A$. Similarly $z a \in A$. So $z \in M(A)$.
(iii) If \widehat{A} is compact, by $[11,10.8], A$ is a PCS-algebra, that is, $M(A)=$ $\Gamma(K(A))$. It follows from (i) that $\Gamma(K(A))=M\left(A_{00}\right)$. Hence $M(A)=$ $M\left(A_{00}\right)=Q M\left(A_{00}\right)$. However, by Lemma 2.16, if A is not unital, $Q M\left(A_{00}\right) \neq$ $Q M(A)$. A contradiction.
(iv) By [11, 10.4], $\pi(A)$ is a PCS-algebra, so, as in (iii), $Q M(\pi(A))=$ $Q M\left(\pi\left(A_{00}\right)\right)$. By Lemma 2.16, it happens only when $\pi(A)$ has a unit.

The following lemma is taken from [11, 10.7] but in a slightly different setting. The terminology follows from [11].
6.4. Lemma (cf. $[11,10.7])$. Let A by a C^{*}-algebra and let $\left\{x_{n}\right\}$ be an orthogonal sequence in $(K(A))_{+}\left(\right.$that is, $x_{n} x_{m}=0$, if $\left.n \neq m\right)$ such that the sequence of partial sum $\left\{\sum_{k=1}^{\infty} x_{k}\right\}$ is K-Cauchy. Let $a \in K(A), S$ be a subset of \hat{A}, and let $\left\{\alpha_{n}\right\}$ be the sequence defined by

$$
\alpha_{n}=\sup \left\{\|\pi(a)\|: \pi \in S \text { and }\left\|\pi\left(x_{n}\right)\right\|>\left\|\left.x_{n}\right|_{S}\right\| / 2\right\}
$$

where $\left\|\left.x_{n}\right|_{S}\right\|=\sup \left\{\left\|\pi\left(x_{n}\right)\right\|: \pi \in S\right\}$. If $\left\|\left.x_{n}\right|_{S}\right\| \rightarrow \infty$, then $\alpha_{n} \rightarrow 0$.
Proof. The proof is the same as the proof of [11, 10.7]. We only need to change \widehat{A} and $\left\|x_{n}\right\|$ into S and $\left\|\left.x_{n}\right|_{S}\right\|$, respectively.
6.5. Theorem. Suppose that A is a σ-unital C^{*}-algebra. Then A is pseudocommutative if and only if one of its support algebras $A_{00}=K(A)$.
Proof. Let $A_{00}=A_{00}\left(\left\{e_{n}\right\}\right)$. For every n, denote

$$
F_{n}=\left\{\pi \in \widehat{A}:\left\|\pi\left(e_{n}\right)\right\| \geq 1 / n+1\right\}
$$

We claim that there is a $b_{n} \in A_{00}$ such that

$$
\pi\left(b_{n}\right)=1 \quad \text { for each } \pi \in F_{n} .
$$

If not, by taking a subsequence if necessary, we may assume that there are $\pi_{k} \in F_{n}$ such that

$$
\pi_{k}\left(e_{k}-e_{k-1}\right) \neq 0
$$

Let $x_{k}=\beta_{k}\left(e_{2 k}-e_{2 k-1}\right)$, where $\beta_{k}=k \cdot \max \left(1,1 /\left\|\pi_{k}\left(e_{2 k}-e_{2 k-1}\right)\right\|\right), k=$ $1,2, \ldots$. Then $x_{k} x_{m}=0$ if $n \neq m$ and $\sum_{k=1}^{\infty} x_{k}$ is A_{00}-Cauchy. By letting $a=e_{n}$, and $S=F_{n}$ in Lemma 6.4, we have $\left\|x_{k} \mid F_{n}\right\| \rightarrow \infty$ as $k \rightarrow \infty$, hence $\left\|\pi_{k}\left(e_{n}\right)\right\| \rightarrow 0$ as $k \rightarrow \infty$. This contradicts the fact $\left\|\pi\left(e_{n}\right)\right\| \geq 1 / n+1$ for all $\pi \in F_{n}$. So we complete the proof of the claim.

Now let $a_{1}=b_{1}$. Then $a_{1} \in A_{00}$, so $a_{1} \in A_{N(1)}$ for some $N(1)$. Suppose that $a_{1}, a_{2}, \ldots, a_{k}$ have been chosen from A_{00}, and assume that $a_{k} \in A_{N(k)}$. Then

$$
a_{k} e_{N(k+1)}=e_{N(k)+1} a_{k}=a_{k}
$$

So

$$
\begin{aligned}
\left\{\pi \in \hat{A}: \pi\left(a_{k}\right) \neq 0\right\} & \subset\left\{\pi \in \hat{A}:\left\|\pi\left(e_{N(k)+1}\right)\right\| \geq 1\right\} \\
& \subset F_{N(k)+1}
\end{aligned}
$$

We choose $a_{k+1}=b_{N(k)+1}$. Thus $\pi\left(a_{k+1}\right)=1$ for all $\pi \in\left\{\pi \in \widehat{A}: \pi\left(a_{k}\right) \neq 0\right\}$. Hence $a_{k+1} a_{k}=a_{k} a_{k+1}=a_{k}$. For every $a \in A$,

$$
\pi\left(a_{k} a\right)=\pi\left(a_{k}\right) \pi(a)=0 \quad \text { if } \pi\left(a_{k}\right)=0
$$

Thus

$$
\pi\left(e_{k} a\right)=\pi\left(e_{k}\right) \pi(a) \pi\left(a_{k+1}\right)
$$

for all $\pi \in \hat{A}$. We conclude that

$$
a_{k} a=a_{k} a a_{k+1} \quad \text { for all } a \in A \text { and } k
$$

Clearly $\left\{a_{k}\right\}$ forms an approximate identity for A. By 6.1 we conclude that A is pseudo-commutative.

The converse is (i) of 6.3.
6.6. Theorem. Let A be a pseudo-commutative C^{*}-algebra. Then $K(A)$ is the only support algebra of A.
Proof. By the proof of 6.5 , there is an approximate identity $\left\{a_{n}\right\}$ satisfying $a_{k+1} a_{k}=a_{k} a_{k+1}=a_{k}$ for each k and $a_{k} a=a_{k} a a_{k+1}$ for every $a \in A$. Moreover, there are compact subsets F_{n} of A such that $F_{n} \subset F_{n+1}, \bigcup_{n=1}^{\infty} F_{n}=$ \hat{A}, and

$$
\pi\left(a_{n}\right)= \begin{cases}1 & \text { for all } \pi \in F_{n} \\ 0 & \text { if } \pi \in \widehat{A} \backslash F_{n+1}\end{cases}
$$

Since $a_{k} a=a_{k} a a_{k+1}$ for every $a \in A, A_{00}\left(\left\{a_{k}\right\}\right)$ is an ideal. So $A_{00}\left(\left\{a_{n}\right\}\right)=$ $K(A)$.

Now suppose that $A_{00}=A_{00}\left(\left\{e_{n}\right\}\right)$ is any support algebra of A. For every n, there is $k(n)$ such that

$$
\left\|e_{k(n)} a_{n}-a_{n}\right\|<1 / 2
$$

Hence

$$
\left\|\pi\left(e_{k(n)}\right)-1\right\|<1 / 2 \quad \text { for all } \pi \in F_{n}
$$

Thus $\pi\left(A_{k(n)}\right)=\pi(A)$ for all $\pi \in F_{n}$. Since $\pi\left(a_{n-1}\right)=0$ for $\pi \in \widehat{A} \backslash F_{n}$, we conclude that $e_{k(n)} \geq a_{n-1}$ for every n. Hence

$$
A_{00} \supseteq A_{00}\left(\left\{a_{n}\right\}\right)=K(A)
$$

This completes the proof.
6.7. Definition. An approximate identity $\left\{e_{n}\right\}$ of A is said to be central if $e_{n} a=a e_{n}$ for all $a \in A$ and all n.
6.8. Theorem. Suppose that A is a σ-unital C^{*}-algebra such that $\operatorname{Prim}(A)$ is a Hausdorff space. Then A is pseudo-commutative if and only if A has a central approximate identity $\left\{e_{n}\right\}$ satisfying $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$ for all n.
Proof. Suppose that A is pseudo-commutative. Let

$$
\begin{aligned}
& T_{n}=\left\{\pi \in \operatorname{Prim}(A):\left\|\pi\left(e_{n}\right)\right\| \geq 1 / n\right\} \\
& O_{n}=\left\{\pi \in \operatorname{Prim}(A):\left\|\pi\left(e_{n}\right)\right\|>1 / n+1\right\}
\end{aligned}
$$

and

$$
F_{n}=\left\{\pi \in \operatorname{Prim}(A):\left\|\pi\left(e_{n}\right)\right\| \geq 1 / n+1\right\}
$$

by [18, 4.43 and 4.45], T_{n} and F_{n} are closed and compact and O_{n} is open. The element b_{n} in 6.5 satisfies $\pi\left(b_{n}\right)=1$ for all $\pi \in F_{n}$. Since $\operatorname{Prim}(A)$ is a locally compact Hausdorff space, there is $f \in C(\operatorname{Prim}(A))$ such that $0 \leq f \leq$ $1,\left.f\right|_{T_{n}}=1$, and $\left.f\right|_{(\operatorname{Prim} A) \backslash O_{n}}=0$. By the Dauns-Hofmann theorem (cf. [6, Theorem 3]), there is $x_{n} \in A_{+}^{n}$ such that

$$
\pi\left(x_{n}\right)=f(\pi) \pi\left(b_{n}\right) \quad \text { for all } \pi \in \operatorname{Prim}(A)
$$

Notice that $T_{n} \subset O_{n} \subset F_{n}$; we have

$$
\pi\left(x_{n}\right)=f(\pi) \quad \text { for all } \pi \in \operatorname{Prim}(A)
$$

Hence x_{n} is in the center of A. Moreover, $\left\{x_{n}\right\}$ forms an approximate identity for A satisfying

$$
x_{n+1} x_{n}=x_{n} x_{n+1}=x_{n} \text { for all } n
$$

The converse follows from (ii) of 6.1 .
6.9. Proposition. Every homomorphic image of a pseudo-commutative C^{*} algebra A is pseudo-commutative.
Proof. Let ϕ be a homomorphism of $A, B=\phi(A)$, and $B_{00}=\phi\left(A_{00}\right)$. Clearly, by (ii) of 6.1, for every $n, \phi\left(e_{n}\right) \phi(a)=\phi\left(e_{n}\right) \phi(a) \phi\left(e_{N(n)}\right)$ for every $a \in A$. Thus B is also a pseudo-commutative C^{*}-algebra.
6.10. Theorem. Suppose that A is a σ-unital C^{*}-algebra with continuous trace. Then A is pseudo-commutative if and only if A is a locally trivial continuous field of matrix algebras.
Proof. Assume that A is a pseudo-commutative C^{*}-algebra. Since A has continuous trace, \widehat{A} is a locally compact Hausdorff space. Fix $\pi \in A$. Let F be a compact (hence closed) neighborhood of π. Let $I=\{a: a \in A, \pi(a)=0$ for $\pi \in F\}$, and ϕ be the canonical homomorphism from A onto A / I. So $\phi(A)^{\wedge}$ is compact. By the argument used in (iii) of 6.2 and $6.9, \phi(A)$ has an identity. Thus, $\phi\left(A_{n}\right)=\phi(A)$ for some n. Let $a \in A_{n}$ such that $\pi\left(a_{n}\right)=1$. Then $\pi\left(a_{n}\right)=1$ for all $\pi \in F$. Since $A_{n} \subset K(A), \operatorname{Tr}\left(\pi\left(a_{n}\right)\right)$ is continuous. So $\operatorname{Tr}(\pi(a))$ is a constant in some neighborhood of . This implies that A is locally homogeneous of finite rank. By [7, Theorem 3.2], A is a locally trivial continuous field of matrix algebras.

Now we assume that A is a locally trivial continuous field of matrix algebras and $\left\{e_{n}\right\}$ is as usual. Denote

$$
F_{n}=\left\{\pi \in \widehat{A}: \pi\left(e_{n}\right) \geq 1 / 2 n\right\}
$$

Then F_{n} is compact. For each point $\pi \in F_{n}$, there is a neighborhood U_{π} such that A is trivial on \bar{U}_{π}, where \bar{U}_{π} is the closure of U_{π} and we assume $\bar{U}_{\frac{\pi}{U}}$ is compact. Thus there is an $a_{\pi} \in A_{00}\left(\left\{e_{n}\right\}\right)$ such that $\rho\left(a_{\pi}\right)=1$ for all $\rho \in \bar{U}_{\pi}$. Since F_{n} is compact, we may assume that there are $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$, such that $\bigcup_{i=1}^{k} U_{\pi_{i}} \supset F_{n}$. There is m, such that

$$
\left\|e_{m} a_{\pi_{i}}-a_{\pi_{i}}\right\|<1 / 2 \quad \text { for } i=1,2, \ldots, k
$$

So

$$
\left\|\pi\left(e_{m}\right)-1\right\|<1 / 2 \quad \text { for all } \pi \in F_{n}
$$

Thus $\pi\left(A_{m}\right)=\pi(A)$ for each $\pi \in F_{n}$. Hence $\pi\left(e_{m+1}\right)=1$ for each F_{n}. Now we can use the argument in 6.8 to construct a central approximate identity $\left\{a_{n}\right\}$ satisfying $a_{n+1} a_{n}=a_{n} a_{n+1}=e_{n}$. It follows then from 6.8 that A is pseudo-commutative.
6.11. Examples. Clearly every σ-unital commutative C^{*}-algebra is pseudocommutative.

Let X be a locally compact and σ-compact Hausdorff space, and let B be a unital C^{*}-algebra. Let A be $C_{0}(X, B)$, the set of continuous mappings from X into B vanishing at infinity. It is easy to check that A has a central approximate identity $\left\{e_{n}\right\}$ such that $e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n}$. So A is pseudocommutative.

7. Singly supported C^{*}-algebras

7.1. We see from 6.7 that a pseudo-commutative C^{*}-algebra has a unique support algebra. It is evident that this may not be true for other C^{*}-algebras. But must every two support algebras of a given C^{*}-algebra be *-isomorphic?
7.2. Definition. We say that a σ-unital C^{*}-algebra is singly supported if every two support algebras are ${ }^{*}$-isomorphic.
7.3. Corollary. Every pseudo-commutative C^{*}-algebra is singly supported.
7.4. Theorem. Let A be a C^{*}-algebra with approximate identities $\left\{e_{n}\right\}$ and $\left\{p_{n}\right\}$. Suppose that e_{n} and p_{n} are projections and

$$
A_{00}=\bigcup_{n=1}^{\infty} e_{n} A e_{n}, \quad A_{00}^{\prime}=\bigcup_{n=1}^{\infty} p_{n} A p_{n} .
$$

Then there is a unitary $u \in M(A)$ (the multiplier algebra of A) such that $u^{*} A_{00} u=A_{00}^{\prime}$.

Proof. We claim that there are subsequences $\left\{e_{n(k)}\right\}$ of $\left\{e_{n}\right\}$ and $\left\{p_{m(k)}\right\}$ of $\left\{p_{n}\right\}$, elements $\left\{f_{k}\right\},\left\{f_{k}^{\prime}\right\},\left\{q_{k}\right\},\left\{q_{k}^{\prime}\right\},\left\{v_{k}\right\}$, and $\left\{w_{k}\right\}$ in A, and unitary elements $\left\{u_{k}\right\}$ and $\left\{\bar{u}_{k}\right\}$ in $M(A)$ satisfying the following:
(i) $f_{k}, f_{k}^{\prime}, q_{k}, q_{k}^{\prime}$ are projections in A, where $f_{k}, q_{k}^{\prime} \in A_{00}$ and q_{k}, $f_{k}^{\prime} \in A_{00}^{\prime}$.
(ii) $f_{i} f_{j}=0, f_{i} f_{j}=0, q_{i} q_{j}=0$, and $q_{i} q_{j}=0$ if $i \neq j$.
(iii) $q^{\prime} f_{k}=f_{k} q^{\prime}=0$ and $q_{i} f^{\prime}=f^{\prime} q_{i}=0$ for all i and k.
(iv) $e_{1}=f_{1}$ and $\sum_{i=1}^{k} f_{i}+\sum_{i=1}^{k-1} q_{i}^{\prime}=e_{n(k)}$.
(v) $p_{m k}=\sum_{i=1}^{k} q_{i}+\sum_{i=1}^{k} f_{i}^{\prime}$.
(vi) $u_{k} e_{n(k)} u_{k}^{\prime}=\sum_{i=1}^{k-1} q_{i}+\sum_{i}^{k} f_{i}^{\prime}$ and $u_{k}^{*} p_{m(k)} u_{k}=\sum_{i=1}^{k} f_{i}+\sum_{i=1}^{k} q_{i}^{\prime}$.
(vii) $v_{k}^{*} v_{k}=f_{k}, v_{k} v_{k}^{*}=f_{k}, w_{k}^{*} w_{k}=q_{k}^{\prime}$, and $w_{k} w_{k}^{*}=q_{k}$.

We shall use induction.
Since A_{00} is dense in A, there is a selfadjoint element $a \in A_{00}^{\prime}$ such that $\left\|a-e_{1}\right\|<1 / 8$. We may assume that $a \in p_{n} A p_{n}$ for some $n(1)$. By [5 , Lemma A.8.1], there is a projection $f_{1}^{\prime} \in p_{n(1)} A p_{n(1)}$ such that

$$
\left\|f_{1}^{\prime}-e_{1}\right\|<1 / 4
$$

By [5, Lemmas A.8.1 and A.8.3], there is $v_{1} \in A$ such that $\left\|v_{1}-e_{1}\right\|<1 / 2$, $v_{1}^{*} v_{1}=e_{1}$, and $v_{1} v_{1}^{*}=f_{1}^{\prime}$, and there is a unitary element $u_{1} \in M(A)$ such that $u_{1} e_{1} u^{*}=f_{1}^{\prime}$ and $u_{1}^{*} f_{1}^{\prime} u_{1}=e_{1}$.

Let $q_{1}=p_{n(1)}-f_{1}^{\prime}$. Then $u_{1}^{*} q_{1}^{\prime} u_{1} \in\left(1-e_{1}\right) A\left(1-e_{1}\right)\left(=\left(1-f_{1}\right) A\left(1-f_{1}\right)\right)$. Since $\left(1-e_{1}\right) A_{00}\left(1-e_{1}\right)$ is dense in $\left(1-e_{1}\right) A\left(1-e_{1}\right)$, by the above argument there is a projection $q_{1}^{\prime} \in\left(1-e_{1}\right) A_{00}\left(1-e_{1}\right)$ such that

$$
\left\|q_{1}^{\prime}-u_{1}^{*} q_{1} u_{1}\right\|<1 / 4
$$

By [5, Lemmas A.8.1 and A.8.3], there is a $w_{1}^{\prime} \in\left(1-e_{1}\right) A\left(1-e_{1}\right)$ such that $\left(w_{1}^{\prime}\right)^{*}\left(w_{1}^{\prime}\right)=q_{1}^{\prime}, w_{1}^{\prime} w_{1}^{*}=u_{1}^{*} q_{1} u_{1}$, and

$$
\left\|w_{1}^{\prime}-q_{1}^{\prime}\right\|<1 / 2
$$

Moreover there is a unitary u^{\prime} in $\left(1-e_{1}\right) M(A)\left(1-e_{1}\right)$ such that $\left(u^{\prime}\right) q_{1}^{\prime}\left(u^{\prime}\right)^{*}=$ $u^{*} q_{1} u_{1}$ and

$$
\left(u^{\prime}\right)^{*}\left(u_{1}^{*} q_{1}^{\prime} u_{1}\right)\left(u^{\prime}\right)=q_{1}^{\prime}
$$

Let $w_{1}=u_{1} w_{1}^{\prime}$ and $\bar{u}_{1}=\left(1-f_{1}^{\prime}\right) u_{1} u^{\prime}+f_{1}^{\prime} u_{1}$. Then $w^{*} w_{1}=q^{\prime},\left(w_{1}\right)\left(w_{1}\right)^{*}=$ q_{1}^{\prime}, and \bar{u}_{1} is a unitary in $M(A)$ such that

$$
\bar{u}_{1}^{*} p_{n(1)} \bar{u}_{1}=e_{1}+q_{1}^{\prime}=f_{1}+q_{1}^{\prime}
$$

Now we assume that we have chosen $e_{n(i)}, p_{m(i)}, f_{i}, f_{i}^{\prime}, q_{i}, q_{i}^{\prime}, v_{i}, w_{i}, u_{i}$, and $\bar{u}_{i}^{\prime}, i=1,2, \ldots, k$. Suppose that $q_{k}^{\prime} \in e_{n(k+1)} A e_{n(k+1)}$ and let

$$
f_{k+1}=e_{n(k+1)}-\left(\sum_{i=1}^{k} f_{i} \sum_{i}^{k} q_{i}^{\prime}\right)
$$

Then $\bar{u}_{k} f_{k+1} \bar{u}_{k}^{*} \in\left(1-p_{n(k)}\right) A\left(1-p_{n(k)}\right)$. Since $\left(1-p_{n(k)}\right) A_{00}\left(1-p_{n(k)}\right)$ is dense in $\left(1-p_{n(k)}\right) A\left(1-p_{n(k)}\right)$, there is a projection $f_{k+1}^{\prime} \in\left(1-p_{n(k)}\right) A_{00}^{\prime}\left(1-p_{n(k)}\right)$ $\left(\subset A_{00}^{\prime}\right)$ such that

$$
\left\|f_{k+1}^{\prime}-\bar{u}_{k} f_{k+1} \bar{u}_{k}^{*}\right\|<1 / 4
$$

By [5, Lemmas A.8.1 and A.8.3], there is $v_{k+1}^{\prime} \in\left(1-p_{n(k)}\right) A_{00}^{\prime}\left(1-p_{n(k)}\right)$ such that

$$
\left(v_{k+1}^{\prime}\right)^{*}\left(v_{k+1}^{\prime}\right)=f_{k+1}^{\prime}, \quad\left(v_{k+1}^{\prime}\right)\left(v_{k+1}^{\prime}\right)^{*}=\bar{u}_{k} f_{k+1} \bar{u}_{k}^{*}
$$

and a unitary $u_{1}^{\prime} \in\left(1-p_{n(k)}\right) M(A)\left(1-p_{n(k)}\right)$ such that

$$
\left(u_{1}^{\prime}\right) f_{k+1}\left(u_{1}^{\prime}\right)^{*}=\bar{u}_{k} f_{k+1} \bar{u}_{k}^{*}
$$

and

$$
\left(u_{1}^{\prime}\right)^{*} \bar{u}_{k} f_{k+1} \bar{u}_{k}^{*}\left(u_{1}^{\prime}\right)=f_{k+1}^{\prime}
$$

Define $v_{k+1}=v_{k+1}^{\prime} \bar{u}_{k}$ and

$$
u_{k+1}=\left(u_{1}^{\prime}\right)^{*} \bar{u}_{k}\left(1-\sum_{i=1}^{k} f_{i}-\sum_{i=1}^{k} q_{i}^{\prime}\right)+\bar{u}_{k}\left(\sum_{i=1}^{k} f_{i}+\sum_{i=1}^{k} q_{i}^{\prime}\right) .
$$

Then $v_{k+1}^{*} v_{k+1}=f_{k+1}, v_{k+1} v_{k+1}^{*}=f_{k+1}^{\prime}$, and

$$
u_{k+1} e_{n(k+1)} u_{k+1}^{*}=\sum_{i=1}^{k} q_{i}+\sum_{i}^{k+1} f_{i}^{\prime}
$$

Let

$$
\begin{aligned}
q_{k+1} & =p_{m(k+1)}-\left(\sum_{i=1}^{k} q_{i}+\sum_{i=1}^{k+1} f_{i}^{\prime}\right) \\
& =p_{m(k+1)}-u_{k+1} e_{n(k+1)} u_{k+1}^{*}
\end{aligned}
$$

Then

$$
u_{k+1}^{*} q_{k+1} u_{k+1} \in\left(1-e_{n(k+1)}\right) A\left(1-e_{n(k+1)}\right) .
$$

Since $\left(1-e_{n(k+1)}\right) A_{00}\left(1-e_{n(k+1)}\right)$ is dense in $\left(1-e_{n(k+1)}\right) A\left(1-e_{n(k+1)}\right)$, there is a projection $q_{k+1}^{\prime} \in\left(1-e_{n(k+1) 1}\right) A_{00}\left(1-e_{n(k+1)}\right) \quad\left(\subset A_{00}\right)$ such that

$$
\left\|q_{k+1}^{\prime}-u_{k+1}^{*} q_{k+1} u_{k+1}\right\|<1 / 4
$$

By [5, Lemmas A.8.1 and A.8.3], there is a $w_{k+1}^{\prime} \in\left(1-e_{n(k+1)}\right) A\left(1-e_{n(k+1)}\right)$ such that $\left(w_{k+1}^{\prime}\right)^{*}\left(w_{k+1}^{\prime}\right)=q_{k+1}^{\prime},\left(w_{k+1}^{\prime}\right)\left(w_{k+1}^{\prime}\right)^{*}=u_{k+1}^{*} q_{k+1} u_{k+1}$, and

$$
\left\|w_{k+1}^{\prime}-q_{k+1}^{\prime}\right\|<1 / 2
$$

Moreover, there is a unitary u_{2}^{\prime} in $\left(1-e_{n(k+1)}\right) M(A)\left(1-e_{n(k+1)}\right)$ such that

$$
\left(u_{2}^{\prime}\right) q_{k+1}^{\prime}\left(u_{2}^{\prime}\right)^{*}=u_{k+1}^{*} q_{k+1} u_{k+1}
$$

and

$$
\left(u_{2}^{\prime}\right)^{*}\left(u_{k+1}^{*} q_{k+1} u_{k+1}\right)\left(u_{2}^{\prime}\right)=q_{k+1}^{\prime}
$$

Define $w_{k+1}=u_{k+1} w_{k+1}^{\prime}$ and

$$
\bar{u}_{k+1}=\left(1-u_{k+1} e_{n(k+1)} u_{k+1}^{*}\right) u_{k+1} u_{2}^{\prime}+u_{k+1} e_{n(k+1)} u_{k+1}^{*} .
$$

Then $w_{k+1}^{*} w_{k+1}=q_{k+1}^{\prime}, w_{k+1} w_{k+1}^{*}=q_{k+1}$, and

$$
\bar{u}_{k+1}^{*} p_{m(k+1)} \bar{u}_{k+1}=\sum_{i=1}^{k+1} f_{k+1}^{\prime}+\sum_{i=1}^{k+1} q_{i}^{\prime} .
$$

This completes the induction.
Now we define

$$
u=\sum_{k=1}^{\infty} v_{k}+\sum_{k=1}^{\infty} w_{k} .
$$

It is easily checked that u is a unitary in $M(A)$ and

$$
u^{*} e_{n(k)} A e_{n(k)} u=\left(f_{n(k)}^{\prime}+p_{m(k-1)}\right) A\left(f_{n(k)}^{\prime}+p_{m(k-1)}\right)
$$

if $k \geq 2$. Thus

$$
u^{*} A_{00} u=A_{00}^{\prime} .
$$

7.5. Let A be a C^{*}-algebra. We denote by $\operatorname{Aut}(A)$ the automorphism group of A. If u is a unitary in $M(A)$, we denote the automorphism $a \rightarrow u^{*} a u$ by aut (u).
7.6. Corollary. Let A be a C^{*}-algebra with an approximate identity $\left\{e_{n}\right\}$ consisting of projections. Define

$$
G=\left\{\rho \in \operatorname{Aut}(A): \rho\left(A_{00}\left(\left\{e_{n}\right\}\right)\right)=A_{00}\left(\left\{e_{n}\right\}\right)\right\} .
$$

Then for every $\phi \in \operatorname{Aut}(A)$ there are a unitary element $u \in M(A)$ and $\rho \in G$ such that $\phi=\operatorname{aut}(u) \circ \rho$.
Proof. Let $A_{00}^{\prime}=\phi\left(A_{00}\left(\left\{e_{n}\right\}\right)\right)$. It follows from 7.4 that there is a unitary $u \in M(A)$ such that

$$
u\left(A_{00}^{\prime}\right) u^{*}=A_{00}
$$

Thus $\rho=\operatorname{aut}\left(u^{*}\right) \circ \phi \in G$. hence $\phi=\operatorname{aut}(u) \circ \rho$.
7.7. Recall that a C^{*}-algebra A is called scattered if every state of A is atomic, equivalently, if A has a composition series with elementary quotients (cf. [9, and 10]).
7.8. Theorem. Every σ-unital scattered C^{*}-algebra is singly supported.

Proof. It follows from [13, Lemma 5.1; 5, Lemma 9.4] that A has a support algebra $A_{00}=\bigcup_{n=1}^{\infty} e_{n} A e_{n}$, where the e_{n} are projections in A. Let a be any strictly positive element of A and $A_{00}^{\prime}=A_{00}(a)$. By [12], $\mathrm{Sp}(a)$ is countable. Thus there are $t_{n}, \quad 0<t_{n}<1$, such that $t_{n} \searrow 0$ and $\chi_{\left(t_{n},\|a\| 1\right.}(a)$ is in A. Let $p_{n}=\chi_{\left(t_{n},\|a\|\right]}(a)$. Then

$$
A_{00}^{\prime}=\bigcup_{n=1}^{\infty} p_{n} A p_{n}
$$

By 7.6, A_{00} and A_{00}^{\prime} are isomorphic.
7.9. Let A be a σ-unital C^{*}-algebra and e_{n}, p_{n} be as in 2.1. Let $B^{* *}$ be the enveloping Borel *-algebra of A. We denote the norm closure of $\bigcup_{n=1}^{\infty} p_{n} B^{* *} p_{n}$ by $B_{0}(A)$. Clearly $B_{0}(A)$ is a σ-unital C^{*}-algebra. It follows from [15, Theorem 3.7] that $B_{0}(A)$ does not depend on the choices of $\left\{e_{n}\right\}$. We denote the norm closure of $\bigcup_{n=1}^{\infty} p_{n} A^{* *} p_{n}$ by $M_{0}(A)$. Then $M_{0}(A)$ is a σ-unital C^{*} algebra. By [15, Theorem 3.7], $M_{0}(A)$ is the hereditary C^{*}-subalgebra of $A^{* *}$ generated by A, hence it does not depend on the choices of $\left\{e_{n}\right\}$.

7.10. Theorem. For every σ-unital C^{*}-algebra $A, B_{0}(A)$ and $M_{0}(A)$ are singly supported.

Proof. Clearly, $\bigcup_{n=1}^{\infty} p_{n} B^{* *} p_{n}$ is a support algebra of $B_{0}(A)$. Take any strictly positive element x of $B_{0}(A)$. By [15, Corollary 3.9], for every $n, \chi_{(1 / n,\|x\|]}(x)$ $\in B_{0}(A)$. Let $q_{n}=\chi_{(1 / n,\|x\|]}(x)$. Then the support algebra associated with the strictly positive element x is $\bigcup_{n=1}^{\infty} q_{n} B^{* *} q_{n}$. By $7.6, B_{0}(A)$ is singly supported.

The proof for $M_{0}(A)$ is similar.
7.11. Corollary. Let A be a σ-unital C^{*}-algebra, and let A_{00} and A_{00}^{\prime} be two support algebras of A. Then $Q M\left(A_{00}\right)^{\prime \prime}$ is isomorphic to $Q M\left(A_{00}^{\prime}\right)^{\prime \prime}$.
Proof. By 7.10, $M_{0}(A)$ is singly supported. Therefore (up to isomorphism) there is only one quasi-multiplier space for supported algebras of $M_{0}(A)$. It follows from 5.9 that $Q M\left(A_{00}\right)^{\prime \prime}$ is isomorphic to $Q M\left(A_{00}^{\prime}\right)^{\prime \prime}$.
7.12. The algebras in 7.8 and 7.10 have a rich structure of projections. Projectionless singly supported C^{*}-algebras can be found in pseudo-commutative C^{*}-algebras. The following is an example of a projectionless singly supported C^{*}-algebra which is not pseudo-commutative.
7.13. Let B be a separable nonelementary simple AF C^{*}-algebra with unique trace τ. Suppose that p is a nonzero projection of B. Then $p B p \cong B$ (see [2]). Let σ be a nonzero endomorphism of B, and A be the set of continuous functions from $[0,1]$ into B such that $f(1)=\sigma(f(0))$. We assume that $\sigma(1)=p \neq 0$. By [2], A has no nonzero projections. A is nonunital but is a σ-unital C^{*}-algebra. Moreover, $\operatorname{Prim}(A)$ is homeomorphic to the unit circle. It follows from 6.3 that A is not pseudo-commutative.

Suppose that $\sigma(B)=p B p$ for some nonzero projection p in B. Let

$$
e_{n}= \begin{cases}1 & \text { if } 1 / n<t \leq 1 \\ p+n(n+1)(t-1 / n+1)(1-p) & \text { if } 1 / n+1 \leq t \leq 1 / n \\ p & \text { if } 0 \leq t<1 / n+1\end{cases}
$$

Then $\left\{e_{n}\right\}$ forms an approximate identity for A, and

$$
e_{n+1} e_{n}=e_{n} e_{n+1}=e_{n} \quad \text { for all } n
$$

Let $A=\left[e_{n}\right] A^{* *}\left[e_{n}\right] \cap A$ and $A_{00}=\bigcup_{n=1}^{\infty} A_{n}$.

Suppose that $\left\{b_{n}\right\}$ is another approximate identity for A satisfying $b_{n+1} b_{n}=$ $b_{n} b_{n+1}=b_{n}$ for all n. Define $A^{\prime}=\left[b_{n}\right] A^{* *}\left[b_{n}\right] A$ and $A_{00}^{\prime}=\bigcup_{n=1}^{\infty} A_{n}^{\prime}$. For each n, there is an $m(n)$ such that $\left\|b_{m}(t) e_{n}(t)-e_{n}(t)\right\|<1 / 2$ for all $m \geq m(n)$ and $t \in[0,1]$. Thus, if $m \geq m(n),\left\|b_{m}(t)-1\right\|<1 / 2$ for all $t \in[1 / n, 1]$ and $\left\|b_{m}(0)-p\right\|<1 / 2$. So if $m \geq m(n), b_{m}(t)=1$ if $t \in[1 / n, 1]$ and $b_{m}(0)=p$.

Without loss of generality we may assume that $b_{n}(t)=1$ if $t \in[1 / n, 1]$ and $b_{n}(0)=p$ for all n. For each n, there is a number $\alpha_{n}>0$ such that $\left\|b_{n+1}(t)-p\right\|<1 / 4$ and $\left\|b_{n}(t)-p\right\|<1 / 4$ for $0 \leq t<\alpha_{n}$. Thus $\operatorname{Sp}\left(b_{n}(t)\right) \subset$ $[0,1 / 4] \cup[3 / 4,1]$ and $\operatorname{Sp}\left(b_{n+1}(t)\right) \subset[0,1 / 4] \cup[3 / 4,1]$ for all $0 \leq t<\alpha_{n}$.

The characteristic function $\chi=\chi_{(1 / 4,1]}$ is continuous on $\operatorname{Sp}\left(b_{n}(t)\right)$ and $\operatorname{Sp}\left(b_{n+1}(t)\right)$ for $0 \leq t<\alpha_{n}$, and thus $q_{1}=\chi\left(b_{n}\right)$ and $q_{2}=\chi\left(b_{n+1}\right)$ are continuous on [$0, \alpha_{n}$). Moreover.

$$
\left\|q_{1}(t)-p\right\|<1 / 2, \quad\left\|q_{2}(t)-p\right\|<1 / 2 \quad \text { if } 0 \leq t<\alpha_{n}
$$

Clearly,

$$
q_{2}(t) \geq\left[b_{n}(t)\right] \geq q_{1}(t)
$$

Since $\tau\left(q_{2}(t)\right)=\tau\left(q_{1}(t)\right)$ for $0 \leq t<\alpha_{n}$, we conclude that

$$
q_{2}(t)=\left[b_{n}(t)\right]=q_{1}(t) \quad \text { for } 0 \leq t<\alpha_{n}
$$

Furthermore, since b_{n} is increasing,

$$
\left[b_{n+k}(t)\right]=\left[b_{n}(t)\right] \quad \text { if } 0 \leq t<\min \left(\alpha_{n}, \alpha_{n+k}\right)
$$

Let A_{1} be the C^{*}-algebra $\left.A\right|_{\left[0,(1 / 2) \alpha_{1}\right]}$. Since $\left[b_{1}(t)\right]=\chi_{\left(b_{1}(t)\right)}$ for $t \in$ $\left[0,(1 / 2) \alpha_{1}\right]$,

$$
a_{1}=\left.\left[b_{1}(t)\right]\right|_{\left[0,(1.2) \alpha_{1}\right]} \in A_{1}
$$

Put $q(t)=p$ for all $t \in\left[0,(1 / 2) \alpha_{1}\right]$. Then $q(t) \in A_{1}$. By [5, Corollary A.8.3], there is a unitary $u_{1} \in M\left(A_{1}\right)$ such that

$$
u_{1}^{*} q u_{1}=a_{1} \quad \text { and } \quad u_{1} a_{1} u_{1}^{*}=q
$$

Define

$$
u= \begin{cases}1, & t=0 \\ u_{1}(t), & 0<t \leq(1 / 2) \alpha_{1} \\ u_{1}\left(\alpha_{1}-t\right), & (1 / 2) \alpha_{1}<t \leq \alpha_{1} \\ 1, & \alpha_{1}<t \leq 1\end{cases}
$$

It is easy to verify that u is a unitary in $M(A)$. Moreover, $u b_{n} u^{*} \leq e_{N}$ and $u e_{n} u \leq b_{N}$, where $N>n$ and $1 / N \leq(1.2) \alpha_{n}$.

We conclude that

$$
u^{*} A_{00} u=A_{00}^{\prime}
$$

So A is a singly supported C^{*}-algebra.
7.14. We denote $K_{0}=\left\{a \in A_{+}\right.$: there is a $b \in\left(A_{+}\right)_{1}$ such that $\left.[a] \leq b\right\}$.

The following result may help to find a separable C^{*}-algebra which is not singly supported.
7.15. Theorem. Let A be a separable C^{*}-algebra with an approximate identity consisting of projections. Suppose that A is singly supported. Then

$$
K_{0}^{+}=\left\{a \in A_{+}: a \leq p, p \text { a projection in } A\right\} .
$$

Proof. Suppose that a is a nonzero element in K_{0}^{+}but no projection in A majorizes a. Let b be an element in $\left(A_{+}\right)_{1}$ such that $0 \leq[a] \leq b \leq 1$. Let B be the norm closure of $(1-b) A(1-b)$ and a^{\prime} be a strictly positive element of B. We may assume that $0 \leq a^{\prime} \leq 1$. Put $e=a^{\prime}+b$. Then e is a strictly positive element of A. Since $a^{\prime}[a]=[a] a^{\prime}=0$, it follows from Lemma 2.6 that $[a] e=e[a]$. By considering the abelian C^{*}-algebra generated by $e,[a]$, and 1 , we obtain

$$
p_{n}=\chi_{(1 / n, e]}(e) \geq[a] .
$$

Thus $a \in \bigcup_{n=1}^{\infty} p_{n} A^{* *} p_{n} \cap A$. We also notice that $A_{00}=\bigcup_{n=1}^{\infty} p_{n} A^{* *} p_{n} \cap A$ is a support algebra of A.

Suppose that A_{00}^{\prime} is a support algebra of A associated with an approximate identity $\left\{e_{n}\right\}$ consisting of projections. Since A is singly supported, there is an isometry ϕ such that $\phi\left(A_{00}\right)=A_{00}$. Thus we may assume that $\phi(a) \leq e_{k}$ for some k. Then $\phi^{-1}\left(e_{k}\right) \geq a$ and $\phi^{-1}\left(e_{k}\right)$ is a projection. A contradiction.
7.16. To conclude the paper, we state the following questions.
(1) Is $Q M\left(A_{00}\right)$ the linear span of its positive cone?
(2) Is every σ-unital C^{*}-algebra singly supported?

If the answer of (2) is negative one may consider (3):
(3) Let A be a σ-unital C^{*}-algebra. We denote by $s(A)$ the number of nonisomorphic support algebras of A. For every n, is there a σ-unital C^{*} algebra A such that $s(A)=n$?
(4) Are the dual C^{*}-algebras the only C^{*}-algebras which have reflexive quasimultipliers?
(5) Does every pseudo-commutative C^{*}-algebra have a central approximate identity?

References

1. C. A. Akemann and G. K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973), 785-795.
2. B. Blackadar, A simple C^{*}-algebra with no nontrivial projections, Proc. Amer. Math. Soc. 78 (1980), 504, 508.
3. L. G. Brown, Close hereditary C^{*}-algebras and the structure of quasi-multipliers, preprint.
4. J. Dixmier, C^{*}-algebras, Gauthier-Villars, Paris, 1964; North-Holland, Amsterdam, 1977.
5. E. Effros, Dimensions and C^{*}-algebras, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.
6. G. A. Elliott and D. Olesen, A simple proof of the Dauns-Hofmann theorem, Math. Scand. 34 (1974), 231-234.
7. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
8. P. R. Halmos, A Hilbert space problem book, Van Nostrand-Reinhold, Princeton, N.J., 1967.
9. H. E. Jensen, Scattered C^{*}-algebras, Math. Scand. 41 (1977), 308-314.
10. __, Scattered C^{*}-algebras. II, Math. Scand. 43 (1978), 308-310.
11. A. J. Lazar and D. C. Taylor, Multipliers of Pedersen's ideal, Mem. Amer. Math. Soc. No. 109 (1976).
12. A. J. Lazar, On scattered C^{*}-algebras, preprint.
13. H. Lin, The structure of quasi-multipliers of C^{*}-algebras, Trans. Amer. Math. Soc. 315 (1989), 147-172.
14. __, Fundamental approximate identities and quasi-multipliers of simple AF C^{*}-algebras, J. Funct. Anal. 79 (1988), 32-43.
15. ___ On σ-finite integrals on C^{*}-algebras, Chinese Ann. Math. 10B (1989), 537-548.
16. K. McKennon, The quasi-multiplier conjecture, Proc. Amer. Math. Soc. 72 (1978), 258-260.
17. G. K. Pedersen, Measure theory for C^{*}-algebras, Math. Scand. 19 (1966), 131-145.
18. $\overline{1979}$
19. __, SAW*-algebras and corona C^{*}-algebras, Contributions to non-commutative topology, J. Operator Theory 15 (1986), 15-32.

Department of Mathematics, East China Normal University, Shanghai 200062, China

[^0]: Received by the editors September 2, 1987 and, in revised form, May 15, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 46L05.
 This work was done while the author was visiting the University of California, Santa Barbara.

