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YOUNG MEASURES AND AN APPLICATION 
OF COMPENSATED COMPACTNESS 

TO ONE-DIMENSIONAL NONLINEAR ELASTODYNAMICS 

PEIXIONG LIN 

ABSTRACT. We study the existence problem for the equations of I-dimensional 
nonlinear elastodynamics. We obtain the convergence of LP (p < (0) bounded 
approximating sequences generated by the method of vanishing viscosity and 
the Lax-Friedrichs scheme. The analysis uses Young measures, Lax entropies, 
and the method of compensated compactness. 

1. INTRODUCTION 

In this paper we consider the Cauchy problem for a system of one-dimensional 
nonlinear elasticity in Lagrangian coordinates which describes the balance of 
mass and linear momentum of the medium: 
( 1.1) 

with initial data 

(1.2) u(x, 0) = uo(x) , v(x, 0) = vo(X) , 

where u is the strain, O'(u) the stress, and v the velocity. Our assumptions 
about O'(u) are as follows: 

(AI) There exist constants 0'0 > 0 and M > 0 such that O'(u) E C4(R) , 
l(ju)kO'(u)l:5 0'0, 'Vu E R, k = 2,3,4, and (O"(U))-1/2 is concave for 
u 2: M, convex for u:5 - M . 

(A2) There is a constant 60 > 0 such that O"(u) 2: 60 , 'Vu E R. 
(A3) uO'''(u) < 0, 'Vu E R - {O}. 
(A2) guarantees that (1.1) is strictly hyperbolic, and admits two Riemann 

invariants 

(1.3) r(u,v)=V+ fouA,(T)dT, s(u, v) = v - iou A,(T) dT, 

where A,(u) = (O"(U))I/2 is one of the eigenvalues of V' f, where f = (v, O'(u)). 
We first consider the artificial viscosity approximation, that is, when (1.1) is 

approximated by its singular perturbation: 

(1.4) 
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where e > 0 is a perturbation parameter which measures the viscosity. We are 
concerned with the convergence of the viscosity solutions {ue (x, t) , v e (x, t)} 
generated by the Cauchy problem for (1.4) as e tends to O. We prove the 
following results. 

Theorem 1.1. Let (AI)-(A3) hold. Assumefurther that there exist real numbers 
Ii, 'if, rO, SO such that uo(x) - Ii E V(R), vo(x) - 'if E L2(R) , rO > so, and 

r(uo(x) , vo(x)) ~ rO , s(uo(x) , vo(x)) ::; SO "Ix E R. 

Then there exist a subsequence {uen(x, t), ven(x, t)} of {ue(x, t), ve(x, t)} 
and u(x, t), v(x, t) E Lfoc(R X R+) such that 

uen(x, t) ~ u(x, t) in Lfoc(R x R+), 

ven(x, t) ~ v(x, t) in Lfoc(R x R+), 

a(uen(x, t)) ~ a(u(x, t)) in L~c(R x R+) 

(i.e., each sequence converges weakly in L2(Gn(RxR+)) for any bounded domain 
G C R2). Therefore, {u(x, t), v(x, t)} is an admissible solution of the Cauchy 
problem (1.1), (1.2). 

We can also consider the approximation by finite difference schemes which 
are conservative in the sense of Lax-Wendroff (cf. Lax and Wendroff [1960]). 
For simplicity we are concerned with the convergence of the approximate so-
lutions {u l (x, t) , vi (x, t)} generated by the Lax-Friedrichs scheme (cf. Lax 
[1954]) in the form: 

Un+l ,k = !(Un,k+l + un,k-d + !K(Vn,k+l - vn,k-d, 

vn+l ,k = !(Vn,k+l + vn,k-d + !K(a(un,k+d - a(un,k-l)), 
( 1.5) 

where K = .t, I = ax, and t1t and t1x are increments in the directions 
of t and x respectively. In §6 we shall give the details of the construction 
of {u l (x, t), vi (x, t)}. Our main result is similar to Theorem 1.1 and can be 
summarized as follows. 

Theorem 1.2. Let (AI )-(A3) hold. Assume further that there exist constants Ii, 
'if, rO , SO such that uo(x) - Ii E L2(R), vo(x) - 'if E L2(R) , rO > so, and 

r(uo(x), vo(x)) ~ rO , s(uo(x) , vo(x)) ::; SO "Ix E R. 

Then there exist a subsequence {uln (x, t) , v ln (x, t)} of {ul (x, t) , vi (x, t)} and 
u(x, t) , v(x , t) E Lfoc(R X R+) such that 

u ln (x, t) ~ u(x, t) in L~c(R x R+) , 

vln(x, t) ~ v(x, t) in Lfoc(R x R+), 

a(uln(x, t)) ~ a(u(x, t)) in Lfoc(R x R+). 

Therefore, {u(x, t), v(x, t)} is an admissible solution of the Cauchy problem 
(1.1), (1.2). 

The hypotheses of both theorems imply that ue (x, t) or ul (x, t) is uni-
formly bounded below by a positive constant. We remark, however, that similar 
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results hold when UB(X, t), Ul (X, t) are uniformly bounded above by a negative 
constant. 

Because of (A3), using the theory of invariant regions (cf. Chuech, Conley, 
and Smoller [1977], Hoff [1985]) we get 

( 1.6) 
r(uB(x, t), VB(X, t)) 2: rO, 
s(uB(x, t), VB(X, t)) ::::; so, 

r(ul(x, t), ul(x, t)) 2: rO, 
s(ul(x, t), ul(x, t)) ::::; so. 

However, we do not know whether {uB, VB} and {ul , vi} are uniformly 
bounded even when the initial data {uo, vol is in Loo(R). Dafermos [1987] 
proved that in the case of strain softening, that is, when a(u) satisfies (A3), 
the viscosity sequence {ue(., t), v e(., t)} is uniformly bounded in the space 
V(R) , 0 < t < 00, 2 ::::; p < 00, provided certain other conditions hold. 
Moreover, for the case of strain hardening, that is, a(u) is convex for u large 
and concave for u small, Dafermos [1987] proved that the viscosity sequence 
{ue (., t), VB (., t)} is uniformly bounded in L 00 (R), 0 < t < 00 , provided the 
initial data is in Loo(R). 

Our technique is to apply the method of compensated compactness. As we 
know, this method was established by Tartar [1979] and Murat [1978, 1981], 
motivated in part by the paper of Ball [1977] on nonlinear elasticity. This 
method has shown itself powerful in resolving some important problems in the 
theory of conservation laws. Tartar first succeeded in giving a new proof of 
convergence of the viscosity sequence for scalar conservation laws. Through 
an extremely novel use and generalization of Lax's [1971] entropy-entropy flux, 
DiPerna [1983a, 1983b] (see also Ding, Chen, and Luo [1985a, 1985b] and Chen 
[1986]) successfully proved existence of the Cauchy problem for the equations 
of isentropic gas dynamics in Eulerian coordinates. 

We observe, however, that all the above papers require the local uniform 
boundedness in L 00 of the approximate sequences of viscosity solutions, or 
the approximation constructed by a finite difference scheme. It is still an open 
problem to establish the convergence of more general approximate solution se-
quences of conservation laws. We remark that it seems very difficult to prove 
the local uniform boundedness of viscosity solutions of isentropic gas dynamics 
in Lagrangian coordinates. 

We confront in the analysis the difficulty that the supports of the Young mea-
sures of an approximating sequence are no longer uniformly bounded, since the 
approximating sequence is not bounded in Loo, so that consequently DiPerna's 
argument does not apply directly. In this paper we explore a technique which 
can deal with the problem of convergence for more general approximating se-
quences. 

Based on condition (1.6), which results from the hypotheses on the initial data 
in Theorem 1.1 and Theorem 1.2, we are able to construct the required entropy-
entropy flux pairs of Lax's type, via the method of Riemann functions from the 
standard theory of linear hyperbolic equations. A similar idea is used by Serre 
[1986], who obtains half-plane supported entropies by solving the Goursat prob-
lem for the related hyperbolic equations. However, his work is just concerned 
with uniformly bounded approximating sequences. Based on Tartar's commu-
tation relation derived from Tartar and Murat's Div-Curllemma, we prove that 
the Young measures are supported almost everywhere at at most four points. 



380 PEIXIONG LIN 

We can then follow DiPerna's argument to deduce that the Young measure is 
indeed a Dirac mass. 

One may use the Glimm scheme (cf. Glimm [1965], Liu [1977]) to solve the 
existence problem for (1.1). But we would then have to assume in particular 
that the initial data uo(') , vo(') are of bounded variation. 

The plan of this paper is as follows. In §2 we give an alternative proof 
of the representation of Young measures which enables us to establish a gen-
eral framework for the application of compensated compactness. In §3 we are 
concerned with the viscosity solutions of the Cauchy problem for (1.4). In §4 
we construct several families of entropy-entropy flux of Lax's type which, by 
applying Murat and Tartar's Div-Curl lemma, we use in §5 to prove that the 
resulting Young measures are indeed Dirac measures. Finally in §6 we consider 
the approximation by the Lax-Friedrichs finite difference scheme. 

I had a chance to read part of the manuscript of a paper by J. W. Shearer 
[1989] which considers the same problem. We share many common meth-
ods such as vanishing viscosity, Lax entropies, compensated compactness and 
Young measures. Interestingly, we both divide the proof of reduction of Young 
measures into two steps. The first step is to prove that almost every Young 
measure is supported on at most four points. Then in the second step we prove 
that it is indeed a Dirac measure. However, the approach in the proof of each 
step is quite different. In the first step Shearer uses a class of half supported 
entropy-entropy flux pairs expressed through integral representations, while in 
the second step he uses another class of entropy-entropy flux pairs which are 
composed of complex functions. But in this paper we use the same class of 
entropy-entropy flux pairs of Lax's type in both steps. 

2. PRELIMINARIES 

In this section we describe several fundamental results that we shall use. We 
first give for the reader's convenience a self-contained proof of a version of 
the representation theorem of Young measures that we use later, motivated in 
part by Tartar [1983], Slemrod [1985], and Ball [1988]. The Young measure 
was developed as a tool for analysing nonlinear partial differential equations by 
Tartar [1979]. For more details and comment we refer the reader to Berliocchi 
and Lasry [1973], Tartar [1979, 1983], Schonbek [1982], Balder [1984], Ball 
[1988], and Evans [1988]. 

We first specify some notation we shall use. RN is N-dimensional real 
Euclidean space; RN = RN U {oo}; Rl = R; R+ = {a 2:: 0, a E R}; C(RN) 
is the space of continuous functions, while CO(RN) is the space of continuous 
functions which tend to zero at infinity; M(RN) is the dual space of CO(RN); 
and the symbol ~ means weak convergence in U with 1 ~ p < 00 (if p = 00 

we replace ~ by ~). 

Theorem 2.1. Let n c RN be measurable. Suppose that un(x): n _ RS is 
a sequence of measurable functions. Then there exist a subsequence unk (x) of 
un(x) and a family of positive measures /l-x E M(RS) , depending measurably 
on x En, such that for any f E Co(RS) 

(2.1 ) 
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Proof. Let E = {fm} be a dense set in Co(RS). Then {jI(un)} is bounded on 
n, and hence there exist a subsequence {unk } of {un} and a(jI)(x) E LOO(n) 
such that 

fl(Unk(X)) ~ a(fl)(x). 

Furthermore, t[2(unk (x))} is also bounded on n, and hence there exist a 
subsequence {uni} of {unk } and a(j2)(x) E LOO(n) such that 

f2(un~(x)) ~ a(f2)(x). 

Proceeding in this way we obtain a series of subsequences {un;:'}, a(fm) such 
that 

(i) {unk}::> {un~}::> {uni}::> ... , and 
(ii) for each fixed m, fm(u n;:') ~ a(fm) . 

We let {unk } = {unZ}, the diagonal sequence. Then from (ii) we get that for 
each fixed m, 
(2.2) 

For each fm E E, we define a bounded functional I(fm) on LI (n) by 

(I(fm) , III) = ( lIIa(fm) dx = lim ( III fm(u nk ) dx VIII E LI(n). 
io. k--+oo io. 

Then for any given f E Co(Rs), suppose that f = lim/--+oo fl in Co(RS), 
where {fl} c E. We want to prove that the following limit exists, and hence 
we denote it by I (f) , namely, 

(2.3) (I(f) , III) = lim ( III f(u nk ) dx VIII ELI (n). 
k--+oo io. 

In fact, for any nkl , nk2' we notice that 

(2.4) 

lin III [f(unkl ) - f(U nk2 )] dxl 

:::; lin 1II[f(unkl ) -l (Unkl )] dxl + lin III [f(Unk2 ) -l (Unk2 )] dxl 

+ lin lII[l (Unkl ) -l (U nk2 )] dxl 

:::; 211f -lilcolllllih + lin lII[l (unkl ) -l (U nk2 )] dxl· 

We first choose I large enough such that the first term on the right-hand side 
of (2.4) is small, then by (2.2) the second term on the right-hand side of (2.4) 
can be small whenever nkl and nk2 are large enough. Hence we prove that 
Uo.lllf(unk)dx} is a Cauchy sequence for any fixed III E LOO(n) , and so we 
have proved (2.3). Consequently, we obtain 

(2.5) 1 (I(f) , 111)1:::; IIfllcollllllh VIII E LI(n). 

We notice, by (2.5), that I (f) is a bounded functional on LI(n), and hence 
by the Riesz representation theorem there exists a(f)(x) E LOO(n) such that 

(2.6) (I(f) , III) = In a (f) III dx VIII ELI (n). 
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a(fl + fi) = a(fi) + a(fi) Vii E Co (Rs ) , i = 1,2, 
a(kf) = ka(f) Vf E Co(Rs ), k E R. 

At this moment we suppose, without loss of generality, that every point x E Q 
is a Lebesgue point of each function a(f). Then for any fixed Xo E Q, we set 

ljI(x) = (measB,(xo))-IXB,(xo) ' 
where B,(xo) is the ball centred at Xo with diameter r, and XB,(xo) is the 
characteristic function of B,(xo). By (2.5) and (2.6) we get 

I (measB,(xo))-1 r a(f) dxl :::; Ilfllco· i B,(xo) 
We now pass to the limit as r -; 0 to obtain la(f) (xo) I :::; II !II Co • Combining 
this with the fact that a(f) is linear with respect to f we have that a(f)(xo) is 
a bounded functional on Co(RS). Therefore applying the Riesz representation 
theorem we have that there is a flxo E M(Rs) such that 

a(f)(xo) = (f(A) , flxo) = r f(A) dflxo. iRS 
Since Xo is arbitrary we get 

(J(f) , 1jI) = 10 1jI(f(A) , flx) dx VIjI E LI(Q), 

where flx E M(RS) for a.e. x E Q. So we have proved (2.1). 
Finally, we notice that for any positive f E Co(Rs) 

a(f)(x) = (f(A) , flx) 2: 0 a.e. x E Q, 

which implies that flx is positive for almost all x E Q. This completes the 
proof. 
Remark 2.1. Using a dense set of Co(RS) in the proof of Theorem 2.1 is sug-
gested in Tartar [1983] where the dense set of polynomials with rational coef-
ficients is used. The idea in the proof of the following corollary is due to Ball 
[ 1988]. 
Corollary 2.2. Suppose that un(x) is bounded in Lfoc(RN; RS), where 1 :::; p < 
00. Then there exist a subsequence unk of un and a family of positive measures 
flx E M(RS) , x ERN, such that for any bounded set A C RN 
(2.7) f(u nk ) ~ (f(A), .ux ) in LI(A), 
whenever f E C(RS) satisfies 

(2.8) lim f(A) = o. 
1).1 ..... 00 IAIP 

Proof. Without loss of generality we assume that f 2: o. Then we define 
fm E Co(Rs) by fm = emf, where em E Co(RS) is defined by 

{ 
1 for IAI :::; m, 

em(A) = 1 + m - II,.I for m :::; II,.I :::; m + 1, 
o for II,.I 2: m + 1. 
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We claim that for each rp E LOO(A) 

(2.9) lim r rpfm(un) dx = r rpf(un) dx 
m-+oo JA JA 

uniformly in n. Indeed, 

I r rp[fm(un) - f(un)] dxl ~ IlrpllL''''(A) 1 f(u n) dx JA {XEA;lunl~m} 

~ IIrp!IL''''(A)lIunIIU(A) ~~! {{i~} , 
which tends to 0 uniformly in n as m --+ 00 • 

On the other hand, by Theorem 2.1 there exist a subsequence unk of un and 
a family of positive measures /1x E M(RS) such that for each m 

(2.10) lim r rpfm(unk ) dx = r rp(fm, /1x) dx Vrp E LOO(A). 
n-+oo JA JA 

Furthermore, from the monotone convergence theorem we get 

(2.11) lim r rp(fm,/1x)dx= r rp(f,/1x)dx. 
m-+oo JA JA 

Combining (2.9), (2.10), and (2.11) we get (2.7) and complete the proof. 

We now describe Murat and Tartar's Div-Curllemma which is the prototype 
for the theory of compensated compactness (cf. Murat [1978], Tartar [1983], 
and Ding, Chen, and Luo [1985c]). 

Div-Curllemma. Let Q C R2 be an open bounded set. Let {ut(x)} be a se-
quence in L2(Q) for each i = 1, 2, 3, 4. Suppose that u'/ ~ u? in L2(n) , 
i = 1,2, 3,4, and aXl u1 + aX2u~ and aXl u~ + aX2u~ are compact in H-l (n). 
Then 

u1u~ - u~u~ --+ u?u~ - u~u~ in the sense of distributions. 
We finally describe an embedding theorem (see Ding, Chen, and Luo [1985a] 

and Evans [1988]) which is related to an earlier result of Murat (cf. Tartar 
[1979]). 

Embedding Theorem. Let Q C RN be an open bounded set, and let 1 < q ~ 
2 < r < 00. Assume that {In} is bounded in W- 1 , '(Q) and relatively compact 
in W- 1 ,q(Q). Then {In} is relatively compact in H-l(n). 

3. VISCOSITY SOLUTIONS 

In this section we consider the Cauchy problem for the related parabolic 
system: 

(3.1 ) 

with initial data 

(3.2) u(x, 0) = uo(x) , V(x, 0) = vo(x). 
We assume that 

(H) (A2), (A3) hold, and (J(u) E C2(R) . 
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Consequently, we have that 
0<150 ::; o"(u) ::; 0"(0), 0'''(0) = 0, 

(3.3) 
IO'(u)1 = /Io U O"(r) dr/ ::; O"(O)lul. 

A local existence result for (3.1), (3.2) can easily be obtained by applying 
the contraction mapping principle to an integral representation for a solution, 
following the standard theory of semilinear parabolic systems (cf. Ladyzhen-
skaya, Solonnikov, and Uraltseva [1968], Ding and Wang [1983], and Hoff and 
Smoller [1985]). Whenever we have a suitable a priori estimate, we can establish 
the global existence of a smooth solution of (3.1), (3.2). The following version 
of a result of Dafermos is just the a priori estimate we require. 

Theorem 3.1 (Dafermos [1987]). Let (H) hold. Assume further that there exist 
u, v such that 

(3.4) 
Suppose that {ue(x, t), ve(x, tn is a smooth solution of (3.1), (3.2) defined 
in a strip R x (0, T] with 0 < T < 00, and that {ue(x, t), ve(x ,tn tends to 
{u, v} as Ixl -+ 00, for any t E (0, T]. Then for each t E [0, T] 

(3.5) L lue(., t) - ul2 dx ::; c(t) , L Iv e(., t) - vl2 dx ::; c(t) , 

where c(t) is bounded on [0, T], and c(t) depends on T, but is independent 
of e. 

Remark 3.1. Dafermos [1987, Proposition 3.1] proved precisely that 

(3.6) L lue(., t) - ulP dx ::; c(t), L Iv e(., t) - viP dx ::; c(t) 

with p ~ 2 , provided that 
uo(x) - u, vo(x) - v E LP(R) n L2(R) , 

(3.7) L luIP- 2Ia'(u)1 du < 00, 

where a2(u) = O"(u). To deduce Theorem 3.1, we notice that if p = 2 the last 
condition in (3.7) is superfluous, due to (A3). 

We can now state the global existence result, but we omit the proof (cf. Hoff 
and Smoller [1985], for example). 

Theorem 3.2. Let (H) and (3.4) hold. Then there is a solution 
{ue(x, t), ve(x, tn 

of the Cauchy problem (3.1), (3.2) such that, ue , v e E C2(R x (0, 00)), 

(3.8) L lue(., t) - ul2 dx ::; c(t) , L Iv e(., t) - Vl2 dx ::; c(t), 

where c(t) is locally bounded in R+ and independent of e . 

Corollary 3.3. Under the assumptions of Theorem 3.2, we have 

(3.9) e1/ 2ox ue and e1/ 2ox ve are uniformly bounded in Lroc(R x (0, 00)). 
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(3.11 ) 

where C depends on rp. Therefore, we get that el/2{)xuB and el/2{)xvB are 
uniformly bounded in L2(K) , and hence we complete the proof. 

Remark 3.2. From the proof above we observe that, to prove (3.9), it is sufficient 
that 
(3.12) uB and VB are uniformly bounded in L{oc(R x R+) , 

which is weaker than (3.8). 
By the theory of invariant regions (cf. Chueh, Conley, and Smoller [1977] 

and Smoller [1983]), the following result is obvious. 

Theorem 3.4. Suppose that {ue(x, t), V8(X, t)} is a smooth solution of the 
Cauchy problem (3.1). (3.2). If there are r* and s*. r* > s*. such that 

r(uo(x) , vo(x)) ;::: r*, s(uo(x) , vo(x)) ~ s* Vx E R, 

then 

r(uB(x, t), VB(X, t)) ;::: r*, s(uB(x, t), V8(X, t)) ~ s* V(x, t) E R x (0, 00). 

Consequently, uB is uniformly bounded below by a positive constant. 
Similarly, if r* < s* and 

r(uo(x) , vo(x)) ~ r*, s(uo(x) , vo(x)) ;::: s* Vx E R, 

then 
r(uB(x, t), VB(X, t)) ~ r* , s(uB(x, t), VB(X, t)) ;::: s* V(x, t) E R x (0, 00). 

Consequently, we also have that uB is uniformly bounded above by a negative 
constant. 
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Remark 3.3. From the initial data given in Theorem 1.1 we have that the sup-
ports of the viscosity sequence {UB(X, t), VB(X, tn are contained in {(r, s); 
r ~ rO , s :::; SO} . 

4. ADMISSIBLE SOLUTIONS. LAX ENTROPIES 

We first describe in standard fashion a definition of a weak solution for the 
Cauchy problem (1.1), (1.2). 

Definition 4.1. A pair of functions {u(x, t), v(x, tn, u, v E ~~e(R x R+), is 
said to be a weak solution of the Cauchy problem (1.1), (1.2) if 

j" r (urpt - vrpx) dx dt + 100 uo(x)rp(x, 0) dx = 0, 1t>0 -00 

jr r (vrpt _ a(u)rpx) dx dt + 100 vo(x)rp(x, 0) dx = 0, 
l~ -00 

(4.1 ) 

whenever rp E Co (R2) . 

It is necessary to introduce an admissibility criterion which can pick out 
the physically relevant solutions. We recall the definition of generalized en-
tropy formulated by Lax [1971]. A pair of smooth mappings (11, q), where 
11 (u, v), q (u, v): R2 ---+ R, is called an entropy-entropy flux pair if 

(4.2) f = (-v, -a(u))T, 

for all u, v E R. In components, (4.2) reads 

(4.3) 8uq(u, v) = -a'(u)8v 11(U, v), 8v q(u, v) = -8u11(U, v), 

from which it follows that 11 is a solution of 

8;11(U, v) = a'(u)8;11(U, v). 

A typical example of an entropy-entropy flux pair is 

(4.4) q(u, v) = -va(u). 

Note that in this example 11 is convex. 
For convenience we define some classes of entropy-entropy flux pairs as fol-

lows: 

L := {(11, q); 1'\72 111 :::; C, 1'\7111 :::; C(1 + lulet + Ivn, 
1111:::; C(1 + lulet + Ivlet) , 

(4.5) Iql :::; C(1 + lulet + Ivla ), 0 < 0: < 1}, 
Leon := {(11, q); 11 is convex, 1111:::; C(1 + lulP + IvIP), 

Iql:::; C(1 + lulP + IvIP), 0 < P < 2}. 

Here C, 0:, and p are constants depending on 11 and q. 
We now can describe the definition of an admissible solution in the sense of 

Lax [1971] for the Cauchy problem (1.1), (1.2). 
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Definition 4.2. Suppose that {U(X, t), V(X, tn is a weak solution defined by 
Definition 4.1. Then {u(x, t), v(x, tn is said to be an admissible solution if, 
for any pair (71, q) E Leon, 

(4.6) f"{ [71(u,v)8trp+q(u,v)8xrp]dxdt~0, 
Jt>o 

whenever rp ~ 0, rp E Co(R x (0, 00)). 

Theorem 4.1. Suppose that {uB(x, t), V8(X, tn is the sequence of viscosity so-
lutions given in Theorem 3.2. Then we have that for each (71, q) E L 

8t71(UB(X, t), VB(X, t)) + 8xq(uB(x, t), vt(x, t)) 
(4.7) 

is relatively compact in Hj~cl (R x (0, 00)). 
Proof. Given any bounded open set 0 C R x (0, 00), 0 c R x (0, 00), we 
want to prove that 

(4.8) 8t 71(UB, VB) + 8xq(uB, VB) is relatively compact in H-1(0). 

We first notice that 8t 71(UB, VB) + 8xq(uB, vt) = If + I~, with 

If = e8x[V71 . (u~ , v;)], 
I~ = -e[71uu(u~)2 + 271uvU~V; + 71vv(vD2] , 

where we use 8x u or Ux as the derivative of u with respect to x, whichever 
is convenient. Since IV2 71 1:::; c, by Corollary 3.3 

fin II~I dx dt :::; C fin e[(u~)2 + (v;)2] dx dt :::; C, 

where C is independent of e. (For simplicity we may use the same C as 
various constants independent of e.) Therefore, I~ is bounded in M(O) , the 
dual space of Co(O) , and hence, by the Schauder theorem (cf. Yosida [1968], 
Chapter 10)), 

(4.9) I~ is relatively compact in w-l,qO(O), 1< qo < 2. 

Furthermore, because of the definition of L, we have that for each rp E CoCO) 

I fin Ifrp dx dtl :::; e fin (l71uU~1 + l71v v;l)lrpxl dx dt 

:::; el/2c(lIel/2u~1I2 + lIe l/2v;112)(1 + lIut ll2 + IIvt Il2)lIrpxllq, 
--+ 0 as e --+ 0, 

where !(1 + a) + I/ql = I, ql > 2. This implies that If --+ 0 in W- I ,q; , and 
I/ql + I/q; = I. Combining the above with (4.9) we get 

(4.10) 8t71(Ut , vt) + 8xq(ut , vt) is relatively compact in W- I ,q; (0). 

On the other hand, for any rp E CoCO) 

I fin [8t 71(Ut , vt) + 8xq(ut , v8)]rp dx dtl 

:::; C(1I71112/a + IIq!l2/a)IIVrpIl2/(2-a) 
:::; C(I + lIu8 112 + II v8112)IIVrpIl2f(2-a) , 
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which means that Ottl(Ue , V e ) + oxq(Ue , v e ) is bounded in W-' ,2/a(Q). Since 
2/ a > 2, combining the above with (4.10) we can apply the Embedding Theo-
rem of §2 to get (4.8), which completes the proof. 

We now discuss the construction of entropy-entropy flux pairs of Lax's type. 
We can regard the Riemann invariants (1.3) as a mapping I from the (u, v) 
plane to the (r, s) plane, 

I: (u, v) ----> (r, s), 
which is a smooth, one-to-one mapping. We notice that (4.2) is equivalent to 

(4.11) oq=)..otl oq=_)..otl 
os os' or or' 

where).. = (a'(u))'/2. 
We first construct entropy-entropy flux pairs having the form 

( 4.12) 
tl±k(r, s) = e±kS(Ao + A, (±k)-') + P±b 

q±k(r, s) = e±kS(Bo + B, (±k)-') + Q±k, 
where k = 2, 3, 4, . .. and Ai, B j, P ±k ,and Q±k are smooth functions of 
r, s to be defined below. 

Here we should mention that, by Remark 3.3, it is sufficient to construct 
entropy-entropy flux pairs (tl±k, q±k) satisfying (4.11) in the region Lo, 

(4.13) Lo = {(r, s); r ~ rO, s ~ so} C {(r, s); r > s}, 
and for this reason our discussion is focused on the region {( r , s) ; r > s} . 

For convenience, we define 
C(j(s) = {h(s); h(s) ~ 0, h E CO'(R) , supp{h} c (-00, rOn. 

Given any fixed hE C(j(s) , we suppose that supp{h} C [s-, s+], where s+ < 
rO • Then we define 
(4.14) Ao(r, s) = )..-'/2(r, s)h(s), Bo(r, s) = )..'/2(r, s)h(s), 
and from (4.11) we see that A, and B, are defined by the recursion conditions 
(4.15) B, + osBo = )"(A, + osAo) , o,B, = -)..o,A, , 
or, equivalently, 

( 4.16) 
2)..o,A, + (o,)")A, + o,()..osAo - osBo) = 0, 
B, = )"A, + )..osAo - osBo. 

Solving the ordinary differential equation with A, (s, s) = 0, we get 
1 

A, (r, s) = -"2).. -'/2(r, s)[Fo(r, s) - Fo(s, s)] 

1 l' -4)..-'/2(r,s) s Fo('r,s)o,ln)..(r,s)dr, 

1 
B, (r, s) = "2)..'/2(r, s)[Fo(r, s) + Fo(s, s)] 

( 4.17) 

1 '/2 l' d -4).. (r,s) s Fo(r,s)8,ln)..(r,s) r, 

where 
( 4.18) 

Having defined A, and B, , we prove the following estimates. 
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Proposition 4.2. Let (A1)-(A3) hold. On the half-plane {(r, s); r ;::: s} we have 
IAj(r, s)1 ~ Coh(s) , IBj(r, s)1 ~ Coh(s) , 
lo;osm Aj(r, s)1 ~ C, lo;osm Bj(r, s)1 ~ C, 

( 4.19) 

where j = 0, 1, 1 ~ I + m ~ 2, I, m = 0, 1, 2, C depends on h (.) and a ( . ) , 
and Co depends only on a(·). Here we emphasize that Co is independent of 
h(·) . 
Proof. Since from (1.3) 

(4.20) au = _ au = !A,-I = !(a,)-1/2 ov ov ! 
or as 2 2 ' or as 2 ' 

we see by (AI) and (3.3) that (4.19) holds for Ao(r, s) and Bo(r, s) . 
We now deal with AI (r, s). Since 

Fo(r, s) = -(oslnA,)h(s) = !(a')-3/2a"h(s) , 
we have that Fo(s, s) = 0, since a"(O) = 0 and r = s corresponds to u = O. 
Furthermore, we notice from (A3) that 

a, InA, is negative on {(r, s); r ;::: s}, 
(4.21) as InA, is positive on {(r, s); r ~ s}, 

AS InA, = -a, InA,. 
Then we estimate 

IAI (r, s)1 ~ Coh(s) + Coh(s) l' -Or InA,(r, s) dr ~ Coh(s) , 

where Co is independent of h ( .) . A similar argument applies for B I (r , s) . 
Furthermore, we calculate that 

_ 1 -3/2 1 -1/2 osAI (r, s) - "4A, (r, s)Fo(r, s)osA,(r, s) - lA, (r, s)osFo(r, s) 

1 l' + gA,-3/2(r, s)osA,(r, s) s Fo(r, s)or InA,(r, s) dr 

1 -1/2 l' -"4A, (r,s) s osFo(r, s)or InA,(r , s)dr 

1 -1/2 l' d -"4A, (r,s) s Fo(r,s)osorlnA,(r,s) r. 

By (AI), (4.20), and (4.21), 

10sAI (r, s)1 ~ C + C 11' Fo(r, S)OsOr InA,(r, s) drl 

= C + C 11' Fo(r, s)o; InA,(r, s) drl 

~ C + C 11' OrFo(r, S)Or InA,(r, s) drl 

~C(l+ l' -orlnA,(r,S)dr) ~C, 
where C depends on h ( .) and a ( .). Using the same method we can prove the 
rest of (4.19), and hence we complete the proof. 

We now define P±k and Q±k. Our purpose is to obtain the following results. 
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Proposition 4.3. There exist smooth functions Pk(r, s) and Qk(r, s) defined on 
~o such that (tlk (r , s), qk (r , s)) satisfies (4.11) in ~o. Moreover, we have 

Pk(r, s) = 0, Qk(r, s) = 0 for s ::; s- , 

(4.22) IPk(r, s)1 ::; COk- 1 1~ ek'[lh'(e;)1 + h(e;)] de;, 

IQk(r, s)1 ::; COk-1 1~ ek'[lh'(e;) I + h(e;)] de;, 

where Co is independent of h(·) and k, and 

(4.23) 18!asmPk(r, s)l::; C(k, h), 18!8sm Qk(r, s)l::; C(k, h), 

where (r,s) E ~o, 1::; I+m::; 2, I,m = 0, 1,2, and C(k,h) is some 
constant depending on k and h(.). 

Proposition 4.4. There exist smooth functions P_k(r, s) and Q-k(r, s) defined 
on ~o such that (tl-k(r, s), q-k(r, s)) satisfies (4.11) in ~o. Moreover, we 
have 

P_k(r, s) = 0, Q-k(r, s) = 0 for s 2: s+ , 

(4.24) 

s+ 

IP-k(r, s)1 ::; COk-1 1 e-k'[lh'(e;)1 + h(e;)] de;, 

s+ 

IQ-k(r, s)1 ::; COk-1 1 e-k'[lh'(e;)1 + h(e;)] de;, s ::; s+ , 

where Co is independent of h(·) and k, and 

(4.25) 18!8smP_k(r, s)l::; C(k, h), 18!8sm Q_k(r, s)l::; C(k, h), 

where (r,s) E ~o, 1::; I+m::; 2, I,m = 0, 1,2, and C(k,h) is some 
constant depending on k and h(·). 

We notice from (4.11), (4.14), and (4.15) that P±k(r, s) and Q±k(r, s) 
should satisfy the linear hyperbolic equations: 

8sQ±k - }"8sP±k = (±k)-le±ks(}..8sA I - 8sB l) , 
(4.26) 

8,Q±k + }"8,P ±k = O. 
Therefore, Pk(r, s) is the solution of the linear hyperbolic equation 

(4.27) 8,8sPk + i(8sln}")8'Pk + i(8,ln}")8sPk = fb 
where 

fk = _k-1eks 21}.. 8r(}"8sA I - 8sBd· 
By the standard theory (cf. Bitsadze [1964] and Sobolev [1964]), we can solve 
the initial value problem for (4.27). 

We define the initial values along characteristics as follows: 

(4.28) 
Pk(r, s) = 0 for s = s- , 

By the Riemann representation we can express Pdr, s) in the form 

(4.29) Pk(r, s) = 1: 1~ R, ,s(a, p)fk(a, P) d P da 
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for r ~ r*, r* ~ s ~ s-, where in (4.29) the Riemann function R"s(a, P) is 
the solution of the corresponding adjoint equation 

(4.30) BaBpR"s - ~Ba[BplnA.(a, P)R"s] - ~Bp[BalnA.(a, P)R"s] = 0, 

r* :$ a :$ r, s- :$ P :$ S , with the following initial values along characteristics: 

(4.31 ) 
R"s(a, s) = [A.(r, s)]-1/2[A.(a, S)]1/2, 
R"s(r, P) = [A.(r, s)]-1/2[A.(r, P)]I/2. 

Here we notice that R"s(r, s) = I, and, by (3.3), that R"s(a, s) and R"s(r, P) 
are uniformly bounded in r, s , a , and p. 
Proposition 4.5. We have 

(4.32) R"s(a, p), BaR"s(a, P)' BpR"s(a, P) 
are uniformly bounded in r, S , a, P , 

where r* :$ a :$ rand s- :$ P :$ S :$ r* . 
Proof. We first claim that there are rM, SM such that, if (r, s) E {(r, s) ; r ~ 
r* , S :$ r*}, 

(4.33) B,lnA.(r,s)ismonotoneinr,s, ifr~rM, ors:$sM. 

The same results hold for Bs In A., since Bs In A. = -B, In A. • 
We notice that 

B,2InA.(r, s) = Bs2InA.(r, s) = -B,BslnA.(r, s) 

I -I d 2 -I 
= -4"(A.(u)) du2A. (u), 

where (r, s) corresponds to (u, v) under the mapping I. Therefore, by (AI), 
(4.33) holds if u ~ M. More precisely, (4.33) holds if we set 

where M is given by (AI). 
Given any ao, ai, and PI with r* :$ ao < al < r, s- :$ PI < s, and 

PI < ai, we take the integral of (4.30): 

t l' {BaBpR"s - ~Ba[BplnA.(a, P)R"s] 1P1 al 

-~Bp[BalnA.(a, P)R"s] } dadP = o. 
By calculation we get 
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Then 

( 4.34) 

Regarding PI as a parameter in (4.34), we use Bellman's inequality I (cf. 
Bellman and Cooke [1963]) to get 

I J' IR ( P )1 2" u 18u lnJ.(a,PIllda 
r,soq, 1 :::;e I 

(4.35) . [1 + -21 r max lap lnA(oq ,P)I max IRr,s(O:I, P)I dP] 
) PI ao~al ~r ao~al ~r 

:::; C [1 + -21 r max lap lnA(O:I ,P)I max IRr,s(O:I, P)I dP] , 
} PI ao~al ~r ao~al ~r 

where 0:0:::; 0:1 :::; r, and where we have used (3.3) and (4.21). 
(4.35) implies 

max IRr,s(O:I, Pdl 
ao~al~r 

:::; C [1 + -21 r max lap lnA(O:I ,P)I max IRr,s(O:I, P)I dP] . 
} PI ao~al ~r ao~al ~r 

Again by Bellman's inequality we get 

IR ( P )1 C c f max"o:Sal:S' 18p InJ.(al ,P)I dP max r s 0:1, I < e PI • 
ao~al~r' -

On the other hand, from (Ai) and (4.33), 

h~ aO~:I~rlaplnA(O:I' P)ldP 

:::; 1:' ao~~~r lap lnA(O:I' P)I dP + IS: ao~~~r lap lnA(O:I , P)I dP 

:::; Cjr* - sMI + J:: lap lnA(r, P)I dP + J:: lap lnA(O:O, P)I dP 
:::;c, 

where C is independent of r, S, 0:0, 0: I , and PI. 
Combining the above we obtain 

where C is independent of r, S, PI, and 0:1. 

I Let f(/) , a(/) ~ 0 be continuous functions in [a, b] , let A > 0, and suppose that f(t) :S 
A + It a(r)f(r)dr, 1 E [a, b]. Then we have f(l) ~ AexpU/ a(r)dr) , 1 E [a, b]. 
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Next, we integrate (4.30) with respect to P and obtain 

Hence 

But, from (4.33) and (AI), 

is 18a 8plnA(0:, P)ldP 
PI 

~ 1~' 18a 8p InA(O:, P)I dP + J:: 18a 8p InA(O:, P)I dP ~ c, 

where C is independent of r, s, 0:, and Pl. Then, by the Bellman inequality, 
we get 

A similar argument applies for 8pR, ,s(o:, P) , and so we complete the proof. 

Remark 4.1. From the proof above we see that in hypothesis (A 1) the condition 
where A-i(U) is concave for u ~ M and convex for u ~ -M can be replaced 
by 0''''(0) E Li(R). 

The existence of Qk(r, s) follows from that of Pk(r, s). In fact, we get 
from (4.26) that 

Proof of Proposition 4.3. By (4.14) and (4.15) we calculate that 

A- i/2(A8sA i - 8sBd 
= A -1/2[A8sAi - 8s(AAi + A8sAo - 8sBo)] 

(4.37) = (8s InA)h'(s) + (8s2 InA)h(s) 

1 l' + 4"(8s lnA) s Fo(r, s)8T lnA(r, s)dr, 
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where Fo( r , s) = -[8s InA( r , s)]h(s) , and we get 

Ik(r, s) = 2~ eks [ -A-18r(A8sAI - 8sBd] 

= - 2~ekSA-18r(AI/28sInA)h'(s) 

__ 1 eks [!A-I/2(8 InA)(8 2InA) +A-1/28 82lnA 2k 2 r s r s 

+ ~A-I/2(8s InA)3] h(s) 
(4.38) 

- 2~ eks [~A -1/2(8; InA) + ~A -1/2( 8s In A)2] 

x [r Fo( r , s)8T InA( r , s) dr. 

Then, as in the proof of Proposition 4.5, 

\Pdr, s)1 = 11~ [: Rr,s(a, p)lk(a, P) dP dal 

:$ Co~ [: ekP[ih' (P)I + h(P)] 1~ [i8~ InAI + 1811 lnAi1 da 

+ 2~ 1[: ekPh(p)dP 1~ A-1/2(8118JInA)Rr ,s(a, p)dal 

:$ Co~ [: ekP[lh'(P)1 + h(P)]dP 

+ 2~ 1[: ekPh(p)A-1/2(r, p)8JlnA(r, P)Rr,s(r, p)dPI 

+ 2~ 1[: ekP h(p)A-1/2(r*, p)8JlnA(r*, P)Rr,s(r*, p)dPI 

+ 2~ 1[: ekPh(p) 1~ A-I/2(8JInA)(811Rr,s)dadPI 

+ 2~ 1[: ekPh(p) 1~ ~A-I/2(811lnA)(8JlnA)Rr,sdadPI 

:$ Co~ [: ekP[lh'(P)1 + h(P)] dP, 

where Co is independent of k and h(·). 
By (4.36) we have a similar estimate for Qdr, s), so we get (4.22). 
Furthermore, integrating (4.27) with respect to s we obtain 
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Applying integration by parts we get 

Then it follows that 

18rPk(r, s) + ~ 1: 8~ InA(r, ~)8rPdr, ~) d~1 

~ Ck-1eks+ (1 + 1:+ 18~8r InA(r, ~)I d~) ~ Ck-1eks+ , 

and, again by the Bellman inequality, 

18rPk(r, s)1 ~ Ck-1eks+ , 

which is part of (4.23). 
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Similarly, we can prove the rest of (4.23), and we complete the proof. 
From the proof of Proposition 4.3 we can obtain the following expressions. 

Proposition 4.6. For (r, s) E Lo, we have 

1 Pk(r, s) = 2kA-1/2(r, s)h(s)ekS 

or [ 1 ] (4.39) .),. -8,,8s lnA(a, s) - "2 8"lnA(a, s)8s lnA(a, s) da 

+ P~(r, s), 

with IP~I ~ CoJ:- ekPh(fJ)dfJ, and 

Qk - APk = -k1 eks A -1/2(8sA)h(s) -l_s ekP (8pA)A -1/2h(fJ) d fJ 
(4.40) 

+ ~fc(h) + ~k(h), 
with 

where Co is independent of k and h ( . ) . 
Proof. By (4.38) we easily get 

Ipk -1: 1~ -2~ekPA-18"[AI/28plnA]hl(fJ)Rr,s(a, fJ)dadfJl 

~ Co is ekP h(fJ) d fJ. 
k s-
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On the other hand, by (4.31) we calculate 

1: 1~ -2~ ekP A- 10a [A1/ 20p lnA]h'(p)Rr,s(o, P) do dP 

1 /,r = -2k ekSh(S) r* A-1(O, S)Oa[A1/2oslnA]Rr,s(o, s)do 

+ 2~ 1: 1~ h(p)op{ekPA-loa[Al/2oplnA]Rr,s(o, PHdodP 

= -2~A-l/2(r, s)ekSh(s) 1~ [Oaos lnA(o, s) 

+~OalnA(O' s)8s lnA(O, S)] do 

+ 2~ 1: 1~ h(p)op{ekP A- 10a [A1/ 20p lnA]Rr,s(o, PH dodp. 

We see that the last term on the right-hand side of the above equality is bounded 
by Co Jss_ ekP h(P) d P . Combining the above we get (4.39). 

(4.40) follows from (4.15) and (4.36) since 

1 is I s- ekP(AOpA1-opBJ)dP 

lis = I s- ekP {-(opA)Al + op[(opA)Ao]) dP 

1 ks is kP 1 is kP = Ie (osA)Ao - s- e (opA)AodP - I s- e (opA)Al dP· 

Hence we complete the proof. 
The discussion about P_k(r, s) and Q-k(r, s) is quite similar. Our purpose 

is to construct P -k and Q-k to be defined for s :::; s+ , while they are identically 
zero for s ~ s+ . It is sufficient to propose the following initial values: 

P_k(r, s) = 0 for s = s+ , r ~ r* , 
P_k(r, s) = 0 for r = r* , s :::; s+. 

Then we proceed as before and prove the existence of P -k and Q-k defined 
on 1:0 which admits Proposition 4.4. In particular, we have the following result 
similar to Proposition 4.6. 
Proposition 4.7. For (r, s) E 1:0, we have 

1 P_k(r, s) = - 2k A- 1/2(r, s)h(s)e-ks 

(4.41) .1~ [-OaOs lnA(O, s) - ~OalnA(o, s)8slnA(o, S)] do 

+P~k(r,s), 

with IP~kl:::; Co Jss+ e-kPh(P)dP, and 

(4.42) 

s+ 

Q-k -AP_k = - ke-kSA-l/2(OsA)h(S) + 1 e-kP (OpA)A- 1/2h(P)dP 

+ ~~k(h) + ~:k(h), 
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with 

IA~k(h)1 ~ ~o l s
+ e-kPh(p)dP, 

where Co is independent of k and h(·). 

From the procedure above we conclude that for each hE Cci(s) we can con-
struct two pairs of entropy-entropy flux ('1±k, q±k) in the form of ( 4.12) which 
satisfy (4.11) in l:o. For distinction and when it is convenient we sometimes 
may use one of the following notations: 

'1±k(U, v) = '1±k(r, s) = '1±k(h(s)) = '1±k(r, s ;h(s)) = '1±k(U, v; h(s)) , 
q±k(U, v) = q±k(r, s) = q±k(h(s)) = q±k(r, s; h(s)) = q±k(U, v; h(s)) , 

Ai(r, s) = Ai(h(s)) , Bi(r, s) = Bi(h(s)) , i = 0, 1, 
P±k(r, s) = P±k(h(s)) , Q±k(r, s) = Q±k(h(s)). 

We denote by Es all those entropy-entropy flux constructed as above, namely, 

(4.43) Es = (('1±k(h(s)) , q±k(h(s))); h(s) E Cci(s)}. 

From Propositions 4.2-4.4 and (4.20), we can obtain the following results. 

Theorem 4.8. For each ('1±dh) , q±k(h)) E Es, there exists C > 0, depending 
on k, h, and a, such that 

18~8::''1±k(U, v; h)1 ~ C, 18~8::,q±k(U, v; h)1 ~ C, 
'v'(u, v) EI-I(l:o), 0~I+m~2, l,m=O, 1,2, 

where I-I is the inverse mapping of I. 

Hence, as a consequence of Theorem 4.1, we have 

Theorem 4.9. For each ('1±k(h) , q±k(h)) E Es, 

(4.44) 
8t '1±k(Ue(X, t), ve(x, t)) + 8x q±k(Ue(X, t), VB(X, t)) 

is relatively compact in Hi;;~ (R x (0, 00)). 

We now begin the construction of another type of Lax's entropy, namely, we 
consider entropy-entropy flux pairs of the form 

( 4.45) 
'if±k(r, s) = e±kr(ao + al (±k)-l) + W±k, 

q±k(r, s) = e±kr(bo + bl(±k)-l) + Z±k, 

where k = 2, 3, 4, ... , and a j, b j, W±k, and Z±k are smooth functions of 
rand s defined by the following recursive compatibility conditions: 

bo = -Aao, 
j = 0,1, 

which are equivalent to 

bo = -Aao, 
2A8sal + (8sA)al + 8s(Aarao + 8rbo) = 0, 

bl = -Aal - (A8rao + 8rbo). 
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Given any h E C{j (r) , where 

C{j(r) = {h(r); h(r) ~ 0, h E C8"(R), supp{h} c (so, +oo)}, 

we suppose that supp{h} c [r- , r+], r- > so. We define 

ao(r, s) = A- I / 2 (r, s)h(r), bo(r, s) = -A I / 2 (r, s)h(r). 

Then al and bl are given by 
1 al (r, s) = - 2A -1/2(r, s)[Go(r, s) - Go(r, r)] 

1 1/2 l r d - "4 A- (r, s) s Go(r, ~)8.; InA(r,~) ~, 

1 bl(r, s) = - 2AI/2(r, s)[Go(r, s) + Go(r, r)] 

1 1/2 l r +"4A (r, s) s Go(r, ~)8.; InA(r, ~) d~ , 

where Go(r, s) = A-I/2(A8rao + 8rbo) = -(8r InA)h(r) . 
Moreover, W±k(r, s) and Z±k(r, s) can be defined by solving the linear 

hyperbolic equations 

8sZ±k - A8s W±k = 0, 
8rZ±k + A8rW±k = (±k)-l e±kr(A8ral + 8rbJ). 

We now denote by Er all these entropy-entropy flux pairs constructed for 
any hE C{j(r), that is, 

Er = ((rj±k(h(r)), 7i±k(h(r))); h(r) E C{j(r)}. 

We still have the results for Er parallel to that for Es , but we omit the details. 

5. REDUCTION OF YOUNG MEASURES 

In this section we will use the notation 

where rand s are the Riemann invariants defined by (1.3). The first result 
in the following theorem can be derived from Corollary 2.2 and the Div-Curl 
lemma. 

Theorem 5.1. There exist a subsequence {ren , sen} of {re, se} and a family 
of positive measures Jix, t E M(R2) such that, for any entropy-entropy flux 
(l1~k ' q~k) E Es U Er , i = 1, 2, we have 

(5.1) (l1~ql- q~111, Jix,t) = (11~, Jix,t)(qlJix,t) - (q~, Jix,t)(l1f, Jix,t), 
for (x,t)ERx(O,oo) and l,m=±2,±3,±4, ... , and 

l1~k(rn, sen) -' (l1~k' Jix,t) in LI~(R x (0, 00)), 

q~k(ren, sen) -' (q~k' Jix,t) in ~~c(R x (0, 00)), 
(5.2) 

for k = 1 , 2, 3, ... and i = 1 , 2. 
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Proof. By Theorem 3.2 we get that {re, se} is bounded in L~c (R x R+). There-
fore, applying Corollary 2.2, we obtain that there exist a subsequence {ren, sen} 
of {re, se} and a family of positive measures f..lx, t E M(R2) such that 

(5.3) f(ren(x, t), sen(x, t)) ~ (f(r, s), f..lx,t) in L1~c(R x R+), 
whenever f E C(R2) satisfies 

f(r, s) -+ 0 as r2 +S2 -+ 00. 
v'r2 + S2 

This implies (5.2). Furthermore, it follows from Theorem 4.8 and Theorem 
4.13 that 

17~(ren , sen)ql(ren , sen) _ q~(ren, sen)171(ren , sen) 

~ (17~ql- q~171, f..lx,t) in Lloc(R x R+), I, m = ±2, ±3, ±4, .... 
On the other hand, by the Div-Curl lemma we get 

17~(ren , sen)ql(ren , sen) _ q~(ren , sen)171(ren, sen) 

-+ (17~, f..lx,t)(ql, f..lx,t) - (q~, f..lx,t)(171 , f..lx,t) , 
in the sense of distributions, I, m = ±2, ±3, ±4, . .. . Combining the above 
we get (5.1) and complete the proof. 
Remark 5.1. In the proof of Theorem 5.1 we need only (3.12), rather than (3.5). 

Our purpose is to prove that each positive measure f..lx, t is indeed a Dirac 
measure (we will drop the index {x, t} for simplicity). The ideas of the proof 
are as follows: 

1. We prove that, in the s-axis direction, the following case, denoted by (S 1), 
cannot happen. There exist SI, S2, s3 , 1o, 0 < 10 < !(rO - sO), -00 < sl < 
S' + 310 < S2 < S2 + 310 < s3 ~ SO , such that for any 0 < 1 ~ 10 

f..l{ (r , s) ; s' - 1 < s < S' + I, -00 < r < oo} i= 0, 
f..l{ (r, s) ; S2 -I < s < S2 + I, -00 < r < oo} i= 0, 
f..l{ (r , s) ; s3 - 1 < s < S3 + I, -00 < r < oo} i= O. 

Since the support of f..l is a subset of Lo , we assume that 
(5.4) f..l{(r,s);s>s3,-00<r<00}=O, 
i.e., we take S3 maximal. 

2. Since (S 1) is impossible, the support of f..l must lie on two lines, that is, 
there exist s- and s+ such that 
(5.5) supp{f..l} c {(r, s); s = s-} U {(r, s); s = s+}. 
Then we use DiPerna's argument to deduce that the support of f..l lies only on 
one line, that is, there is an SO such that 
(5.6) supp{f..l}c{(r,s);s=so}. 

3. We carry out a similar argument in the r-axis direction and prove that the 
support of f..l lies only on one line, i.e., there is an rO such that 
(5.7) supp{f..l} C {(r, s); r = rO}. 

Combining (5.6) and (5.7) we get that f..l is a Dirac measure with support at 
(rO, SO) . 
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Theorem 5.2. (Sl) is impossible. 
Proof. If, conversely, (Sl) holds, we would have a contradiction. To prove this, 
we argue in several steps. Our proof is motivated in part by the argument of 
Serre [1986] (cf. also Shearer [1989]). 

Step 1. We choose hj E ct(s), i = 1, 2, 3, as follows: 

hi :5 1, supp{hd C [Sl -/0, Sl + 10], 
h2 :5 1, supp{h2}:= [s- , s+] C [s2 -/0, s2 + 10], 
h~ :5 1, SUPP{h3} C [S3 -/0, S3 + 10], 

h3(S) = 1 for s E [S3 - Fo, S3 + Fo]. 
We observe that h j can be obtained by means of mollification. 

By §4 we can construct the corresponding entropy-entropy flux pairs: 

i=I,2,3, k=2,3,4, .... 

We now give some basic results that we shall use later. First, we have 

(5.8) 

lim (11k (h3) , Jl) - 1 
k--+oo (eks Ao(h3) , Jl) - , 

(<5 )1/2 < lim (qk(h3), Jl) < (a'(0))1/2. 
o - k--+oo (eks Ao(h3) , Jl) -

In fact, we recall from Propositions 4.2 and 4.3 that 

with 

'1k(h3) = eks () .. -1/2 + O(k-I))h3 + Pk(h3), 

qk(h3) = ekS (A.I/2 + O(k- I ))h3 + Qk(h3), 

IPk(h3)1 :5 COk-1 [:-/0 ek~[lh3(e;)1 + h3(e;)] de;, 

IQk(h3)1 :5 COk-1 [:-/0 ekC:[lh3(e;)1 + h3(e;)] de;. 

We can choose h3 such that h3(s) ~ 0 for s3 -/0 :5 s :5 S3. We then have 

IPk(h3)1 :5 Ck- Ieksh3(s), IQk(h3)1:5 Ck- Ieksh3(s) if s :5 S3 + !/o, 

where C is independent of k and h. Thus (5.8h follows from the fact that 
Jl is zero on the region {(r, s); s > S3}. (5.8h is also true since (c5o)I/2 :5 A. :5 
(a'(0))1/2. 

We also have 

(5.9) 

This holds since the supports of '1k(h3) and qk(h3) do not intersect the supports 
of '1-k(hd and q-k(hd, due to our construction in §4. 

Step 2. (i) Suppose that there is a subsequence of {k}, also denoted by {k}, 
such that 

(5.10) 
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Then we have 

Indeed, from (5.9) we have 
(q-k(hd, f.l) (qk(h3 ) , f.l) 
('1-k(hd, f.l) = ('1k(h3) , f.l) , 

(5.12) 

where we have used the fact that ('1k(h3 ) , f.l) =f. 0 if k is large enough, due to 
(5.8)1. 

On the other hand, from 

0= ('1k(h3)q-k(h2) - qk(h3)11-k(h2) , f.l) 
= (11k(h3 ) , f.l)(q-k(h2) , f.l) - (qk(h3 ) , f.l)('1-k(h2) , f.l) 

and 

0= (11-k(hdqdh2) - q-k(h l )11k(h2) , f.l) 
= ('1-k(hd, f.l)(qk(h2) , f.l) - (q-k(hd, f.l)('1dh2) , f.l), 

we get 

(q-k(h2) , f.l) = ~~:~~:~: ~~ ('1-k(h2) , f.l) , 

( (h) ) (q-k(hd, f.l) ( (h) ) 
qk 2, f.l = ('1-k(hd, f.l) 11k 2, f.l . 

Substituting these into 

('1k(h2)q-dh2) - qk(h2)'1-k(h2) , f.l) 
= (11k(h2) , f.l}(q-k(h2) , f.l) - (qk(h2) , f.l)('1-dh2) , f.l) 

and using (5.12) we get (5.11). 
(ii) Suppose that there is a subsequence of {k}, also denoted by {k}, such 

that 
(q-k(hd, f.l) =f. 0 Vk. 

By the same argument we still have (5.11). 
(iii) If 

we then have 

(5.13) (11k(hdq-k(h l ) - qk(hd11-k(hd, f.l) = 0 Vk. 
Step 3. If (5.11) holds, we would have 

\ e-kS h2(S)).,-1/21: ekP (8p).,)).,-1/2h2(P) dP, f.l) 

(5.14) + (e kSh2(s)).,-1/21s
+ e-kP (8p).,)).,-1/2h2(P)dP, f.l) 

::; C [~(s+ - s-) + (s+ - S-)2] f.l{(r, s); s- < s < s+}, 

where C > 0 is independent of k. (In the following we use the same C to 
denote various constants which are independent of k.) 
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In fact, we calculate that 

where 

rJk(h2)q-k(h2) - qdh2)rJ-dh2) 
= [eks (Ao(h2) + A, (h2)k-') + Pdh2)] 

. [e- kS (Bo(h2) + BI (h2)( -k)-I) + Q-k(h2)] 
- [e kS (Bo(h2) + BI (h2)k- l ) + Qk(h2)] 
• [e- kS (Ao(h2) + A, (h2)( -k)-I) + P_k(h2)] 

= h +h+h +14, 

2 
II = 7((AI BO - AoBd , 

h = e-kS(BoPk - AoQd + ekS(AoQ_k - BOP-k) ' 

h = kekS(A,Q_k - BIP-k) + ke-kS(A , Qk - B,Pk), 

14 = PkQ-k - QkP-k. 

First, by (4.16) and Propositions 4.6 and 4.7, we see that 

2 1/2 2 2 I, = 7(A- h2(S)(AA, - Bd = 7(h2(s)8s1nA, 

h = e-kSh2(S)A-I/2(APk - Qk) + ekSh2(s)A-I/2(Q_k - AP_k) 

= - ~h~(S)8s InA + e-kSh2(S)A-,/21: ekP(8pA)A-I/2h2(/J) dP 

s+ 
+ ekSh2(S)A-'/21 e-kP(8pA)A-I/2h2(P) dP + Ii, 

where 

Ii = - e-kSh2(S)A-l/2[~k(h2) +~~(h2)] 

+ ekSh2(s)A-I/2[~~k(h2) + ~=-k(h2)]. 
Clearly, we have 

IIil:S { ~,(S+ - s-) + C(s+ - s-?, S E (s- , s+), 
otherwise. 

We now deal with h. By (4.40) and (4.42), we get 

h = n +I}, 

where 

n = kekS(AA , - BdP-k + ke-kS(AA I - BdPk , 

I} = kekSA, [ls+ e-kP(8pA)A-l/2h2(P)dP +~~k +~=-k 1 
+ke-kSA I [-1: ekP(8pA)A-'/2h2(P)dP+~k+~~]. 
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We have from (439) and (4.41) that 

Inl:$ { ~,(s+ -r), s E (s- , s+), 
otherwise. 

Furthermore, from Proposition 4-2 we have 

IIfl :$ { ~,(s+ - s-), S E (s- , s+) , 
otherwise. 

Finally, by (4.40) and (4.42) we get 
14 = Il + /1, 

where 

11 = - kA-I/2(8sA)h2(S)[e-kS Pk + eks P-k], 

11 = Pk [ls
+ e-kP(8pA)A-I/2h2(P)dP +d~k +d=-k] 

-P-k [-1: ekP(8pA)A-I/2h2(P)dP+dk+d~]. 
Clearly, by (4.39) and (4.41) we get 

1111 < { f(s+ -s-), s E (s-, s+), 
4 - 0, otherwise, 

1111 :$ { ~,(s+ - s-) + C(s+ - r)2, 
otherwise. 

Combining the above we get (5.14). 
Step 4. We now prove that (5.14) leads to a contradiction. 

Given any integer N, we write 

2 2 UN [2 n-l 2 n] [s -/0, s + 10] = s + ~/o, s + N10 
n=1 

We then choose h2 such that 

_ + [2 n-2 2 n+l ] supp{h2 } = [s ,s ]:= s + ~/o, s + ~/o , 

h . [2 n-l l 2 nl] 2(S) = 1 If s E s + ~ 0, s + NO, n = 1, 2, ... , N - 1. 

403 

By the previous argument (5.14) holds for each h2 • Note that both terms on 
the right-hand side of (5.14) are positive. Given any M> 0, we estimate that 

\e-kSh2(S)A-I/21: ekP(8pA)A-I/2h2(P)dP, J.l) 

2: { e-ksA-I/21s ekP(8pA)A-I/2dPdJ.l 
J{s2+(n-I)/o/N992+n1o/N, Irl~M} s2+(n-I)/o/N 

> e-k1o/Nco { (s - s2 _ n - 1/0) dJ.l 
- J{s2+(n-I)/o/N992+nlo/N,lrl~M} N ' 
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where 
Co = (0-'(0))-1/2 max IOsAI. 

(r, s)El:o , Irl::;M, Is-s2 1 ::;10 

Note that Co > 0 because of (A3). 
Similarly, we have 

(ekSh2(s)A-I/21s+ e-kP(opA)A-I/2h2(P)dP, fJ,) 

> e-k1oJN Co { (s2 - S + !!:....Io) dfJ,. 
- i{s2+(n-I)lo/N::;S::;S2+nlo/N, Irl::;M} N 

Combining the above we see that (5.14) implies 

o :S ~e-kloJN cofJ, {(r, s); S2 + n -; 1/0 :S s :S S2 + ~/o, Irl :S M} 

[ 10 ( 10 ) 2] { . 2 n - 2 2 n + 1 } :S C kN + N fJ, (r, s), s + -V-1o < s < s + -V-1o , 

n=1,2, ... ,N-1. 

We divide this by 10/ N and take the summation which deduces that 

coe-k1o /N fJ, {(r, s); S2 :s s :s S2 + 10 - ~, Irl :S M} 

:S c (k + ~ ) 3fJ, {(r, s); S2 - ~ :S s :S S2 + lo}. 

We first let N -+ 00 and then let k -+ 00 which gives 

fJ,{(r, s); S2 :S s < S2 + 10, Irl :S M} = O. 

With the same method we also get 

fJ,{(r, s); S2 -10 < s :S S2, Irl :S M} = O. 

The above contradicts the fact that fJ,{ (r , s); Is - s21 < lo} =1= 0, since M is 
arbitrary. 

If (5.13) holds, we also get a contradiction by a similar argument and hence 
we complete the proof. 

The idea in the proof of the following result is due to DiPerna [1983a] (cf. 
Tartar [1983]). 

Theorem 5.3. The following case, denoted by (S2), is impossible. There are s- < 
s+ such that 

supp{fJ,} c {(r, s); s = s+} U {(r, s); s = s-}, 
fJ,{(r, s); s = s+} =1= 0, fJ,{(r, s); s = s-} =1= O. 

(Indeed, we can assume that fJ, has a support on four points.) 

Proof. If, conversely, (S2) holds, we would have a contradiction. To prove it, 
we again argue in several steps. 
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Step 1. We choose ho E ct(s) such that 

ho(s) = 1 for s E [s- , s+], supp{ho} = [s- - 150 , s+ + 150], 
ho(s) > 0 in (s- - 150 , s-), ho(s) < 0 in (s+ , s+ + 150), 

where 150 > 0 is smalL 
By §4, we have 

(11±k(r, s; ho), q±k(r, s; ho)) E Es, k = 1,2,3, .... 

We then define two sequences of measures Vk, V_k E M(R2) as follows: 

(ekS ho(s)J..-1/2/,/-l) 2 
(I, vd = (eksho(s)J..-1/2, /-l) 'VIE Co(R), 

(rkSho(s)J..-1/2/, /-l) 2 
(I, V-k) = (e-kshO(s)J..-I/2, /-l) 'VIE Co(R). 

We notice from (5.3) that, if IE C(R2) , (f, Vk) and (I, V_k) are well defined 
and bounded. Since IIv±k1l = 1, there is a subsequence of {k}, also denoted 
by {k}, such that 

Vk": V+ E M(R2) as k ~ 00, 

V-k ..: v_ E M(R2) as k ~ 00. 

Clearly, V+, v_ =I- 0, and 

supp{v+} c {(r, s); s = s+}, supp{V_} C {(r, s); s = s-}. 

Consequently, by Propositions 4.3 and 4.4 we have 

lim (11k (ho) , /-l} = 1, 
k-+oo (ekShO(s)J..-I/2, /-l) 

. (qk(ho), /-l} } 
hm (kh ()J..-I/2 ) =(J..,v+, k-+oo e s 0 s , /-l 
lim (11-k(ho) , /-l) = 1, 

k-+oo (e-ksho(s)J..-1/2, /-l) 

r (q-k(ho) , /-l} (J..) 
k~~ (e-kshO(s)J..-I/2, /-l) = , v_ . 

Step 2. We want to prove that 

(5.15) (qm(h) - J..11m(h), v±} = (qm(h), /-l} - (J.., v±}(l1m(h), /-l}, 

where (11m(h), qm(h)) E Es , m = 1, 2, 3, ... , h E ct(s). Moreover, we 
have 

( 5.16) 

Consequently, we get 

(5.17) (qm(h) - J..l1m(h), v+} = (qm(h) - J..l1m(h), v_}. 

In fact, since 

(l1±k(ho)qm(h) - q±dho)l1m(h), /-l} 
= (l1±k(ho), /-l}(qm(h), /-l} - (q±k(ho), /-l}(l1m(h), /-l}, 
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we divide the above by (ekShO(S)).-1/2, J.l) and (e- ks ho(s)).-1/2, J.l) respectively 
and pass to the limit as k --+ 00, which gives (5.15). 

To prove (5.16), we notice that 
('lk(ho)q-k(ho) - qk(ho)'l-k(ho) , J.l) 

= ('lk(ho) , J.l)(q-k(ho) , J.l) - (qk(ho) , J.l)('l-k(ho) , J.l). 
( 5.18) 

Since 
l'lk(ho)q-k(ho) - qdho)'l-dho) I = O(k- 1), 

we divide (5.18) by (eks ho).-1/2, J.l)(e-ks ho).-1/2, J.l) and pass to the limit as 
k --+ 00, which gives (5.16). 
Step 3. We claim that (5.17) leads to a contradiction. In fact, let h(s+) = 1, 
O:s h(s) :S 1, and supp{h} = [s+ -I, s+ +/], where s+ -s- > 1 > 0 is arbitrarily 
small. On the one hand, it follows from the construction of entropy-entropy 
flux pairs in §4 that 
( 5.19) 
On the other hand, by (4.15) and Proposition 4.7 we calculate that 

1 qm(h) - ).'lm(h) = -ems[B1 (h) - )'A1 (h)] + Qm(h) - ).Pm(h) 
m 

= -1~-1 emP (op).)).-1/2h(P) dP + L1~(h) + L1~(h). 
Therefore, from 

we get 

while for any M > 0 

(1~-1 emP (op).)).-1/2h(P)dP, v+) 

s+ 

~ c.l emPh(p)dpv+{(r, s); s = s+, Irl:S M}, 
s+-l 

where 
c. = (a'(0))-1/4 max los).l. 

(r, s)E~o, Irl<5.M, Is-s+l<5.s+-s-

Note by (A3) that c. > O. We then get that v+{(r, s); s = s+ , Irl :S M} = 0, 
which is impossible since M is arbitrary. Hence we complete the proof. 

Having proved that the Young measures J.l x, t are Dirac measures, we can 
easily obtain the existence, i.e., Theorem 1.1. A brief argument is as follows. 

We write J.lx, t = Jr(x, t) ,s(x, t) = Ju(x, t), v(x, t) • Then 

uen(x, t) ~ u(x, t) 
ven(x, t) ~ v(x, t) 
a(uen(x, t)) ~ a(u(x, t)) 

in L~c(R x (0, (0)), 
in L[oc(R x (0, (0)), 
in L[oc(R x (0, (0)). 
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Moreover, by the definition of Leon and Corollary 2.2, we have that for each 
(1'/, q) E Leon 

I'/(uEn(x, t), vBn(x, t)) ~ I'/(U(X, t), V(X, t)) in ~~e(R x (0, 00)), 
q(uEn(x, t), vEn(x, t)) ~ q(u(x, t), v(x, t)) in ~~e(R x (0, 00)). 

Combining the above we get that {u(x, t), v(x, tn is an admissible solution 
of the Cauchy problem (1.1), (1.2), as defined in Definition 4.2. 

6. LAX-FRIEDRICHS SCHEME 

In this section we consider the convergence of the approximate solutions 
generated by the Lax-Friedrichs scheme. Let Ax and At be increments in the x 
and t axes respectively. We denote Xk = kAx, k = 0, ±1, ±2, ±3, ... , and 
tn = nAt, n = 0, 1,2, .... The approximate values {U(Xb tn), V(Xb tnn 
are denoted by {un, k , Vn, d. Then the Lax-Friedrichs scheme takes the form 

Un+l,k - !(Un,k+l + un,k-d _ Vn,k+l - Vn,k-l = ° 
At 2Ax' 

Vn+l,k - !(Vn,k+l + vn,k-d _ a(un,k+d - a(un,k-d = 0. 
At 2Ax 

(6.1) 

(6.1) can be rewritten in the form 

(6.2) Un+l,k = !(Un,k+l + Un,k-l) + !K(Vn,k+l - vn,k-d, 

Vn+l,k = !(Vn,k+l + vn,k-d + !K[a(un,k+d - a(un,k-d], 

where K = t is the ratio of mesh lengths, which remains constant. We require 
that 

(6.3) 

We now describe the procedure of the construction of the approximating 
sequence {ul(x, t), vl(x, tn, where we write 1 = Ax. We first define 

lk := {(x, t); nAt:::; t < (n + I)At, 
(k - 1)1 < x < (k + 1)1, n + k = even}, 

(6.4) 

and 

(6.5) V6,k = v6(kl) , 

where uo(x) and vo(x) are the initial data. 
We first define {ul(x, t), vl(x, tn on each 12, k=O, ±2, ±4, ... , asthe 

solution of Riemann problem (1.1) with the initial data given by 

I( )_{Ub,k+l' x>kl, I( )_{V6,k+l' x>kl, 
Uo x - I Vo X - I 

UO,k-l' X < kl, VO,k-l' X < kl. 

lt is well known (cf. Di Perna [1983a], for example) that the values at in-
tersecting points for the Lax-Friedrichs scheme can be expressed as the mean 
values of the corresponding Riemann solutions, namely, 

1 l(k+l)1 1 l(k+l)1 
Ul,k=21 ul(x,At-O)dx, Vl,k=21 vl(x,At-O)dx, 

(k-l)1 (k-l)1 
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where 

We can proceed in this way, since (6.3) holds for each step. Thus we can 
construct {Ul (X, t), Vi (X, tn for all x E R, t> 0, such that 

1 l(k+I)' 
Un,k = 21 ul(x, n!l.t - 0) dx, 

(k-I)I 
1 l(k+I)' 

vn, k = 21 vi (x, nilt - 0) dx , 
(k-I)I 

(6.6) 

where n = 1 , 2, ... , k = 0, ± 1 , ±2, ... , n + k = odd. 
From the properties of fundamental waves we know that 1:0 = {( r , s) ; r 2: 

rO, s :5 sO} is an invariant region of Riemann solutions. Combining this with 
the fact that [-1(1:0) is a convex set in the (u, v) plane we get the following 
result. 

Theorem 6.1. Assume the hypotheses of Theorem 1.2. Then the approximate 
sequence {ul (x, t), vi (x, tn satisfies 

(rl(x, t), sl(x, t)) C 1:0 V(x, t) E R X R+ , 

where 

The following basic results are parallel to Theorem 3.2 and Corollary 3.3. 
The technique we use is based on the argument of Ding, Chen, and Luo [1985a, 
Theorem 5] and DiPerna [1983a]. We first define some notation as follows: 

wl(x, t):= {ul(x, t), vl(x, tn, wj:= {un,j, Vn,j}, 

w~ := {ul(x, n!l.t - 0), vl(x, n!l.t - On, 
[f] := f( Wi (x(t) + 0, t)) - f( Wi (x(t) - 0, t)), 

where S := (t, x(t)) denotes a shock wave in wi (x, t) , so that [f] describes 
the jump of f across S from the left side to the right side. 

We will use the following specific entropy-entropy flux generated by (4.4): 

".(u, v) = ~v2 + fou a(T)dT - ~(vf - fou a(T)dT 

- (a(u) , v) . (u - u, v - v), 

q.(u, v) = -va(u) + va(u) + (a(u) , v) . (v - v, a(u) - a(u)). 

We observe that 

".(u, v) :5 max{l, a'(O)}(lu - ul2 + Iv - V12) , 

and hence that L ".(uo(x) , vo(x)) dx < 00. 
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Theorem 6.2. Assume the hypotheses of Theorem 1.2. Then there is a C > 0, 
independent of Ax and !l.t, such that for any T > 0, say T = M!J..t , 

(6.7) 
l

(J+I)1 L (w~ - wj)2dx S; C, 
j,n (J-I)I 

foT L {P[l1.] - [q.]} dt S; C, 

lS;nS;M-l, 

where the summation in the last inequality is taken over all shock waves S at 
fixed time t, and P = dx(t)/dt is the speed of the discontinuity (which is 
constant in each block Ik since, within Ik, {ul(x, t), vl(x, t)} is the exact 
Riemann solution). 
Proof. We calculate that for any rp E Co(R X R+) , 

(6.8) jr { (11. (wl)rpt + q.(wl)rpx) dx dt = M.(rp) + L.(rp) + 1:.(rp) , 
1095.T 

where 

M.(rp) = J rp(x, T)l1.(W I (X, T)) dx - J rp(x, O)l1.(WI (X, 0)) dx, 

l
(J+I)1 

L.(rp) = L [l1.(W~) - 11. (wj)]rp(x , n!l.t) dx, 1 S; n S; M - 1, 
j,n (J-I)I 

1:.(rp) = foT L {P[l1.] - [q.]}rp(x(t) , t) dt. 

We let rp = 1 , and obtain 
{T l(J+I)1 

10 L {P[l1.] - [q*]} dt + L [l1*(W~) - 11. (wj)] dx 
o j ,n (J-I)I 

(6.9) S; - J 11.(WI (X, T)) dx + J l1*(WI (X, 0)) dx 

S; J l1*(WI (x, 0)) dx S; C J 11.(Uo(X) , vo(x)) dx. 

Furthermore, we notice (cf. Smoller [1983]) that P[l1.] - [q.] ~ 0, since, in 
each block I k, {ul (x, t), vi (x, t)} is exactly the Riemann solution. On the 
other hand,since 

<!V211.(U, V)<!T = (<!d2 + O"(U)(<!2)2 ~ min{l, oo}I<!12 
for any <! = (<!I , <!2) E R2, we have, by the Taylor expansion and (6.6), 

l
(J+I)1 L [l1*(W~) - P1.(wj)] dx 

j,n (J-I)I 

l
(J+I)1 {I 

= L dx 10 (1 - e)(w~ - wj) 
j,n (J-I)I 0 

X V 2P1*(wj + e(w~ - wj))(w~ - Wj)T de 

l
(J+I)1 

~ min{l, oo} L Iw~ - wjl2dx. 
. . (J-I)I J,n 
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Therefore, (6.9) results in (6.7), and we complete the proof. 

Corollary 6.3. There exists C > 0, independent of I , such that for any T > 0 

(6.10) loT L lUI (x , t) - ul2 dx dt ::; CT, loT L Ivl(x, t) - vp dx dt ::; CT. 

Proof. We let rp = t - T, and then (6.8) becomes 

loT L 11.(UI(X, t), VI(X, t))dxdt 

::; T [/ 11.(WI(X, 0)) dx + L*(1) + ~.(1)] ::; 2T / 11.(WI (X, 0)) dx. 

This is (6.10), and we complete the proof. 

The following result enables us to apply the argument of §5 to prove that the 
resulting Young measures are indeed Dirac measures, and hence to get Theorem 
1.2. 

Theorem 6.4. Assume the hypotheses of Theorem 1.2. Then for each 
Es U E, (here we drop the index {±k} for simplicity) 

8t l1(UI(X, t), vl(X, t)) + 8xq(ul (x, t), vl(x, t)) 
(6.11) 

is relatively compact in ~~cl(R x (0, 00)). 
Proof. As in Theorem 6.2, we have that for any rp E Co(R X R+) 

Je r (l1(W /)rpt + q(w/)rpx) dx dt 
J09~T 

= M(rp) + LI (rp) + L 2(rp) + ~(rp), 
where 

(11, q) E 

M(rp) = / rp(x, T)l1(WI(X, T))dx- / rp(x, O)l1(WI (X, O))dx, 

j U+I)1 
LI(rp) = L rpUI, n~t) [l1(W~) -l1(WJ)] dx, 

j,n U-I)I 

j (i+I)1 
L2( rp) = L [11( w~) - 11( wJ)][rp(x , n~t) - rpU I , n~t)] dx , 

j,n (i-I)I 

~(rp) = loT L {P[l1] - [q]}rp(x(t) , t) dt. 

We notice that, since IV'2111 ::; c, 
I~V'211~TI ::; 2C1~12::; . 2C ~V'211.~T v~ E R2. 

mm{l, c5o} 
It follows from the argument of DiPerna [1983a] and Ding, Chen, and Luo 
[1985a] that 

IM(rp) + LI(rp) + ~(rp)1 ::; Cllrpllco' 
where C is independent of I . Hence we have 

M + LI + ~ is compact in »'i~1 ,qO(R x R+), 1 < qo < 2. 
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Furthermore, since 1 V '11 :::; C , 

IL2(qJ)1 :::; c/ao-I/21IqJllwl,p -+ 0 as /-+ 0, 
o 

! < ao < 1, p > 2/(1 - ao), which implies 

IIL211-I,QI -+ 0 as / -+ 0, 

Combining the above we get 

2 
1 < ql < -1--' +ao 

M + Ll + L2 + 1: is compact in WJ~I, ql (R X R+). 

On the other hand, since 1 '11 :::; C , 

8t '1(ul (x, t), vl(X, t)) + 8x q(ul (x, t), vl(x, t)) 
is bounded in W- 1 ,r(R x R+), 1 < r < 00. 

411 

Therefore, applying the Embedding Theorem of §2 we get (6.11) and complete 
the proof. 
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