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OPTIMAL NATURAL DUALITIES

B. A. DAVEY AND H. A. PRIESTLEY

This work is dedicated to the memory of Alan Day

Abstract. The authors showed previously that for each of the varieties B„ (3 <

n < w) of pseudocomplemented distributive lattices there exists a natural du-

ality given by a set of p(n) + 3 binary algebraic relations, where p(n) denotes

the number of partitions of n . This paper improves this result by establishing

that an optimal set of n + 3 of these relations suffices. This is achieved by

the use of "test algebras": it is shown that redundancy among the relations of a

duality for a prevariety generated by a finite algebra may be decided by testing

the duality on the relations, qua algebras.

1. Introduction

This paper opens a new chapter in duality theory. It was inspired by our com-

panion paper [4], in which we established natural dualities for the subvarieties

B« (« < « < co) of the variety Bw of distributive p-algebras. The schizophrenic

object defining the duality for B„ involved relations whose number increases

exponentially with « and we were led to ask whether a more tractable duality

exists. Until now the detection of redundancy among relations in a duality has

been more an art than a science, and consequently a daunting task. By introduc-

ing "test algebras" we show that science can supplant art. Our new technique
enables us to obtain a significantly simplified duality for B„ in case « > 3,

to show that, in a very strong sense, no simplification is possible for « < 3,

and to derive an optimality theorem valid for every «. To explain the test
algebra technique (which has potential value well beyond that exhibited by the

applications given here) we first need to set up some of the duality framework

constructed by Davey and Werner in [5].

Consider the prevariety sé = ISP(Z) generated by a finite algebra P. A k-

ary relation r on P is called algebraic if it is a subalgebra of Pk . Given a family

R of algebraic relations on P_ we define a topological, relational structure P^:=

(P, ZT, R), where ST is the discrete topology. Define %? to be the category of

closed substructures of powers of _P. Given A £ sé , each relation r £ R may

be extended pointwise to the set sé(A, P) of homomorphisms from A into

P_. It is then easily seen that sé(A, P) is a closed substructure of JP4 . For each

A £ sé and all a £ A, the evaluation map eA(a) : sé (A, P) -> P,, given by <p >->
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cp(a), is continuous and preserves each relation r £ R. If the evaluation maps

are the only continuous relation-preserving maps from sé (A, P) to ^P, then

we have a representation of A as an algebra of continuous relation-preserving

maps. In this case we say that R (or P) yields a duality on A. If R yields

a duality on each algebra A £ sé , then we say that R (or P) yields a duality

on sé. All of this may be dressed up in appropriately categorical language. We

have well-defined contravariant hom-functors

D(-):=sé(-,P):sé -+&,    and   E(-) := 3f(- ,P): 3f -» sé.

If R yields a duality on sé , then sé is dually equivalent to a subcategory of

Sf via the functors D and E. (See Lemmas 1.1 to 1.5 in [5] for the details.) In

summary we see that if the alter ego f> = (P;ET,RZ) of P is suitably chosen,

then we have a concrete representation of each algebra A £ sé as the algebra

ED (A) of all continuous, /î-preserving maps from D(A) to P.

It is a fundamental tenet of [5] that the relations in R be algebraic. This

assumption underpins the categorical formalism presented above, since it is

exactly what is needed to ensure that the functors D and E axe well defined.

Thus the algebraicity of the relations in R might be considered as already

having served its purpose. In fact we shall exploit this assumption in another

way, by taking advantage of an extension of the schizophrenia inherent in the

P versus JP. personality split. Each relation r £ R lives a second life as a

subalgebra of some Pk ; we shall denote this algebra by r. Thus r £ sé .

Assume that we have a finite set R of algebraic relations on P_ which yields

a duality on sé . In practice we would like R to be minimal with respect to

yielding a duality on sé, and preferably also of the minimum possible size.

Fix r £ R and consider R* := R\{r}. It is not at all clear that the problem

of determining whether R* also yields a duality on sé is a finite one since
it apparently requires us to check that R* yields a duality on every algebra

A £ sé . In §2 we prove (with surprising ease) a surprising result. We establish

that R* yields a duality on sé provided it yields a duality on a single algebra—

namely the algebra r (which we shall henceforth refer to as the test algebra

corresponding to the relation r ). We therefore have an algorithm for deciding

whether R* yields a duality on sé . This involves two steps.

(1) Obtain a viable description of D(r), that is, of sé (r_, P_) and the rela-

tional structure on it induced by I? := (P; 3", R*).

(2) Compute the number, A = \ED(r)\, of R*-preserving maps from D(r)

to F, with |r|.

Proposition 2.3 implies that r can be deleted from R without destroying the

duality if and only if A ^ \r\. It follows that the problem of reducing R
to a minimal family is one which, with sufficient computer power and human

cunning, can be programmed.

Before we can explain what is involved in applying the above procedure to

the varieties B„ , some recapitulation is necessary.

Recall that B^ is the class of algebras (A ; V, A, * , 0, 1) of type (2,2, 1,
0, 0) such that (A ; V, A, 0, 1 ) is a bounded distributive lattice and a* (the
pseudocomplement of a) is given by a* = max{b £ A | a A b = 0}. The lattice

of subvarieties of Bw is an u>+ 1 chain

B_, cB0 cBi C ••• CB„ c ••• CB,
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where B_! is the trivial variety, B0 is the variety of Boolean algebras and B[

is the variety of Stone algebras. For « > 0, we have B„ = ISP(£„) where the
p-algebra Pj, is obtained by adjoining a new top, T , to the «-atom Boolean

lattice (whose elements we identify with subsets of {1,2,...,«}, with 0

designated 1 and {1,2,...,«} designated d).
To obtain a duality for B„ following the Davey-Werner pattern it is necessary

to define a suitable topological, relational structure JPj, — (Pn ; Z7~, R) on the

underlying set Pn of Pj,. This was achieved for « = 0 (Boolean algebras)

by Stone [12] and, 40 years later, for « = 1 (Stone algebras) by Davey [1, 2].

Higher values of « remained out of reach until Davey and Werner's piggyback

technique [6, 7] became available; this was successfully applied to B2 in [6, 7],

and, with additional invocation of duality methods, extended to arbitrary B„

in [4]. For « — 0 the set of relations is empty. For each « > 0, the duality

is given by a suitable set R of binary algebraic relations on Pn . We give a

full description of R (as defined in [4]) when we have the necessary notation

to hand (see §3). Here it suffices to recall some salient points. We may write

R = S U G where

(i) & is a set of binary algebraic relations in one-to-one correspondence

with the partitions of the integer « , and

(ii) G is a generating set for the endomorphism monoid, EndP„ , of P_„.

(Here we have blurred the distinction between an endomorphism and its graph.)

The endomorphisms of P_n are of two types:

(a) automorphisms, each of which is induced by a permutation of the atoms

{1}, {2, },...,{«} of Pn;
(b) endomorphisms with image {1, T}, each of which is a map e, (i £

{1,2,..., «}) where e~x(l) consists of those subsets of {1,2, ... , «}
which do not contain i.

We denote by fs and f the automorphisms induced by, respectively, (12)

and (123), and let f, := ex . Then EndP„ is generated by fv (n = 1), by

fv , fs (n = 2), and by fv , fs, fy (« > 3).
Thus, for every « we have a duality for B„ involving at most p(n) + 3

binary relations, where p(n) is the number of partitions of the integer «. Table

1 specifies the dualities for « < 3. The relations in S axe depicted, for « =

1, 2, 3, in Figures 1, 2, 3, respectively. (To save space, we have not drawn < in

the case « = 3 . It suffices to know that for all « > 1 the order is an antichain

except for the relation d < T.) These relations are induced by partitions

as follows: the order < arises from the «-part partition (1, 1, ... , 1), the
relation -I from the 1-part partition, and the relation < from the unique 2-part

partition (2,1) of the integer 3. For an explanation of this correspondence,

see [4].

Table 1

Variety   Endomorphisms   Relations References

Bq                   0                     0 [12]

Bi_fv_< [1,2]

B2 fv, fs_<,H [6,7]
B3 Jv , JS , jy <,"!,< [4]
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For « = 1,2,3, the duality for B„ involves « nonendomorphisms, and

« equals p(n). As « = 4 is the smallest value such that p(n) > n, it was

clear that careful analysis of the cases « = 3 and « = 4 would be required if

we were to decide whether the minimal number of nonendomorphisms needed

in general is closer to « or to the inherently exponential p(n). This was our

stepping-off point for the present paper. We sought to discover whether the

number of partition-induced relations in the duality for B4 could be reduced

from p(4) (viz. 5) to 4.
The idea of using a "test algebra" to discriminate between avoidable and

unavoidable relations goes back to this very early stage of the project, though

the theory presented in §2 evolved much later. Even without that theory, it was

trivial that if we could find an algebra A £ B„ such that R yielded a duality on

A but R\{r) failed to do so, then r could not be dropped without destroying

the duality. It quickly became clear that the most tractable choices for A , for

example short chains, were not rich enough in structure to yield information.
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The next obvious candidate for A was the algebra r. Taking r as the

test algebra, for each r £ R in turn, and calculating by hand we were able

to show that none of the relations <, H , and < could be dropped in the case

« = 3. For « = 4 there were two obvious candidates for deletion: the relations

corresponding to the partitions (2,2) and (3, 1) have isomorphic test algebras

and hence it was natural to try to delete one of these relations (which we shall

call r' and r"). Up to isomorphism we have

¿ = r" = ((22 © 1) x 22) © 1.

Hence if r denotes either r' or r", then \r\ = 21. Also |JRi¡ = 17 and

l-K\{/}| = 7. The theory which we developed to handle Step (1) of the test
algebra procedure for B„ (and which is presented in §3) told us that B4(r, P4)

has 42 elements and provided easy access to its relational structure. We were

then faced with the intimidating task of calculating the number of maps from

a 42-element set into a 17-element set which preserve 7 relations.

At this juncture we sought computer assistance. We are grateful to Dr. Martin

Ward for writing a viable program (which appears in [13]) for calculating the

relation-preserving maps between two finite sets each carrying a finite set of

binary relations. His iterative backtracking algorithm, refined in various ways

specific to the B„ problem, allowed us to investigate the case « = 4 using

only the computing power of a PC. We remark that the same program has

subsequently provided valuable computer backup to the solution of a number of

other problems involving relation-preserving maps and, in particular, problems

concerning dualities; see [11].
Using the backtracking program we obtained the following results concerning

the partition-induced duality for B4 :

(i) each of -R\{r'} and R\{r"} yields a duality on the common test algebra
corresponding to the relations r' and r" associated with the partitions

(2,2) and (3, 1);
(ii)   R\{r', r"} fails to yield a duality on the test algebra corresponding to

r' and r" ;

(iii) when r is the relation corresponding to any one of the partitions (1,1,

1, 1), (2, 1, 1) and (4) then R\{r} fails to yield a duality on r_.

We deduced that the only possible reduction would be the removal of just one

of the relations r', r" . It was at this stage that we proved the results of §2. Con-

sequently we were able to conclude that either r' or r" can indeed be removed,

so that the reduction from p(n) nonendomorphisms to « nonendomorphisms

can be achieved in this case.

Our experiments with « = 3 and « = 4 suggested that a minimal partition-

induced duality for B„ must include at least one relation associated with an

/-part partition of « , for each of the possible values 1,2,... ,n of I (along

with a generating set for EndP„). It turns out that the relations induced by

partitions (j\,..., j¡t) and (k\,..., k¡2) axe isomorphic as algebras if and

only if h =l2. Accordingly we define two binary algebraic relations to have the

same shape if they are isomorphic as algebras and we say that a binary algebraic

relation on Pj, has shape I if it has the same shape as the relation induced by
some /-part partition. Equivalently, a binary algebraic relation r has shape /

if and only if r is isomorphic to ((2' © 1) x 2"~7) © 1.
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In §4 we prove that if S is a set of partition-induced relations and G is a

set of endomorphisms such that R = S 11 G yields a duality on B„ , then G

generates EndP„ as a monoid. The main result of §4 applies to arbitrary binary

algebraic relations not just to the partition-induced ones. It states that for each

/ with 1 < / < «, the relations of shape / are unavoidable in any duality

given by binary algebraic relations. More precisely, if S is a family of binary

algebraic relations on P„ which, along with some set G of endomorphisms of

P_n , yields a duality on B„ , then for all / with 1 < / < « , the set S includes

at least one relation of shape /. We deduce that \S\ > «. An immediate

consequence is the strongest possible optimality result for the dualities given

earlier for Bi, B2, and B3. For « £ {1, 2, 3} , let Sn ç S(P2) be given by
Si = {<} , S2 = {<, H} , and S3 = {<, H, «}. If S is a family of binary
algebraic relations such that R — S U G yields a duality on B„ , for some subset

G of EndP,¡, then, up to replacing a relation by its converse, S contains Sn

as a subset.

For « > 4 we cannot hope for such a sharp optimality result since it is

possible to find relations r and s which both have shape / while s is not

the converse of r. Certainly, there is no a priori reason why a set of algebraic

relations which is minimal with respect to yielding a duality on a prevariety sé

should be unique in any way. Nevertheless there is a strong optimality theorem

for each of the varieties B„ for « > 4. Suppose that R = Sl)G is a set of binary
algebraic relations yielding a duality on B„ , where G is a subset of EndP„ and

S is a set of partition-induced relations. The theorems stated in the preceding

paragraph imply that \R\ > n + 3 . Our computer analysis shows that the lower

bound « + 3 can be attained when « = 4. In §5 we confirm that this remains

valid for general « . Specifically we prove that if S = {ri, ... , rn}, where r¡

is any binary algebraic relation on P_n of shape / (1 < / < n) and G is the

3-element generating set for EndP„ defined earlier, then P = (/)„;y,5uG)

yields a duality on B„ . It took an inordinately long time to find a proof of this

result which both authors were willing to believe simultaneously. We trust that

the series of lemmas which culminate in the theorem will cause less pain in the

reading than they did in the writing.

The endomorphisms of P_„ play a somewhat ambivalent role here. On one

hand, an endomorphism e may be viewed as a unary operation in the type of

Pj, ; the corresponding unary operation on D(A) — B„(A, P_n) is then defined in

the obvious way via composition. Alternatively, we may replace e by its graph

and hence regard e as a binary relation in the type of Pj,. As far as developing

a duality is concerned, it does not matter which path we elect to follow: a

map cp : D(A) -» Pj, preserves the unary operation e if and only if it preserves

the corresponding binary relation. In applications of duality theory it is often

important to know that we have a full duality between the algebraic category

(B„ in our case) and the topological category Sf, that is, that the evaluation

map from X to DE(X) is an isomorphism for all X £ Z2?, or equivalently,

that each object X £ 3? is isomorphic to D(A) for some A £ B„ . Note that

D(A) is closed under the action of EndP„ , while arbitrary closed subsets of

powers of Pj, need not be. Thus, in order to achieve a full duality we must

refrain from replacing an endomorphism by its graph. Consequently, we often

write Pj, = (Pn;¥, G,S) rather than Pj, = (Pn ; &~, Sü G).
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2. Avoidable relations

Once we have a finite set R of algebraic relations which yields a duality on

sé = ISP(P), we naturally wish to delete relations from R until a family is

obtained which is minimal with respect to yielding a duality on sé . In the

past, this often difficult problem has been solved by a combination of inspired

guess work and ad hoc techniques. It was enough to stop the authors of [6, 7]

in their tracks while trying to obtain a workable duality for the variety B3. In

this section we add a little more science to the pot of available techniques.

Consider a fixed relation r £ R. We shall prove the tantalizing fact that in

order be sure that R\{r} still yields a duality on sé , it suffices to check that

R\{r) yields a duality on a single algebra—namely the test algebra r £ sé .

It follows that the problem of reducing R to a minimal family is a finite one

which we may hope to be able to program. As we have already mentioned, it

was the success of such a computer program in producing a minimal duality for

the variety B4 which ultimately led to this paper.

The idea of taking a relation r ç A2 which is a subalgebra of A , viewing it

as an algebra r in its own right and then imposing r on it as a relation has been

very successfully exploited in other parts of universal algebra. For example, the

idea of viewing a congruence a € Con A as an algebra a and then looking at

the congruence a x a on a is fundamental to Gumm's geometric approach to

the commutator in modular varieties; see [9].

Although most of what follows in this section is valid when P is a compact

topological algebra, to simplify the presentation we shall continue to assume

that P is finite and its topology discrete.
We say that a family R of relations generates a relation r on an algebra

A £ sé (or on a family 38 C sé) if whenever a continuous map cp : D(A) —> P

preserves each relation in R, it also preserves r (for each A £ 38). Clearly,

if R yields a duality on 38 and R\{r} generates r on J1, then the smaller

set, R\{r} , also yields a duality on 38 . If R generates r on sé , then we say

simply that R generates r.
We begin with a simple lemma from which the main results of this section

follow. To avoid confusion, we shall sometimes denote a relation r on P by

rP and its pointwise extension to D(A) - sé(A, P) by rD{A). If f , ... , f„ £

D(A), then the product map f n ■ • • n fn : A —> Pn is defined by

(Va£A)(fln---nf„)(a):=(fi(a),...,fn(a)).

Observe that (f , ... , fn) £ r^A) says precisely that the image of the homo-

morphism /j n- • -nfn lies in the subalgebra r of P". Hence, if (f , ... , f„) £

rD(A), then fx n • • ■ n /„ : A —> r is a well-defined homomorphism.

Lemma 2.1. Let A £ sé , let r < P", and let cp: D(A) -> P be a map. If
(f\, ■■■ , fn) £ rD{A) and cp o D(fx n • • • n/„): D(r) -» P is given by evaluation

at some point c £ r, then (<p(fx), ... , cp(f„)) £ rP .

Proof. Assume that cp o D(fx n • • • n f„) = eL(c) for some c = (cx, ..., c„) £r.

Let n¡: r —> P be the ith projection. Then

fifi) = <P(*: o (/, n • • • n /„)) = cp(D(fx n • • • n /„)(«/))

= (er_(c))(n,) = Ui(c) = a,

and consequently (cp(fx), ... , <p(fn)) = (cx, ... , c„) = c e rP.   D
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While this lemma may look a little technical, its consequences are both simply

stated and somewhat surprising.

Proposition 2.2. Let R be a family of finitary algebraic relations on P_. If R

yields a duality on the test algebra r<Pn, then R generates r.

Proof. Let A £sé and assume that cp: D(A) —> P is continuous and preserves

the relations in R . We must show that cp preserves r. Let fx, ... , fn e D(A)

with (/.,..., f„) £ rD(A). Since y/ := cp o D(f n • • • n /„) : D(r) -> P is well
defined, continuous and preserves the relations in R and since R yields a

duality on r, it follows that y/ = eL(c) for some c £ r. Thus, by Lemma 2.1,

we have (cp(fi), ... , cp(fn)) £ rP ,as required.   O

Proposition 2.3. Let Rx be a family of finitary algebraic relations on P. Let

R be a subset of Rx and assume that Rx yields a duality on sé . Then the

following are equivalent :

(i)   R yields a duality on sé .
(ii)   R yields a duality on each of the test algebras r where r £ RX\R.

(iii)   R generates each of the deleted relations in RX\R on each of the test

algebras r where r £ RX\R.

Proof. Since (i) => (ii) ■& (iii) is clear, only (ii) =>■ (i) remains to be proved.

Since Rx yields a duality on sé , to prove that R also yields a duality on sé it

suffices to show that R generates each relation in RX\R. Given that R yields

a duality on each of the test algebras r where r £ RX\R, this follows at once

from the previous proposition.    D

If Rx is finite we have a stronger result.

Proposition 2.4. Let Rx be a finite set of finitary algebraic relations on P_ and

assume that Rx yields a duality on sé . If R ç Rx and R generates r on the

test algebra r for each r £ RX\R, then R yields a duality on sé .

Proof. By induction, it suffices to prove the result in the case |/?i\/?| = 1 , say

Ri\R = {r} . But this follows at once from the previous result.   D

Proposition 2.5. Assume that P_ has a (k + I )-ary near unanimity term t for

some k > 2, that is, P satisfies the identities

t(x, ... , x, y) « t(x, ... , x, y, x) « • • • « t(y, x, ... , x) « x.

If RC S(Pk) generates r on the test algebra r for each r £ S(Pk)\R, then R

yields a duality on sé .

Proof. Bythe AfJ-Duality Theorem (1.18 and 1.19 in [5]), the set S(£*) yields
a duality on sé . Now apply the previous proposition.   D

3. Extending the piggy back philosophy

In [4], a set R of binary algebraic relations on Pj, which yields a natural

duality on B„ was found by applying the piggyback technique. In essence, this

philosophy says that if a finite algebra P has an underlying {0, 1 }-distributive

lattice structure, we should be able to use the well-understood duality between
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the category D of bounded distributive lattices and the category P of compact

totally order-disconnected spaces to

(a) help find a structure Tf=(P;ZT,R) which will yield a natural duality
on sé = ISP(P),

(b) refine the structure Tf to make it more manageable,

(c) study the structure of the individual relations in R,

(d) transfer information between the natural dual category and the restricted

D-P dual category thereby enjoying the best of both worlds.

General approaches to (a) have been developed in Davey-Werner [6, 7] and in

Davey-Priestley [3]. The companion paper to this, [4], was devoted precisely to

(b) and (c) in the case of the varieties B„ . The second half of [3] illustrates

(d) for certain varieties of Ockham algebras. We now take this philosophy one

step further by representing both the natural dual D(A) = sé (A, Pj,) and the

relational structure Pj, as sets of maps in P thereby invoking the categorical

imperative that everything is a morphism.

We begin with a very brief recap of the restricted D-P duality for B„ given in

[10] and the natural duality for B„ established in [4]. Every {0, 1 }-distributive

lattice L is isomorphic to the lattice of clopen up-sets of its dual space H(L) :=

D(L, 2), which is topologized as a subspace of 2L and ordered pointwise. As

an ordered set, H(L) is isomorphic to the set of prime filters of L ordered by

inclusion, and in case L is finite, H(L) has the discrete topology and is order

anti-isomorphic to the set of join-irreducible elements of L. Moreover, L is

pseudocomplemented if and only if Y = H(L) is a p-space, that is, a compact

totally order-disconnected space with the property that for each clopen up-set

U in Y, the set

| U := {z £ Y | z < y for some y £ U}

is clopen. Given A, B £ Bw , a map / £ D(A, B) preserves the operation *

of pseudocomplementation if and only if y/ = H(f ) is a p-morphism, that is,

it is a continuous order-preserving map with the property that

(//(maxy) = max y/(y)   for all y £ H(B).

Here max z denotes the set of maximal points above z . The subvariety B„ of

Bo) is characterized by the property that each prime filter of an algebra A £ B„

is contained in at most « maximal filters.

Proposition 3.1. The restriction of the functors H and K establishes a con-

travariant category equivalence between B„ and J^, where %/„ is the category

whose objects are p-spaces in which each point is majorized by at most n max-

imal points and whose morphisms are the p-morphisms.

The dual H(Pn) of Pn in P is the ordered set Vn shown in Figure 4. As in

[4], we henceforth identify £„ with the lattice of up-sets of V„ : the empty set

is denoted by X , the whole set by T and the co-atom {1,2,...,«} by d.

Figure 4
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The D-homomorphism a: P_n —> 2 = {0, 1}, which sends T in P_n to 1

and all other elements of Pj, to 0, plays a vital role in [4]. Indeed, the general

piggyback theory from [6, 7] shows that the endomorphisms of P_n along with

the subalgebras of P}n which are maximal in

a-x(<):={(a,b)£P2n\a(a)<a(b)}

yield a duality on B„ . Since finite products in D correspond to disjoint unions

in P and since embeddings in D correspond to surjections in P, every subal-

gebra r of P}n corresponds (in J^) to a pair of p-morphisms

P\, Pi : V„ -* Yr,    where Yr = H(r),

which are jointly surjective (that is, for all y e YL there exists i £ Vn such

that either px(i) = y or p2(i) = y). Furthermore, r ç a~x(<) if and only if

^i(O) < p2(0), and r will be maximal in a~'(<) if and only if pi(0) < p2(0)

and Yr_ has exactly « maximal elements; then \Y¿ = n + 2 and Yr_ has the

shape shown in Figure 5 for some / with 1 < / < «. Since, for fixed «, the

ordered set in Figure 5 depends only upon the integer /, we denote it by Y¡.

It is often helpful to think of px and p2 as providing new labellings of the

maximals of Y¡ : if px (i) = j, then label j with the symbol i, and if p2(i) = j

then label j with the symbol i .
Every partition p — (kx ,k2, ... , k¡) of the integer « with kx > k2 > ■ ■ ■ > k¡

gives rise to a (left-packed) subalgebra M(kx, k2, ... , k/) of P}n corresponding

to the pair px, p2: V„ —> Y¡ defined as follows:

px(i) = i   foxalli£Vn = {0,l, ... ,n},

p2(0) = 0   and   p2(i) = j       for all i £ Xj,

where

Xx = {l,...,kx},

X2 = {ki + 1, ... ,ki+k2},

Xi = {ki+k2+l, ... ,ki+k2 + k3}, ... ,

X¡ = {« - ki + 1, ... , «}.

1 2 £ £ + 1    £ + 2 n

0

Figure 5
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112       2 34   3      4 112 3     24     3      4

0

Y(2,2) Y(3,l)

Figure 6

To illustrate the notation, consider the relations r' and r" associated with the

partitions (2, 2) and (3.1) of « = 4. The corresponding labelings of Y2 axe

shown in Figure 6. The jointly surjective maps Pi, p2 axe given by

pi = id    for both r' and r",

p2(l) = p2(2) = 1,    p2(3) = p2(4) = 2       foxr',

p2(l) = p2(2) = p2(3) = 1,     p2(4) = 2       foxr".

Let S, y denote the permutations (12) and (12... «) of V„, respectively,

and let fs and fy be the corresponding automorphisms of P„ . Let fv be the

endomorphism of Pj, corresponding to the constant map v: V„ —» V„ onto

{1} . The following is the main result of [4] and shows that there is a natural

duality for B„ requiring at most p(n) + 3 binary algebraic relations.

Proposition 3.2. Let « > 1. Then Su G yields a duality on B„ , where

(i)   S = {M (ki, k2, ... , k¡) \(ki, k2, ... , k¡) is a partition of «},
(ii)   G is (the set of graphs of) a generating set for the endomorphism monoid

ofiPn-,
( {fv} ifn = l,

G=l {fv,fs}        ifn = 2,

I {fv,fs,fy}   ifn>3,
suffices, where fv,fs, and fy are defined as above.

In the next section, a seminal role will be played by the dual in J^, of the free

algebra FB„(1). Since B[ is characterized by the Stone identity, x"Vx* « 1 ,

it is easily seen that FBx(l) is isomorphic (as a lattice) to the direct product

of a two-element and a three-element chain; at the other end of the varietal

spectrum, FBw(l) is as shown in Figure 7 (see [8]). Since /rB(J(l) belongs to

B2 it follows that FB„(1) s FBw(l) for all « > 2 .

pi
i x" V x*

T
o

o o

1   d

F = H(FB1(l))

iVi

FB„(1) for r, ^ 2 F = H(FBn(l)) for n >2

Figure 7
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Let F := H(FBn(l)), as shown in Figure 7. Then we have natural bijections

Pn~Bn(FBn(l),Pn)~%(H(Pn),H(FBn(l)))=%(Vn,F).

For 2 < « < co, the composite bijection T: Pn —» J^(F„, F) is defined as

follows: Y(a) — y/a : Vn —* F for all a £ P„ , where y/a is the unique p-

morphism from V„ to F satisfying (^a(0) = a when a £ {X, d, T} , namely,

VtO) = T    for all i £ Vn ,

V±(i) = T    for all i £ Vn,

...       ÍT    if/ G {1,2,...,«},

*(,)BS{¿   if/ = 0,

and for 0 c a c d, the map ya: Vn ̂  F is the p-morphism which on the

maximals of Vn is the characteristic function of a, namely,

{T   if i £ a,

X   if i e d\a,

b    if i = 0.

The notation for the elements of Z7 given in Figure 7 was chosen to make

the definition of T natural (the letter b should remind the reader that p-

morphisms y/: Vn —► F with ^(0) = b correspond to the proper, nontrivial

Boolean elements of P„).
Let A £Bn and denote H (A) by YA . Then the functor //: B„ —> $f„ gives

a bijection

D(A) := Bn(A, £,) -^ ^ (//(£,), //(^)) = ^(KB , YA).

Our next result, whose proof we leave to the reader, shows that this bijection

carries over the relational structure in a very natural way.

Proposition 3.3. Assume that r < Pfn  and that r corresponds to the pair of

jointly surjective p-morphisms px, p2: Vn —► Y¡. Interpret the relation r on the

set yn(V„,YA) by declaring that a pair of maps <px, tp2 £ f/n(Vn, Y a) satisfy

(<P\, <Pi) £ r if and only if (cpx, tp2) factors in yn  through (px, p2), that is,

there exists p£'p'n(Y¡, YA) such that the diagram below commutes.

(i) The natural bijection between D(A) = B„ (A, P_n ) and f/n(Vn, YA) given

by the functor H is an isomorphism with respect to the relation r.

(ii) Every p-morphism p: Y¡ —► YA gives rise to a pair of maps cpi, cp2 £

%(Vn , YA) with (cpi ,cp2)£r, namely cpx := p o px and y>2:= p° p2.

The functor H : B„ —► ^n also gives a monoid isomorphism

EndP„ = B„(P„ , Pn) -^%(Vn, Vn) = End Vn.
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Of course, each element e £ End V„ acts on %(V„, YA) by composition

(V^ 6 %(Vn, YA)) e(¥):=y/oe£ %(Vn , YA).

Thus we may take any family S of binary algebraic relations on P„ and any

set G of endomorphisms of Pn and interpret them on %Sn(Vn, YA) in such a

way that (J^(F„ , YA); G, S) is an isomorphism copy of (B„(A, P_„) ; G, S).
In particular, since Pj, is isomorphic to D(FBW( 1 )), it follows that the structure

(%(Vn ,F);9',G,S) is an isomorphic copy of Pj, = (Pn ; &, G, S). This
turns out to be a particularly useful view of the world as will be seen in the

following two sections.

4. Unavoidable relations

The main result of [4] (Proposition 3.2 above) tells us that the left-packed

(partition-induced) relations along with a generating set for EndP„ yield a

duality on B„ . Our first unavoidability result shows that the endomorphism

monoid plays an essential role in such a duality.

Theorem 4.1. Let S be a family of left-packed subalgebras of P}n and let G be
a family of endomorphisms of P_n. If Pj, — (Pn; ZZF', G, S) yields a duality on
B„, then G generates EndPj, as a monoid.

Proof. Assume that Pj, = (P„; ZT, G, S) yields a duality on B„. We shall
show that G must contain at least one endomorphism which is not an auto-

morphism along with a generating set for Aut£„ . Note that, regarded as a

subalgebra of P2, each endomorphisms of P„ is isomorphic to P_n ; whence

the appropriate test algebra for an endomorphism is P„ itself.

Let yi: D(P„) = EndP„ -» Pn be the constant map onto {d}. Since the

automorphisms of Pj, all map d to d and since every left-packed subalgebra

of P}„ contains the pair (d, d), the map y/ preserves all automorphisms of

Pn and all left-packed subalgebras of P2. Clearly, y/ does not preserve any

endomorphism which is not an automorphism since such endomorphisms map

d to T . It follows that the set G contains at least one endomorphism which

is not an automorphism.

Since P_x has no nonidentity automorphisms, we may now assume that « >

2. Let H be the subgroup of Aut P„ generated by the automorphisms in G.

Define a map cp: D(P_n) = EndP„ —> P„ by

{T    if e£ EndP„\AutP„,

d    ife£H,

T   if e£ Aut Pn\H.

We claim that cp preserves all left-packed subalgebras of P2„ and preserves

an endomorphism if and only if it is in either End£„\ AutP„ or in H. We

conclude at once that H = AutPj,.

Let r be a left-packed subalgebra of P}n and suppose, by way of contradic-

tion, that e, f £ EndP„ with (e, f) £ r but (cp(e), cp(f)) £ r. Since every

left-packed subalgebra of P2 contains (d, d), (d, T), and (T, T), it follows

that (<p(e), cp(fi)) = (T, d), whence f £ H and e $ H. Since (e, f) £ r,
we have

{(e(a), fi(a)) \ a £ Pn} ç r.
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As / is surjective, it follows that the second projection restricted to r maps

onto Pn . The only left-packed relation with this property is the order corre-

sponding to the partition ( 1, 1, ... , 1 ). Thus,

r = {(x,x)\x£Pn}U{(d,T)}.

Hence e(a) = f(a) for all a e Pn\{d} and consequently (as « > 2) we have

e = f, contradicting the fact that f £ H and e £ H. Thus cp preserves all

left-packed relations.

Let / £ End£„\ Aut£„ and let e £ End£„ . Then

<Pifie)) = cp(eof) = j   aseofe End£„\ Aut£„ ,

and

fi(cp(e)) £ f({d, T}) = {T}   as / £ End£„\ Aut£„ ,

and therefore cp preserves /.

Now assume that f £ H and let e £ End£„ . Using the fact that e o / e H

if and only if e £ H, it is easily seen that

<Pifie)) = <Pieof) = \       !*       ' D.„
[ T   if e £ EndPj,\H.

Since / is an automorphism, we find

f«Pie)) = lm = d    lfeeH>
I f(V = T   if e £ EndPn\H.

Hence cp preserves /.

Finally, let / £ AutP„\H. Then tp(f (id)) = <p(id°f) = cp(f) = T, while
f(cp(id)) = f(d) = d, whence cp does not preserve /.   D

We turn now to the binary algebraic relations on £„ which are not (graphs

of) endomorphisms. Let r be a binary algebraic relation on Pj,. We shall refer

to the ordered set YL = H(r) (up to order-isomorphism) as the shape of r.

thus two algebraic binary relations have the same shape if and only if they are

isomorphic as algebras. If r is a subalgebra of P}n which is maximal in a~x (<),

in particular if r = M(kx, ... , k¡) for some partition (kx, k2, ... ,k¡) of « ,

then the shape of r is uniquely determined by the number, /, of maximals

above Ö (see Figure 5); in which case, we refer to r as a relation of shape

/. Conversely, if r is a relation of shape Y¡, then either r or its converse,

C := {(a, b) | (b, a) £ r} , is maximal in a-1 (<) • Since the shape of a relation

is determined only up to isomorphism, the concept blurs the distinction between

a relation and its converse. This is deliberate as it is a completely trivial change

in the character of Pj, to replace one of the relations by its converse.

Lemma 4.2. Let r and s_ be subalgebras of P2 which are maximal in a~x(<).

Then s has the same shape as r if and only if there is a surjective p-morphism

from Ys onto Yr.

Proof. Let p : YL —» Yr_ be a surjective p-morphism with r and 5 maximal in

a~x(<). Since \Y¿ = \YL\ = n + 2, it follows that the most p can do is shuffle

maximal elements. In order to satisfy p(maxÔ) = maxp(0), we must have

| maxÖ| = | maxp(0)\, whence p is a /^-isomorphism.   G
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Proposition 4.3. Let r be a subalgebra of P}n which is maximal in a_1(<).

Then there is a map <P: B„(r ,£„)—> Pn which (a) preserves the action of every

endomorphism of Pj,, and (b) preserves a binary algebraic relation s if and only

if the shape of s is different from the shape of r.

Proof. We shall use the approach developed in the previous section and replace

B„ (>,£,) by %(Vn,YL) and Pn by %(Vn,F). Since the case « = 1 is
a simple modification of the argument below and requires a different F (see

Figure 7), we shall assume that « > 2.

Let r < P2 be maximal in a_1(<). We require a map 4>: pn(Vn, YL) ->

%(Vn,F) which

(i) preserves the action of each e £ yn(Vn, V„),

(ii) does not preserve relations s with Y^= Yr_, and

(iii) preserves relations 5 with Ys_ ¥ YL.

Consider the map ß: YL—> F defined as

T   if y is maximal in Yr_,

ß(y) = \ d   ify = 0,

. T   ify = 0.

Although ß is not even order-preserving, we claim that ß o y/ £ y„iVn , F) for

all yi £^n(Vn, YL). Firstly, ß o y/ is order-preserving since {0,0} £ y/(V„)

and 0 < Ö is the only order relation on Yr which ß fails to preserve. Since ß

satisfies
(Vy £ Y¡)   ß(maxy) = maxß(y),

it now follows that jSo^e %(Vn , F). Hence O: %(Vn , Yfj -+ %(Vn , F),
given by y/ ̂  ß o y/ , is well defined.

It is trivial that O preserves the action of pn(Vn, Vn) since this is just the

associative law for composition of maps:

<&(e(yi)) = ß o (y/ o e) = (ß o y/) o e = e(Q>(y/)).

Thus (i) holds.
Now consider (ii). Let s be a binary algebraic relation on P_n which has

the same shape as r and let ox, a2 : V„ —> YL be the jointly surjective maps

which correspond to 5. Hence there is a p-isomorphism p : Ys -> Yr_. Thus

y/x := p o o-, and y/2 := p o o2 are elements of yn(V„, YL) with (y/x, y/2) £ s

(by Proposition 3.3(h)). Note that for all Y £ % , if cpx, <p2 e %(Vn , Y) with
(y>\, <Pi) £ s, then there exists n: Ys_ —> Y with cpx = n o ax and cp2 = n o o2,

and hence

MO) = ri(ox(0)) = n(0) < q(0) = n(o2(0)) = cp2(0).

Thus (ß o y/x, ß o y/2) £ s on %(Vn , F) since

(ß o yvx)(0) = ß(p(ox(0))) = ß(p(0)) = ß(0) = T

¿d = ß(Ö) = ß(p(Ö)) = ß(p(o2(0))) = (ß o ̂ )(0).

Consequently, O does not preserve 5, whence (ii) holds.

Finally, consider (iii). Assume that s does not have the same shape as r

and let ox,o2: V„ —> Ys be the jointly surjective maps corresponding to s.

Clearly, Ys has at most two nonmaximal elements  (0 := rji(0) and Ö := <r2(0),



670 B. A. DAVEY AND H. A. PRIESTLEY

ß ° 1p2

ßoipi

Figure 8

which may coincide). Of course, O preserves 5 if and only if it preserves the

converse relation s~" . Since (a2, ox) is the pair of p-morphisms corresponding

to jw , without loss of generality we have only three cases: (a) 0 = Ö, (b) 0||Ö,

(c) 0 < Ö.
Assume that y/\,Wi € pn(V„, Yf) with (y/x,y2) £ s. Then there ex-

ists p: YL —> Yr such that the diagram in Figure 8 commutes. To see that

(ß o y/x, ß o y/2) £ s it suffices to show that ß °p: Y,;_—> F is a p-morphism

If p is not surjective, then ß o p is easily seen to be a p-morphism (see the

proof above that y/ is well defined); this covers Case (a). Now assume that p

is surjective; consequently, p({0, Ö}) = {0,0}. Case (b) presents no problems:

since 0||Ö in Ys, the fact that ß does not preserve the relation 0 < Ö in YL

is of no consequence. We are reduced to Case (c). As 0 < Ö in Ys, we have

\YS\ < n + 2, and since p is surjective we conclude that \Y¿ = n + 2 . Hence s_

is maximal in a_1(<) and Lemma 4.2 shows that s has the same shape as r.
This contradiction concludes the proof.    □

Since the map O preserves the action of an endomorphism e of £„ on a

dual space D(A) = Bn(A, P„) if and only if it preserves the graph of e, and

since such a graph is never maximal in a-1 (<), there is a degree of redundancy

in both the statement of Proposition 4.3 and its proof.

It is of interest to write down the map cp explicitly as a map into P„ via the

bijection T between P„ and yn(Vn, F). Since ß maps Yr onto {d, T} ç F,

it follows that O maps %(Vn, YL) onto {d, T} ç P„ (consult the definition

of T). Indeed, for all y/ £yn(Vn, Yr), we have <P(y/) £ Pn defined by

T   if (ir(0) is maximal in YL,

<D(y):= I d    if i7/(0) = 0,

. T   if .7/(0) = 0.

Our first minimality result is an easy consequence of Proposition 4.3.

Theorem 4.4. Let S be a family of binary algebraic relations on Pj, such that

Pj, := (Pn ; ZT, G, S) yields a duality on B„ for some set G ofiendomorphisms

of Pj, ■ Then for all I with I < I < n , the set S includes at least one relation

r of shape I. Hence \S\> n .

Proof. Let r be a subalgebra of P2 which is maximal in a~'(<) and sup-

pose that S includes no relation with the same shape as r.   By Proposition
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4.3, there exists a map í> in the second dual of r_, <P: B„(r,£„) —» Pj,,

which does not preserve the relation r. But for all a £ r the evaluation map

eL(a): B„(r_, Pj,) —> Pj, given by / i-» /(a) preserves every subalgebra of £^ .

Consequently,

eL:r^^(Bn(r,Pn),jP/,) = ED(r)

is not an isomorphism, contradicting the fact that Pj, yields a duality. Hence

S includes at least one relation which as the same shape as r. Since for each

« there are exactly « possible shapes for the subalgebras of P2 which are

maximal in a~x(<), we conclude that \S\> n.   D

This theorem leads us to suggest the study of unavoidable relations. Since this

is the first result of its kind, it is unclear what the most appropriate definition

will be. What follows is a first pass which, at least, is suitable for the particular

context of this paper. For any set 5 of binary relations define S^ := {s^ \ s £

S} . A set 5 of binary algebraic relations on £ is unavoidable (among binary

relations) if any set R of binary algebraic relations which yields a duality on

sé = ISP(£) intersects 51 U 5W . A relation s is called unavoidable if {s} is .

Thus Theorem 4.4 tells us that, for each / with 1 < / < « , the set of binary

algebraic relations of shape / is unavoidable.

For 1 < « < 3, we have the strongest possible minimality result. The rela-

tions <, H , and < were defined in the introduction.

Theorem 4.5. Let n £ {1,2,3} and let G be the generating set for the en-

domorphism monoid of Pj, described in Proposition 3.2. Let Sn ç S(P2) be

given by Sx = {<}, S2 = {<, -\}, and S3 = {<, H, <}. Then, up to replacing a
relation by its converse, S„ is the smallest set of binary algebraic relations such

that PJ, = (Pn;5r',G,Sn) yields a duality on Bn.

Proof. The result follows from Proposition 3.2 (which says that Pj, yields a

duality on B„), and Theorem 4.4 which implies that if F„ := (P„ ; G, S, ET)
yields a duality on B„ then, up to replacing a relation by its converse, we have

S„ ç S. The only additional observation required is that if 1 < / < « < 3,

then there are precisely two binary algebraic relations on £„ of shape / each

being the converse of the other.   G

Thus for «e{l,2,3}, each of the relations listed above in Sn is unavoid-

able.

5. Optimal dualities

The final result of the previous section shows that the dualities given in [1, 2,

4, 6, 7] for Bi, B2, and B3 are optimal in a very strong sense. For « > 4, it

would be unreasonable to hope for such a sharp result: indeed, two partitions of

« of the same length, say (kx, ... , k¡) and (k[, ... , k¡) can lead to radically

different left-packed relations (see Propositions 4.1 and 4.2 in [4]) although they

are both of shape /. While Theorem 4.4 says that at least one relation of shape

/ must be chosen, there is no obvious reason to choose one of these relations

over the other.

Our aim in this section is to establish an optimality result appropriate to a

duality for B„ when « > 4. We prove that it is possible to obtain the lower

bound of « (given by Theorem 4.4) on the size of a set S of binary algebraic

relations on £„ such that Pj, := (P„ ; ZT, G, S) yields a duality on B„ : simply
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include in S exactly one (left-packed, partition-induced) relation of each shape

/.

Theorem 5.1. Let « > 4. Let G = {fiv , fis , fY), as defined in §3, and let S be
any family of binary algebraic relations on Pj, such that Pj, := (P„ ; ET, G, S)

yields a duality on Bn . Then S contains at least one relation r of shape I for

I < I < n . If S = {/*], ... , r„}, where r¡ is any binary algebraic relation on

Pj, of shape I, then Pj, yields a duality on B„ .

Our strategy for proving the optimal-duality theorem will be as follows. We

combine Proposition 2.4, on the use of test algebras, with an inductive argument

whereby we obtain, successively for m = 2, 3,...,«, a duality-generating set

of relations containing just one (left-packed) relation of shape k for 1 < k <

m and all binary algebraic relations of shape k for m < k < «. This is

accomplished by showing that for any shape / with 1 < / < «, a single left-

packed relation of shape / together with all relations of higher shape suffice to

generate all left-packed relations of shape / (Lemma 5.6). The proof of Lemma

5.6 depends on a sequence of preliminary lemmas (5.2-5.5). We first show that

if 1 < / < « , then a p-morphism into Y¡ is determined by the restriction of its

domain and codomain to maximals. This is then used in Lemma 5.3 to show

that if 1 < / < « , then every relation which is maximal in a~x (<) is the graph

of a partial map on ^n(Vn, Y¡). Lemmas 5.4 and 5.5 say, in essence, that if r

and s are left-packed relations of the same shape, /, then there is a relation t

of higher shape such that the corresponding partial maps on J^( V„ , Y¡) satisfy
t or = s.

Throughout the remainder of this section we shall assume that « > 4.

If X and Y axe p-spaces and cp : X -+ Y is a p-morphism, then cp maps the

maximals of X into the maximals of Y . The map cp obtained by restricting
both the domain and codomain of cp to the maximals will be referred to as the

top of cp.

Lemma 5.2. Let 1 < / < «. Then for each p-space Y, every p-morphism

cp: Y —> Y¡ is uniquely determined by its top, cp.

Proof. Let y £ Y. There are only three possibilities for tp(maxy) :

(i)   cp(maxy) = {/} and therefore cp(y) = i as / > 1  (when / = 1 , the

case cp(y) = 0 is also possible), or

(ii)   rp(maxy) = {1, ... , /} and hence cp(y) = Ö as / < « , or

(iii)   cj>(maxy) = {1, ... , «} and thus cp(y) = 0 (when / = «, the case

cp(y) — Ö is also possible).   G

The results of §2 tell us that in order to consider the possibility of deleting

a relation, s, from the set of all left-packed binary algebraic relations on £„ ,

without destroying the duality, we must investigate the nature of these relations

on the dual D(s) of the test algebra s .

Let r and s be relations of shapes k and / respectively (maximal in a~x(<)

but no necessarily left-packed) with 1 < / < « . We shall see that even though
r is not itself the graph of a partial map on P„ (since (d, d), (d, T) £ r), its

interpretation on D(s) is the graph of a partial map. We continue to represent

D(s) = B„(s, Pj,) as pn(Vn , Y¡). Assume that r is determined by the jointly
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surjective p-morphisms px, p2: Vn-+Yk. Thus pi(0) = 0, p2(0) = Ö and the

top of pi is a permutation of {1,...,«} . Consequently,

nr := pZl °p2: {I, ... ,«}->{l, ... , «}

is well defined. The map nr encodes the labels attached to the maximals above

Ö in Yk by the maps pi and p2. Indeed, there is a point above Ö in Y¡ to

which pi and p2 attach the labels i and j if and only if nr(j) = i. We refer

to the labels attached by pi to the maximals above Ö in Yk as the left labels

of r and denote the set by Lr ; thus

Lr:=px-X({l,...,k}) = nr({l, ...,«}).

Finally, for all X £ Sf define the domain of r on X to be the set of all
Xi £ X such that (xi, x2) £ r for some x2 £ X, and denote it by domr.

By Proposition 3.3, a p-morphism cpx : Vn -* Y¡ is in the domain of r on

3¿n(Vn, Y¡) if and only if cpx factors through px , say cpx = p o p, for some

p-morphism p: Yk —> Y¡, in which case (cpx, cp2) £ r where cp2 := p°p2 . Since

p = cpi o p~x, it follows that the top of p is uniquely determined by <pi and

the top of cp2 is given by

h = P ° h = <P\ ° /V ° h = 0i ° nr-

Thus, by Lemma 5.2, if 1 < / < «, the relation r on pn(Vn, Y¡) is the graph

of a partial map from dom r into J^(F„ , Y¡).

Lemma 5.3. Let r and s be binary algebraic relations on Pn which are maximal

in q_1(<) and have shapes k and I respectively.

(i) If k = 1, then every p-morphism cpx: V„ —► Y¡ is in the domain of r on

%(Vn,Y¡).
(ii) Let 1 < k < « and let cpx:Vn —► Y¡ be a p-morphism. Then cpx is in

the domain of r on %(Vn, Y¡) if and only if
(a) cpx is the constant map k¡ onto {/} for some i with I < i <n,

or

(b) 1=1 and cpx(Vn) = {0, 1}, or

(c) 1 < / < « - k + 1 and \cpxiLr)\ = I, or
(d) I <l <k and y>i(Lr) = {l, ... , I}.

(iii) If k = n, then a p-morphism cpi : Vn —> 7/ « /'« i«e domain of r on

%(Vn,Y¡) if and only if
(a) ç>i w i«e constant map k¡ for some i with 1 < i < n, or

(b) 1=1 and <Pi(Vn) = {0, 1}, or
(c) 1 < / < « and y>i({l, ... , n}) = {1,...,/}, or
(d) ç?i ({1 ,...,«}) = { 1, ... , «} (regardless of the value of I).

(iv) Let 1 < / < «. r/ze«, on D(s) =yn(Vn, Y¡), the relation r is the graph

of a partial map, also denoted by r, determined by r(cpx) — tpx o nr for

all cpi in the domain of r on yn(Vn, Y¡).

Proof. The observations preceding the lemma prove (iv). If cpx = p o px, then

p(0) = p(pi(0)) = c»i(0). It follows that tpi : Vn —► Y¡ will be in the domain of
r precisely when we can choose j £ Y¡ such that

(*) p(0) := y>i(0),    p(Q):=j,    and   p:=cpiop~x



674 B. A. DAVEY AND H. A. PRIESTLEY

defines a p-morphism p: Yk —* Y¡. Before we consider Claims (i)-(iii) in turn,

note that the constant map k¡ is always in the domain of r—simply choose

p: Yk -» Y i to be the constant map onto {/} .

Claim (i). If k = 1, then choosing p(0) = p(l) in (*) yields the required
p-morphism p : Yk -> Y¡.

Claim (ii). Let 1 < k < n. Assume that cpx is in the domain of r on

yn(Vn , Y\) and let p: Yk -> Y¡ be a p-morphism with cpx — p o p, . Then

cpi(Lr) = tpiopx-x({l, ... ,k}) = p({l, ... , k}) = p(maxO) = maxp(0).

As k < «, we have \maxp(0)\ £ {1,1}, whence \cpx(Lr)\ = 1 or <pi(Lr) =

{1, ... , /}. If \tpi(Lr)\ = 1, then either

(a) cpi is a constant map on {/} for some i with 1 < / < « , or

(b) cpi is constant but cpi is not, in which case 1= 1 and <pi(V„) = {Ö, I},

or

(c) y>i is nonconstant, in which case 1 < / and cpi({l ,...,«}) = {1, ... ,/}

whence n — k > / — 1, i.e., 1 < / < « - k + 1.

If |ç»i(Lr)| > 1, then

(d) cpi(Lr) = {1, ... , /} and hence 1 < / < k as \Lr\ = k .

Conversely, in each of the Cases (a)-(d) it is easy to choose a value for

p(0) so that (*) above defines a p-morphism p: Yk —> Y¡. If cpx = k,-, then

define p(Ö) = i; if 1=1 and <px(Vn) = {Ö, 1}, then choose p(0) £ {0, 1} ; if

1 < / < « -k+ 1 and \cpx(Lr)\ = 1, then define p(0) = p(l) ; if 1 < I < k and

cpx(Lr) = {l, ... ,/}, then define p(0) = 0.
Claim (iii). Let k = «. This is argued as in (ii), the only modifications

required arising from the fact that we now have | maxp(Ö)| £ {1, /, «}. For

the converse, we define p(0) in Cases (a)-(d) as indicated below.

(a) If px = Ki, then define p(0) = i.

(b) Choose p(0) £ {0,1}.
(c) Define p(0~) = Ö.
(d) Define p(0) = 0 if 1 < / < «, and define p(Ö) = Ö if / = « and

c»i(0) = 0; choose p(0) £ {0, 0} if / = n and ç»,(0) = 0.   a

Lemma 5.4. Let r and s be left-packed relations of shape I with I < I < n.

Then there exists a binary algebraic relation t on £„ of shape I + 1 such that
ns = nr o n'. Moreover,

(a, b) £ r &(b, c) £ t =*■ (a, c) £ s,

that is, r ot ç s, on P„.

Proof. Let the partitions of {1, ... , «} associated with r and s be Xx, ... , X¡

and Yx, ... , Y¡ and let the pairs of jointly surjective p-morphisms associated

with r and 5 be px, p2 : V„ —* Y¡ and o{ , o2 : Vn —> Y¡, respectively. Define

Ti, t2: Vn -► Yi+i by

Ti( 1 ) = 1    and   Xi(maxXi) = i + 1       for / = 1, ... ,/,

T2(l)=l    and   x2(i) = j + l       ifi£Yj,
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and extend Ti to a permutation on {1,...,«} ; further, define xx(0) = 0 and

t2(0) = Ö. Let / be the binary algebraic relation on £„ corresponding to

Ti, t2 . Thus

n'(i) = x7x(x2(i)) = { l ~
y '      x  y n "     \ maxXj   if i # 1 and i £ Yj.

Since r and 5 are left-packed we have px = d\ = id, and hence nr = p2 and

ns = o2 . Thus

1 if i = 1,

p2(maxXj)   if /' t¿ 1 and i £ Yj,

1   if i = 1,

j   if / / 1 and i G Yj,

= o2(i) = ns(i).

Hence nr on' = ns, as required.

As a subalgebra of P2 , we have

r = {(cpopi,cpop2)\ tp£P(Y¡,2)}.

Similarly,
5 = {(«0(7,, noo2) I HGP(y"/, 2)}

and
t = {(y/oxi,y/ox2)\y/£ P(y,+,, 2)}.

Let cp £ P(Y¡, 2) and y/ £ P(Y¡+1, 2) with cpop2 = y/oxx . Thus a, b, c £

Pn with (a, b) £ r and (b, c) £ t, where

a = <p o px,       b = cpop2 = y/oxx,       c = y/ ox2.

In order to show that (a, c) £ s, we need n £P(Y¡, 2) such that

«ocn = a = cp o cpx    and   n o o2 = c = y/ ° x2.

These equations force i) = cp as dx = px = id. The first equation also yields

?7(0) = cp(0) while the second yields n(0) = ^(0). Thus n is uniquely deter-

mined by cp and y/. It remains to prove that n is order-preserving given that

cp and y/ axe.

Note that cpop2 = y/oxx implies that cp(0) = ^(0). Hence if <p(0) = 1, then

y/(0) = <p(0) = 1. In this case r\ = cp = i// . To prove that f/ is order-preserving,

it remains to prove that if cp(i) = 0 for some i with 1 < i < I, then ^(0) = 0.

For 1 </</, we have

y/(i + 1) = ip(xi(x7l(i + 1))) = cp(p2(maxXi)) = ç»(z).

Hence, if cp(ï) = 0, then y/ii + 1) = 0 and thus ^(0) = 0, as required,   a

Lemma 5.5. Let r and s be distinct left-packed relations of shape I with 1 <

/ < « and let t be a binary algebraic relation («oí necessarily left-packed) of

shape k > I such that ns = nr°nl. Let cpi, cp2£ %(Vn , Y¡) with (cpi, tp2) £ s .

Then there exists cp^ G %(Vn , Y¡) with icpx, ç?3) G r and (ç»3, <p2) G t.

Proof. Since  1 < I < n, the relations r, s, and t can be regarded as partial

functions on yn(Vn, Y¡), by Lemma 5.3(iv).
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Thus the required conclusion can be rewritten as: "// cpx £yn(Vn, Y¡) with

cpi £ doms, then cpx g domr, r(cpx) g domí and t(r(cpx)) = s(cpx)."

Let cpx £ ff(Vn, Y[) with cpx £ dorn 5. Since r and 5 are left-packed,

r and 5 have the same sets of left labels; indeed, L, = Ls = {1,...,/}.

Thus, by Lemma 5.3(h), the relations r and 5 have the same domain, whence

cp\ £ dorn r. Note that

t(r(<Pi))~ = r(tpx)on' = <px onr on' = cpx ons = s(cpx),

and hence t(r(cpx)) = s(y>x) (by Lemma 5.2) provided we can show that r(cpx) g

domí. Now consider the four subcases of Lemma 5.3(h).

Case (a). If cpx is the constant map k¡ , then r(K¡) = k¡ g dorn t, as required.

Case (b). This case does not arise as 1 < /.

Case (c). If cpi(Lr) = {1}, then

r(<pi)i{l, ...,«}) = cpx(nr ({!,..., «})) = cpx(Lr) = {/}.

Since 1 < /, it follows that r(cpx ) = k¡ g dorn t.

Case(d). If cpx(Lr) = {l, ... , /}, then cpx(Ls) = {1, ... , /} and

ricpi)iLt) = (0X o nr)(Lt) = (tpx o *')(*'({ 1, ... , «}))

= (01O7C''O7CÍ)({1,... ,«})

= (0i ons)({l, ... , n})   as ns = nr on'

= 0i(Ls) = {l,...,l}.

Thus, if k < n , then r(rpi) G domi by Lemma 5.3(ii)(d). Also if k — n, then

r(cpx) £ dornt by Lemma 5.3(iii)(c),(d).   G

Lemma 5.6. Let 1 < / < « and let r be a left-packed relation on P_n of shape I.
If 4>: D(r) —♦ F,, preserves r and also preserves every binary algebraic relation

on Pj, of shape k with k > I, then í> preserves every left-packed relation on

Pj, of shape I.

Proof. As usual, we represent D(r) as yn(Vn, Y¡). Let cpx, cp2 £ y„(V„, Y¡)

with (cpx, cp2) £ s, where s is another left-packed relation of shape /. By

Lemmas 5.3 and 5.4, there exists a (not necessarily left-packed) relation t of

shape / + 1 and cp?, £ yn(Vn , Y¡) such that (cpx, <p¿) £ r and (cpi,, cp2) £ t. By

hypothesis, we have (<&(cpx), ®(tp2)) £ r and (<I>(ç£»3), <t»(ç£>2)) £ t on P. But,

since ns = nr o n', this forces ($>(tpx ), Q>(tp2)) £ s, as required.   G

This final lemma yields an inductive proof of the second half of Theorem

5.1; the first half is just a restatement of Theorem 4.4.

Proof of Theorem 5.1. In the proof of Theorem 3.6 in [4], is shown that for

every relation r of shape /, there is a left-packed relation r' of shape / such

that {r'} U G generates r and {/•} U G generates r'. Hence, without loss of

generality, we may assume that every member of S is left-packed.

For 1 < m < «, let .S(m) consist of precisely one left-packed relation of

shape k for 1 < k < m and all relations of shape k for m < k < «. By

Proposition 3.2, if S is the set of all left-packed relations, then S U G yields

a duality on B„ . Since there is only one left-packed relation of shape 1, it

follows 5(1) U G yields a duality on B„ . Now let 1 < / < « and assume that
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S(/-i) u Q yields a duality on B„ . Lemma 5.6 implies that 5(/) generates each

relation 5 G 5,(/_1)\5'(/) on the test algebra s = K(Y¡). Hence, by Proposition

2.4, SW U G yields a duality on B„ . Thus, by induction, S'""1' U G yields a

duality on B„ , which is the desired result as S^"-1) contains precisely « left-

packed relations, one of each shape, as there is only one left-packed relation of
shape «.   G
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