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SPECTRAL MULTIPLICITY FOR Gln(R)

JONATHAN HUNTLEY

Abstract. We study the behavior of the cuspidal spectrum of T\^, where

%? is associated to Gln(i?) and V is cofinite but not compact. By a technique

that modifies the Lax-Phillips technique and uses ideas from wave equation

techniques, if r is the dimension of JP, Na{k) is the counting function for the

Laplacian attached to a Hilbert space Ha, Ma(X) is the multiplicity function,

and Ho is the space of cusp forms, we obtain the following results:

Theorem 1. There exists a space of functions //' , containing all cusp forms,

such that

N'{X) = Cr(Vol^)AÍ -fC^A^A^logA)"-').

Theorem 2.

M0(A) = 0(ALr1Asil(logA)'1-1).

1. Introduction and statement of results

The spectrum of the Laplacian on a manifold has been a topic of great interest

for many years and many interesting results have been proved. Many of the

results, however, require that the manifold be compact, as in general for a

noncompact manifold one has continuous spectrum, and among other things

one may not use certain analytic techniques, such as the min-max principle

or Dirichlet-Neumann bracketing, directly. In the case of a locally symmetric

space of finite volume, one may try to use the Selberg trace formula to obtain

information about the spectrum. This has, however, only been done successfully

for the rank one case and for a handful of other examples, since, due to the

complexity of the formula, certain technical difficulties arise and it is difficult

to obtain an estimate for the contribution from the Eisenstein series.

In this paper we are able to obtain for locally symmetric spaces associated to

Gl„(R) a bound on the multiplicity of a certain part of the discrete spectrum,

namely the cuspidal spectrum. We will define this below.

We now introduce some notation and state our main theorems.

Let %? denote the homogeneous space associated to PG1„(.R), let T be a

discrete subgroup of Gln(R), let X = T\%>, and assume that T is such that

X has finite invariant volume. We will generally also assume that X is not

compact, as stronger results than ours are known in greater generality in this

case.   Given a Hilbert space of functions on X, denoted by Ha,   let Na(X)
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denote the number of independent eigenfunctions of the Laplacian acting on

functions in Ha with eigenvalue less than or equal to X, and let Ma(X) denote

the number of such eigenfunctions with eigenvalue equal to X. Let H0 denote

the space of cuspidal eigenfunctions on X. Finally, let r denote the dimension

of X.

Theorem 1. There exists a space of functions Hx, containing all cusp forms,

such that
N'(X) = Cm(VolX)Xi + 0(X^X^(logX)n-x).

It is easy to see that r = ((n2) + n - 2)/2. Our main result is a corollary of
Theorem 1.

Theorem 2.
Mo(X) = 0(X^X^(logX)n~x).

We should now make some remarks. First, we would like to obtain the error

term O(X^), in analogy with the compact case. Our inability to obtain this

estimate is due mainly to the fact that we have to use a cheap estimate in

the cusp. This is responsible for the fraction of a power that we have in the

estimate that we would not like to have. It is likely that one power of log A can

be removed from our estimate by studying the boundary of certain partitions

that we put on X more carefully. Second, when n = 2 the theorems still hold

except that an extra power of the logarithm must be included. The extra power

is due to the fact that the surface area of the boundary of a fundamental domain
is finite when it is greater than 2 but grows logarithmically as a function of the
y variable when n = 2.

As we mentioned before this problem has a long history.

The first basic result is Weyl's law [We] for a bounded domain in Rn. He

studies the boundary value problem where functions are assumed to satisfy
either Dirichlet of Neumann boundary conditions. His law states that

A(A)~C„(VolA)A?.

This result was improved by Courant to give the error term

0(X^ log/l)

[Co, CH]. In Courant's theorem the implied constant depends on the surface

area of the boundary of the region.

Weyl proves his law by using Dirichlet-Neumann bracketing and the fact

that one may easily find the asymptotic value of N(X) for a cube. The main

idea in Courant's improvement of Weyl's law is that one can compute the error

term for cubes, and that the more cubes used the larger this cumulative error

is, but if one uses many cubes one may ignore the contribution to N(X) from

the boundary and create only a small error. The theorem is then proved by

balancing the two errors. Balancing one error in the interior of a region and

another near the boundary is standard technique for this kind of problem. Our
proof uses a similar balancing of errors in certain places.

When studying the Laplacian on a manifold direct analyses such as those de-

scribed above are generally not the best way to attack the problem. Instead, one

generally studies related functions. Let X denote, for a moment, a compact

manifold, so that the Laplacian A has pure point spectrum. Let 0, denote an
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orthonormal basis of square integrable eigenfunctions, listed so that the eigen-

values are nondecreasing. Let

e(x,y,X)= ^2 <t>i(x)(t>i(y)-
A,<A2

Clearly

N(X2) = / e(x, x, X)dx
Jx

with dV the volume element for the Riemannian manifold. e(x, y, X) is gen-

erally difficult to study and certain transforms of it are studied instead. For
example, one may study the Laplace transform of e(x, y, X). One then has the

fundamental solution to the heat equation v(x, y, t). We have

v(x,x,t)= Y^ e~Xit
A,<A2

and by studying the singularity of v when 7 approaches 0, one may, by use of

a Tauberian theorem, deduce Weyl's law for a noncompact manifold [MP].

This use of the heat equation does not yield an error term for Weyl's law.

Hörmander [Ho] considers the cosine transform of e(x, y, t) given by

f00 d
u(x, y, t) = /    cos Xt-p: e (x, y, X)dX.

Jo dX

This gives the fundamental solution of the wave equation. Studying the sin-

gularity of its trace (a distribution) at 7 = 0, Hörmander obtains Weyl's law

with the error term 0(X^"~X)/2), where n is the dimension of the manifold.

We should also mention a result due to Agmon [Ag] that we will use later. By

studying
r°°    i    d

Jo   W=-zTXe{x'y'X)dk

Agmon deduces e(x, y, t) = 0(Xn), uniformly in x and y as / tends to 0

(X tends to infinity). We will have more to say about this later.

When the manifold has a boundary the situation is more complicated. The

main result that we need is due to Seeley [Se], who obtains Hormander's result

for manifolds with boundary, for both the Dirichlet and Neumann problems.

We will use a slightly weaker result, also due to Seeley, that is valid for manifolds

whose boundary is piecewise smooth such that a cone can be inserted into the

manifold at any singularity of the boundary. One may show that the error

term is off by one power of log X. To do this, one uses the finite propagation

speed of the fundamental solution of the wave equation to allow one to "ignore"

the part of the manifold that is "near" the boundary. (Of course "near" must

be made precise.) This allows one to use free space estimates in the interior

of the manifold. Near the boundary, Agmon's estimate is used. One then

balances the estimates. To minimize the error, one lets near mean that one has

d(x, dX) > j. Actually Seeley uses a clever argument to show that if one is

greater than 4- from the boundary, then propagation of the wave equation

only hits the boundary at most once. This is how he obtains the same bound as

Hörmander and is why some restrictions on the boundary must be imposed, at

least for the Neumann problem.
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When the manifold is noncompact the situation is considerably more difficult.

In general, the presence of continuous spectrum will make Weyl's law false. The

Laplacian on Rn gives an obvious example. In the case of a finite volume,

noncompact manifold, things are more subtle. From now on we will restrict

ourselves to the case of X being a finite volume locally symmetric space of the

form Y\ßf, where %? is the homogeneous space attached to Gln(R) and T

is a discrete group. The techniques that are developed also work, however, for

general symmetric spaces.

In the classical case n = 2 corresponding to the upper half-plane, a tech-

nique for handling the continuous spectrum was developed by Lax and Phillips.

They created a modified space of functions on which the Laplacian A has pure

discrete spectrum. This space contains the space of cusp forms (to be described

later) and they obtain Weyl's law on this space. In particular, this gives an upper

bound for N0(X), the space of cusp forms. Their proof uses Dirichlet-Neumann

bracketing, the min-max principle, and some elementary approximations that

reduce one to the well-known Euclidean case. Actually Lax and Phillips also

interpret the part of the space that does not correspond to cusp forms, in terms

of the scattering matrix. We will not discuss this point further, however.

In general, lower bounds are difficult to obtain for N(X). For X associated

to a Lie group G, Donnelly [Do] studies the automorphic heat equation and

deduces that An (A) is less than or equal to the asymptotic estimate that one

expects from Weyl's law. He modifies the heat equation in the cusp to account

for the cuspidal condition. He also creates a space on which the Laplacian has

discrete spectrum, and uses Neumann bracketing in his argument. As he is not

trying to get a lower bound, he does not have to use Dirichlet bracketing, and,

as he uses the heat equation, he is not able to derive an error term.

We now describe the ideas used in our proof. We start by generalizing the

Lax-Phillips method to obtain a Hilbert space of functions on X, on which the
Laplacian has pure point spectrum. This space contains all cusp forms. We

may use Dirichlet-Neumann bracketing. In a compact region of the space, we

add boundary surfaces to which we give either Dirichlet or Neumann boundary

conditions. Within any one of the "cubes" created we use the fact that we are

in a symmetric space to obtain a uniform estimate in the interior of the cube

for e(x, y, t). Near the boundaries, we use Agmon's estimate and we account
for the change in the implied constant as the cubes vary. In the cusps of the

manifold, we simply use trivial upper and lower bounds. The lower bound is

0 and the upper bound is Weyl's law bound. (The latter bound is not actually

trivial. We call it trivial as we are making no attempt to get an error term.) The

upper bound may be obtained by Donnelly's method, or it may be obtained by a

modification of the Lax-Phillips method, using elementary approximations. At

this point we have an estimate with error term in the compact part of the man-

ifold and we have upper (lower) bounds for the Neumann (Dirichlet) problem

in the cusp. The larger the piece of the manifold in which we use our compact

estimates, the larger the total error for the compact part, but the smaller the
error arising from the cusp. Balancing these two errors proves the theorem. It.

should also be remarked that if one does not want to obtain an error term, one

can use this method to obtain an elementary proof of Donnelly's theorem by

modifying the classical techniques used by Lax and Phillips to create approx-

imations to the min-max problem in Euclidean space.  (Actually a few minor
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complications occur, but we do not need this for our results and will not remark

on it further.)
We now describe the contents of the rest of the paper. In §2 we introduce

additional notation and several more definitions. We also give some technical

results, relating to certain sets and operators in a coordinate system that we

have introduced. §3 contains the proof of the theorems. We first introduce

spaces of functions and show that the Laplacian has pure point spectrum. We

do this by studying certain Fourier expansions that are introduced. It should be

mentioned that Donnelly's technique could also be used here. We next prove the

needed theorems about the compact manifolds with boundary. A key problem

is that certain estimates must be kept uniform, or at least their behavior must be

controlled. We use the fact that we are working with a symmetric space to make

certain estimates uniform. For other estimates, related to Agmon's constant, we

control certain estimates involving compact regions that approach the cusp by

combining certain geometric considerations with explicit formulas. After this is

done we are able to prove our theorem. What remains to be done is to decide, in

terms of a parameter that has been introduced, where one should start to use the

cusp estimate and where one should use the compact contribution's estimate.

Balancing the errors proves the theorem. We close the paper by pointing out

that the arguments hold in more general situations, and by giving results for

some cases of interest.

2. Definitions, notation, and preliminary results

In this section, we introduce some notation that has not yet been introduced,

and make certain definitions that we will need. We also present certain known

results that will be needed later.

We will first introduce a coordinate system for %?'. It is well known that any

matrix g in the group Gl„(f?) may be decomposed as g = nak , where

(2.1a) a =

}'\ yn-\

y\ yn-2

,Vl
y¡>o,

(2.1b) n =

I    xXy2

1
Xx,n

Xn — 1,«

1

and k is orthogonal. This is generally known as the Iwasawa decomposition.

The strange choice of coordinates will make certain later results easier to state.

We may choose the x's and y's above as coordinates for %?. We may think of

%f as an equivalence class of matrices.

Given a matrix g, it acts on %? as follows. For a point i in /, take

any element of the equivalence class of matrices, and by abuse of notation call

it t. Consider the matrix multiplication gx. By rewriting this in terms of the

Iwasawa decomposition, we obtain a unique element of %?.

For our purposes it is easier not to work with X, but with a subset of %?,

denoted by 3¡, that will be a fundamental domain for T. By a fundamental
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domain we will mean an open set 3¡ such that

(2.2i) yoârn/oâ' = 0,    unless y = y',

(2.2ii) [j ylE = 3?.
ver

It is a general fact that such sets do exist. They are certainly not unique.

When X is not compact, but is of finite volume, any fundamental domain

is not a compact subset of %f, but has a finite number of cusps where the

fundamental domain approaches the boundary of J". The fundamental domain

may be divided into regions for our purposes, as in Lax-Phillips, such that one

region is compact and all of the other regions contain exactly one cusp. In this

way we may reduce our problem to the case of one cusp. We may also assume

that we are working with a full rank cusp, as other cases are essentially lower

dimensional problems. We may assume that the cusp is located at infinity, in

other words all of the y variables are at infinity. By arithmeticity and the

solution of the congruence subgroup problem [Ma, Zi], we may assume that

we are studying a congruence subgroup and so the cusp looks essentially like

the cusp for S1„(Z). We now describe a fundamental domain for this group,

due to Grenier [Gr]. In future arguments we will often assume for notational

simplicity that our cusp has this shape, although all that needs to be changed

for the general case, as far as the cusp is concerned, is a change in the constants

that appear in the inequalities describing the domain. This fundamental domain
is particularly well suited for our purposes, although of course the result does

not depend on the choice of fundamental domain. First we note that another

Iwasawa decomposition of a matrix in Gln(R) is

1      'x "

In-x\ '

where (a)[b] means 'bab, 'b being the transpose of the matrix b, v is a
positive real number, W is in Gl„_■(./?), and x 6 Rn~x. Changing between

coordinates is tedious. We will later state in our coordinates the information
we actually need.

Lemma 2.4. A fundamental domain for Gl„(Z) is given by the set of elements

satisfying

(2.5i) V <v[a + 'xc]+lV[c],    for a £ Z , c £ Zn'x -0,

(2.5ii) W is in a fundamental domain for Gln-.X(R),

(2.5iii) 0 <xi<j,        |x,| < j   for i = 2, 3, ... .

We remark that v being small and the inductive procedure give y, > -X^ .

A particular consequence of this lemma of importance to us is that if all the y

variables are sufficiently large, then only the inequalities of the form 0 < x < \

involve the x variables. Thus the fundamental domain has a box shape at

infinity [Te]. We now refine this notion.

(2.3) g



SPECTRAL MULTIPLICITY FOR G1„(ä) 881

Let M j denote a matrix with n — I-j columns and j rows. Let Pj denote

matrices of the form

(2.6) Pj =

so, for example, if n = 4

I   Mj
0     I

(2.7) P2

(I   0   a   b\
Oled
0   0    10

Vo   0   0   1/

Each Pj forms an abelian group. Also, if y¡ is sufficiently large, the x variables

contained in P¡ inside the fundamental domain will have a box shape, in other

words, only the obvious inequalities are needed.
We now give some facts about analysis on %?. We only state the results in

terms of our coordinates, although some of them are easier to show by using

partial Iwasawa decompositions. We only state what is needed for our proofs.

The invariant volume element is given by

(2 8Ï dv -     d{Eud)

(2-8) "-tf-JET
where n¡ > n. Further, if one considers a Euclidean cube with sides in the

y variables of length one and containing a fundamental domain for the x

variables, we have that as yx---yn-\ —> oo the ratio of the surface area to the

volume of the cube is 0(yx ■■■yn-\).

The Laplacian on ß? in our coordinates decomposes into several positive

semidefinite operators. The terms involving derivatives with respect to y vari-

ables is one such term. The others are terms involving partial derivatives with

respect to x variables that all lie in the same column. Implicit in this statement

is that no other mixed partials exist. We now must know the spectral decompo-

sition of the space of square integrable functions on the fundamental domain.
This space may be decomposed as

(2.9) L2(2) = L2c(3)®L2o(2)®L2r(2),

where c represents the part of the space corresponding to continuous spectrum,

in other words, the contribution due to the Eisenstein series, r corresponds to

functions that are not cuspidal but are square integrable, and 0 corresponds to

the cusp forms, which we shall define shortly. We must first give several other

definitions.

Definition 2.10. A differential operator D is an invariant differential operator

if

Dtf>(yox) = D(x)\yox

for all functions tf> and for all y £ Gl„(fî). The Laplacian is one of n - 1

independent such D.

Next, given any square integrable function, we define the following Fourier

expansions.
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Definition 2.11. For the parabolic P¡, which for its M¡ forms an mx(n-m)

matrix, we can define a Fourier expansion by

(2.12) tf>(x) =     Yl    ce2niTT{'ap),
ac.-¿m(n-m)

where the p are the variables in the parabolic, and the constant c depends on

all other variables.

We will use this definition at several points in this paper. Our first use is to

define a cusp form.

Definition 2.13. A cusp form is a function in L2(3l) such that it is an eigen-

function for all invariant differential operators, and, for all Fourier expansions,

the zeroth coefficient is identically zero.

Our emphasis in the rest of the paper is on the set of cuspidal eigenfunctions.

It should also be noted that for our purposes we do not actually need to consider

cusp forms. Instead we could consider eigenfunctions of the Laplace-Beltrami

operator that satisfy the cuspidal condition at infinity. It is conceivable that

there is no difference between these problems, but for certain spaces current

technology can yield a better result if one considers a true cusp form.

3. Proof of the theorems

As we noted before, the space H = L2(3¡) has continuous spectrum with

respect to the Laplacian. This makes certain classical arguments not directly
usable. We will remedy this situation by creating several function spaces such

that they have pure point spectrum for the Laplacian. We will first create one

such space, and its elements will also include in it all true cusp forms. We then

create families of auxiliary spaces by adding Dirichlet or Neumann conditions

at certain boundaries introduced to the fundamental domain. These spaces
will clearly also have pure discrete spectrum, and so we will be able to use

Dirichlet-Neumann bracketing. We will also need to introduce function spaces

over certain compact regions of the fundamental domain. In the sequel we will

denote the space of cusp forms by Ho .

Before introducing the function spaces we wish to interpret the Laplacian on

a set of functions on the fundamental domain in terms of a quadratic form.

First consider C2 compactly supported functions on ßf that satisfy the ap-

propriate boundary conditions for the fundamental domain's boundaries. This

will eventually be completed to get the Laplacian on the full Hilbert space of

square integrable functions. If boundary surfaces have been added to 3 we

may instead impose along these surfaces the condition that the functions vanish

(Dirichlet) or have vanishing normal derivative (Neumann) along the bound-

aries. Also if a surface divides 3¡ into a compact and noncompact part we may

impose the condition that all Fourier coefficients vanish in the noncompact part

(after the boundary).
We consider the following quadratic form:

(3.1) C(<f>,y/)= f WW + MdV.
JS
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Of course a particular consequence of our definition (3.1) is

(3.2) C(4>)= ¡ (\v<t>\2 + \4>\2)dv.

The completion of our space of core functions with respect to the quadratic

form will be considered to be the Laplacian plus the identity. It is easy to see

by integration by parts that for sufficiently smooth functions

(3.3) / \V<p\2dV = [ 4>A(t>dV.
Ja is

We will generally work with the quadratic form.

We now introduce the function spaces that we will use in the rest of the

paper. We begin by introducing the space that will contain all of the cusp

forms, and will have pure point spectrum with respect to the Laplacian. Fix a

number k. Consider the set of functions as above such that if max, y¡ > k

in the fundamental domain, then all the cuspidal conditions hold. We will let

H' denote the completion of this set of functions with respect to the quadratic

form C. This then gives us the Laplacian acting on the space. (By abuse of

notation, we can keep using C for the quadratic form even though it is acting

on different function spaces.)

Proposition 3.4. The Laplacian A, acting on Hx, has pure point spectrum.

The proof of this proposition follows from standard functional analysis after

we have proved the following proposition.

Proposition 3.5. The unit ball in Hx is precompact in L2.

Proof. The Rellich criterion gives us that the ball is locally compact in L2, so

the real work is in the cusp. We must show that for any <f> contained in £%¡

(3.6) lim / \t$dV = 0
j-*oo J&n{miayi>j}

uniformly.
The integral is clearly less than

(3.7) lim V / \4>\2dV.
j^°°    j    J9m{y¡>j}

We will show that each of these integrals tends to zero uniformly. We use each

of the Fourier expansions with respect to a P¡. We first consider yx going to

infinity and the Fourier expansion with respect to Pi . We change our notation

from before and write the Fourier expansion as

(3.8) 0(T) = C^(f)e2-^,
a

where x = (xly„, ... , xn-iyn),   i denotes the variables not in the parabolic,

and a = (ax, ... , a„-X). The cuspidal condition implies that

tt>s(T) = 0.

We now refine our orthogonal decompositon. We first decompose the space as

(3.9) Hx=Lx®Lo,
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where L- consists of functions 4>x such that the single integral with respect to
xXy„ vanishes.

For the first of these spaces we have the expansion

(3.10) 0,(t)= ^teWe2"**.

We now consider the quadratic forms effect on this expansion. We have

/ \cpx\2dV«[ ^a2|^(f)|27fF'
J2lC\{yy>j} J®'n{y,>j}       ,n

(3.11) _  Í | d^i

«15--0

2

dV
3c\{y,>j) I^Xl.«

«4 / |V0|2^K«4
J2 Js J'

Here dV means dV, where the integration with respect to xXyU is excluded,

and 3¡' is the appropriately restricted domain.
This is because there is a term in the gradient of the form

y\
dtpx  '

dx t,n

and the totality of all other terms are positive and may be ignored for our

purposes. Hence for this space we have our result.

For the other half of (3.9), we refine it, giving

(3.12) L0 = Lox®Loo,

where functions in Loi are such that the integral in the x2y„ variables vanishes.

We now proceed as before. We need only note that as cps(x) vanishes for all

functions in this space, with ax = 0, there will be a strictly positive term for

the gradient here as well. For the first parabolic we continue in this manner.

To study the behavior of the integral as y2 tends to infinity we use the

Fourier expansion with respect to the parabolic P2. Our procedure is similar

to the procedure described above. We first refine the spectral decomposition

into a term where the Fourier coefficient with respect to the upper right-hand x

variable vanishes and one where it does not. In the second case our argument

is as above. In the first case we refine the expansion again, this time with our

interest being with the x variable below it in the same column. We proceed

down the column in this way, until we have used all variables relevant to this

parabolic. We then move to the top variable of the column to the left. We

proceed as before. The key point in all of this is if all of the previously consid-

ered variables have a vanishing Fourier coefficient term, then the variable under

consideration has a term in the gradient that is positive. Also, not all of the

variables can have vanishing Fourier coefficient by the cuspidal condition that

holds in the cusp. We then move to the third parabolic to study the behavior as

j>3 tends to infinity and continue in this manner until all parabolics have been

studied. This completes the proof of Proposition 3.5 and hence gives the proof

of Proposition 3.4.
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It is clear that H' contains Ho. We thus want to obtain an estimate for the

counting function for H'. We will first have to introduce many auxiliary func-

tion spaces. Either these spaces cover only a compact region of the fundamental

domain, or are obtained by adding Dirichlet or Neumann boundary conditions

to H'. Thus in either case we will clearly be working with spaces that have pure

discrete spectrum for the Laplacian.

Definition 3.13. Let HD h denote the completion of the space of functions that

satisfy the cuspidal condition for max, y¡ > k (after k) that vanish if

Y[y,>h.
y¡>\

Let HN h denote the completion of the set of functions that satisfy the cuspidal

conditions after k , and Neumann conditions along

y¡>\

For a "cube" in the fundamental domain (for small values of our parameters,

we choose the shape that keeps us in the fundamental domain) with sides for

the y variables of Euclidean length one and bottom corner for the y variables,

let '

(y\,yi, ••• ,yn-\) =y

denote the bottom corner of the cube. By this we mean the y variables are

minimized. For simplicity, if we are not at the bottom of the fundamental

domain, we assume the y, are integers. Let HD j denote the space of L2

functions in the cube that satisfy Dirichlet boundary conditions and the cuspidal

conditions. Let HN $ denote the analogous space for the Neumann problem.

Let HD k or HN k denote the space with Dirichlet (Neumann) conditions

along the boundary in the region max, y, < k. Let HN noo denote the space

of cuspidal functions with Neumann conditions defined for

ru>Ay,>i
Remark. If T ^ S1„(Z), only minor changes are needed, both here and in

previously used Fourier expansions.

The following proposition is clear from Dirichlet-Neumann bracketing.

Proposition 3.14. Choose "cubes" in the fundamental domain so that they cover

the fundamental domain for

\{y,<h.
y¡>\

Call the collection chosen fê ;  then

NDykW + ¿ZND,yW < NDyh(X) < N'(X) < NNyh(X)
w

< NNyk(X) + J2 NN,yW + NNyhy00(X).

We now must analyze the right- and left-hand contributions of the previous

inequality. The easiest term to handle is the contribution due to the compact
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parts of the space. For this contribution we need merely quote Seeley's result

and note that for this situation we are studying a fixed compact portion of the

fundamental domain.

Lemma 3.15.

NNyk(X) = CVsXi + 0(X'^),

NDyk(X) = CVsXi + 0(X^),

where Vs is the volume of the region under consideration.

Remark. By abuse of notation, we will use Vs for all of these volumes. They

of course sum to the volume of 31. Only the volume of the region after h will
concern us. It is 0(hx~nlogh).

We will next concern ourselves with the contributions to the various cubes

that are considered. The first thing to note is that we may in these compact cubes

in the Dirichlet case ignore the cuspidal conditions when we are concerned with

asymptotic results. (We could produce a similar result for the Neumann case

but it is not needed.) A similar result appears in the work of Lax and Phillips.

The reason that we may ignore the cuspidal condition is that the space of

functions on the cube with Dirichlet boundary conditions may be orthogonally

decomposed into a space that is cuspidal, in the sense that we may study one

of its Fourier expansions and decompose the space into functions for which the

zeroth Fourier coefficient vanishes and those for which only the zeroth Fourier

coefficient is nonzero. Functions belonging to the second class of functions are

really functions on a space of lower dimension and we may obtain through a

Weyl's argument (or by Euclidean approximations as in Lax and Phillips) that

they give a lower order contribution.

We now study the contribution to the counting function of a given cube, with

either Dirichlet or Neumann boundary conditions. Of course not all of these

regions are cubes but the only thing that we need is the fact that there are only

a finite number of different geometric shapes that need be considered. We will

give our argument in such a way that it applies to any of the cases considered.

For each cube, the spectral function e(x, y, t) (we abuse notation here by

not using subscripts) is such that in the interior of the cube, in other words in

the region where the distance to the boundary is greater than 7, we may, as we

are working with a symmetric space, assume that we are dealing with the free

space problem. Because of this we may obtain the free space estimate

(3.16) \e{Xiytt)-CXr\<L(^ + ^y

Near the boundary, in other words when the above estimate does not hold,

we use Agmon's estimate. The constant in his estimate depends on the cone

condition for the domain. This constant will become worse linearly with the

inverse of the volume of the region under consideration. However, as this

estimate is only used near the boundary, it is only used in a region of volume

equal to the portion of the cube that is within 7 of the boundary. This region
is approximately proportional to the surface area of the cube. Combining all

of this we get that the error caused by Agmon's estimate grows by the ratio

of the surface area to the volume of the cube. As noted before, this ratio is

0(yx ...y„_i), and so we have, following the work of Seeley, the following

lemma.



SPECTRAL MULTIPLICITY FOR Gl„(R) 887

Lemma 3.17.

NNJ(X) = CVsXi + 0(yx ■ ■ -yn-xX^ log A),

NDJ(X) = CVsXi+0(yx---yn-XX^1logX).

Before finally proving our theorems, we must consider the ncncompact con-

tributions that we will need. For the Dirichlet problem there is really nothing to
say. We are looking for a lower bound in this case, and clearly the contribution

of the cusp is nonnegative. This will be all that we need. For the Neumann case,

the following rather easy estimate will suffice for our purposes. This estimate

follows from Donnelly's work, but can also be derived by an argument that is a

variant of the Lax and Phillips argument. In both cases it is essential that one

work with functions that are cuspidal in the cusp. Donnelly clearly uses this in

his heat equation argument. In a Lax-Phillips argument the key point is that

the constant function is not allowed. Then one finds from an easy upper bound

estimate of additional cubes into the space above the line b, that eventually

there is no contribution at all. We state a lemma that handles the Neumann

case. What we of course have is that the Weyl upper bound holds in the cusp.

Lemma 3.18.
NNyhyOC(X) = 0(VsXi) = 0(VsXihx~nlogh).

We now state a lemma that handles the totality of the compact contributions.

Lemma 3.19.

¿ZNN,yW = CVsXi +0(X^h2(logh)n-2logX),

¿ZND,yW = CVsXi + 0(X^h2(logh)"-2logX).
w

The proof of this lemma simply consists of summing up the various contri-

butions that have already been studied.

The above results lead us to the following proposition.

Proposition 3.20.

N'NJl(X) = CXi + 0(Xr-rh2(logh)n~2logX + Xî(logh)hx-n),

N'Dh(X) = CXi + 0(Xr-T h2 (log h)"'2 log X + XÍ (log h)hx-n).

The proof of Theorem 1 now follows by choosing the parameter to minimize

the error.

For completeness we now prove Theorem 2. Since

N'(X + 1) - N'(X - 1) = C((X + l)i - (X - I)") + 0(X^X^(logX)n-x),

we have

(3.21) M0(X)<N'(X+l)-N'(X-l).

Simple algebra now proves Theorem 2.

We should note several extensions of the above theorems. First, we need

not assume that we have a locally symmetric space but that we merely have

a manifold such that its cusps are isometric to a symmetric space. Second,

the technique described is quite general, and one does not have to work with
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Gl„(f?). For example, the same sort of technique, when applied to products of

half-spaces (Hilbert modular groups being important examples of this case) or

to Siegel's upper half-plane, yield the following results.

Theorem. If H is the product of symmetric spaces of possibly different dimension,

and «o > 3 is the minimum dimension of the half spaces, then

N'(X) = Cr(VolA)Aï + 0(X^iX^(logX)na-x).

IfG = Spn(R), then

N'(X) = Cr(VoIX)Xi + 0(Xr-^X^(logX)n'x).

For the general symmetric space the technique yields an improvement over

Donnelly's upper bound for the cuspidal counting function.
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