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GAUSS MAP OF MINIMAL SURFACES WITH RAMIFICATION

MINRU

Abstract. We prove that for any complete minimal surface M immersed in

R" , if in CPn~x there are q > n(n+l)/2 hyperplanes H¡ in general position

such that the Gauss map of M is ramified over H¡ with multiplicity at least

e¡ for each j and

t(l-^il)>^+l)/2,

then M must be flat.

1. INTRODUCTION

Let x : M —> Rn be a (smooth, oriented) minimal surface immersed in R" .

Make M into a Riemann surface by decreeing that the 1-form dÇx + idÇ2 is

of type (1,0), where (£1, t\2) are any local isothermal coordinates of M. The

Gauss map of x is defined to be

G: M -» Qn-ziC) c CP"-1,       G(z) = [(dx/dz)]

where [(•)] denotes the complex line in Cn through the origin and (•), z =

£1 + it,2 is the holomorphic coordinate of M, and

Qn-iiC) = {iwo :■■■: wH-X ; w2 + ■ ■ ■ + w2n_x = 0} C CP"'1.

By the assumption of minimality of M, G is a holomorphic map of M into

Qpn-x jt is a natural question to study the "value distribution" properties of

the Gauss map G. Fujimoto (see [8]) has shown that the Gauss map of a nonflat

minimal surfaces can omit at most n{n +1)/2 hyperplanes in general position in

Qpn-x under the assumption that G is nondegenerate. The "nondegenerate"

assumption was removed by the author (see [13]). The purpose of this paper

is to study more general "value distribution" properties of the Gauss map. In
particular, we study the Gauss map with ramification.

One says that G is ramified over a hyperplane H = {[w] £ CP"~X : aoWo +

-h a„_iw„_i = 0} with multiplicity at least e if all the zeros of the function

gH = {G, A) have orders at least e, where A = (oq, ... ,a„-\). If the image

of G omits H, we shall say that G is ramified over H with multiplicity oo .

Our main result is the following:

Received by the editors July 10, 1991.
1991 Mathematics Subject Classification. Primary 53A10, 32H30.

©1993 American Mathematical Society
0002-9947/93 $1.00+ $.25 per page

751



752 MIN RU

Theorem 1. Let M be a complete minimal surface immersed in R" and assume

that the Gauss map G of M is k-nondegenerate (that is G(M) is contained

in a k-dimensional linear subspace of CP"~X, but none of lower dimension),

1 < k < n — 1. Let Hi c CP"~X be q hyperplanes in general position. If G is

ramified over H¡ with multiplicity at least e¡ for each i. Then

t("-!)i(*+»(»-H+"-
In particular, for any complete minimal surface M immersed in Rn , if in

CPn~x there are q > n(n + l)/2 hyperplanes in general position such that its

Gauss map G is ramified over H¡ with multiplicity at least e¡ for each j and

Í^-{jí~1)>n(n + l)/2,

then M must be flat.

In the case m = 3, Qi(C) can be identified with CPX. We have a better

result.

Theorem 2. Let M be a complete minimal surface (ci?3). If there are q(q > 4)

distinct points ax, ... , aq£ CPX such that the Gauss map of M is ramified over

a¡ with multiplicity at least e¡ for each j and £'=1(1 - lief) > 4, then M

must be flat.

In particular, if the Gauss map omits five distinct points, then M must be

flat.

2. Facts on holomorphic curves into projective spaces

We shall recall some known results in the theory of holomorphic curves.

(A)   Associated curve.   Let / be a nondegenerated holomorphic map of AR :

{z: \z\ < R} into CPk, where 0 < R < oo. Take a reduced representation

fi=[Z0: ■■■ : Z*], where Z = (Z0, ... , Zk) : AR -» Ck+X - {0}. Denote by

Z(j) the 7 th derivative of Z and define

A,- = Z<°> A-AZW:Aj»-> l\J+l Ck+l

for 0<j<k. Evidently Ak+X = 0.

let P: l\J+l Ck+X - {0} -* CPNi denote the canonical projection, where

Nj = (k+{) - 1. The 7'th associated curve of / is the map fi = P(Aj).

It is well known [4] (also see [16]) that the pull-back Í2, of the Fubini-study

metric on CPN> by fi is given by

(2.1) dj = dd<log\Aj\2 = i^-^^'^zAdZ,

for 0 < j < k and by convention A_i = 1. Note that Q^ = 0. It follows that

(2.2) RicQj = Qj_i + Yij+X - 2Ylj.
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Take a hyperplane H: (W, A) = O, where A = (ao, ... , ak) is a unit vector.
Define

Note that 0 < (pj(H) < tpj+x(H) < 1 for 0 < j < k and tpk(H) = 1.
We need the following well-known lemma (see [4, 16 and 17]).

Lemma 2.1. Let H be a hyperplane in CPk, then for any constant N > 1, for

0<p < k- 1,

(2.3) ddclogM       *     .„■>(    .„w^1,^   ,„»2-^|Qj>,
N-logfp(H)      \<pp(H)(N- log<Pp(H))2     N)

on AR - {tpp = 0} .

(B) Nochka weights and product to sum estimate. We consider q hyperplanes

Hj (I < j < q) in CPk which are given by H¡: (W, Af) = 0. According to
Chen [2], we give the following definition.

Definition 2.2. We say that hyperplanes Hx, ... , Hq are in «-subgeneral posi-

tion if, for every 1 < jo < • • • < jn < Q, Aj0, A¡x,..., Ajn generate Ck+X.

In [11] (see also [2]), Nochka has given the following lemma to prove the

Cartan conjecture.

Lemma 2.3. Let Hx, ... , Hq be hyperplanes in CPk located in the n-subgeneral

position, where q > 2n-k + l. Then there are some constants (o(l), ... , co(q)

and 8 satisfying the following condition:
(i) 0<co(j)9<l   (l<j<q),
(ii) e(Y?j=x co(j) -k-l) = q-2n + k-l,

(iii) 1 <(k+1)/(ä:+1)<0<(2/i-ä:+1)/(ä;+1),
(iv) if R c Q and 0 < # R < n + 1, then ¿jeÄ co(j) < d(R).

For the proof, see [2] or [11].

Definition 2.4. We call constants co(j) (1 < j < q) and 6 above Nochka

weights and a Nochka constant for Hx, ... ,Hq respectively.

Nachka weights are useful because of the following lemma.

Lemma 2.5. Under the above assumptions. Let Ex, ... ,Eq be a sequence of real

numbers with E¡ > 1 for all j. Then for any subset B of the set {1,2, ... , q}

with 0 <#B < n + I, there exists a subset C of B such that {Aj\j £ C} is a

base of the linear space spanned by {A¡\j £ B} and

n*7a)<n^>
j€B jec

where co(j) are the Nochka weights associated to hyperplanes Hj : (Aj, W) = 0,

j =1,2, ... ,q.

For the proof, see [2] or [11].

We also have the following product to sum estimate.
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Lemma 2.6 (see Chen [2]). Under the above assumptions. For 0 < p < k - 1,

any constant N > I, l/q < Xp < l/(k - p), there exists a positive constant
cp > 0 only depends on p and the given hyperplanes such that

(2.4)

on AR - {(pp = 0} .

nj=i
9p+\iHj)m l_V

i<?P(Hj))2)

<

tpp(Hj)     (N-log(Pp(HJ

A <PP+x(Hj)
j^g>p(Hj)(N-loè9p(Hj))2'

3. Metrics with negative curvature

We retain the notation of the last section. Let f:AR—> CPk be a nondegen-

erate holomorphic map. Take a reduced representation / = [Zo : • ■ • : Zk]

where Z = (Zo,... , Zk): AR —> Ck+X - {0} is a holomorphic map. Let

H\,... , Hq be hyperplanes in CPk located in n-subgeneral position. Let

co(j) be their Nochka weights.
Let / be ramified over Hj with multiplicity at least e¡ for each j. Assume

that

e(,-Í)>2.-*+..
we shall construct a continuous pseudo-metric on AR such that its Gauss cur-
vature is less than or equal to -1. So that we can use Schwarz lemma to obtain

our main inequality.

Let Yip = j^hp(z)dz A dz. Let

' fp+xmr^-^      i      n
(3.1) ■n

7=1
(pp(Hj) ) (N-log(pp(Hj)Y

Where cp is the constant in the product to sum estimate,

Ap = l/^{k-p) + {k-p)2^,

and N > 1.
We take the geometric mean of the op and define

.     k-X

(3.2) Y=^c^\4kß'dzNdz.

where ßk = l/d^Irj V) - and c = 2{Y^ #"> .
Let

(3.3)
t

Y= —h(z)dzAdz.
2n

We now compute h(z). By (3.1) and (3.2), we have

1 i. k=X

(3.4) h(z) = c n n
4klkp

f}x MHj)"*»^1/*»« ¿}0 (N - log<pp(Hj))
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By (2.1),

xßp _ (\Ap_x\2\Ap+x\2\
2 \ (k-p)+(k-pf2q/N

SO

k-X

J] hp/X> = |A0|-2(^D-«:2+2i:-l)4?/JV|Ai|8i7/^ . . . ^^q/N^l+^/N

p=0

Notice that |A0| = \Z\, and tpo(Hj) = |(Z, Aj)\2/\Z\2, therefore

(3.5)  h{z) = c
1Z|E*=1 atMl-k/ej^k+D-^+lk-DK/N^ (       ^^„/N^+Iq/N

HU \(z, Aj)r^x-kh) y?-x{n - logMtf/))

Lemma 3.1. The function

|Afc|

X[)=x\iz, Aj)\<*m-kie,)

is continuous on AR.

Proof. We shall prove that the function

m

p = ¡A*|2

u%x fviHjr^-kh

is continuous where e = ex ■ ■ eq . Lemma 3.1 follows from this. According to
the expression of P{z), we only need to consider the points at which (Z, Aj)

vanishes. For zero point zo of (Z, Af), since / is ramified over H¡ with

multiplicity at least e¡ for each j, we have

(Z,Aj) = (z-zoTQj(z)

where Qj(zo) ^ 0, and v¡ > ej or v¡■ = 0. The «-subgeneral position im-

plies that, at each point z, there are at most n of hyperplanes H¡ , such that
(Z(z), Aj) = 0. Thus there exists a constant Co (depending only on the given

hyperplanes) such that

#B = #{j\ \(Z(z), Aj)\l\Aj\\Z(z)\ <c0}<n.

Let Ej = ll(po(Hj)w{m-klei], then Ej < I. If j i B, then <po{Hj) > c0,

so Ej < cx (depending only on the given hyperplanes).

Applying Lemma 2.5 with Ej above, we obtain

|A,|2 <C2:

<C2;

I A, |2
ÏÏj=l9oiHj)^l-k/'j) -  ¿IljeBMHj)»M-kM

|A,|2
■T\j€C<Poinj)v-k/e>y

We may assume the index set C = {1, 2, ... , /} and / < k + 1, therefore

Y[(Z(z),Ajf-k^
j&c

(z-zo)bR(z)
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where b = Y^lj=xevji^ ~ ^lej) an& ^ is a holomorphic function such that

R(z0) ¿ 0. Since

\Ak\ = det

= det

£,r\ Zj, Zj-, 7'
¿k

7\k)           y(k) y\k) 7(k)
J0         ^1 "^2         ' " ^k

(Z,AX) (Z,A2) (Z,A3)
(z,Axy (z,A2y (z,A3y

\(Z,AX)W    (Z,A2)W    (Z,A3)W    ■■

we have Ak = (z - zo)vS(z), where v = vx + v2 - 1 H-h v¡ - k and S is a

holomorphic function. Hence we obtain

i>(z)<|(z-zo)2^r(z)|,

where
ph- 0 p p

p = — + — (kv2-e2) + — (ku3- 2ef) + ••• + - (kv¡ - (I - l)e¡) >0,
ex     e2 e3 e¡

and T(z) is continuous at zq . Therefore P(z) is bounded around z0 . There-

fore P(z) is continuous.   Q.E.D.

Lemma 3.2. If J^j=x( 1 - kjef) >2n-k + 2,and

2«¡N< \Y,o}(j)(l-klej)-(k + l)\l(k2 + 2k),

we have

(i) RicT > T on AR - [j{(po(Hj) = 0} .
(ii) T is a continuous pseudo-metric on AR .

Proof. From (3.3) and (3.4) it follows that

RicT = - ßk ¿ co(j) (l - !f) ddclo%<poiHj)
j=x v      €i'

+ ^¿¿^clog(l/(iV-log^(/Y/)))2

j=\ p=0

k-X

+^E(1/^)Rici2^
p=0

By Lemma 2.1, (2.2), and that ddc log fo(Hj) = -Yl0, we have

Ricr>/jJ¿W0)(l-^)£2o + 2¿£
q   k-X

9p+x(Hj)
;Ylr

U'=l 7=1 P

\(k - P) + {k - p)2
2q

k-x fc-I  r

p=0 p=0

-tpp(Hj)iN-logVpiHj))2   p

{Clp+x-2Cip + cip_x}
2_q_

N
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Using Lemma 2.6, we obtain

<PP+x(Hj)

7=1
9p(Hj)iN -logtppiHj))

,2ßp

< c„ n
7=1

<Pp+xjHj)\
(0(j)

<PP{Hj) )       iN-logtpPiHj))2
Qn

> -=—aDdz Adz.
2n

We also notice that Yik = 0 so that

k-x

£(*-/>)(«,+! - 2Ylp + Ylp_x) = -(k + 1)Q0

p=0

and therefore

.   k-X
I

2n
Ricr > fik   ¿a>(j)   1 - -   £2o + 2~ Y, °Pdz A dt - (k + 1)Í20 - (k2 + 2*)-Jft

29,

p=0
N

k-2
Mr,     ,   2a,

+ £[(* -P + l)2 - 2(fc -P)2 + (k-P- I)2 - ll-^Qp + fOt.
p=X

The following is an elementary inequality:

For all the positive numbers xx, ... , xn and ax,... , an ,

(3.6) axxx + ■■■ + anxn > (ax + •• • + a„)(xf •..x«»)i/(«.+-+<».).

Letting ap= XpX in (3.6), we have

k-X

Y.
p=0

£^¿X>r-
2ßk

p=0

and therefore

RicT> AÍí¿W(j)(l-|)-(/:+l)-(^ + 2/:)^JQo

*:-2

+ E^ + ̂ -i|+r.
p=0

By Lemma 2.2, we find

e ¿«a)(i-|)-fc-ij=0Í¿u)a) fc_A    E^(7)<*

= # - 2« + /c

■¿0-5)

,     ¿Jj=xQ>iJ)ek
1-> a ->q-2n + k-l-

2n + k- 1 >0
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and 6 > O, so

¿û,(./)(l-£)-(*+l)>0.
7 = 1

This implies Rie Y > Y. Thus (i) is satisfied.
(ii) follows from Lemma 3.1, (3.3) and (3.5).   Q.E.D.

We recall the following generalization of the Schwarz lemma.

Lemma 3.3. Let Y = j¿h(z)dz A dz be a continuous pseudo-metric on AR

whose curvature is bounded above by a negative constant. Then, for some positive

Co, h(z) < c0(2R/(R2 - \z\2))2. For the proof, see [I, pp. 12-14].

The purpose of this section is to obtain the following lemma.

Main Lemma. Let f = [Zo : • • • : Zk]: AR -+ CPk be a nondegenerate holomor-

phic map, Hx, ... ,Hq be hyperplanes in CPk in n-subgeneral position, œ(j)

be their Nochka weights. Let Hj : (W, Af) = 0 and Z = (Z0, ... , Zk). If f
is ramified over Hj with multiplicity at least e¡ for each j, £y=1(l - kjef) >

2n-k + l and N> 2q(k2 + 2k)l(y£])=x co(j)(l - kjef) - (k + I)), then there
exists a positive constant c such that

sy_, tt,(;)(l-^/)-(.+1)-(^+2,_1)2^npt:01 nu ^ ^ m'in\^\x+2^n

u%x \{z, Aj)\<»wx-kiei)

Z        2R        \k(k+l)2+Y^kp^(k-p)22q/N

Proof. Using the above Schwarz lemma for Y, we obtain

h(z)<c0(2R/(R2-\z\2))2.

So by (3.5) we have

(3.7)
|z|ET_,«W(i-*/«,)-(*+i)-(fc2+2*-i)2«/Ar (\A.i\---\*k-i)*«,'\*k\1+2"N

nu \(z, Aj)^i-k"j) n*r0'(iv - \ogfP(Hj))

(     2R     \ xlh

Set K := s\xOo<x<xx2lN(N - logx). Since tpp(Hj) < 1 for all p and j we

have

i        > i   ,„,2/n _ iM^f!
(N-logtpp(Hj))- K9p[nj> K     \AP\*I»     '

Substituting these into (3.7), we obtain the desired conclusion.

4. Proof of Theorem 1

The proof of Theorem 1 basically follows the argument in [ 13] using the main

lemma (see also the arguments in [6, 7 and 8]). We include our proof here for

the convenience of the reader.

We may assume M is simply connected, otherwise we consider its universal

covering. By Koebe's uniformization theorem, M is bioholomorphic to C or

to the unit disc. For the case M = C, Nochka (see [10], also see [16]) proved
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that if a &-nondegenerate holomorphic map from C to CPn~x is ramified

over hyperplanes Hj (1 < j < q) with multiplicity at least e¡, where H¡ are

in general position, then

¿(l-|)<2(n-l)-fc + l;

in this case our Theorem 1 is true. For our purpose it suffices to consider the

case M = A.
We first prove the first part of Theorem 1.

Assume the first part of Theorem 1 is not true, namely G is ramified over

hyperplanes Hx, ... ,Hq in CPn~x in general position with multiplicity ej

and
9

(4.1) J](l - k/ej) >(k+ l)(n -k/2- 1) + n.
7=1

Let co(j) be Nochka weights of {Hj}. Because G is /c-nondegenerate, we

may assume G(A) c CPk , so that G = [go : ■ ■ ■ : gk] : A —> CPk is nondegen-

erate. We consider hyperplanes Hj n CPk , obviously these hyperplanes are in

(n - 1 )-subgeneral position in CPk . For the convenience, we still denote these

hyperplanes by {Hj}.

Let G = (go, ... , gk) : A -► CPk+x - {0}; then the metric ds2 on M
induced from the standard metric on R" is given by

(4.2) ds2 = 2\G\2\dz\2.

By Lemma 2.2,

q-2(n-l) + k-l = e [ ¿ <ö(y) - fc - 1 j ,        0 < co(j)d < 1,

and
2(n-l)-k+ 1 _ 2n-k- 1

°- k+l k+l
so

Ja ,,/,  k\ .  ,\   2g(s;-,^)-fc-i) ,f kœjJW

,7=. ^       - / - 7=1     ^

^2(g-2« + A:+l)       J^kco{j)6
6 ^    dej

7=1 '

2jq-2n + k+l)       A  fc

7=1       7

2(E'=i(l-^7)-2n + fc+l)
= 0

2 (E;9=i(1 - ^M) - 2« + fc + l) (k + 1)

- (2n-k-l)

>k(k + l)   (by (4.1)).
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Consider numbers

k{k + l)l2 + Y!Ü(k-p)22qlN
(4.3) p = E,-=i o(J)il - k¡ef) -(k+l)-(k2 + 2k- l)2q/N '

k(k+l)l2 + qk(k+l)IN + 2qlNY!lZlp(p + l)
7     EJL, «0)(1 - kief) -(k+l)- (k2 + 2k- l)2q/N '

(4.5) S =--,-î-v .
(1-7) (¿ZU œiJXl - k¡ei- ~ik+V- ik2 + 2k~ l)2l/N)

Choose some A^ with

Y?j=Mm-klej)-(k+l)-k(k+l)l2

k2 + 2k-l + zZkp=ü(k-p)2

ZU '»OK1 - k/ej) -(k+l)-k(k+ l)/2
> 2q N >-¡—¡-

l/q + (k2 + 2k-l) + k(k+l)/2 + Zp:oPiP+V

so that

(4.6) 0 < p < 1,  2Ô/N > 1.

Consider the open subset

M' = M-[{Gk = 0} (J {GpVAj = 0}
\ 1<7<?,  0<p<*:-l

of M and define the function

Y[%x\iG, AjT^m-^)     y
v =

n^n^ii^v^-i^iG/ti^^^

on M', where Gp = G(0) A • • • A G^ . By Lemma 3.1, i^(z) is strictly positive

and continuous on M'.
Let n: M' —► M' be the universal covering of M'. Since logi» o % is har-

monic on M' by the assumption, we can take a holomorphic function ß on

M' such that \ß\ = v on . Without loss of generality, we may assume that M'

contains the origin 0 of C. As in Fujimoto's paper [6, 7, 8], for each point

p of M' we take a continuous curve yp: [0, 1] -» M' with yp(0) = 0 and

yp(l) = n(p), which corresponds to the homotopy class of p. Let Ö denote

the point corresponding to the constant curve 0. Set

w = F(p)= [ ß(z)dz.

Then F is a single-valued holomorphic function on M' satisfying the condi-

tion F(0~) = 0 and dF(p) ¿ 0 for every p £ M'. Choose the largest R {< oo)

such that F maps an open neighborhood U of Ö biholomorphically onto an

open disc AR in C, and consider the map B = n o (F\U)~X : AR —» M'. By
the Liouville theorem, R = oo is impossible.
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By the definition of w = F(z) we have

(4.7) \dw/dz\ = v(z).

For each point a £ dA consider the curve

La:w = ta,       0 < t < 1,

and the image Ya of La by B. We shall show that there exists a point an

in dAR such that T^ tends to the boundary of M. To this end, we assume
the contrary. Then, for each a £ dAR , there is a sequence {tv: v = 1,2, ...}

such that lim^oo tv = 1 and z0 = lim,,-^ B(tva) exist in M. Suppose that

z0 ^ M'. Let r50 = 4Ô/N > 1. Then by Lemma 3.1, we have

liminflOfcl'50 \Gp\/Aj\23o.v>0.
z-»z0 ■LX

1<7'<?,  X<p<k-X

If Gk(zo) = 0 or \GP V Aj\(zo) = 0 for some p and ; , we can find a positive

constant c such that v > c/\z - z0\ô° in a neighborhood of z0, so that we
obtain

R= JÍ  |rfw| = jf  |^| |¿z| = 1^2)10?

-2 1,1 I•|«z| = oo.
Zfjp

This is a contradiction. Therefore, we have z0 € M'.

Take a simply connected neighborhood V of zo which is relatively compact

in M'. Set C = minzeVv(z) > 0. Then B(ta) £V (t0 < t < 1) for some /0 •

In fact, if not, Ya goes and returns infinitely often from d V to a sufficiently

small neighborhood of zq and so we get the absurd conclusion

R= [ \dw\ > c' [ \dz\ = oo.

By the same argument, we can easily see that limf^i B(ta) = zq . Since n maps

each connected component of n~x (V) bioholomorphically onto V, there exists
the limit

Po = lim(F\U)-x(ta) £ M'.
»i

-i
Thus (F\U)~X has a biholomorphic extension to a neighborhood of a. Since a

is arbitrarily chosen, F maps anopen neighborhood of U biholomorphically

onto an open neighborhood of AR. This contradicts the property of R. In

conclusion, there exists a point a0 £ dAR such that Y^ tends to the boundary
of M.

Our goal is to show that rao has finite length, contradicting the completeness
of the given minimal surface M.

By (4.7) we obtain \dw/dz\ = v(z). So

(4.8)
dw

dz
= l«(z)|1-7 dw

dz

njL, |(ö, 4)rUKi-*/*>      \ i/(E»«(i-*/<7)-(*+i>-(*2+2*-iW") £

n*:o'n?=1iGPv 41^10,11+2^ J ÚÍZ
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Let Z(w) = GoB(w), Z0(w) = g0oB(w), ... , Zk(w) = gk oB(w). Then

because
Z f] 7 \P(P+X)I2

ZaZ'a---aZ^ = (Ga---aG^)(^\

it is easy to see that

( FF-, l(Z . 4)1^X1-^) \ U(J2<oU)(l-k/ej)-(k+l)-(k'+2k-X)2q/N)

(4.9)
dw

dz n;:01n57=1iAPv4i</"|Ai|i+2«/^

where Ap = Z<°) A-AZ«.

On the other hand, the metric on AR induced from ds2 = 2\G\2\dz\2 through

B is given by

2

\dw\2.
dz

dw
(4.10) B*ds2 = 2\G(B(w))\2

Combining (4.7) and (4.8) gives

fí.d    217l /rfc,'I^,|A,v4^|At|^\'/(E^xi-*/,)-^.)-^-!,^)

Using the main lemma, we have

where c is a positive constant. Since p < 1, it then follows that

where ¿(0) denotes the distance from the origin 0 to the boundary of M. This
contradicts the assumption of completeness of M. Hence the proof of the first

part of Theorem 1 is complete.

We now prove the second part.

For any complete minimal surface M immersed in R", if there are q >

n(n + l)/2 hyperplanes in general position in CP"~X such that its Gauss map

G is ramified over Hj with multiplicity at least e¡ for each j and

¿(l-«/e7)>n(« + l)/2,

7=1

we are going to prove that M is flat. Since M is flat if and only if its Gauss

map is a constant map (see [12]), we only need to prove that G is a constant

map.

If G is not a constant map, then we may assume that G is /c-nondegenerate

and 1 < k < n - 1. By the first part of the theorem, we have

Q

2(1 - k/ej) <(k+ l)(n -k/2-l) + n.
7=1

Since
(k +l)(n-k/2-l) + n< n(n + l)/2,
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and

we obtain

2(1 -(n-l)/e¿)< 2(1-*/<?;),
7=1 7=1

J2(l-(n-l)/ej)<n(n+l)/2.
7=1

This contradicts the assumption. Therefore M is flat.   Q.E.D.

5. Proof of Theorem 2

Let x = (xi, X2, x3) : M -> R3 be a nonflat minimal surface and g: M ->

CPX the Gauss map. Assume M = A (as the argument above). Set <p¡ =

dxi/dz (i = 1, 2, 3) and / = <px - \T-i(p2. Then according to [12] or [7], the
metric on M induced from i?3 is given by

(5.1) ¿s2 = |/|2(l + |g|2)2|¿z|2.

Take a reduced representation g = (go, gx) of g on M. Then we can rewrite

(5.2) ds2 = \h\2\g\4\dz\2,

where h = f/gl, and moreover h / 0. The rest of the steps are the same as the

proof of Theorem 1. If M is not flat, then g is not a constant map. Assume

that g is ramified over a¡ with multiplicity of e¡ and £*=1(1 - 1/e/) > 4, we

shall derive a contradiction. Let P{af) = a¡, a; £ C2 . Consider numbers

1 + 2q/N

s =

¿2%x{l-llej)-2-2qlN'

_1_

(i-p)(£?=i(l-i/*;)-2-2i//v)'

Choose some N with

£!-,(!-1/^)-3 £^,(1-1/^-3
3 >^/^> 3+{/q

so that 0 < 2p < 1, ^ > 1. Consider the open subset M' = M - ({gx = 0})
of M and define the function

v_hW-J¡ML^ÉZZ!r^.)'

on M' where gx = g A g'.
By exactly the same argument as in the proof of Theorem 1, we can find

a curve Y^ tends to the boundary of M, and we can estimate the pull-back
metric, eventually we obtain that T^ has finite length, contradicting the com-

pleteness of the given minimal surface M.   Q.E.D.
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