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THE CLASSIFICATION OF COMPLETE MINIMAL SURFACES
WITH TOTAL CURVATURE GREATER THAN -12a

FRANCISCO J. LOPEZ

Abstract. We classify complete orientable minimal surfaces with finite total

curvature -Sn .

Introduction

The classification of complete minimal surfaces with finite total curvature in

R3 has been an important problem in the classical differential geometry.

Some basic properties of these surfaces were studied by R. Osserman (see

[8, 9]), who showed the first nontrivial result about this subject.

Concretely, he characterized the catenoid and Enneper surface as the unique

complete orientable minimal surfaces of total curvature -4it.

However until recent years no more relevant results have been obtained.

W. H. Meeks [6] gave the classification of nonorientable complete minimal

surfaces with total curvature greater than -87r.

This paper is concerned with the total classification of orientable complete

minimal surfaces with total curvature -&n .

Chen and Gackstatter [ 1 ] discovered the first example of a complete minimal

surface properly of genus 1 (see Theorem 1). The picture of Chen-Gackstatter

surface is obtained by joining a handle on Enneper's surface. This genus one

minimal surface has total curvature -87t, and no other examples of such sur-

faces were found.

So, it is expected that no other genus one orientable minimal surface of total

curvature -87i does exist.

In this paper we give a proof of this fact. More precisely, we prove that

"Chen-Gackstatter surface is the only genus one orientable complete minimal

surface with finite total curvature -Sit."

Of course, it is not difficult to find genus zero minimal surfaces with total

curvature -87t.

A geometrically interesting example, described by Jorge and Meeks [5], is the

trinoid.

This surface has three embedded catenoid ends. Moreover its normal vectors

at these ends are placed symmetrically in an equator of S2.
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50 F. J. LOPEZ

To find all the genus zero orientable complete minimal surfaces of total cur-

vature -871 is merely an elementary algebraic problem (see §3).

These facts together with the above Osserman result complete our classifica-

tion.
Finally, in §5, we prove a modified version of the Osserman-Mo Theorem [7]

for complete minimal surfaces.

It is interesting to notice that recently C. Costa [2] has obtained the classifi-

cation of genus one embedded complete minimal surfaces in R3 of finite total

curvature —12tt . All these surfaces lie in a smooth one-parameter family of

tori punctured in three points, which correspond to three catenoid ends, except

Costa's surface which has two catenoid ends and a planar end. This family was

described by Hoffman and Meeks (see [3 and 4]).

On the other hand, Chen and Gackstatter [ 1 ] constructed an example of a

genus two orientable minimal surface punctured in a point with total curvature

-I2it.
So, to exhibit the total classification of such surfaces could be an interesting

open problem.
The editor sent me two Ph.D. theses by E. L. Barbanel [12] and Y. Fang [13].
The first one develops the classification and study of genus zero complete

minimal surfaces of total curvature -871, and the second one includes a partial

version of this classification in the genus one case.

1. Preliminaries

In this section we expose some basic results about orientable complete mini-

mal surfaces of finite total curvature. For more details, see [9, Chapter 9] and

[8].
Let x : M —> R3 be an orientable complete minimal surface of finite total

curvature in the Euclidean space R3.

Denote by g, co the meromorphic function and the holomorphic 1 -form

determined by the Weierstrass representation of x [9].

It is well known that, modulo natural identifications, g is the Gauss map of

M. Moreover, gco and g2co are holomorphic 1-forms and

(1) x = Rej((px,lp2,cp3)

where <t5i = ( 1 - g2)co/2, <p2-i(l + g2)w/2 and ^3 = gco.

Osserman proved (see [9]) that M is conformally equivalent to a compact

Riemann surface M punctured in a finite set of points {Px, ... , Pk} : M =

M-{Px,...,Pk}.
The points Px, ... , Pk, correspond to the ends of M, and g, co extend

meromorphically to M. Then </>,-, z = 1,2,3, have poles of order OrdP; 0,

at Pj , ; = 1, ... , k .
If we put

« = Degree(g),     y - Genus(Af),

Ij + l = maxjOrd^ tp,■■, i = 1, 2, 3},        j = I, ... ,k,



COMPLETE MINIMAL SURFACES

Jorge-Meeks formula gives (see [5])
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(2) 2« = 2y-2 + £(/,. + l).

;'=i

In the following, we will assume that « = 2, i.e., M has total curvature

-8?z.
Using (2) and taking into account that I} > 1, j = 1,..., k, we deduce

y < 1 (observe that the case y = 2, k — 1, Ix = 1 is impossible).

We describe the distinct possibilities in the following table:

Table 1

« = 2

y = 0

y=l

k = 1

/, =5

k = 2

h = 1, h = 3

/c = 3

Ii = h = h = 1

Schoen has characterized the catenoid as the unique surface with k = 2 and

Ii = I2 = 1 (see [10]). From (2), the case k — 3, y = 1 is impossible.
We will classify all the surfaces which correspond to the other possibilities in

the above table.

2. Genus one minimal surfaces of total curvature -87i

Throughout this section, we assume y — 1 , « — 2 and therefore, k — 1,

Ix = 3. We write M = M - {P} , where M is a genus one compact Riemann

surface and P is the end of M.

It is clear that bg(P) < 1, where bg(P) is the branch number of g at P.

We will discuss separately the case when bg(P) = 0 and bg(P) = 1.

2.1.   First case.   bg(P) = 0. Consider the following initial value problems of

linear differential equations in the complex domain:

(I/)

f'M)
-a

2(1-a2)

s'M) = Ti—^ñMa

f(a) + ;gi(a),

(l-a2Y

o

4(1-¿z2)'

3¿z
gi (a),

i =1,2,

2(1-a2)

rm-JJ dx, g\
(0) = /°

dx,

where we have fixed in each case the branch of ^(x2 - l)/x such that fx(0),

gx(0) < 0 and /2(0) = //,(0), g2(0) = -ig2(0).
Take a, b £ C, and define [¿z, b] = {ta + (I - t)b\t £ [0, 1] c R}. We

will write Ja h(x)dx instead of /. b] h(x)dx , for each function h defined on

[a,b].
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Lemma 1. The initial value problems (I,), i = 1, 2, have well-defined solutions

f, g,, i = 1, 2, on the domain C - {v e R|| v| > 1}.
In fact, the solutions of (I,), i =1,2, are the functions

(3)

m=£i)i¥^dx'  ^a)=fJxT^dx^

Ma)=L í¥^idx^  gi{a)=[ii^idx'

respectively, for a suitable single-valued branch of \/(x2 - l)/(x -a), a £ C -

{yeR||y|>l}, x£[-l,a]U[a, 1].
Moreover,

fi(a) = if(-a),    g2(a) = -igx(-a),
(4) - _

f\ (a) = f\ (a)   and   gx(a) = gx (a).

Proof. The function F : [0, 1] x (C - {y £ R|y > 1}) -> C defined by

F(t,a) = (a+\)t-2

has rank C - {y £ R| y > 0}.

Then, \/~F has a single-valued branch on [0, 1] x (C - {y £ R|y > 1}), and

so v/(í-l)/((¿z+l)í2-2z).

Since

(5)

f^a)-{a+X)So(^W^2tdt^

gi(a) = (a+l)fo^^dt,

we deduce that fx , gx are well defined and holomorphic on C- {y £ R|y > 1},

and /i(0), gï(0) < 0 for a suitable election of the above branch.

Analogously, f2, g2 are holomorphic functions on C - {y £ R/y < -1},

and can be chosen such that f2(0) = if(0), g2(0) - -igx(0).
On the other hand

M " L ' la+'^-2<d' -°-T-[ i(ial I) ,'-V'

and integrating by parts

, ¿z        /'   /       t-\     ~j 3        /•'   /(¿z +
',(fl)-2(ï=l)70 V(«+l)i2-2/   '~4(^7)/0 v~~

a+ l)t2 -2t  ,
-at.
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Analogously

g[(a)

Hence, fx, gx verify (lx).

In a similar way, f2, g2 verify (I2).

At last, observe that ifi(-a), -igx(-a) satisfy the initial value problem

(I2), and by the uniqueness of solutions, ifx(-a) = f2(a), -igx(-a) = g2(a).

Taking into account that gx (a), fx (a) £ R if a £ [-1, 1], and the analyticity

of the solutions, (4) holds and the proof is complete.   Q.E.D.

Remark 1. Note that f, g¡, i = 1,2, are also the solutions of the following

initial value problems

f^ = W^)Ma

(6)

fi(0) = ifi(0),

f!(0) = lgt(0),

SÏ(a) = 4(1_a2)&(fl) '        ' = 1.2,

gi(0) = f_i^±dx,
82(0) =-igi(0),

g'l(0) = fi(0),        i =1,2.

Remark 2. The functions f , gx are defined and holomorphic on C - {y £ R|

y > 1} and have both a simple zero at -1. Analogously, f2, g2 are defined
and holomorphic on C - {y £ R|y < — 1} and have both a simple zero at 1.

Consider the Riemann sphere C U {oc} , and draw a straight line / from 1

to -1 passing by 00 along the real axis. Then cut and open along /.

The closure Q of the resulting domain has two copies of the line /. Call
one of them lx and the other one l2 (see Figure 1).

We will put ax , a2, the two points corresponding to a £ I, in lx and l2

respectively.

Observe that 001 ^ 002 and li = I2 , -li = -I2 •

Figure 1
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Lemma 2. The functions f, g¡, i = 1, 2, extend continuously to £l-{oox, 002},

satisfying

(7)
a py

fx(a), gx(a) ¿ 0,    a ^001, 002,-1,    /i(l) = -2v/2,    £i(l) =—j- ,

/.'(-I) = i rw dt<0,    g[(-l) = 2f{(-l),
,0   »    2t

fi(a),g2(a)^0,    fl/001, cc2)l,    /2(-l) = i/i(l),     ft(-l) = -ift(l),

>2(i) = -í/í(-i),   c?2(i) = ^í(-i)

¿z«¿/

(8)

lim
a—»oo

V^

y;
= 0,     lim

a—>ooi

¿zy«

gi
■£ 0, 00,      lim

¿z£v/ä

./;■
= 00,    e > 0,

hm4^ = -3,      hm/lft- 1 4* = 1
1 flg\ 3      a-oo; /2£l"-1 .72 £l

w/zc-re z = 1, 2 ¿z«¿/ j = 1,2.

Proo/. Using (3), it is straightforward to check that f, g¡, i = 1, 2, extend

continuously to Q - {001, oo2, 1, -1} and fx(a), gx(a) / 0 if Im(¿z) = 0,

a t¿ coi, C02, —1.

Notice that if Im(¿z) ̂  0, Im y/2 - (a+ l)t f 0, where t £]0, 1]. Thus,
from (5), /i(¿z) ^ 0, and in the same way, gx(a) ^ 0. So, from (4), we have

h(a), gi(a) í 0, ¿z ̂  001, <x>2, 1.
Using now (4), (5) again, it is not hard to prove (7). On the other hand, (5)

yields

lim
a—*oo,

\fd
f 1^ dt 0, lim

a—»oo,

a^fd
g\ U^t dt /0,

lim
a—»oo,

¿Z£V/Ä

f\
where i = 1,2, and the same holds for f2, g2 (see (4)).

Moreover

lim
a—»oo

1_  fx   j x-a

-alo Vx2-1y/ajo

and therefore from (3),

dx lim
a—» 00

1

7a-äj.x\lx2-l
dx 7^0

lim 4 = -1
0-.OO,  _/2

/=1,2.

A similar argument gives

g\
lim £i = 1,        z = 1, 2.

a-»oo,- g2

Taking into account (4) and (7), (8) holds and so the lemma.   Q.E.D.

Remark 3. The functions f¡, g,, z = 1, 2 , satisfy

Mai) = (-îy'-'J/te),        gi(ai) = (-\y-xg,(a2)

where ¿z, e /,, i = 1,2, a / 00 .
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Remark4. Observe that f(a), gx(a) £ R, a e]-oo, 1], f2(a)/i, gi(a)/i £ R,
a £ [-1, +co[. Moreover

fx(a), gx(a) > 0,    ae]-oo,-l[,        fx(a), gx(a) < 0,    a€]-l,l]

\fi(a),       ~g2(a)<0,       fl€]-l,l[,

Re(fx(a,)),       Re(g!(a,))<0,

(-iyim(fi(ai)) = X-f2(ax) = jf2(a2) > 0,

(-l)'Im(^(a,)) = jg2(ax) = jg2(a2) < 0,

where ¿z, £ /, - {oo,} , ¿z, > 1 , i = 1, 2 .

Remark 5. The fonctions fi , g¡ satisfy (lx), i = 1, 2, on

(/i U/2)- {oc1; 002, 1, -!}•

Lemma 3. If a £ Q- {coi, 002},

(fg2-figi)(a) = ^(l-a2).

Proof. Consider the genus one compact Riemann surface

Ma = {(z, w) £ (CU {oo})2\w2 = (z-a)(z2 - 1)}, where a £ C- {1, -1}.

We can construct a "concrete" representation of Afa as a two-sheeted cov-

ering of the sphere C U {00}.

Picture two copies of the sphere, and label these two copies sheet I and sheet

II. On each sheet, cut along two smooth curves joining -1 to "¿z" and 1 to 00 ,

in such way that these cuts do not intersect.

Each "cut" has two banks; an N-bank and an S-bank.

Joining every S-bank on sheet I to the N-bank of the corresponding "cut" on

sheet II, and then joining the corresponding S-bank on sheet II to the N-bank of

the corresponding "cut" on sheet I, we have the desired representation of Ma

(see Figure 2).

Sheet II

Figure 2
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We can construct a canonical homology basis for Ma drawing simple smooth

curves y,■■, i = 1, 2j_yx is given winding once around the "cut" from -1 to

"a" in one sheet of Ma , and y2 starting from a point on "cut" from -1 to "a"

going on the first sheet to a point on "cut" from 1 to co, and returning on the

second sheet (indicated in Figure 3 below by dotted lines) to the original point.

The orientation of yx, y2 is illustrated in Figure 3.
Define now the meromorphic 1-forms:

z - a
dz,    x\ =

w
dz,

w z - a

and observe that

2f(a)=[xax,    2gi(a)=[xa2,        i =1,2.

Using standard bilinear relations (see [11]), we conclude the proof.   Q.E.D.

Lemma 4. // ¿z, £ /, - {oo,}, í = 1,2, then

\f\gilhgi\(ai)¿\.
Proof. Remark 3 involves \f1g2lfigi\(ax) = \f\g2lfig\\(a2). So we need only
to prove the lemma for ¿zi £ lx - {00} .

Suppose ¿zi > 1.
From Remark 4 and Lemma 3

(9)
f\g2

flgl
(ax, 1 & Ji g2      \ (ai) = 0.

Re(/,)     Re(gx)J

Let t: ]l, +oo[—► R the function defined by

t(ax) = (2Re(fx) - JÏRe(gx))(ax).

Remarks 4, 5 and 1 yields

t'(ax) = -—-^ ((ax+V2,)Re(fx)(ax) - \(l + v/3¿z1)Re(g,)(¿z,))

t"(ax) =
2(1-a2)

Re(/i)(ai) + ^Re(gl)(¿z1)| > 0.

Looking at (8) and (3), we have

lim t'(ax) = 0
ax—>oo

Figure 3



COMPLETE MINIMAL SURFACES

and therefore

í'(¿zi)<0,    for each ¿Zi €] 1,+oo[.

But from (7), t(l) < 0 and then

(10) t(ax)<0,    for each ¿zi e [1,+oo[.

If \fg2/f2gi\(a'x) =1, a[>l, from (9) and Remark 2,

57

(Jl + g2
(a\) JJl + g2

\Re(fx) ' Re(gx))K"xl     \Re(fx)     Re(gx]

and then there exists b £]l, a\[ such that

(1) = 0

(     f2        |        g2

\Re(fx)     Re(gx
(b) = 0.

Taking into account Remarks 5, 4 and Lemma 3: t(b) = 0. So, from (10),

we get a contradiction and thus

l/ic?2/72c?i|(tfi) t¿ 1,     for each ax e]l, +oo[.

Using (4) and (7), the same holds for ax £] - oo, -1[ and ¿zi = 1,-1.

Q.E.D.

Remark 6. Observe that from the proof of Lemma 4 we can deduce

j(Re(/i)ft + Re(gi)/2)(fli)>0   ifaie]l,+coi[c/i.

Lemma 5.

(fililfili)(a) ¿I,    for each a e z'R - {0}.

Proof. Write i, = Re(fi), s¡ = lm(fi), u¡ = Re(g¡), v¡ = lm(g¡), i =1,2.
Since a £ z'R, it is easy to check from (4) that

(11) lßL(a) = 1 ̂ lm(figx)(a) = 0^(txvx+sxux)(a) = 0.
J2gX

In the following, we put a = iy , y £ R and write simply t¡(y), s¡(y), u¡(y)
and v¡(y) instead of t¡(iy), s¡(iy), u¡(iy) and v¡(iy), i = 1, 2 . Also t'¡,

t" will mean dt¡/dy, d2ti/dy2 respectively, and the same for s,, u¡ and v¡,

i =1,2.
Using Lemma 1 and Remark 1, we deduce that the above functions verify

the differential equations

(12)

t' t,«     2(1 +y2) '     4(1+y2)

y 3

;Vi:

r'     2(1+y2) '     4(1+y2)

t" -      -1      t
*• - 4(1^2/'

•      4(1+y2)

Uj

s,,

' -    ZÍ_ 3y
"i"  l+y2S' + 2(l+y2)Ul'

'-      l 3y
Vi~ l+y2íi + 2(l+y2)U/'

3
Mi,'      4(1+y2)

v" =-'      4(1+y2) v¡,

where i = 1, 2 .



58 F. J. LOPEZ

If 1 = 1, the initial values are

*i(0) = /i(0),    t\(0) = 0,       ux(0) = gx(0),    u\(0) = 0,

sx(0) = 0,    s[(0) = |*,(0),    ü1(0) = 0,    v[(0) = fi(0),

and analogously if i = 2.

Observe that (4) involves

f-^(iy) = I o £f H» = 1.
J2g\ J2g\

Then from (11), it is sufficient to prove that

(txvx + sxux)(y) ^0,    for each y > 0.

First, we will show that

«lGO, Vi(y), sx(y) <0,    My >0,

3y0 > 0 such that tx (y0) = 0,     tx (y) < 0 if 0 < y < y0,

(14) i,(y) >0ify0 <y <+oo,

lim  ^ = -1, lim ^- = 1.
y->+oo Í, y-t+oo W]

If ux vanishes at some point y' > 0, take yx > 0 the first point such that

«iCVi) = 0. Since g{(0) <0, (12) and (13) yield

M'/(y),M'1(y),M,(y)<0,       ye]0,y,],

a contradiction.

In a similar way, vx(y) < 0, for each y > 0.

Suppose S\ vanishes at y' > 0, and take as before yi > 0 the first point
such that Si(yi) = 0.

Using that Mi(yi)<0 and (12), we have s[(y\) < 0, which contradicts (13).

We know that vx(y) < 0, y > 0. So, from (12), if tx(y0) = 0, y0 > 0,

then t\(yo) > 0. Since ii(0) < 0 (see (13)), t\ vanishes at most at one point

y0>0.
On the other hand, from (3),

"0" - Rcf, í^dx + Re ('X #TT "')

and therefore

lim  ii(y) = +oo, lim   —(y) = -l.
y—»+cx> y—>+oo t\

It is now easy to deduce that t\ vanishes at only one point y0 > 0.

By similar arguments

lim  — (y) = 1
y->+oo U\

and (14) holds.
To finish the lemma, from (11) and (14) it is sufficient to show

£l + ^l)(y)^0,     foreachy>0,   VT^yo,
t\        U\ )

and note that from (14), (s\U\ + v\t\)(yo) = (5i^i)(yo) / 0.
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Suppose now

Í1        U\J

If yi < yo, since (si/ti +v\/u\)(0) = 0, we have

r + ír) (yi) = 0,    where y2e]0, yx[.
t\       Ui )

From (12)

Si        Vl\' i     x        //"líl +^l5l\   /   3 1  \\ ,     ,

Thus (u\ti +fi5i)(y2) = 0, that is, Re(fgl)(iy2) = 0.
But Lemma 3 and (4) give

Re(figi)(-y) = -y (1 +y2) ^ 0,    for each y 6 R,

which gets a contradiction.

If yo < yi, observe that from (14)

lim   [*+^]=0.
y->+oc \tl        U\

Reasoning as before, this case is also impossible.   Q.E.D.

Remark 7. Note that

(uiSi+V[ti)(y) > 0,    for each y >0,

(uiSi +V[t\)(y) < 0,    for each y < 0.

We can now state the main theorem of this section.

Theorem 1. Let x : M -> R3 be a orientable complete minimal surface of finite

total curvature -Sit and genus one.
Suppose that its Gauss map is regular at the unique end of M.

Then up to homothety and rigid motion, x is given by

x: M - {(oc, oc)} —> R3,        x = Re / (<p\, 4>2,h)

where

M = {(z, w) £ (CU {oo})2\w2 = z(z2 - 1)},

^      2\w z) r      2\w z)

03 = Adz   and   A2 = —(0).
g\

Proof. We know that M is conformally equivalent to M - {P}, where M is

a compact Riemann surface and P is a point of M.

If g is the Gauss map of M, after a rotation in R3, we can suppose that

g(P) = oo . Since bg(P) = 0, there exist four points P,, z = 1, 2, 3, 4, in M

such that bg(Pj) = 1, z = 1, 2, 3, 4. We call a¡ = g(P¡), i = 1, 2, 3, 4, and
observe that ¿z, / a¡, i ± j.
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Therefore M is conformally equivalent to

{(zi, tüi) 6 (C U {oo})2|to2 = (zx - ax)(zx - a2)(zx - af)(zx - ¿z4)}

where g = zx.

After a suitable change of parameter

M = {(z2, w2) £ (Cu{oo})2|w;22 = (z\-l)(z2-cx)(z2-dx)},        g = Axz2+Bx,

where cx, dx, Ax, Bx £ C, cx ̂  dx, cx , dx ¿ 1, -1, Ax ¿ 0. _
As z2(P) = g(P) = oo and bg(P) = 0, there exists Q £ M such that

z2(Q) = g(Q) = œ .
Without loss of generality, we can suppose that the meromorphic function

on M : S, defined by

,.r,        _,, . 2    ci+di (cxdx-l     (cx+d2)2\
(15) S(z2,w2) = w2 + z22--^--z2+\-LJ2-8       J

satisfy:

S(P) = oo,        bs(P)=l,       S(Q) = 0,        Degree(S) = 2.

From (1), (2), the holomorphic 1-form co determined by the Weierstrass

representation of x has a pole of order two at P, a zero of order two at Q

and no other zeroes and poles.

So, co/S is holomorphic, and then bs(Q) = 1.
This fact and (15) yield

(16) (cx+dx)((cx-dx)2-4) = 0.

Taking into account (16) and after a suitable change of parameter

M = {(Z3 , tu3) G (C U {oo})>32 = (z\ - l)(z\ - c2)},

+ l\dz3

2    ) w3

2    c2 + l\ dz3
g = A2z3 + B2,        co = Cx [wi + zj--—

where c, A2, B2, Cx £ C, c ¿ 1, -1, 0, A2,Cx^O
Taking z = w^ + z\ - (c2 + l)/2, we have Degree(x) = 2 and

M = {(z,w) £ (Cu{oo})2|u;2 = (z - a)(z2 - 1)},

g = A-VB,        co = C-dx,
z - a w

where a,A,B,CeC, a£\, -1,0, A,C¿0.
As the 1-forms cf>,■, i = 1, 2, 3, do not have real periods, (3) and the proof

of Lemma 3 give

(1) BCfi(a) e_R, _ _

(2) Cf(a) = CB2f,(a) + CA2gi(a), '   '

If B /0, from (1) and (2)
'RCA2

C(l-\B\2)f(a) = —^gl(a),        »=1,2.

This fact contradicts Lemma 3.
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Therefore B = 0, and looking at (17), x is well defined if and only if

(18) (/il2-/2li)(û) = 0.

Using Lemma 2, f(a), g¡(a) ^0,if¿zeC-{l,-l}, i = 1, 2, and then
(18) involves

f\g2\log

Consider h : Q —> R3 defined by

hg\
(a) = 0.

h(a) = log
f\g2

flg\
(a).

From Lemma 2, « is a continuous function on Q., harmonic in Q. Using

(4), «(¿z) = 0 if ¿zezRu{ooi,oo2},andif h(a) = 0 then h(a) = h(-a) = 0.
On the other hand, Lemma 4 shows that h(a¡) ^ 0, where ¿z, £ /,, ¿z, ̂  oo,,

1 = 1,2.
Maximum principle for harmonic functions yields

h(a) = 0   if and only if   a £ iRl) {oox, oo2}.

But if a £ z'R, Lemma 5 tells us that (18) holds if and only if a = 0. This
completes the proof of the theorem.   Q.E.D.

The surface in Theorem 1 was discovered by Chen and Gackstatter, and we

label it as a Chen-Gackstatter surface.

2.2.   Second case.   bg(P) = 1. As in the first case, we need some previous

results.

Lemma 6. If a¡ £ l¡ - {I, -I, oo,} , i = 1 , 2,

lm(3gxg2 - 4/1/2 + 2¿z(gi/2 + g2f\))(a¡) ï 0.

Proof. Define

j(a¡) = lm(3gxg2 - 4/1/2 + 2¿z(£i/2 + g2fi))(a¡),        a, £ /, - {oo,},  i =1,2.

Using (4) and Remark 4, it is sufficient to prove

j(ax) = (3Re(gx)g2-4Re(fx)f2 + 2a(Re(gx)f2 + Re(fx)g2))(ax) ¿ 0

if ¿Zi 6]1, +ooi[C lx .

From Remark 5,

(19) j'(a) = j^ (j(a) + aL-l(RQ(gx)f2 + Re(fx)g2)(a)

and looking at (7),

(20) lim -z'^4- > 0.
a,^l      ax - 1

If j vanishes at some point a\ e]l, 001[, take ¿z0 the first such point, ¿Zo >

1. Remark 6 and (19) gives -ij'(ao) > 0, and therefore -ij(ax) < 0, for each

¿Zi e]l, ¿zq[ , which is contrary to (20).   Q.E.D.



62 F. J. LOPEZ

Lemma 7. // ¿z G z'R, \a\>y/3,

Re(3g2(a) - 4f2(a) + 4afx(a)gx(a)) + 0.

Proof. Fixing the same notation as Lemma 5, if iy £ z'R, define

k(y) = Re(3g2(iy) - 4f2(iy) + 4iyfx(iy)gx(iy))

= 3(u2(y) - v2(y)) + 4(s2(y) - t2(y)) - 4y(ux(y)sx(y) + tx(y)vx(y))

where y G R.

From (12),

(21) k'(y) = -^ (k(y) - 2l-^(ux(y)sx(y) + tx(y)vx(y))

On the other hand, the function 5 :] - oo, 0] -» R defined by

s(a) = (V3gi-2fi)(a)

satisfy (see (7) and Remark 5)

s'w = rhï ((«+^)/'(fl) - \q + v^a)*i(a)),

$"{a) = 2(a2- l)Ma)+4(l2^l)gl{ah       s'(-1)<0' *(-l) = 0.

Thus, Remark 4 yields

s"(¿z)<0    for each ¿z g] - 1, 1[,        s'(0)i(0)<0,

and then, 5(0) < 0.
Thus

(22) /c(0)=5(0)(v/3^,(0) + 2/,(0))>0.

Observe now
/V(v/3) = (v/3gi+2z7,)2(z'v/3).

If we write

H(x) =    ,    lX + l/V~3

y/(x-iy/3)(x2-l)

from (3) and integrating by parts

riy/3

(yßgx + 2z'/,)(z'v/3) = 4 /      H(x) dx

for a suitable choice of the above branch of y(x - z\/3)(x2 - 1).

If x £] - 1, 0[, it is straightforward to check

(23) 0 < Re(H)(x) < - lm(H)(x).

After a suitable change of parameter

riVl rl/2

/      H(x)dx = 4(1+ i)3~x'4 /        . "      du
Jo J-\   vu3 + 1
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and therefore

/•iV3 /•iv/3

(24) Re /      H(x) dx = lm H(x) dx < 0.
Jo Jo

So, (23) and (24) yield

(25) k(y/l) < 0.

Remark 7 and (21) involve that k vanishes only at one point yo > 0.

But (25) and (22) give k(0)k(V2) < 0. Therefore y0 G]0, V3[ and k(y) ±
0, y > \ß. From (4), also k(y) ¿ 0, y < -\/3.   Q.E.D.

Lemma 8. If a £]- oo, 1 [, ¿z / -1,

3g2(¿z)-4/,2(¿z) + 4¿z/ig,(¿z)
>0.

l-¿z2

Proof. By Remark 2, k = 3g2 - 4/2 + 4afxgx is well defined on ] - oo, 1[.
Remark 5 gives

(26) k'(a) = -^-x (k(a) + ^' ~ 1} /.(¿z)gi(a)) .

Moreover, from (5) and (7)

k

and then

(27) fe(-l-e)<0,       fc(-l+e)>0,

e > 0 small enough.

Suppose k vanishes at a point a' < -1, and take ao < -I the nearest point

to -1 such that /c(¿Zn) = 0.

From (26), k'(ao) > 0 and then k(a) > 0, a £]ao, -1[, which is contrary
to (27).

So, k(a) < 0 for each a £] - oo, -1 [.
Analogously, k(a) > 0, a £] - 1, 1[, and the lemma holds.   Q.E.D.

Lemma 9. For each a £ f2 - {oot, oo2, 1,-1},

(3£,2(¿z) - 4/2(¿z) + 4afi(a)gi(a)) ¿ 0.

Proof. Notice that from (4), we can suppose i = 1 .

Define now Q'+= {a £ Q| Im(¿z) > 0} and Í2+ = ñ'+ .
Using again (4), we need only to prove the lemma for a £ Q+ , a ^ ooi , 1 ,

-1.

First, we will show that y : dQ+ -> C defined by y(a) = f\(a)/gx(a) is a
single closed curve.

For, we must have

(28) y(b)*y(c),    b,c£dQ+,    b¿c.

Note that (see (8))

lim    A
|a|—+oo   gX

(a) = 0.
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Use Lemma 1 to obtain

/iY     3g2-4/2 + 4^,/,
(29)

gij 4(1 -a2)g2       •

Hence, it follows from Remark 5 and Lemma 8 that y is injective on [-co, 1].

Observe now that Remark 4 and Lemma 3 imply

Im Í— j (¿zi) t¿ 0,    for each ¿zi G [1,+ooi[.

Since y (a) £ R, a £ [-co, 1], it remains only to check (28) for b, c £

]l,+OOi[.

If ¿zi G]l, +ooi [, Remark 4 yields

Arg (A) MmA*(m*&£W*l _,),_,
\gij \^(fx)\g2\ + Re(gx)\f2\      J

for each ¿Zi g]1 , +ooi[.

Let b denote the function

b :]1, +ooi[^ R,

h(n ,     Re(/i)Re(gi)-|/2||g2|,   ,
¿(fll)-Re(/i)|ftl + Re(ft)l/2|(fl''

By Lemma 3

(Re(/i)|ft| + Re(g,)|/2|)(¿zi) = —j(a2 - 1),        ¿z, e]l, +oc,[,

and thus using Remarks 4 and 5

.,,    v       3 (3/4)(Re(g,)2 + \g2\2)(ax) + (Re(/Q2 + |/2|2)(¿zi) ^ n
b {ai) = 4~n-(^3T)2-> °-

Therefore b is injective, then Arg(fx/gx) so is and (28) holds.

To conclude the lemma, notice that by (29)

3s2(a)-4/,2(¿z) + 4ag,(¿z)/i(¿z) = 0   if and only if    (A\(a) = 0

for each a £ Q+ - {ooi, 1,-1}.
o

Suppose (f\/gi)'(a0) = 0, ¿z0 G Q+ and write a0 = (f\/gi)(ao) ■ Then

2 ̂ ¿y/     tn!fl{a)  ,da = n(y(dn+),ao)
2ni Jan+ (f\/g\(a)-ao)

where n(y(d£l+), an) is the winding number of y(dCl+) around a0 .
o

But (28) involves n(y(d£l+), fx(a)/gx) = 1   for each a £ 0.+, which is

contrary to our assumption.

Taking into account Remark 4 and Lemmas 6, 8, it is easy to obtain

3g2(a)-4f2(a) + 4afx(a)gx(a)^0

for a £ dQ+ - {ooi ,1,-1}.
This concludes the proof.   Q.E.D.
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Figure 4

Take r G R and consider the genus zero Riemann surface

Sr = {(a,ß)£(Cli {oc})V = -3ß2 + 2rß + 3}.

In a way similar to that in Lemma 3, a "concrete" representation of Sr is

given by cutting and joining two copies of the sphere.

In this case, we can cut each sheet along a smooth curve joining \-Jl + (j)2

and 5 + J1 + (^)2, for instance, the real interval

See Figure 4.

Let a denote the meromorphic function on Sr defined by

(30) a:Sr^C, a(a,ß)
3/5

a

Observe that Degree(¿z) = 2 and denote by Qr the closure of a  X(Q).

Concretely, cut Sr along the two lines /' ,  I2  contained in a~l{z e Ru

{oo}||z|>l}:

lX = l(a,ß)£Sr\ß£

l2=\(a,ß)£Sr\ß£

r3+yi+Q2^3+^+Q'

\-f^)2^-\f^)'
Then, open along /', I2 and Qf is the closure of the resulting domain.

In Çlr we have two copies of each line /', I2. We will denote these copies

by: I) , I], / = 1,2, respectively, and write (a, ß)\ , (a, ß)'2 the two points

corresponding to (a, ß) £ I', z = 1, 2 .

Denote by T,, i = 1, 2, 3 , the following automorphisms of Sr :

Ti(a,ß)

for each (a, ß) £ Sr.

-a,-ß + — T2(a,ß) = (-a,ß),     Ti(a,ß) = (ä,ß)
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Tx, 72 are conformai, but T3 is anticonformal.

Furthermore from (30)

(31) aoTx=a,       aoT2 = -a,       aoT^ = a.

Using the same notation as in Lemma 3, if we put xa = L dz , define

a
(32) Ai(fl)=/r=2(¿-í)* ■«■ fl -

¿z2-l
Ma)

where the last equality has been obtained integrating by parts.

Consider the functions on Qr — {a_1{l, —1, co}} given by

dt(a,ß)= (í-^jl + (02 + 2 (ß - 0 j Ma) - afi(a)\ ,

o,(a,ß) = (Ul + (jf + 2 (ß - 0 J Ma) ~ a/-(fl) j ,

1 = 1,2,

f=l,2.

Let B-.Cir- {a~x{l, -1}} -► R defined by

(33) B(a,ß) = log
01 <72

02 ffl
(a, ß).

Lemma 10. B is a continuous function on Çlr - {a '{1,-1}}. harmonic on
o

Qr, verifying

(34)

(35)

BoTx=-B. BoT2 = -B,

lim 151 = +00.
lal-l

BoT3 = B.

Proof. First, note that from (32):

~2

exox(a,ß) =
4(a2- 1)

(Ht(a) - 4f2(a) + 4af(a)gi(a)),        i = 1, 2.

By Lemma 9 and (33), 5 is well defined if a(a, ß) ^ 1, -1 , 00 .

On the other hand, (30) gives

(36) «-'{1,-1} =

*-'<->-{(0-5*lA+G/)} ■

Taking into account (8), (32) and (33)

lim B = 1
|a|-»oo

and B is well defined if ¿z = 00
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Define

Vi(a, ß) = agi(a) - 2 (ß - ^ + ^l + (0  j f(a),

Pi(a, ß) = agi(a) -2U-r-- /l + (9j f(a),

i =1,2,

i =1,2.

Then, using (32) and (33)

S = log^
v2px

and therefore by (7), (4) and (36), (35) holds.
To deduce (34), use (4) and (31).
It is straightforward that AB = 0.   Q.E.D.

Theorem 2. There does not exist any orientable complete genus one minimal

surface in R3, of finite total curvature —8tt which Gauss map is singular at its

unique end.

Proof. Suppose x : M —> R3 is such a surface.

As usual, g, co will denote the Weierstrass representation of x.

We know M is conformally equivalent to M - {P} , where M is a compact

genus one Riemann surface.

Since bg(P) = 1, there exist three points Px, P2, P3, P ^ P¡, i = 1, 2, 3,
such that bg(P) = 1.

Denote c, = g(P¡), 1=1,2,3. It is clear that c¡ ̂  c¡, i ^ j.
Therefore

M = {(z, w) £ (C U {oo})>2 = (z- cx)(z - c2)(z - c3)}

and g = z , co = A- ^dz (see (2)).

Up to a rigid motion in R3, we will suppose r = cx + c2 + C3 G R.

For y,, i'=l,2, homology basis of M, put

dj = I —dz,    e¡ =      —dz,        i = 1,2.
hi w hi w

Integrating by parts

(37) j^dz=2{el-S-d„        1 = 1,2,

where 5 = C1C2 + C1C3 + C2C3.

As x is well defined, from (1) and (37):

(38) Adi = A (^e¡ - -dfj ,       Ae¡ £ z'R.

Since lm(d2/dx) ¿ 0 (see [11]), (38) yields s = -3, and (38) gets

(39) Ad, = A (ye, + d¡\ ,       Ae, £ z'R.

Consider y : M —> R3 defined by

y = 1*3--x\, yi + (0 x2,xx + ^x3\.
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It is clear that y = R o H o x, where R is a rigid motion and H is a

homothety.
Furthermore, the Weierstrass representation (y/x, i//2, Vï) of y is given by

(see (37) and (1)):

yi=A(l + (jf^dz + dki,

W2 = iAyjl + ^)2^+r^)dz + dk2,

<fi = dk3,

for suitable k¡, i = 1,2,3, meromorphic functions on M.

Thus, y is well defined if and only if

Put Co = ~C\C2ct, and take (ao, ßo) £ Sr such that

a2(r - 3ß0) = ßl - rßl - 3ß0 + c0.

Then, consider the following change of parameter:

(4!) * = -Lz-£i.
ao        «o

Hence, using (3), (30) and (41), (40) becomes

(42) (6xö2-e2öx)(ao,ßo) = 0.

Note that ¿z0 = ¿z(ao, ßo) ¥" 1, -1 , oo because of c, ^ c¡, i / j .

By (32) and (30)

a2
6,0,(0:0, ßo) = A, 2°_ n(3g2(¿z0) - 4/2(¿z0) + 4ao/(flo)ft(ao)),        «'=1,2,

4(¿Zq lj

and therefore Lemma 9 gives 0,-(an, ßo), oï(an, ßo) ^ 0, z = 1, 2.

So, (42) involves B(a0, ß0) = 0 .

On the other hand, define

Y={(a,ß)£Clr\ß£     R- 5-^G)>^ U{oo}

We observe (see (30)) that T = a~x({z £ z'Ru {oo}||¿z| > sß}). Using (34)

B(a,ß)=0    if(a,ß)£T.

We will show that B vanishes only on T.

If (a, ß) € /j, 1 = 1, 2, ;' = 1, 2, and a / 0, we have a , /? e R. Suppose

¿z(a, ß) > 1 . Using Remark 4, (32) and Lemma 3, B(a, ß)\ = 0 if and only

if

(3&Re(*i)-4/2Re(/,))(fl,)

-2a,(Re(ft)/2 + Re(/,)fe)(a,) = 0.
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Figure 5

So, (34) and Lemma 6 get B(a, ß) £ 0, (a, ß) G /j, i = 1,2, j = 1,2,

a^O.

Let ilx, Q2 denote the two components of ilr - T, and note that dQJr C

r U /,' U l2 U l\ U l\ (see Figure 5).
If B(a, ß) = 0, (a, ß) i r, we have seen (a, ß) $ I), i = 1, 2, j = 1, 2,

and therefore (a, ß) is an interior point of Qxr or Q.2.

The symmetries in (34), together with the Maximum Principle for harmonic

functions yields a contradiction.

So, if (a,ß)££lr,

(43) B(a, ß) = 0   if and only if    (a,ß)e T.

Thus (ao, ßo) £ T, and obviously ao / 0.

Since a0 G z'R, j80iR, then ¿z0 G z'R, and using (4), (32) and (42) we get

(44) Re(3/,2(¿z0) - 4g2(a0) + 4aofx(a0)gx(a0)) = 0

which is contrary to Lemma 7.

This fact completes the proof.   Q.E.D.

3. Genus zero minimal surfaces of total curvature -87z

In the following, we will suppose y = Genus(Af ) = 0.

Looking at Table 1, we can distinguish three different cases:  k = 1, k = 2

and k = 3.

First case, k = 3. Jorge-Meeks formula (2) yields Ix = I2 = I^ = I.

After a suitable change of parameter in Af = Cu{oo}, suppose that l/\/3,

-1 /V3 and 00 are the three ends of M, and up to rigid motion in R3, g(oo) =

00, bg(oc) = 0.
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Theorem 3. Up to homothety and rigid motion in R3 :

M = C-{l/v/3,-lv/3},

. z2 + cz + d
g(z) = B-

(45) z + a

z + a):

(z2"^T73)2
a   (z + fl)2    a

co = Q-\—-+r-^ dz

where

(1) if a± l/v7!, -1/V3, given rx, r2£R, r2¿0,

c = 0,        12a4 - (r2 + 3r2 + 4)a2 - r2 = 0,        a2(I - 3d)2 = r\,

(46) ,.i.    j.-^-'i',

n
(2)

(47)        c = 0,    a=l/v/3,-l/\/3,    </ = l,    0=1,    5gR-{0},

Proof. Up to rigid motion and homothety, we can assume (45), where B £

R-{0} and |0| = 1.
Looking at (1), since x is well defined (that is, <fik, k = 1, 2, 3, do not

have real periods):

c = 0,        3ö2-1 =62B2(l+3d)(l-d),

Im(0) = O,        lm(6a(l - 3d)) = 0.

Thus, we can suppose 0 = 1.

If a^ l/v7!, -l/\f3, then B2 = (3a2 - 1)/((1 + 3d)(l - d)).
Writing rx=a(l- 3d) and rf = 3(3¿z2 - 1)(1 + 3d)(l - d), (46) holds.

If ¿z= l/v^, -l/v/3, (48) gives d = I or d = -1/3.
Since Degree(g) = 2,  d i -1/3  (see (45)).   By (48), it is easy now to

conclude the lemma.   Q.E.D.

Definition 1. Denote by £F the family of surfaces given by (45)-(46) and (47)

satisfying (3d - l)2 i 12a2.
Geometrically, !F is the family of genus zero orientable complete minimal

surfaces of finite total curvature -87r and three catenoid ends. Here, a catenoid

end means an embedded end asymptotic to a catenoid. An embedded end P,

is a catenoid end when the Gauss map g is regular at P, (see [5]).
The Jorge-Meeks surface of degree 3 (the trinoid) is the first interesting ex-

ample in !?.

3.2. Second case, k = 2. We will suppose M = C - {0}, that this, Px = oo

and P2 = 0 are the two ends of M. Moreover, we can assume g(oo) = oc .

By formula (2) again, we have two possibilities: Ix = I2 = 2 or Ix = 1,

/2 = 3.

The following theorems are consequences of similar arguments that are given

in Theorem 3.
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Theorem 4. Suppose Ix = I2 = 2. Then, up to change of parameter in Cu {00},

homothety and rigid motion in R3 :

(1) If g has a regular end (without loss of generality, assume 00 is such an

end), g(0) i 00,

,,    r     rm         , ,     Dz2 + cz + d              _(z+l)2
M = C-{0},     g(z) = B-—¡-,     co = 6K--=^dz,

z + 1 ZJ

where

|0| = 1,    BgR-{0},    -1 = 62B2(c2+2d),    0(1+c)gR,        l-c+d^O,

and if bg(oo) = 0, g(0) = 00,

z2 + cz + \ 1
M = C-{0},    g(z) = B—--—,    co = 6-dz,

z z

where

0 = /,    5eR-{0},    -l=ß2(c2 + 2).

(2) lfbg(oo) = bg(0) = l,

M = C-{0},    g(z) = Bz2,    co = 6^dz,

where B £ R - {0}, 0=1.

Theorem 5. Suppose Ix = 1 and I2 = 3.  Then, up to change of parameter in

C U {00}, homothety and rigid motion in R3 :

(1) lfbg(œ) = 0,  £(0)¿OO,

z2 + d (z + l)2
M = C-{0},    g(z) = B^-,    œ = e[-ï±±Ldz

z + 1 z4

where z?eR-{0}, 0=1, d £C-{-l}, and if bg (00) = 0, g(0) = 00,

M = C-{0},     g(z) = B^—^-,    co = e\dz
z ZL

where B £ R - {0}, 0=1.

(2) 7/0,(00) = 1, g(0)¿0.

M = C-{0},     g(z) = B(z2 + 1),     co = d—idz
z4

where B £ R - {0}, 0=1 and if bg(oo) = 1, g(0) = 0,

M = C-{0},     g(z) = Bz2,    co = e\dz

where B G R - {0}, 0=1.

3.3.    Third case,  k = 1 . In this case, (2) involves 7] = 5 .

Assume that 00 is the unique end of M, and up to rotation in R3, #(00) =

00. As before, the following theorem holds.
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Theorem 6. Up to change of parameter in Cu {00}, homothety and rigid motion

in R3:

(1) //oÄ(cc) = 0,

M = C,    g(z) = BZ  +cz + \    co = 9z2dz
z

where

B£R-{0},    c,0eC,        |0| = 1.

(2) 7/¿>,(co) = l,

M = C,     g(z) = B(z2 + c),    co = 6dz

where

5eR-{0},    c,0gC,    |0| = 1.

4. Statement of result

An Osserman classical result (see [9]) classifies the catenoid and Enneper

surface as the unique complete minimal surfaces with total curvature -4n .

Thus, Theorems 1, 2, 3, 4, 5, and 6 imply our main result:

Corollary 1. Let M be an orientable complete minimal surface in R3 of finite

total curvature greater than -I2n.

Then, M is one of the following surfaces: a plane, a catenoid, Enneper surface,

a surface described in Theorems 3, 4, 5, 6, or Chen-Gackstatter surface.

5. A geometric consequence

Finally, we prove the following fact, which is related to Osserman-Mo theo-

rem in [7].

Corollary 2. Let M be a orientable complete minimal surface in R3.

If the Gauss map g takes on five distinct values (without counting multi-

plicities) at most once, then M is one of the following surfaces: the plane, the

catenoid, Enneper surface, a surface in the family ¡F or Chen-Gackstatter sur-

face.

Proof. First, by Osserman-Mo theorem in [7], M has finite total curvature.

Since M = M - {Px, ... , 7¿} where M is a compact Riemann surface, and

g extends meromorphically to M, we can define the total branching number

V of g by

v=YLbg(P).
P&M

It is well known (see [11]) that

(52) V = 2n + 2y-2

where, as usual, y = Genus(/17) and « = Degree(g).

Write by b¡, i = 1,..., 5, the five points in S2 such that

(53) Card((g-x{b,})nM)<l,

i = I, ... , 5, where "Card" means cardinality.
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By (53),

(54) k + 5 > Card(g~x{bx, ... , b5}) > 5« - V.

Then (54) and (2) yield

(55) 2k + y<6.

If y > 5, (55) gives k = 0, a contradiction. Assume y = 3, 4. In this case,

(55) involves k = 1. Looking at (53), we deduce

V>(n-2) + 4(n-l),

that is (see (52)),

(56) 2«<2y + 4.

Hence, using (2) and (56), we conclude 7i = 1, a contradiction.

In a similar way, if y = 2, then k = 2 and Ix = I2 = I or k = 1 and
7i = 1 . Schoen (see [10]) characterized first surfaces as catenoids and pairs of

planes. So, this case is also impossible.

Suppose now y = 1 .

From (54) and (2), k = 2 and 7i = 72 = 1 or k = 1 and 7i = 3.
As before, the first case gets a contradiction. Taking into account Theorems

1 and 2 and (2), the second case corresponds to Chen-Gackstatter surface.

Finally, y = 0 involves (see (54) and (2)):

(1) k = 1 and 7i = 3, which gives Enneper's surface (see [9]).

(2) k = 2 and 7i = 72 = 1, that is, a catenoid (see [9]).
(3) k = 3 and 7i = 72 = 73 = 1. Observe that (2) yields n = 2, and (53)

implies bg(Pj) = 0, i = 1, 2, 3 . These are the surfaces in !?.

This fact completes the proof.   Q.E.D.

Note added in proof. The author has learned that D. Bloss has obtained Theo-

rems 1 and 2 using different techniques (D. Bloss, Elliptische Funktionen und

Vollständige Minimalflächen, Ph.D. thesis, Freien Universität Berlin, Berlin,
November, 1989.)
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