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SUPPORT ALGEBRAS OF ct-UNITAL C* -ALGEBRAS
AND THEIR QUASI-MULTIPLIERS

HUAXIN LIN

Abstract. We study certain dense hereditary *-subalgebras of er-unital C*-

algebras and their relations with the Pedersen ideals. The quasi-multipliers of

the dense hereditary *-subalgebras are also studied.

1. Introduction

Let A be a C*-algebra and K(A) its Pedersen's ideal. When A is com-

mutative, that is, A = C0(A), the algebra of all complex valued continuous

functions which vanish at infinity on some locally compact Hausdorff space X,

then K(A) = C00(X), the algebra of all complex valued continuous functions

with compact support. In [15], we define a dense hereditary *-subalgebra A^

(we used the notation C00(A) there) of a cr-unital C*-algebra which satisfies:

(i) For every a in (A00), there is a A in (Am) such that [a] < b , where

[a] is the range projection of a in A**.

(ii) If A is nonunital, A00 ̂  A .

(iii) When A = C0(X), A00 = C00(X).

Naturally, we may view A00 as a noncommutative analogue of C0Q(X). In

fact the algebra Am plays an important role in [15]. In this paper we shall

study the relation between A00 and K(A). We also study the quasi-multipliers

of Am. In the view of [11], where Lazer and Taylor studied the multipliers

of K(A) as a noncommutative analogue of (unbounded) continuous functions

on locally compact Hausdorff space X, the quasi-multipliers of A00 is another

noncommutative analogue of C(X). The reason our attention is focused on

the quasi-multipliers of A00 and not on the multipliers of A00 is that the set

of multipliers of A00 may not contain A and is not closed under a natural

topology.

We denote the quasi-multipliers of Am by QM(AQ0). In §2, we give some

basic concepts and facts related to quasi-multipliers of Am . In §3, we study the

order structure QM(A00). We also show that QM(AQQ) = LM(A0Q)+RM(A0Q)

(a similar equation for A  has been studied in [16, 3, 13, 14]).   In §4, we
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prove an extension theorem in the sense of Tietse. We also give a version

of the Dauns-Hofmann theorem for QM(A00). In §5, we study the dual and

bidual spaces of QM(A00). We find that QM(AQ0)" , the bidual of QM(A00),

is isomorphic to the quasi-multipliers of the support algebra of MQ(A), the

hereditary C*-subalgebra of A** generated by A . In §6, we study the problem

when A00 = K(A). Finally, in §7, we consider the uniqueness of A00 for certain

C*-algebras.

We shall be utilizing the following notations throughout this paper. Suppose

that A is a C*-algebra. Then K(A) denotes the Pedersen's ideal (for a defi-

nition see [17 or 18, 5.6]), and M (A), LM(A), RM (A), and QM(A) denote

the multipliers, left multipliers, right multipliers, and quasi-multipliers of A,

respectively (see [18, 3.12]). For the element a in the C*-algebra A, [a] shall

denote the range projection of a in the enveloping IT*-algebra A**. Any other

unexplained notation may be found in [18 or 4].

2. Preliminaries

2.1. Let A be a er-unital C*-algebra. Then A has a strictly positive element

e. Let fn(t) be continuous functions satisfying

W 0</„(0<l;

(ii) fn(t) = 0    if and only if   0 < t < 1/2« ;

(iii) /«(') = 1       if/>l/K.

Define en = fn(e). Then {en) forms an approximate identity for A. More-

over, en+xen = enen+x = en for all n . Let x„ De the characteristic function of

the set (l/2n, \\e\\). Then pn = x„(e) is an open projection of A such that

\e 1 = o   and e  < p   < e ,, .

2.2. Definition. Let A and pn be as in 2.1. Denote the hereditary C*-

subalgebra pnA**pn n A by An. We call \J^=X ¿„ a support algebra of A

and denote it by A00 (or A00(e), or A00({en})).

2.3. By [15, 1.1], A0Q is a norm dense, hereditary *-subalgebra of A contained

in K(A). Since e ¡fc AQQ, if A is not unital, then AQ0 jt A. Moreover, for

every a £ (-400)+ , there is an n such that [a] < en . Thus, as in [15], we regard

Aw as a noncommutative analogue of C00(A^).

2.4. Example. Let X be a locally compact, (x-compact Hausdorff space and let

A = C0(X). (cr-compact means X = \J^=X Xn , where each Xn is compact.)

Then for any strictly positive element e , Am(e) = C00(X).

2.5. Example. Let H be a separable Hubert space and let A = K, the compact

operators on H. Let {Hn} be an increasing sequence of finite-dimensional

subspaces of H such that [\°f=x Hn is dense in H. Denote by Mn the set of

bounded linear operators on Hn . Then (J„ Mn is a support algebra for A = K.

We shall see in §7 that, up to isomorphisms, Q„ Mn is the only support algebra

for K.
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2.6. Lemma. Suppose that A is a C*-algebra. Let a, p £ A+ and p < a < 1.

If p is a projection, the ap = pa = p.

2.7. Lemma. Suppose that an £ A+, and pn are open projections of A. If {an}

forms an approximate identity for A and an<pn< an+x for each n, then there

is a support algebra A00 of A such that

A00=PnA**PnnA-

2.8. By 2.7, we may define A00 by an approximate identity {en} together with

open projections {pn} satisfying:

en<Pn<en+x    for all«.

If en < pn < en+x  for each «, then en+xen = enen+x = en.   Conversely, if

en+xen ~ enen+x ~ en 'tnen en+x - KJ • Thus we will always assume that every

support algebra A0Q of A is defined by an approximate identity {en} which

satisfies en+xen = enen+x=en.

We now fix a cr-unital C*-algebra A and a support algebra AQ0 = A00({en}).

2.9. Definitions. A linear map p: A00 —» A00 is called a left, respectively right,

multiplier if p(ab) = p(a)b, respectively p(ab) = ap(b). A multiplier is a

pair (px, p2) consisting of a right multiplier px and a left multiplier p2 such

that px(a)b = ap2(b) for all a, b £ A00 . A quasimultiplier is a bilinear map

p: Aqq x A00 -, Am such that for each fixed a £ A00 the map p(a, •) is a left

multiplier and the map p(-, a) is a right multiplier. We denote by M(A00),

LM(A00), RM(AQ0), and QM(Am) the sets of multipliers, left multipliers,

right multipliers, and quasi-multipliers of AQ0 , respectively.

2.10. Suppose that p £ QM(A00), and a and b £ A00. Then we denote the

element p(a, b) by a-p-b . If p £ LM(Am), we denote p(a) by p• a and if

p £ RM(A00), we denote p(a) by a ■ p. If z = (px, p2) e M(A00), we denote

px(a) by a • z and p2(a) by z-a.

2.11. For a, b £ A00 , we have the following seminorms:

(i) z-, \\a ■ z\\ + \\z • a\\, z£M(A00);

(ii) z^\\z-a\\, z£LM(A00);

(iii) z^\\a-z\\, z£ RM(A00) ;

(iv) z-*||a-z-6||, z£QM(A00).

We define (A00)-, L-A00-, R-A00-, and Q-A00- topologies on M(A00),

LM(Am), RM(A00), and QM(A00) to be those locally convex topologies gen-

erated by the seminorms (i), (ii), (iii), and (iv) (for all a, b £ AQ0), respectively.

2.12. Proposition. QM(AQQ) is a locally convex complete topological vector

space under the Q- AQ0-topology.

2.13. We define the following subsets of QM(A00) :
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QM¡(A00) = {p £ QM(A00):  for each k, there exist N(p, k) such that

p(en , ek) = p(em ,ek) if «, m > N(p, k)},

QM^Aqq) = {p £ QM(A00): for each k, there exists N(p, k) such that

P(ek>en) = P<<ek>em) if n, m >N(p, k)),

QMd(Am) = QM^AJ xx QMr(A00), and

QM (A00) is the subset of those elements in QM(AQ0) such that

sup{\\a.p.b\\:a,b£A00,  \\a\\ < 1,   ||Z>|| < 1} < oo.

2.14. Theorem. There are bijective correspondences between

(i) QM¡(A00)     and    LM(AQ0);

(ii) QMr(A00)     and    RM(A00);

(iii) QMd(Am)     and       M(A00);

(iv) QMb(AJ     and       QM(A).

2.15. We shall use notations LM(AQ0), RM(Am), M(A00), and QM(A) in-

stead of QM,(A00), ß^(^oo) - QMd(Aoo) > and ß^(4x>) • Thus

M(AJcLM(A00)cQM(A00),

LM(A00)xlRM(A00) = M(A00),

and

^00 C A C QM(^) C ßAf(^00).

2.16. Lemma. // A is not unital, then

QM(AQ0)¿QMb(A00)    (=QM(A)).

Proof. We may assume that en - en_x ^ 0 for all n . Define

Z = T,n(en-en-x)>
n=X

where the convergence is in Q - A00-topology. Clearly z £ QM(A00), but

z i QMb(A00).

2.17. We notice that, in general, A <f_ M(AQQ) and M(AQ0) is not complete

under A00-topology. These are the reasons why we choose QM(A00) and not

M(A00) as our main subject.

2.18. Proposition. A00 is L-A^-dense (respectively, R-AQ0- dense, Q- Án-

dense, and A00-dense) in LM(AQ0) (respectively in RM(A00), QM(A00), and

M(Am)).

2.19. We now define an operation "•" on some of the elements of QM(A00).

If p £ QM(AQQ), y £ LM(A00), and z £ RM(AQ0), we denote by p ■ y the

element p(-, y(-)) and z ■ p the element p(z(-), •). It is easy to see that "•" is

the "natural" extension of the multiplication on M(A).
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2.20. Let p £ QM(A00). The involution p* of p is a quasi-multiplier defined

by p*: (a, b) —» [p(b*, a*)]*. It is easy to see that the involution is conjugate

linear and Q- A0Q-continuous. Moreover the involution is the extension of the

original involution on QM(A). Thus

LM(A00)*=RM(Am).

An element is called selfadjoint if p = p*. We denote by QM(A00) sa the

set of selfadjoint elements.

2.21. Example. Let X be a locally compact, o -compact Hausdorff space, and

let B beaunital C*-algebra. Denote by A the C-algebraof all the continuous

mappings from X into B vanishing at infinity. One of the support algebras (in

fact, it is the only one) A00 is the set of all continuous mappings with compact

supports. One can check that QM(A0(¡) is the set of all continuous mappings

from X into B.

Throughout §§3-7, A will denote a cr-unital C*-algebra, and A00 one of its

support algebras, e, en , and An will be the same as in 2.1.

3. Decompositions

3.1. Definition. We say that an element z £ QM(AQ0) is positive, denoted by

z > 0, if a*za > 0 for all a £ AQ0 . We let QM(AQQ) denote the set of all

positive elements in QM(AQQ).

Suppose that y and z e QM(A00). We say that z > y (or y < z), if

z-y >0.

3.2. Corollary. The set QM(AQ0)+  is a Q- AQ0-closed real convex cone and

QM(AJ+xx(-QM(A0O)+) = {0}.

3.3. Proposition. Let z £ QM(A00). Then

(i) If -y < z < y for some y e QM(A)+ , then z e QM(A).

(ii) If -a < z < a for some a £ A+, then z £ A .

(iii) If z £ LM(A0Q) and there is an element a £ A+ such that z*z < a,

then z £ A.

Proof, (i) Since y - z > 0, a*(-y)a < a* za < a* y a for all a £ A00 . Therefore

a'za < a*ya . It follows that z 6 QMh(A00) = QM(A).

(ii) By (i), z £ QM(A). Then by [1, Proposition 4.5], z £A.

(iii) For every b £ Am, we have b*z*zb < b*ab. Thus ||zè|| < ||a1/2è||.

Hence z £ QM(A) n LM(A00). It follows from [1, Proposition 4.5] that z is

in A.

3.4. Let LM(A00, AA00) denote the set of those linear mappings p from Am

into AAQ0 satisfying p(xy) = p(x)y for all x, y £ AQ0 . As in §2, we can view

LM(A00, AA00) as a subset of QM(AQ0). If x £ LM(A00, AA00), we define

x* ■ x(a, b) = (a-x*)(x ■ b). Hence x* • x £ QM(AQ0)+ .
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3.5.    Theorem. If z  £  QM(A00)+,  then there is an  x  £  LM(A00AA00)

(c QM(AQ0)) such that x* ■ x = z.

Proof. Let ak = ||z|^J|. Define bk = (l/ak+x)(l/2)k(ek - ek_x) for k =

1,2,...  (where e0 = 0), ak = £\=1 bi, and b = £°!, bi. Let zk = akzak ,

k = 1, 2, ... . Then, if k > m

\zk-Zm\\^ E*
i=m+X

k        k

xzak + E akzbj
j=m+X

E E^bj + E tbfbj
i=m+X 7=1 7=m+l ;'=1

< E Ed/2)'+;+ E Ed/2),+;'
i=m+X 7=1 j=m+X i=X

< l/(2)m_1.

Thus zk converges to a positive element h in A in norm. It is easy to see that

eknek = ekzk+xek f°r everY £ • Take un = hx' (b  + i/n)~xb . Then, for every

\\unekf = \\ekb(b2 + l/n)-xh(b2 + \/n)-xbek\\

= \\b(b2 + l/n)-xekhek(b2 + l/n)-xbek\\

= \\b(b2 + l/n)-xak+xekhekak+x(b2 + l/n)~lbek\

<ak\\b(b2+l/n)~Xbekak+x\\2<ak.

So ||w„ej| is bounded for every k .

Put dnm = (l/n + b2Yx -(l/n + b2)"1 . Then, for each k,

Wunak - umakW2 = Whi/2d„mbak\\2

= Wbdnmakhakdnmb\\

<ak+xWbdnmakak+Xakdnmb\\

ak+xWdnmbak(ak+X
,'/2||2

l2x-1;
From spectral theory we see that the sequence {(1/« + èz)~ièa/t(ai:+1) } is

increasing to an element in A and by Dini's theorem it is uniformly convergent

to it. Consequently

KmHK+l)
'/2| o,

so that {unak} is norm convergent to an element in A for each k. Since

HM«e/t+iH ̂s bounded and akA D Ak, it follows that {uny} is norm convergent

for every y £ Ak . Thus we have an element x £ LM(A00, AAm) defined by

x(a) = lim una     for every a £ A00.
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=£***(**-**-i)

It is easy to check that for every k ,

ak+xx* 'ak+\=ak+izak+x-

Therefore x* • x = z .

3.6. The idea of the proof of 3.5 is taken from [3, 4.9; and 18, 1.44]. The

element x in 3.5 is in QM(AQ0) but not in QM(AQ0)+. In general, x may

not be taken from LM(A00).

3.7. Theorem.   QM(AQ0) = LM(AQQ) + RM(A00).

Proof. Let z e QM(Am). Define
oo

X

k=X

and
oo

y = £(!-**)*(«*-**-i)-

k=X

Both sums converge in Q- A00-topology. It is easy to verify that x £ LM(A00)

and v 6 RM(A00). For every « ,

en(X + y)en =   Í Ê ***(** -**-!"+ e«2^« - en-xK + enZ(en+X ~ enKj

+ Í ¿(*„ - ^)^(^ - ek-x) + K - el)Z(en - en-xKj

=   \J2enZek-ek-xJ+enZ(en-en)+enZ(e2n-en-x)

= enZen-X+enZ(en-en-x)=enZen-

So x + y = z .

3.8. The problem when QM(A) = LM(A) + RM (A) had been studied in [16,
3, 13, 14]. In general, QM(A) ¿ LM(A) + RM(A).

4. The Tietze theorem and Dauns-Hofmann theorem

This section is inspired by [11]. Our results are similar to the corresponding

ones in [11].

4.1. Let B be a a-unital C*-algebra and let 0 be a *-homomorphism from A

onto B . Then t300 = 4>(A0Q) is a support algebra of B and <j> can be extended

to a linear map tf> from LM(A00) into LM(B00) as follows:

(i) 4>(z).<Ka) = <Kz-a)

for z 6 LM(A00) and a £ AQ0 . We can further extend <j> from QM(A0Q) into

QM(B0) by

(ii) 4>(a).4>(z).<P(b) = <t>(a-z.b)
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for z e QM(Am) and a, b £ A00 . It can be verified that if z £ QM(A00),

x £ LM(A00), y £ RM(A00), and a £ A00 , then

(iii) tp(a) ■ <p(y) = <p(a ■ y) ;

(iv) <p(y • z) = <p(y) ■ 0(z) ;

(v) $(z-x) = 4>(z)-4>(x);

(vi) ¿(z)* =4>(z*)     and    4>(z)>0    if z £ QM(A00)+.

4.2. Proposition. The extension <p is continuous when QM(A00) is considered

with Q-A00-topology and QM(B00) with Q-B00-topology.

4.3. Next we shall show that the extension <p is surjective. In view of 2.20, the

following theorem can be regarded as a noncommutative extension of Tietze's

theorem. The same results for bounded multipliers M (A) and bounded quasi-

multipliers QM(A) can be found in [9, 3]. A similar result for (unbounded)

multipliers of K(A) can be found in [11].

4.4. Theorem. Let </> be a homomorphism from A onto B and B00 = tp(A00).

Then

(i) 4>(QM(AJ) = QM(BJ ;

(ii) 4>(LM(A00)) = LM(B00);

(iii) 4>(RM(A00)) = RM(BJ;

(iv) kM(A00)) = M(Bm).

Proof, (i) We shall show that <j> is surjective. Let z £ QM(BQ0) and zk =

e~kz~e~k , where ek = tp(ek), k = 1,2,....  Suppose that yk £ A00 such that

(t)(yk) = zk- Let zi =yi>

zk+x = yk+x - ekyk+xek + zk>     k = i,2,....

Then zk+x £ Am ; moreover,

<Kzk+x) = zk+x -ëkzk+lëk + zk = zk+x.

If k > m , then

em(Zk+X ~ Zk)em = emyk+Xem ~ emekyk+Xekem + emZkem ~ emZkem •

Thus, if k, k' > m ,

em(Zk-Zk')em = °-

So {zk} isa Q- /100-Cauchy sequence. Suppose that z = limzk. Then, by the

continuity of tp (4.2),

<j)(z) = lim <j>(zk) = limzj. = z.

Then tp is onto.

(ii) Let x £ LM(A0Q) and xk = xê~k , k = 1,2, ... . Suppose that ak £ A00

such that <p(ak) = xk .   Define a, = a,   and xk+x = ak+x - ak+x ■ ek + xk ,
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k = 1,2... . Then <p(xk+x) = xk+x, k = 1,2, ... . As in (i), {xk+x} is an
L-A00-Caachy sequence, hence a Q- ^400-Cauchy sequence. Let x = limA^..

Then tp(x) = x . To show that x £ LM(AQ0), take a £ An. Then

xk+xa - xka = xk+xen+xa - xken+xa

= (xk+x-xkK+xa = 0

if k > n + 1. So xka = xk+2a for every k > n+ 1. Thus x • a £ ^00. We

conclude that x is in LM(A00).

We omit the proofs for (iii) and (iv).

4.5. Let z £ QM(A00) and a £ Am . Then z • a , a • z £ QM(A00). In fact,

a • z £ LM(A00), while z • a £ RM(A00). The center of QM(A00) is the set

Z = {z £ QM(AQ0) : a- z = z -a for all a£ AQ0} .

4.6. Proposition.  Z c M(AQ0). Moreover, Z is the center of M(A00).

Proof. Suppose that z £ Z . Then for every A:, if n, m > k ,

1/2      1/2 1/2      1/2e ze, = e e,   ze,    = e,   ze,    = e ze, .n     k n  k k k k m     k

Thus z € QM,(A00) = LM(Aqq) . Similarly, z e RM(A00), so z £ M(A00).

Let y £ M(A0Q). Then

z-y-a = (y-a).z=y.z-a    for every a £ A00.

Hence z • y = y • z . Z is in the center of M(Am). The center of M(A00)

contained in Z is trivial.

4.7. Lemma. Let z £ Z . Then for each f £ P(A), the pure state space of

A, f(z) = lim f(enzen) exists. Moreover, the function f -, f(z)is a weak*-

continuous function on P(A).

Proof. Let / be in P(A), let n^ be the corresponding irreducible representa-

tion of A , and let H be the associated Hilbert space. Suppose that zn = z\A .

Then zn is in the center of M(An). We may assume that An <£ kern,. Then

(itf\A , itf(An)H) is an irreducible representation of An . Let qn be the pro-

jection corresponding to Hn , the closure of Uj-(An)H. Then

nAzn)\H = ^nan     f°r some scalar Xn .

Since itf(zn+\)\ii =7tr(zn)\H ' ^«+i ~^n f°r eacn " • Thus nAz) is a scalar

multiple of the identity. Moreover, nAz) = f(z) • id^ .

Next we shall show that / -» f(z) is continuous. Let f0 £ P(A). There is

k0 such that 1 > f0(ekJ > 1/2 . Let V0 = {/ e P(A): \f(ekJ - /0(^)| < 1/4}.

Then for every feVQ, f(ek ) > 1/4.

Let nf be the associated irreducible representation and Hf the associated

Hilbert space. Then, since nf(z* z) is a scalar, for every unit vector Ç £ H,,

(nf(ztz)t,Ç)=f(z'z).
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Suppose that f(a) = (nAa)^,, ¿¡A for every a £ A. Then

f(z*z) = l/f(ekf(nf(z*z)ekQcif, ek^f)

< l/f(ek )2\\ek z*zek ||
Ko        Ko Ko

< 16||e, z*zek ||

for every f £ VQ.

Let M = max{l, 16||efcz*zefc||}.   For e > 0, choose k > k0  such that

1 > fQ(ek) > 1 - eA/%M . Denote

V=V0n{f£ P(A) : \f(ek) - f0(ek)\ < e2/SM, \f(ekz) - f0(ekz)\ < e/4}.

So for every f£ V, |/(z*z)| < M and \f(l-ek)\ <e2/4M. Hence, if / e V,

\f(z) - f0(z)\ < \f(z) - f(ekz)\ + \f(ekz) - f0(ekz)\ + \f0(ekz) - f0(z)\

<\f((l-ek)z)\ + e/4+\f0((l-ek)z)\

<f(l-ek)x/2f(z*z)x/2 + f0((l-ek)2)x/2f0(z*z)x/2 + e/4

<f(l- ek)X/2Mx/2 + f0(l- ek)X/2Mx/2 + e/4

< e/2 + e/8 + e/4 < e.

4.8. The idea of the proof of 4.7 was taken from [11, 5.41]. However, the proof

of [11, 5.41] is not complete. (The number M there depends on the choice of

a and a depends on e, so M depends on e.) Nevertheless, the proof could

be easily completed. The same result as [11, 5.41] is not true for QM(A00), as

we shall see in 4.14.

4.9. In the proof of 4.7, we see that if n, and n, are equivalent, then fx(z) =

f2(z) for z £ Z . Thus every z £ Z defines a continuous function z on A by

z(nf) = f(z).

4.10. Theorem. The mapping z ^ z is a ^-isomorphism of Z onto C(A).

Moreover, the mapping is bicontinuous when Z is considered with the AQ0-

topology and C(A) with the compact open topology.

Proof. Clearly, z ^ z is a *-homomorphism. If z, = z2 for z,, z2 £ Z,

then n(zx) = n(z2) for every n £ A. Thus z, = z2. Hence the mapping is

one-to-one.

Suppose that / £ C(A). For every k , by [11, 5.39], {7: £ Â: n(ek+x) ¿ 0}

is contained in a compact subset of A. Thus Ak is contained in a compact

subset of A . Thus f\ 7   is bounded and by the Dauns-Hofmann theorem (we
Ak

use the version [18, 4.4.6]), for every a £ Ak , there is p(a) £ Ak c AQQ such

that

n(p(a)) = f(n)n(a)     for n £ A. .
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Hence, the above equality holds for all n £ A, and p defines a linear map from

A00 into A00 . Let a, b £ A00 . We have

n(ap(b)) = f(n)n(a)n(b) = n(p(a)b)

for all n £ Â. Thus z = (p, p) £ M(A00) c QM(AQ0) and, clearly, z £ Z.

It is then easy to see that z(n) = f(n) for each n £ A. Thus the mapping is

surjective.

The proof of the bicontinuity is essentially the same as the proof of [ 11, 5.44]

with the obvious minor modifications.

4.11. Corollary. Let f £ C(A). Then, for any z £ QM(A00), there is y £

QM(A00) such that n(y) = f(n)n(z) for all n £ A.

4.12. By [18, 4.417], we may replace Â by Prim(^l) in 4.10 and 4.11.

4.13. We shall denote FQM(Am) = {z £ QM(Am): f(z) = lim f(enzen) ex-
ists for each / e P(A)}. Clearly, FQM(A00) is a *-invariant linear space

containing QM (A).

4 A4. Theorem, (i) If z £ FQM(AQ0), then ñ(z) £ QM(n(A)) for every n£A.

(ii) If Cb(A) ji C(Â), then FQM(Am) ¿ QM(A).

(iii)   FQM(A00) = QM(A00) if and only if n( A) is unital for each n£A.

Proof, (i) We may assume that z = z*. Let n e A, H be the associated

Hilbert space, and £ be a unit vector in H.

Since (n(enzen)c¡, £) converges, we may assume that there is a positive num-

ber M, such that

\(n{enzen)i,t)\<Mf    for all«.

Hence

\(n(enzen)+i,i)\<Mi     for all « .

So

IK^zO+^H < ^     for all«.

by the uniform boundedness theorem, {\\(enzem)xj ||} is bounded. Hence

{II(emzen)+1|} is bounded. Similarly, {||(eBzeB)_||} is bounded, thus {||(^„zen)||}

is bounded. This implies that ñ(z) £ QM(n(A)).

(ii) If Cb(A) f C(A), then, by Theorem 4.10, there is z e Z c QM(AQ0)

such that z is not bounded. Thus z ^ QM(A). However z e FQM(A00).

(iii) Suppose that n £ A and n(A) has no unit. By taking a subsequence if

necessary, we may assume that

n(enm)-n(en_x)¿0.

Thus there are i\k £ H such that ||<!;J| = 1, and ffc-L¿;,- if k ¿ j ; and

\\(n(e2k+2) - n(e2k))x/2ik\\ = ak > 0
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and

W*2*+2) - n(e2k)tém = °       if m í k

for every k . Define

y = ^(/c+l)(2fc+1/a,)(^+2-^).

k

Then it is easy to see that y £ M(A00) c QM(A00). Let <* = Y^=x(M2)k'\ ;

then Hill = 1. So /(•) = (•£, £) is a pure state of ,4. But

f(e2k+2ye2k+2) > k ■

So y £ FQM(AJ .

Conversely, if n(A) is unital for each n £ A, then ñ(QM(A00)) = QM(n(A)).

The conclusion is obvious.

5. Duals and biduals

In this section, we shall study QM(AQ0)', the dual of QM(A0Q)  (the lat-

ter being considered with the Q-A00-topology), and QM(A00)" , the bidual of

QM(AJ.

5.1. Theorem.  QM(A00)' = {f(a ■b):a,b£A00, f £ A*, and \\f\\ < 1} .

Proof. For a, b £ AQ0 , denote

c/aè = {zeÔA/(^00):||azè||<l}.

Then {Ua b} forms a neighborhood base at 0. Let

Ua,b = {f & QM(Aj : \f(z)\ <iifz£ Uab).

Then

QM(Aj = \J{U°ab:a,b£AQ0}.

Suppose that f £ U® b; then |/(z)| < 1 for each z € Ua b, or, equivalently,

|/(z)| < ||azè||     for each z e QM(A0Q).

Define a linear functional g on the normed linear space {azb: z £ QM(A00)}

of A by g(azb) = f(z). Then ^ is well defined and \g(azb)\ < \\azb\\. By
the Hahn-Banach theorem, we can assume that g is in A* and ||g|| < 1 . Thus

U°abc{f(a.b):f£A\  \\f\\<l}.

This completes the proof.

5.2. Let g £ A*n and p„ = [en\. For every a £ A, define f(a) = g(p„apn).

Then f £ A* and ||/|| = ||g||. Moreover,

f(enm+xaen+x) = g(Pnen + Xaen+xPn)

= g{Pnapn) - /(a)   for everya e A ■
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Define f(z) = (en+xzen+x) ; then / £ QM(A00)'. We denote by Ln the set

{/: f(a) = g{PnaPn). g € A*n , for every a £ A}.

Then Ln c Ô^Ko)' ■ If S € ß^(^oo)' > b? Theorem 5.1, g(-) = f(a ■ b) for
some a, b £ An and some « . Clearly g(pn • pn) = g, so g £ Ln.

5.3. Corollary.  ö^«,)' = (J~ i ¿„ ■

5.4. By 5.2 we can identify Ln with A*n .

5.5. Proposition. Let f be a positive Q-A00-continuous functional on QM(A00).

Then there is a positive functional g £(A*)+ and « such that

f(z) = g(en+xzen+x)   for all z e QM(A00).

Proof. It is an immediate consequence of 5.3.

5.6. Proposition.  QM(A00)' is the linear span of its positive cone.

Proof. Since Ln (= A*n) is the linear span of its positive cone, by 5.3 QM(AQ0)'

is the linear span of its positive cone.

5.7. We shall denote by MQ(A) the norm closure of IJ^i A7 (cf- t15!)- Tnen

Ulli A7 = l}7=xPnA**Pn is a support algebra of MQ(A), where pn = [en].

5.8. Let QM(A00)" be the bidual of QM(AQ0). The "strong" topology on

QM(A00)" is the locally convex topology generated by seminorms

\\F\\ab = sup{\F(f)\:f£U°ab},

where F £ QM(AQ0)" , a, b £ A00 , and Ua b as in 5.1.

5.9. Theorem. QM(A00)" is isomorpic to QM(\J™=xA*n*) as topological vector

spaces, the former is considered with "strong" topology and the latter is considered

with ß-Unti A7 -topology.

Proof. Let Ln be the same as in 5.2. There is a natural isometry from Ln onto

A*n . We may identify Ln with A*n .

Let F £ QM(A00)" . Define F = F\L    (= F\A.). So there is z(F) e A**
n n

such that

Fn{f) = z„{F){f)     for all f £ A*.

We define a map O from QM(Am)" into QM(\J^=XA**) as follows:

O: F -, pF,      where pF(a, b) = azn(F)b

for all a, b £ A**, « = 1,2,.... Since Fn+X \A. =Fn, pF is well defined and

pF is in QM(\J^=X A**). Clearly O is a linear map.

If pF = 0, then Fn(f) = 0 for all / e A** and all « . So F = 0. Hence O
is one-to-one.

Take z € ßvV/flX, <*) •  Then pnzpn £ A\*.  For each f £ An   (= Ln)
define

Fz(f) = f{p„zpn)     for f£A*n(=Ln).
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Thus we define an element Fz in QM(A00)" . It is easy to see that 0(F ) = z .

Hence O is onto.

Now suppose that Fa, F £ QM(A0Q)" such that Fa -> F in the "strong"

topology.

Let U°n={f£QM(A00)':\f(z)\<l if \\en+xzen+x\\ < 1}. Then

sup{|Fa(/)-f(/)|:/e«7„°}^0.

If f£A*n(=Ln) and ||/|| < 1, then

|/(z)| = \f(pnen+xzen+xpn)\\ < \\pnen+xzen+xpn < \\en+izen+x\\.

Hence / e U° . Thus,

\\Pn(PFa - PfKW =  ™P{\f(Pnen(Zn(Fa) ~ Zn(F))Pn)\- f £ < >    11/11 < 1}

= sup{|FQ(/) -F(/)|: /ei„,  ||/|| < 1}

<sup{|T(/)-F(/)|:/ec/„°}-0.

Hence pF ^ pF in 0-lXLi ^"-topology.

Conversely, suppose that pF -, pF in Q-lJ^li ^"-topology. For each «,

by 5.1,

U°nc{f(en+x.en+x):f£A\  ||/||<1}.

Thus

f7n0c{/€L„:||/||<l}.

Hence

b„(/V-/VKH= sup{|/(p„(z„(FJ-z„(F))p„)|:/eL„,   U/H < 1}

>sup{|/(F)-/(F)|:/et/„°}.

Thus \\pn(pFa - PF)P„\\ -» 0 implies

sup{|/(f )-/(F)|:/ei/„°}-0.

So O is bicontinuous.

5.10. Example. Let K be the C*-algebra of all compact operators on a separa-

ble Hilbert space. Let A00 = \J^LX Mn be a support algebra of K, where each

Mn is isomorphic to the « x « matrix algebra. Since M** = Mn , M0(A) = A .

Hence QM(\J™=X M") = QM(AQ0). By 5.9, QM(Aj' = QM(AJ .

5.11. Proposition. Every o-unital dual C*-algebra has reflexive quasi-multipliers.

Proof. Let e be a strictly positive element of A . By [4, 4.7.20], every nonzero

point of Sp(e) is isolated. So we may assume that en are projections. Con-

sequently, An = enAen and are unital dual C*-algebras. Thus An are finite

dimensional. This implies that A** = An . Hence MQ(A) = A. By 5.9,

QM(Aj' = QM(A00).
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6. PSEUDO-COMMUTATIVE   C*-ALGEBRAS

In §3, we showed that QM(A00) = LM(A0Q) + RM(A0Q). We now con-

sider the problem when QM(A00) = M(A00). It turns out that the problem is

equivalent to the problem when K(A) = AQQ .

6.1. Theorem. Let A be a o-unital C*-algebra and AQ0({en}) a support algebra

of A. Then the following are equivalent:

(i) M(A00) = QM(AJ .
(ii) For every «, there is an integer N(n) < « such that ena = enaeNM for

all a £ A.

Proof, (i) => (ii). Since M(A00) = QM(AQ0), A c M(A00). So for every

a £ A, ena £ AQ0 , that is, ena £ Ak for some k . Thus ena = enaek+x. If (i)

does not imply (ii), there are ak£ A such that

Xk=enak(enk+l-enk)¿°

for some subsequence {nk}. We may assume that \\xk\\ = 1 for all k . Define

z = E£LiO/2)**fc • Then zeic QM(A00). But

'„=i* ='„+i    EtW    =£(l/2)*xt = zM
\k=X J        k=X

Hence z £ M(A00), a contradiction.

(ii) => (i) For fixed « ,

(aenf = ena* =enaeN(n)    for all a £ A

So aen = eN{n)aen.

Suppose that z £ QM(Am). For fixed k ,

enZek = en+xenZekek+X = en+Xene N(k+X)Zek

= eN(k+x)zek     if n>N(k+I).

Thus z £ QM¡(A00). Similarly, z 6 QMr(A00), so z £ M(A00).

6.2. Definition. A  cr-unital  C*-algebra A   (without unit) is called pseudo-

commutative if A satisfies (i) or (ii) in 6.1.

6.3. Proposition. Suppose that A is a pseudo-commutative C*-algebra (without

identity). Then the following are true:

(i) The Pedersen ideal K(A) is a support algebra of A .

(ii) M(A) = QM(Af
(iii) The spectrum A of A is not compact.

(iv) For every irreducible representation n of A, n(A) has a unit.

Proof, (i) By (ii) of 6.1, A00 is a dense ideal of A.  Since K(A) c A00, we

conclude that K(A) = AQ0 .
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(ii) Suppose that z £ QM(A). Then z € M(AQQ). For every a £ A ,

enaenz£A00cA.

Since z is bounded and \\enaen-a\\ -, 0, we conclude that az £ A. Similarly

za £ A . So z £ M (A).

(iii) If Â is compact, by [11, 10.8], A is a PCS-algebra, that is, M (A) =
T(K(A)). It follows from (i) that T(K(A)) = M(A00). Hence M(A) =

M(A00) = QM(A00). However, by Lemma 2.16, if A is not unital, QM(Am) ^

QM(A). A contradiction.

(iv) By [11, 10.4], n(A) is a PCS-algebra, so, as in (iii), QM(n(A)) =

QM(n(Am)). By Lemma 2.16, it happens only when n(A) has a unit.

The following lemma is taken from [11, 10.7] but in a slightly different setting.

The terminology follows from [11].

6.4. Lemma (cf. [11, 10.7]). Let A by a C*-algebra and let [xn] be an orthog-

onal sequence in (K(A))+ (that is, xnxm = 0, if « ^ m) such that the sequence

of partial sum {E^li^} l5 K-Cauchy. Let a £ K(A), S be a subset of Â,
and let {an} be the sequence defined by

an = sup{||?r(a)||: n £ S and \\n(xn)\\ > \\xn\s\\/2},

where \\xn\s\\ = sup{||7r(jc„)||: n £ S}. If \\xn\s\\ ^oo, then an-,0.

Proof. The proof is the same as the proof of [ 11, 10.7]. We only need to change

A and \\xn\\ into S and \\xn\s\\, respectively.

6.5. Theorem. Suppose that A is a o-unital C*-algebra. Then A is pseudo-

commutative if and only if one of its support algebras A00 = K(A).

Proof. Let AQ0 = -40o({e«}) ■ ̂ or every n > denote

Fn = {n£Â:\\n(en)\\>l/n + l}.

We claim that there is a bn £ AQQ such that

n(bn) = 1     for each n £ Fn.

If not, by taking a subsequence if necessary, we may assume that there are

nk £ Fn such that

nk(ek-ek_x)¿0.

Let xk = ßk(e2k - e2k_x), where ßk = k ■ max(l, l/\\nk(e2k - e2k_x)\\), k =

1,2,... . Then xkxm = 0 if « ^ m and E^Li xk is ^00-Cauchy. By letting

a = e , and S = Fn in Lemma 6.4, we have ||-*fe|-F„|| —* oo as k —* oo, hence

H^OH ""* ° as k -* o° • This contradicts the fact ||7t(en)|| > 1/« + 1 for all

n £ Fn . So we complete the proof of the claim.

Now let ax= bx. Then ax £ AQ0, so ax £ AN[X) for some N(l). Suppose

that ax, a2, ... , ak have been chosen from A00 , and assume that ak £ AN(k).

Then

akeN(k+X) — eN(k)+Xak = ak •
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So

{n £ A: n(ak) ± 0} c {n £ A: \\n(eN(k)+x)\\ > 1}

C FN{k)+X •

We choose ak+x = bN,k)+x . Thus n(ak+x) = 1 for all n £ {n £ A: n(ak) ^ 0} .

Hence ak+xak = akak+x = ak . For every a £ A,

n(aka) = n(ak)n(a) = 0    ifn(ak) = 0.

Thus

n(eka) = n(ek)n(a)n(ak+x)

for all n £ A . We conclude that

aka = akaak+x     for all a £ A and k.

Clearly [ak] forms an approximate identity for A. By 6.1 we conclude that

A is pseudo-commutative.

The converse is (i) of 6.3.

6.6. Theorem. Let A be a pseudo-commutative C*-algebra. Then K(A) is the

only support algebra of A.

Proof. By the proof of 6.5, there is an approximate identity {an} satisfying

ak+Xak   =  akak+X   ~  ak   ^0T  eaCn k   anC* aka   ~  akaak+X    ^0T  every a   £  A .

Moreover, there are compact subsets Fn of A such that Fn C Fn+X, \J£LX Fn =

A, and

f 1     for all n£Fn,

'"'     \0    ifn£A\Fn+x.

Since aka = akaak+x for every a £ A, AQ0({ak}) is an ideal. So A00({an}) =

K(A).

Now suppose that A00 = Am({en}) is any support algebra of A . For every

« , there is k(n) such that

HW„-«JI<i/2.

Hence

\\n(ek{n))-l\\<l/2    foraU7T6F„.

Thus it(Akw) = n(A) for all n £ Fn. Since n(an_x) = 0 for n £ A\ Fn, we

conclude that ek,n) > an_x for every « . Hence

AOQDA00({an}) = K(A).

This completes the proof.

6.7. Definition. An approximate identity {en} of A is said to be central if

ena = aen for all a £ A and all « .
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6.8. Theorem. Suppose that A isa o-unital C*-algebra such that Prim(^) isa

Hausdorff space. Then A is pseudo-commutative if and only if A has a central

approximate identity {en} satisfying en+xen = enen+x = en for all « .

Proof. Suppose that A is pseudo-commutative. Let

Tn = {n£Prim(A):\\n(en)\\>l/n),

On = {n£Prim(A):\\n(en)\\>l/n+l},

and

Fn = {n G T>ûm(A):\\n(en)\\> 1/n+l}.

by [18, 4.43 and 4.45], Tn and Fn are closed and compact and On is open.

The element bn in 6.5 satisfies n(bn) = 1 for all n £ Fn. Since Prim(^4) is a

locally compact Hausdorff space, there is / e C(Prim(^4)) such that 0 < / <

1 , f\T = 1, and f\rPrimA)\0 = 0. By the Dauns-Hofmann theorem (cf. [6,

Theorem 3]), there is xn £ A+ such that

n(xn) = f(n)n(bn)     for all n £ Prim(^).

Notice that Tn c On c Fn ; we have

n{xn) = f(n)     for all n £ Prim(^).

Hence xn is in the center of A . Moreover, {xn} forms an approximate identity

for A satisfying

*«+i*« = *«*«+i =x«fora11" •

The converse follows from (ii) of 6.1.

6.9. Proposition. Every homomorphic image of a pseudo-commutative C*-

algebra A is pseudo-commutative.

Proof. Let tp be a homomorphism of A, B = cp(A), and 1?00 = <p(A00).

Clearly, by (ii) of 6.1, for every «, tp(en)tp(a) = <P(en)tp(a)tp(eN{n)) for every

a £ A. Thus B is also a pseudo-commutative C*-algebra.

6.10. Theorem. Suppose that A isa o-unital C*-algebra with continuous trace.

Then A is pseudo-commutative if and only if A is a locally trivial continuous

field of matrix algebras.

Proof. Assume that A is a pseudo-commutative C* -algebra. Since A has con-

tinuous trace, A is a locally compact Hausdorff space. Fix n £ A . Let F be

a compact (hence closed) neighborhood of n. Let I = {a: a £ A, n(a) = 0

for n £ F), and tp be the canonical homomorphism from A onto A/I. So

<p(A)A is compact. By the argument used in (iii) of 6.2 and 6.9, tp(A) has an

identity. Thus, <p(An) = <p(A) for some «. Let a £ An such that n(an) = 1.

Then n(an) = 1 for all n £ F. Since An c K(A), Tr(n(an)) is continuous.

So Tr(n(a)) is a constant in some neighborhood of . This implies that A is

locally homogeneous of finite rank. By [7, Theorem 3.2], A is a locally trivial

continuous field of matrix algebras.
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Now we assume that A is a locally trivial continuous field of matrix algebras

and {en} is as usual. Denote

Fn = {n£Â:n(en)>l/2n}.

Then Fn is compact. For each point n £ Fn, there is a neighborhood Un such

that A is trivial on Un , where UK is the closure of Un and we assume Un is

compact. Thus there is an an £ A00({en}) such that p(an) = 1 for all p £ Un.

Since Fn is compact, we may assume that there are nx,n2, ... ,nk, such that

U/=1 Un D Fn . There is m , such that

\\em\-an\\<ll2      for i = I, 2,..., k.

So

||x(em)-l||<l/2    for all «eF,,.

Thus n(Am) = n(A) for each n £ Fn. Hence n(em+x) = 1 for each Fn.

Now we can use the argument in 6.8 to construct a central approximate identity

{an} satisfying an+xan = a„an+x = en. It follows then from 6.8 that A is

pseudo-commutative.

6.11. Examples. Clearly every a-unital commutative C*-algebra is pseudo-

commutative.

Let X be a locally compact and a-compact Hausdorff space, and let B be

a unital C*-algebra. Let A be C0(X, B), the set of continuous mappings

from X into B vanishing at infinity. It is easy to check that A has a central

approximate identity {en} such that en+xen = enen+x = en . So A is pseudo-

commutative.

7. Singly supported C*-algebras

7.1. We see from 6.7 that a pseudo-commutative C*-algebra has a unique sup-

port algebra. It is evident that this may not be true for other C* -algebras. But

must every two support algebras of a given C* -algebra be *-isomorphic?

7.2. Definition. We say that a cr-unital C*-algebra is singly supported if every

two support algebras are *-isomorphic.

7.3. Corollary. Every pseudo-commutative C*-algebra is singly supported.

7.4. Theorem. Let A be a C*-algebra with approximate identities {en} and

{pn} . Suppose that en and pn are projections and

oo oo

^00 =  U enAen ' 4)0 =  U PnAPn ■
«=1 «=1

Then there is a unitary u £ M (A) (the multiplier algebra of A) such that

u A0Qu = A0Q.
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Proof. We claim that there are subsequences {en,k)} of {en} and {pm{k)} of

{pj, elements {fk}, {fk), {qk} , {q'k} , {vk} , and {wk} in ^ , and unitary

elements {w^} and {iïk} in M(^4) satisfying the following:

(i) fk, f'k, qk, q'k are projections in A, where fk, q'k £ AQ0 and qk,

fk e Aoo-
(ii) ffj = 0, ftfj = 0, qfli = 0, and qfl¡ = 0 if i¿ ; .

(iii) tf'/*; = /fci' = 0 and ?,./ = /^ = 0 for all i and k .

(iv) *,=/, aadEt,/, + EÎ:,lfli = «1.w

(v) Pmk=it, «!+el >? •
(Vi)   "*««(*)«* = Ef= i' «i + tí ■//   an<*   KPm{k)Uk = tí=l /* + tí-1 «i •

(vii) ^ = /* , vkv*k = /fc , w*kwk = ^ , and wkw¡ = qk .

We shall use induction.

Since AQ0 is dense in A, there is a selfadjoint element a £ A'00 such that

||a-e,|| < 1/8 . We may assume that a £ p„Apn for some «(1). By [5, Lemma

A.8.1], there is a projection fx £ Pn(x)Apn(x) such that

\\f,-ex\\<l/4.

By [5, Lemmas A.8.1 and A.8.3], there is vx £ A such that \\vx - ex\\ < 1/2,

v*vx = ex, and vxv* = f'x , and there is a unitary element ux £ M (A) such that

uxexu  = fx and u\fxux = ex.

Let qx =P„ii)-f[. Then u\q\ux £ (1-^)^(1 -ex) (= (I - fx)A(l - fx)).
Since ( 1 - ex )A00( 1 - ex) is dense in ( 1 - e{ )A( 1 - ex )x, by the above argument

there is a projection q'x £ (1 - e,)/l00(l - ex) such that

Iki -«,^«,11 < 1/4.

By [5, Lemmas A.8.1 and A.8.3], there is a w'x 6(1- ex)A(l - ex) such that

(w'x)*(w'x) = q\ , w'xw* = u*qxux , and

||u>i-ïîll<l/2.

Moreover there is a unitary u in (1 -ex)M(A)(l -ex) suchthat (u')q'x(u)* =

uqxux and

(u)*(u\qxux)(ù) = q\.

Let wx = uxw'x and ïï, = (1 - f'x)uxu + f'xux. Then w*wx = q , (wx)(wx)* =

q\, and ux is a unitary in M(A) such that

">«(i)"i =ei+q[=f+q[.

Now we assume that we have chosen en(l), pm(i), f¡, f{, q¡, q\, vi, w¡, u¡,

and ui, i=l,2, ... ,k. Suppose that q'k £ en{k+x)Aen(k+x) and let

(k     k   A

-4+1  = en(k+X) ~  \l^,fl^iai\   ■



SUPPORT ALGEBRAS OF rj-UNITAL C*-ALGEBRAS 849

Then ukfk+xuk £ (1 -pn{k))A(l -pn{k)). Since (l-Pn{k))A00(l-pn{k)) is dense

in 0 -Pnik))^1 -Pn(k)) 'there is a Projection ^+1 € (1 -P„WM00(1 -Pm)

(c ^00) such that

\\/k+l -Vkfk+lKII < 1/4.

By [5, Lemmas A.8.1 and A.8.3], there is u¡.+1 6 (1 -/^MOot1 ~ pn(k)) sucn

that

K+i)*K+i) = fk+x >        K+i)K+i)* = "fcA+i"¡ >
and a unitary m', 6(1 -pn,kA)M(A)(l -p„(fe)) such that

("i)/*+i(Mi)*=Vfc+i"it

and

("i)X/*+i"fc(M'i) = ^+i-

Define vk+x = v'k+xUk and

Uk+x = (u\)\[l-Í2fl-Í2ú)+»k[Ílfi + Í2<l'i) ■
\ ;=1 (=1      / \i=X i=X      )

Then v*k+xvk+x =fk+x, vk+xv*k+x = fk+x, and

k k+X

Uk+Xen(k+X)Ul+X =E^ + E4'-
i=l i

Let

/ k k+X     \

qk+i=Pm{k+i)-   E^ + E^
\i=X i=X       J

*
= Pm{k+X) ~ Uk+Xen(k+X)Uk+X '

Then

uk+xqk+xuk+x 6 (l-en(k+1))A(l-en{k+l)).

Since (1 - en(k+x))A00(l - en{k+x)) is dense in (1 - en{k+X))A(l - en(k+X)), there

is a projection q'k+x 6(1- eB(fc+l)I)><„,( 1 - en{k+X))   (c ^00) such that

ll«I+i-<+iifc+I"fc+ill< 1/4.

By [5, Lemmas A.8.1 and A.8.3], there is a w'k+x 6(1- e„(A+1))^(l - en{k+x))

such that K+1)*K+1) = q'k+l, (w'k+x)(w'k+x)* = uk+xqk+xuk+x , and

\\w'k+x-q'k+x\\<l/2.

Moreover, there is a unitary u'2 in (1 - en{k+X))M(A)(l - en(k+X)) such that

(u'2)q'k+x(u2)* = u¡+xqk+xuk+x

and

("2)*(WI+l^+l^+l)(W2) = ^+l-
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Define wk+l = uk+xw'k+x and
_ ,. *    . / *
Uk+X  = U _ Uk+Xen(k+X)Uk+X>Uk+XU2 + Uk+Xen(k+X)Uk+X •

Then w*k+xwk+x = q'k+x , wk+xw*k+x = qk+x , and

k+X k+X

K+xPm{k+X)Ük+X = E fk+X + E «Í •
1=1 1=1

This completes the induction.

Now we define
oo oo

u = Y,vk + Y,wk-
k=X k=X

It is easily checked that m is a unitary in M (A) and

U en(k)Aen(k)U = (Jn(k) + Pm(k-X))A(fn(k) +Pm(k-X))

if k > 2. Thus
u AQOu = A00.

7.5. Let A be a C*-algebra. We denote by Aut(^) the automorphism group

of A . If u is a unitary in M (A), we denote the automorphism a —> u au by

aut(w).

7.6. Corollary. Let A be a C*-algebra with an approximate identity [en] con-

sisting of projections. Define

G = {p£ Axit(A): p(AQ0({en})) = A00({en})}.

Then for every tp 6 Aut(^) there are a unitary element u 6 M (A) and p £ G

such that tp = aut(w) o p.

Proof. Let A'00 = tp(AQ0({en})). It follows from 7.4 that there is a unitary

u 6 M (A) such that

M(^oo)w  =^oo-

Thus p = aut(«*) o (p £ G. hence tp = aut(w) o p.

7.7. Recall that a C*-algebra A is called scattered if every state of A is atomic,

equivalently, if A has a composition series with elementary quotients (cf. [9,

and 10]).

7.8. Theorem. Every o-unital scattered C*-algebra is singly supported.

Proof. It follows from [13, Lemma 5.1; 5, Lemma 9.4] that A has a support

algebra A0Q = \Jn<Lx enAen, where the en are projections in A . Let a be any

strictly positive element of A and ÁQ0 = AQ0(a). By [12], Sp(a) is countable.

Thus there are tn ,   0 < tn < 1, such that tn\0 and x(t ,\\a\\](a) is in A- Let

*« = *(/„,IWIlM- Then
OO

^00 =  U PnAPn •
n=l

By 7.6, A00 and A'00 are isomorphic.
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7.9. Let A be a cr-unital C*-algebra and en , pn be as in 2.1. Let B** be the

enveloping Borel *-algebra of A . We denote the norm closure of \J^LX P„B**pn

by B0(A). Clearly B0(A) is a cr-unital C*-algebra. It follows from [15, The-

orem 3.7] that B0(A) does not depend on the choices of {en}. We denote

the norm closure of \J^=X pnA**pn by M0(A). Then M0(A) is a cr-unital C*-

algebra. By [15, Theorem 3.7], M0(A) is the hereditary C*-subalgebra of A**

generated by A , hence it does not depend on the choices of {en} .

7.10. Theorem. For every o-unital C*-algebra A, B0(A) and M0(A) are singly

supported.

Proof. Clearly, \Jn<'=xpnB**pn is a support algebra of B0(A). Take any strictly

positive element x of B0(A). By [15, Corollary 3.9], for every « , Xnin \\x\\yix)

6 B0(A). Let qn = Xni„ \\x\\x^x) ■ Then the support algebra associated with the

strictly positive element x is U^Li ̂ „-ö**^« • By 7.6, B0(A) is singly supported.

The proof for M0(A) is similar.

7.11. Corollary. Let A be a o-unital C*-algebra, and let A00 and A!m be two

support algebras of A. Then QM(A00)" is isomorphic to QM(A'00)".

Proof. By 7.10, M0(A) is singly supported. Therefore (up to isomorphism)

there is only one quasi-multiplier space for supported algebras of M0(A). It

follows from 5.9 that QM(AQ0)" is isomorphic to QM(A'm)" .

7.12. The algebras in 7.8 and 7.10 have a rich structure of projections. Pro-

jectionless singly supported C*-algebras can be found in pseudo-commutative

C*-algebras. The following is an example of a projectionless singly supported

C*-algebra which is not pseudo-commutative.

7.13. Let B be a separable nonelementary simple AF C*-algebra with unique

trace x. Suppose that p is a nonzero projection of B. Then pBp = B (see

[2]). Let o be a nonzero endomorphism of B, and A be the set of continuous

functions from [0, 1] into B such that /(l) = o(f(0)). We assume that

ct(1) = p / 0. By [2], A has no nonzero projections. A is nonunital but is a

cr-unital C* -algebra. Moreover, Prim(^4) is homeomorphic to the unit circle.

It follows from 6.3 that A is not pseudo-commutative.

Suppose that o(B) = pBp for some nonzero projection p in B . Let

1 if 1/« < t < 1 ;

p + n(n+ l)(t- l/n+ 1)(1 -p)        ifl/n+l<t< l/n;

sp if 0< t< l/n + 1.

Then {en} forms an approximate identity for A , and

en+Xen=enen+X=en       for all /I .

Let A = [en]A**[en] n A and A00 = U~ , An ■

en=<
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Suppose that {bn} is another approximate identity for A satisfying bn+xbn =

bnK+x = bn for a11 »• Define A' = lbn]A"[bn] A and A'00 = [J7=xA'n- For
each «, there is an m(n) suchthat \\bm(t)en(t)-en(t)\\ < 1/2 for all m > m(«)

and re[0, 1]. Thus, if m > m(n), ||ôM(f)-l||< 1/2 for all t£[l/n, 1] and

||Z>m(0)-p||<l/2. Soif m>m(n), bjt) = 1 if re[l/w, 1] and£m(0)=p.
Without loss of generality we may assume that bn(t) = 1 if ? 6 [1/«, 1]

and bn(0) = p for all «. For each «, there is a number a„ > 0 such that

||ô„+1(0-/>ll<l/4 and ||Ä„(i)-p||<l/4 for 0 < t < an. Thus Sp(Z>„(í)) c
[0, 1/4] U [3/4, 1] and Sp(ôB+1(i)) C [0, 1/4] u [3/4, 1] for all 0 < t < an .

The characteristic function x - Xn/4, n is continuous on Sp(bn(t)) and

Sp(è„+i(r)) for 0 < í < a„, and thus qx = x(b„) and q2 = x(bn+l) are

continuous on [0, an). Moreover.

||9l(r)-p||<l/2,     ||Í2(0-p||<l/2    if0<i<a„.

Clearly,

q2(t)>[b„(t)]>ql(t).

Since x(q2(t)) = x(qx(t)) for 0 < t < an , we conclude that

Q2{t) = [bn(t)] = qx(t)     for0<t<an.

Furthermore, since bn is increasing,

\bn+k(t)] = [bn(t)]    if0<t< min(an , an+k).

Let Ax be the C*-algebra A\[0 {x/2)a x. Since [bx(t)] = x{b {t)) for t £

[0,(l/2)ax],

aX=[bx(t)]\l0,(X.2)al]&AX-

Put q(t) =p for all ie[0, (l/2)a,]. Then q(t) e Ax . By [5, Corollary A.8.3],

there is a unitary ux £ M(AX) such that

u*qux=ax     and     u,a,M¡ = <7.

Define
1, t = 0;

ux(t), 0<t<(l/2)ax;

ux(ax -t),        (1/2)Q[ < t < ax ;

1, a, < r < 1.

It is easy to verify that m is a unitary in M (A). Moreover, ubnu   < eN and

uenu < bN, where N > n and l/N < (1.2)qw .

We conclude that

u AQOu = AQ0.

So A is a singly supported C*-algebra.

7.14. We denote KQ = {a £ A+: there is a b 6 (A+)x such that [a] < b) .

The following result may help to find a separable C*-algebra which is not

singly supported.

u = <
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7.15. Theorem. Let A be a separable C*-algebra with an approximate identity

consisting of projections. Suppose that A is singly supported. Then

Kq = {a £ A+: a < p, pa projection in A}.

Proof. Suppose that a is a nonzero element in K¿ but no projection in A

majorizes a. Let b be an element in (A+)x such that 0 < [a] < b < 1. Let

B be the norm closure of (1 - b)A(l - b) and a be a strictly positive element

of B. We may assume that 0 < a < 1. Put e = a + b . Then e is a strictly

positive element of A. Since d[a] = [a]a = 0, it follows from Lemma 2.6

that [a]e = e[a]. By considering the abelian C*-algebra generated by e, [a],

and 1, we obtain

Pn = X(X/n,e](e)^W-

Thus a 6 U^ti PnA**Pn n A ■ We als0 notice that ^oo ~ U^li P„A**P„ n A is a
support algebra of A .

Suppose that A'00 is a support algebra of A associated with an approximate

identity [en] consisting of projections. Since A is singly supported, there is

an isometry tp such that <p(A00) = AQ0. Thus we may assume that tp(a) < ek

for some k . Then <p~X(ek) > a and <p~X(ek) is a projection. A contradiction.

7.16. To conclude the paper, we state the following questions.

(1) Is QM(AQ0) the linear span of its positive cone?

(2) Is every cr-unital C*-algebra singly supported?

If the answer of (2) is negative one may consider (3):

(3) Let A be a cr-unital C*-algebra. We denote by s(A) the number of

nonisomorphic support algebras of A. For every «, is there a cr-unital C*-

algebra A such that s(A) = n ?

(4) Are the dual C*-algebras the only C*-algebras which have reflexive quasi-

multipliers?

(5) Does every pseudo-commutative C*-algebra have a central approximate

identity?
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