Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Polynomial solutions to constant coefficient differential equations
HTML articles powered by AMS MathViewer

by S. Paul Smith PDF
Trans. Amer. Math. Soc. 329 (1992), 551-569 Request permission

Abstract:

Let ${D_1}, \ldots ,{D_r} \in \mathbb {C}[\partial /\partial {x_1}, \ldots ,\partial /\partial {x_n}]$ be constant coefficient differential operators with zero constant term. Let \[ S = \{ f \in \mathbb {C}[{x_1}, \ldots ,{x_n}]|{D_j}(f) = 0\;{\text {for all }}1 \leqslant j \leqslant r\} \] be the space of polynomial solutions to the system of simultaneous differential equations ${D_j}(f) = 0$. It is proved that $S$ is a module over $\mathcal {D}(V)$, the ring of differential operators on the affine scheme $V$ with coordinate ring $\mathbb {C}[\partial /\partial {x_1}, \ldots ,\partial /\partial {x_n}]/\left \langle {{D_1}, \ldots ,{D_r}} \right \rangle$. If $V$ is smooth and irreducible, then $S$ is a simple $\mathcal {D}(V)$-module, $S = 1.\mathcal {D}(V)$, and the generators for $\mathcal {D}(V)$ yield an algorithm for obtaining a basis for $S$. If $V$ is singular, then $S$ need not be simple. However, $S$ is still a simple $\mathcal {D}(V)$-module for certain curves $V$, and certain homogeneous spaces $V$, and this allows one to obtain a basis for $S$, through knowledge of $\mathcal {D}(V)$.
References
  • M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • J. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Differential operators on the cubic cone, Russian Math. Surveys 27 (1972), 169-174.
  • J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
  • N. Bourbaki, Algèbre homologique, Hermann, Paris, 1984.
  • John Rozier Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by Felix E. Browder. MR 747979, DOI 10.1017/CBO9781139086967
  • M. G. M. van Doorn and A. R. P. van den Essen, ${\scr D}_n$-modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 937–953. MR 935708, DOI 10.2977/prims/1195175865
  • A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
  • A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1–29. MR 404366
  • Thierry Levasseur, La dimension de Krull de $U(\textrm {sl}(3))$, J. Algebra 102 (1986), no. 1, 39–59 (French, with English summary). MR 853230, DOI 10.1016/0021-8693(86)90127-4
  • T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117. MR 988083, DOI 10.1090/memo/0412
  • T. Levasseur, S. P. Smith, and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal, and differential operators, J. Algebra 116 (1988), no. 2, 480–501. MR 953165, DOI 10.1016/0021-8693(88)90231-1
  • Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
  • Shigetake Matsuura, Factorization of differential operators and decomposition of solutions of homogeneous equations, Osaka Math. J. 15 (1963), 213–231. MR 166634
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
  • P. Perkins, Commutative subalgebras of the ring of differential operators on a curve, Pacific J. Math. 139 (1989), no. 2, 279–302. MR 1011214
  • S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), no. 2, 229–259. MR 922654, DOI 10.1112/plms/s3-56.2.229
  • S. P. Smith, Curves, differential operators and finite-dimensional algebras, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 158–176. MR 932054, DOI 10.1007/BFb0078525
  • Peter F. Stiller, Some applications of algebraic geometry to systems of partial differential equations and to approximation theory, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 239–250. MR 860419, DOI 10.1090/conm/058.1/860419
  • Peter F. Stiller, Some applications of algebraic geometry to systems of partial differential equations and to approximation theory, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 239–250. MR 860419, DOI 10.1090/conm/058.1/860419
  • F. Treves, Linear partial differential operators, Gordon and Breach, New York, 1970.
  • D. V. Widder, The heat equation, Pure and Applied Mathematics, Vol. 67, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0466967
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35E20, 35C05
  • Retrieve articles in all journals with MSC: 35E20, 35C05
Additional Information
  • © Copyright 1992 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 329 (1992), 551-569
  • MSC: Primary 35E20; Secondary 35C05
  • DOI: https://doi.org/10.1090/S0002-9947-1992-1013339-6
  • MathSciNet review: 1013339