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NOETHERIAN PROPERTIES OF SKEW POLYNOMIAL RINGS
WITH BINOMIAL RELATIONS

TATIANA GATEVA-IVANOVA

Abstract. In this work we study standard finitely presented associative alge-

bras over a fixed field K. A restricted class of skew polynomial rings with

quadratic relations considered in an earlier work of M. Artin and W. Schelter

will be studied. We call them binomial skew polynomial algebras. We estab-

lish necessary and sufficient conditions for such an algebra to be a Noetherian
domain.

1. Introduction

In this paper we work with graded associative algebras over a fixed field K.

Given a nonempty set X = {xx,... , xn} , (X) will denote the free monoid

with unit generated by X, K(X) will denote the free associative algebra (with

1) generated by X. We fix the degree-lexicographic order < * on (X) (we set

JCi < * JC2 <*•••<* x„).

(1.1) An ordered monomial in {xx, ..., xn} is a monomial of the type jcJ1 - - -

xîi", ti > 0. By JV we shall denote the set of all ordered monomials. Given

a polynomial / in K(X), HM(f) will denote its highest monomial. For any
subset F of K(X), (F) will denote the two-sided ideal generated by F.

(1.2) Let F0 be a set of polynomials in K(X) of the type

F0 = {xjXi - fi\l </'<;'<«},

where for I < i < j < n , f¡¡ is a linear combination of ordered monomials of

degree 2, and HM(fj¡) < * XjX¡. We shall recall the following

(1.3) Definition. A monomial u is normal (modulo Fo) if it does not contain
as a segment any of the monomials jc, jc, , 1 < i < j < n.

It is clear that a monomial is normal (modFo) if and only if it is an ordered
monomial.

We shall recall now some facts extracted from Bergman's Diamond Lemma

[Berg] in the particular case, when (X) is ordered by the degree-lexicographic

ordering, and the set F0 is as in (1.2).
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Consider the ÄMinear operators (we call them reductions)

ruj,i,v,    foru,v£(X),  1 </'<;'<«,

defined on the underlying vector space of K(X) by the formulas

ru,j,i,v(uXjXiV) = ufjiV,

fuj,i,v(w) = w,    for all w ¿ uxjX¡v.

It is well known, cf. [Berg], that for any polynomial / in K(X) there exists a

finite sequence of reductions, rx, r2, ... , rs, such that

/ri    f   r2   r                rs   f
-*■ h -* h —*-► Js j

where f-fs is in the ideal (Fo), and fs is a linear combination of ordered (or

equivalently normal) monomials. In general fs is not uniquely determined. It

follows from Bergman's Diamond Lemma that

(1.4) [Berg]. The following conditions are equivalent:

(a) There is an isomorphism of vector spaces K(X) = Span N © (F0) ;

(b) For any triple (k, j, i), where n > k > j > i > I, the difference

fkjXi - xkfi can be reduced to zero (by means of a finite sequence of
reductions).

In particular, if this is the case for Fo, the set of ordered monomials N

projects to a basis (as a vector space) of the algebra A = K(X)/(Fo).

(1.5) It is clear that in this case for any polynomial / in K(X), one has / =

Nor(/) + h, where Nor(/) e Span N, and h £ (F0) are uniquely determined.

The element Nor(/) is called the normal form of f.

(1.6) Definition. The set Fo is called a Groebner basis for the ideal (Fo) if it

satisfies the equivalent conditions (1.4(a), (b)).

For general references on Groebner bases see [Berg, Buch, Gol, G-L , Mori,

Mor2 and K-R-W].

(1.7) Definition [Art-S]. An algebra A is a skew polynomial ring if it can be

presented as A = K(X)/(F0), where the set of relations F0 is as in (1.2) and

is a Groebner basis of the ideal (Fo).

In this paper we shall work with a particular case of skew polynomial rings,

namely with "binomial" skew polynomial rings.

(1.8) A skew polynomial ring A = K(X)/(F) is called binomial if the Groeb-
ner basis F is of the form:

F = {xjXi - aijXi<Xj> 11 </<;'<«},

where 0 ^ a¡j £ K,  1 < i' < j' < n, Xi>Xj> < * XjX¡.

(1.10)   We shall always assume that i' < j', excluding the case i' = j'.

Note that in general the set {jc,'X;'|1 < i < j < n] contains at most (2)
elements; i.e., we do not assume that all the monomials xi>Xy , for I < i < j <

n, are pairwise different.
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Examples.

(1.11) A = K(x\, x2, x3)/(x3x2 - x2x3, JC3X1 - JC1X2, x2xx - xxx2),

(1.12) A = K(xx , x2, x-})/(x}X2 -X1X3, X3X1 -X1X3, X2X1 -X1X2),

A = K(xx, x2, X3, Xi?)I(x$x$ — X3X4, X4X2 — X2X4, X4X1 — X1X3,
v *■ « 1J ) .

X3X2 — X2X3 , X3X1 — X1X2 , X2X1 — X1X4J.

We are interested in the question when a binomial skew polynomial algebra

A is Noetherian.
There are various results on the Noetherianness of algebras with quadratic

relations [Ap, G-L , G-I2 , Mori, K-R-W, Sm-St].
Before formulating the main results of this paper we need some more nota-

tion. From now on we shall always assume that the set F is fixed. It is clear

that the normal form of any monomial w in (X) is of the type cwo, where

c £ K and w0 £ N.

(1.14) Given two normal monomials u and v , by u*v we shall denote the

monomial which appears in the normal form of u • v. (In other words we

ignore the coefficient appearing in the normal form of u • v.) Clearly, for any

pair (j, i), 1 <i < j <n, one has

(1.15) Xj-k x¡ — Xji • Xj', where i' and / are as in ( 1.9).

The main results of this paper are contained in Theorems A, B, and C.

(1.16) Theorem A. Let A = K(xx,... , x„)/(F) be a binomial skew polyno-
mial ring without zero divisors, with reduced Groebner basis

F = {xjX¡ - a¡jXi>Xj' 11 < / < j < n),

where for 1 < i < j < n one has 1 </'</< n, and x¡>Xj> < * X/X,. Suppose

furthermore that

(1.17) The set {x,'X/'|l < i < j < n} contains precisely ( . J elements.

Then the algebra A is cyclic, i.e., the following condition is satisfied:

(1.18) For any j and k,  1 < k < j < n, there exists a p > k and a cycle

a = (k, kx, k2, ... , ks) in the symmetric group Sj, where all k¡ < p, j, such

that

Xj * Xk = Xk¡ • Xp ,

Xj * xkl — Xkl ' Xp ,

Xj * xks = Xk • Xp.

(1.19) Theorem B. Suppose A = K(xx, ... , x„)/(F) is a binomial skew poly-

nomial ring, with reduced Groebner basis

F = {xjX¡ - üijXi'Xjt 11 < i < j < n}.

Suppose, furthermore, that for some positive integer P, the following condition

is satisfied:
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(1.20) For any pair of integers q,k, 1 < k < q < n, there exists a j, k <

j <n, such that

(Xj)    -kXk-Xk- (Xq)   .

Then A is left Noetherian.

(1.21) Theorem C. Let A = K(xx, ... , xn)/(F) be a binomial skew polyno-

mial ring without zero divisors, with reduced Groebner basis

F = {xjXi - aijXi'Xji 11 < i < j <n},

where for I < i < j < n one has 1 </'</< n, and x,-x;< < * x^x,. Then

the following three conditions are equivalent:

(i) The set {x,-<X/<|l < i < j < n} contains precisely (2) elements.

(ii) A is left Noetherian.
(iii) A is right Noetherian.

(1.22) Remark. Further results on Noetherian binomial rings are obtained in

[G-I3].
The work in this paper was done at MIT in the autumn and winter of 1990 un-

der the auspices of the NSF-Bulgarian Academy of Sciences Exchange Program.

I would like to express my gratitude to Michael Artin for his encouragement

and support, and also for his attention to my work, George Bergman for some

stimulating discussions and numerious helpful comments, and to Jim Carlson

for his help on TeX matters.

2. The cyclic condition

In this section we shall prove Theorem A. All conventions and definitions

made in the introduction shall be in force throughout the paper. We begin with

some preliminary results, and we assume the hypotheses of the theorem.

(2.1) Remark. Since the Groebner basis F consists of binomial relations only,
it is clear that the normal form of any monomial u is of the type c • v where c

is a nonzero coefficient in K and v is a normal monomial. It follows from the
Diamond Lemma that both c and v are uniquely determined. We can ignore c
and write u -* v to denote that v is the result of "almost normalisation" of u.

It is clear that in order to obtain v it will be enough to use "almost reductions"

instead of usual reductions, more precisely: For any i, j, 1 < /' < j < n, we

shall actually need a simpler "almost reduction" replacing Xj • x, with x¡> • x,<
instead of replacing it by a¡j • x¡> • Xj>, which the usual reduction does.

For arbitrary monomials v and w , we shall write v • [Xj; • x,] • w —> v • (x,< •
Xji) • w to denote that we have replaced the monomial x¡ • x, by x,/ ■ Xy (or

equivalently by Xj *x¡).

(2.2) Remark. Under the hypothesis of Theorem A it is clear that for any pair

of integers i, j, I < i < j < n, there exist uniquely determined q and p,

1 < P < q < n , such that xq * xp — x, • x7.

(2.3) Lemma. Let i and j be integers, 1 < i < j < n. Then for V andf as

in (1.9), (1.10) one has i' < j, and i < f.

Proof. The inequality x,<xyv < * jc7x, implies i' < j. Thus i' < j, since A

has no zero divisors. We shall prove now that i < f . Note first that / ^ i,
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since A has no zero divisors. Assume that / < i. Consider the two possible
ways of "almost normalisation" of the monomial x; • x, • Xy :

(2.4) [Xj • X,] • Xji —* (Xf/ • Xj< ) • Xy = U £ N ,

and

(2.5) Xj • [x¡ - Xji] -* Xj • (xr ' xs) -*-► u e N,

where

(2.6) r<i,s.

It follows from (1.10) that the final replacement in (2.5) should be of the type

[Xm ' Xk] ' Xy —► (x,-< • Xji) • Xy ,

for some m and k,   m > k. It follows from here that

(2.7) Xm * Xk = X,' • Xy = Xj * X,'.

The inequality (2.6) and the fact that after any replacement the result is a

monomial which is strictly less than the previous one, imply that the pairs
(m, k) and (j, i) are different, thus (2.7) contradicts Remark (2.2).

Lemma (2.3) has been proved.

(2.8) Lemma (prohibiting an approach from below). Suppose Xj*xk = xm-xp,

where j > k, p > m. Suppose also that xa * xb = xk • xp, for some a and b,
a> b. Then a> j.

Proof. Assume the contrary, i.e., a < j. Consider the following replacements:

(2.9) Xj • [Xa • Xb] -> Xj • (Xk • Xp) = [X/ • xk] • Xp -► (xm-Xp)-Xp = U£N

and

(2.10) [X; • xa] • xb -> f = (xv • x„,) • xb -*-► u,

where

(2.11) v<j.

It follows from (1.10) that as a final replacement in (2.10) one has

g = [Xs ' X(J • Xp     ► \Xm • Xp) • Xp ,

where s > t, and

Since the monomial g is obtained from / as a result of a finite sequence of
replacements (or g — f), one has

J  = Xv • Xw ' Xq * ¿ Xs • X( • Xp = g ,

which implies s <v , and by (2.11) one has

(2.13) s<j.

By the hypothesis of the lemma we have

Xj * xk = Xm • Xp ,
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which together with (2.12) implies

(2.14) x/*xfc = xs*xt,

The pairs (j, k) and (s, t) are different by (2.13). Thus, by Remark (2.2)
the equality (2.14) is impossible, a contradiction, due to the assumption that

a < j. We have proved the lemma.

(2.15) Inductive Lemma. Under the hypothesis of Theorem A let jo be an in-

teger, I < jo < n, such that

(2.16) For any j > jo and k, 1 < k < j, there exists a p > k and a cycle

(k, kx,..., ks) such that

Xj -k Xk = Xk¡ • Xp ,

Xj * xk¡ = xkl • Xp ,

Xj * xks = Xk • Xp.

Then the condition (2.16) holds for j = j0.

Under the hypothesis of (2.15) we shall first prove some facts.

(2.17) Lemma. Let k, jx, j2, be integers such that k < jo < jx, j2, j\ ^ J2
and let

Xji * xk = xki • xPt   and   X/2 *xk — xk2 • xP2,

for some kx,k2,px, and p2. Then px ^p2.

Proof. It follows from (2.16) that there exist mx and m2 such that

Xj\ * xmi = xk ' Xp,    ano   Xj2 * xm2 = xk • Xp2.

The pairs (jx, mx), (j2, m2) are different since by hypothesis jx ^ j2 . Thus,

by Remark (2.2.), px ±p2.

(2.18) Corollary. For any j > jo there exists an a > jo, such that

Xa * Xj0 = Xk • Xj ,

for some k, k < j.

Proof. For jo < j <n , let p¡ > jo be the integer, determined by the equality

Xj * Xj0 = xk • xPj £ N,    for some k¡.

It follows from the previous lemma that all the elements p„, ... , P(j0+X) are

pairwise different. Hence there is an equality of sets:

{i'Oo+i), ■■■ ,Pn} = {Jo+l, ■■■ , n},

which proves the corollary.

(2.19) Lemma (taking the preimage). Let k < jo, and let x;o *xk — xkl • xp,

for some p and kx, kx < jo. Then there exists a uniquely determined s < jo

such that

Xja * Xs = Xk • Xp.
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Proof. By Remark (2.2), there exist uniquely determined j and s, j > s, such

that x,*Xs = xk -Xp . It follows from Lemma (2.8) that j > jo. Assume j > jo ■

It follows then from (2.16) and (2.3) that

(2.20) Xj -k xk = xki • Xp,

for some k',

(2.21) k'<j,    k<p.

By (2.18) there exists an a > jo, such that

(2.22) xa * Xj0 = xq • Xj,    for some q.

It follows from (2.16) that

(2.23) xa k Xq - xQt • Xj,    for some qx.

Consider now the sequences of replacements:

(2.24) [xa-xjo]'Xk -> (xq-Xj)-xk = Xq-[Xj-xk] -» xq-xk,-xp   by (2.20), (2.22),

and

(2.25) Xa ' [X/0 • Xfc] -» Xa ' Xk{ • Xp ,

by the hypothesis of the lemma. It follows from (2.24) and (2.25) that

(X^ k Xki j k Xp = \Xa k Xk^ ) k Xp ,

which implies

(2.26) Xq -k Xki = Xa k xkt,

since A has no zero divisors.

Clearly, the pairs (q, k') and (a, kx) are different. By the hypothesis of the

lemma, kx < jo, hence, since a > jo, the equality (2.26) is possible only in
case that q < k'. Thus (2.26) can be written as

Xa k Xk{ = Xq • Xki.

This, together with (2.16) gives

xa * Xq = Xq' • xki,    for some q'.

Then it follows from (2.23) that

Note that this is an equality of two normal monomials. Thus, j = k', which

contradicts (2.21). We have proved that the inequality j > jo is impossible,

hence ; = jo and we are done.

(2.27) Proof of the inductive lemma. Assume jo> I ■ Let k < jo, and let

Xj0 k Xk = Xm • Xp

for some m and p, p > k, m. We shall prove that there exists a finite
sequence of pairwise different integers

(2.28) c0 = k,cx, ... ,cs-x,cs = m,
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such that

(2.29) l<Ci<j0,       s<j0,

(2.30) xJo k xCl = xC{i_t) -xp   for 1 < i < s,

and

(2.31 ) Xj0 kxk — xCs • Xp.

For i = l it follows from Lemma (2.19) (taking the preimage) that there

exists a cx, uniquely determined by the equalities (2.30) and (2.29). If ex —

k we are done. Otherwise, we shall use the following procedure. Assume a

sequence of pairwise different integers cx, ... , fy-i) has already been found

such that

(2.32) a ¿ k,    for 1 < i < r - 1,

and (2.29), (2.30) hold for all /,  1 < / < r - 1. Furthermore, assume that

(2.33) <?(_,) + k.

Then, by Lemma (2.19) there exists a cr, uniquely determined by the equality

(2.30), where i = r. Note that

(2.34) cr ¿ Ci   for all ¿,  1 < i < r- 1.

Indeed, from the equality cr = c, and from (2.30) it follows that

Xfy-i) - Xp = Xja k XCr = Xj0 -k Xc¡ = XC{t_{) • Xp ,

thus, since the algebra A has no zero divisors, one has C(T-i) = C(i-i)> a

contradiction with the choice of cx,... , C(r_i). Hence (2.34) holds. If cr = k,
we are done. Otherwise we continue applying the above procedure. Recall that

all the c¡ 's are pairwise different, and c¡ < jo . It is clear then that in finitely

many steps we should find a cs, such that cs — k. This proves the Inductive

Lemma.

(2.35) Proof of Theorem A (1.16). We shall use decreasing induction on j.

The base of the induction: n = j. Similarly to the proof of Lemma 2.23 one

can show that if k < n and x„ • xk = xm • xp , for some m and p then there is

a uniquely determined c, such that jc„ k xc = xk • xp . It is now clear that using

the same argument as in the proof of the Inductive Lemma (cf. (2.27)) one can

show that the cyclic condition (1.18) holds, but with j = n . It is now enough

to apply the Inductive Lemma (2.15).   □

Similarly to the proof of Lemma (2.17) and Corollary (2.18) one can easily

see that

(2.36) Remark. Let k be an integer, k < n . Then for any p, k < p < n,

there exists a j, j > k , such that

Xj k xk = xm • Xp,    for some m.

(2.37) Corollary. Let k, j, p, s = s(k, j) be as in (1.18). Then

(Xj)s+XkXk =xk-(xp)s+x,
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and therefore, since s + 1 divides n\,

(2.38) (Xjf k xk = xk • (Xp)p,

where P = n\.

(2.39) Corollary. Suppose that the hypothesis of Theorem A (1.16) is satisfied.

Then for P = n\ the following two conditions hold:

(i) For any pair of integers q, k,   1 < k < q < n, there exists a j, k <
j < n, such that

(Xj)    kXk = Xk • (Xq)   .

(ii) For any pair of integers j, k,   1 < k < j < n, there exists a p,  k <
p <n, such that

(Xj)P k xk = xk • (xp)p'.

Proof. Assertion (i) follows from Remark (2.36) and Corollary (2.37).   The
cyclic condition (1.18) and Corollary (2.37) give (ii).

3. Sufficient conditions for left Noetherianness

In this section we shall prove Theorem B of the Introduction. Here the

restriction that A has no zero divisors is not necessary. It will be enough to

assume as in (1.8), (1.9) that all the coefficients a¡j are nonzero. We begin with

some preliminary technical results, assuming, as before that the hypotheses of
the theorem to be proved are in force, i.e.,

There exists a positive integer P, so that the following condition is satisfied:

(3.1) For any pair q, k,   1 < k < q < n there exists a j, k < j < n, such
that

(Xj)    kXk = Xk • (Xq)   .

It follows immediately from (3.1) that

(3.2) For any pair j, k,   1 < k < j < n there exists a q,  k < q < n, such
that

(Xj)PkXk =Xk-(Xq)P.

(3.3) Definition, (a) Let u and v be two ordered monomials,

and

v=x[1---x„",        U > 0.

We say that v is a P-multiple of u if for all :',  I < i < n , one has

ti = Si + r, • P,    for some r, > 0.

(b) We call a normal monomial w a P-monomial if w = x[xP ■ ••x„"p, for

some rx, ... , rn , r, > 0.

Applying (3.1) and (3.2) one can easily see that



212 TATIANA GATEVA-IVANOVA

(3.4) Lemma. If u and v are two normal monomials, and v is a P-multiple

of u, then there exists a P-monomial W such that Wku-v .

(3.5) Lemma. Let u and v be two normal monomials. Assume that u < * v .

Let j be an integer, 1 < j < n. Then

(3.6) (X;)*" kU < * (Xj)P k V.

Proof. Since the algebra A is graded, it is obvious that (3.6) holds in case that

degw < degf . Assume now that degw = degv . It follows from the inequality

u < * v that u = w-Xj-f, v = w-xk-g for some integers i, k, 1 < i < k < n ,

and normal monomials w , f, g. (w = 1, or / = g — 1 is also possible.) Let

xp • w = wx. Two cases arise.

Case 1. The monomial wx • x, is normal. Then, obviously, the monomial

wx • xk is normal as well and one has

(Xj)P k U - WX • Xj • f < * WX • Xk • g = (Xj)P -k V.

Case 2. The monomial tui -x, is not normal. Applying (3.2), one can easily

see in this case that there exists an integer a,   1 < a < n , such that

(3.7) wx = (Xj)p-kw = w • (xa)p.

This gives a > i. It follows again from (3.2) that

(3.8) (xa)p k Xi = Xi k (xb)p,    for some b > i.

Consider the equalities

(Xj)P *U= ((Xj)P kW)k (x¿ • /)

= w-(((xa)pkXi)kf)   by (3.7)

= w-Xi-((xb)pkf)   by (3.8)

= w • x, • fx,    for /, = (xb)p k f.

Hence

(3.9) (Xj)p ku = w-Xi-fx£N.

Case 2.a. k > a > i. Then

(Xj)P kV = ((Xj)P kW)-k (xk • g)

= w • (((xa)p kxk) k g)   by (3.7)

= W • (xa)P 'Xk-g

= W-Xa-gi,

for gx = (xa)p~x -xk-g. Thus

(3.10) (Xj)PkV =W -Xa-gX.

Obviously,

W'Xi-fx <*W-Xa-gx.

This together with (3.9) and (3.10) gives us the desired inequality (3.6).

Case 2.6. a> k. It follows from (3.2) that there is a c,   ok, such that

(Xa)    kXk = Xk • (Xc)
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and

(3.11) (xj)p*v = w-xk-((xc)pkg) = wxk-gx,

where gx = ((xc)p kg). If we compare the right-hand sides of the equalities
(3.11) and (3.9) we again obtain (3.6).   D

(3.12) Corollary. Let u and v be normal monomials, such that u < * v . Let
W be a P-monomial. Then

WkU < * W kV.

(3.13) Warning. Note that it is not clear whether for W, u, and v as in
(3.12) one has v*W* > ukW.

The following result can easily be obtained from the original Dickson Lemma,
cf. [K-R-W].

(3.14) A "F-generalisation" of the Dickson Lemma. Let ux,u2,... ,us,...

be a sequence of ordered monomials. Then there exists an integer i such that

for any k > i, there is a j = j(k), j < i, such that uk is a P-multiple of Uj.

(3.15) Proof of Theorem B (1.19). Let / be a left ideal in A. We shall prove
that J is finitely generated as a left ideal. Let U be the set of all highest
monomials of the elements of J. It is clear that U is a countable set. We

can always assume that U = {ux, u2, ... , uk, ...}, where ux < * u2 < *• • •

< * uk < * • • • .

By Lemma (3.14), there exists an integer i0, such that for any k > z'o , there

is an i = i(k), i < z'o, such that uk is a F-multiple of m, . Let f , f2, ... , fi0
be elements of /, with highest monomials respectively Ux ;u2, ... , uio. We

can always assume that f¡ = u¡+g¡, for some polynomial g¡, such that HM(gi)

< * Ui. We shall prove that the polynomials fx, ... , fi0 generate J as a left

ideal. Let Jo be the left ideal, generated by fx,... , fi0. Obviously Jo Q J.
Assume that Jo ^ J. Let f £ J\J0 be a polynomial with minimal highest

monomial. By the definition of U there is a k, such that uk is the highest

monomial of /, i.e., / = c-uk + g, where c £ K, g - ax-vx-\-\-aS'Vs, and

Vj < * uk , for 1 < j < s. We can always assume that c - 1. By the choice of
z'o, there exists an z", i < z'o, such that uk is a F-multiple of u¡.

It follows from Lemma (3.4) that there exists a normal F-monomial W

such that W k u¡ = uk . Note that by Corollary (3.12), W k u¡ is the highest
monomial of the polynomial Nor (IT • f), where Nor(W • f) is the normal

form of the element W • f¡. Consider now the polynomial

h = f--Nor(W-fi),
a

where a is the coefficient of the highest monomial of Nor (IF -ft). It is clear

that h £ J\Jo, and h is a nonzero polynomial with highest monomial strictly

less than uk . This contradicts the choice of /. We have proved that Jo = J.
Hence, A is left Noetherian.   D

(3.16) Remark. If A has no zero divisors then conditions (1.17) and (1.20)

from the introduction are equivalent.

Proof. Clearly (1.20) implies (1.17). The implication (1.17) =► (1.20) follows
from Corollary (2.39).

Note that, if A has no zero divisors and satisfies (1.20), then A is cyclic.
(This follows from Remark (3.16) and Theorem A (1.16).)
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(3.17) Corollary. Let A = K(xx, ... , x„)/(F) be a binomial skew polynomial
ring without zero divisors, with reduced Groebner basis

F = {XjXi - aijXi>Xy\l < i < j < n},

where for 1 < i < j < n one has 1 < i' < j' < n, and x¡'Xy < * x,x,. Suppose

furthermore that

(3.18) The set {x/<X/<|l < i < j <n} contains precisely ( - ) elements.

Then A is left Noetherian.

Proof. It follows from Corollary (2.39) and Remark (3.16) that for P = n\, A
satisfies the hypotheses of Theorem B. Hence A is left Noetherian.

4. Left and right Noetherianness

In this section we shall prove Theorem C (1.21) of the Introduction.  We

assume that the hypotheses of the theorem to be proved are in force, i.e.,

(4.1 ) A = K(xx, ... , xn)l(F) is a binomial skew polynomial ring without zero

divisors, with reduced Groebner basis

F = {x/x, - aijXvXy 11 < i < j < n},

where for 1 < i < j < n one has 1 </'</< n, and x¡iXy < * X/X¿.

We begin with some technical results.

The following lemma is true even if the condition (1.10) is not satisfied.

(4.2) Lemma. Let A be a binomial skew polynomial ring without zero divisors.

Then the following holds:

(a) If A is left Noetherian then for any i, j,   1 < i < j < n, there exists a

normal monomial w such that

WkXi = Xi-xf%W.

(b) If A is right Noetherian, then for any i, j,  1 < i < j < n, there exists

a normal monomial w such that

XjkW=xfe&W-Xj.

Proof, (a) Assume A is left Noetherian and j > i. Consider the increasing
chain of left ideals I\ Ç 1% C ■ • ■ Ç Ik Ç ■ • • , where for k > 1, Ik is the left
ideal generated by the elements x,x/, x,x?, ... , x,x^ . It follows from the left

Noetherianness of A that there exists a k such that Ik — Ik+X — ■■■ . This

implies that x¡xk+x £ Ik . Hence the following equality holds:

(4.3) X¡Xk+X -J2   Yl   brqWrq k XiXrj = 0 ,
a    \<r<k

where the wrQ are normal monomials and the brq are nonzero elements of K.

This equality gives that a linear combination of nonzero normal monomials is

zero. This is possible only in case all the coefficients in the equality (4.3) are

zero, which implies that x,x|+1 = wrqkx¡Xj for some q and r, r <k. Since
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A has no zero divisors this implies that x¡xk+x r = wrq * x¡. We have proved

(4.2(a). A similar argument shows that (4.2(b)) also holds.   D

(4.4) Lemma. Let f be an arbitrary monomial which is not normal. Assume

the normal form of f is either (a) w = x,■■• (x,-)'. or (b) w = (x,-)' • Xj, where in

both cases 1 < i < j < n and t > 1. Then there exists a pair of integers p, q,
1 <P < q <n, such that xqkxp= x, • xy.

Proof. This follows from condition (1.10).

(4.5) Corollary. Let A = K(xx, ... , xn)/(F) be a binomial skew polynomial

ring, with reduced Groebner basis

F = {XjXj - ajjXi'Xy\l < i < j < n},

where for I < i < j < n one has I < i' < j' < n, and xyXy < * x;x,.

Suppose furthermore that A is left (or right) Noetherian. Then the following two
equivalent conditions hold:

(a) The set {x,<x,/|l </<;<«} contains precisely (2) elements.

(b) For any pair of integers i, j,   1 < i < j < n, there exist uniquely
determined q and p, 1 < p < q < n, such that xq * xp = x, • x¡.

Proof. Case 1. A is left Noetherian. Consider the sets

P\ = {x; * X/lI < i < j < n} - {x'i • x'j\ 1 < i < j < n},

F2 = {x,-x;|l </<;'<«}.

Obviously

(4.6) Px ç P2.

We shall show that there is an equality of sets in (4.6). Indeed, take an

arbitrary pair i, j, 1 < i < j < n. It follows from Lemma (4.2a) that there
exists a normal monomial w such that

W k Xi = Xi • (Xj)de*w.

It then follows from Lemma (4.4) that x, • x¡ = xq • xp , for some p and q ,

1 < P < q < n . Thus P2Q Px, which together with (4.6) gives Pi = F2 and

Card(Fi) = Card(F2)= (jV

This proves (4.5(a)) and (4.5(b)).
Case 2. A is right Noetherian. Apply Lemmas (4.2(b)), (4.4(b)).   D

Recall that given an algebra A with product written as u • v , Aop is the

algebra based on the same underlying vector space, with product written as
uov =V'U. Clearly, A is left Noetherian if and only if A°v is right Noetherian.
Also, if A = K(X)I(F), where (F) is as in (4.1), is a binomial skew polynomial
ring, then A°v = K(x)/(Fop), where

(4.7) Fop = {xyxv - a~jXXiXj\l <i<j< n).

In general, the fact that F is a Groebner basis does not imply that Fop is a

Groebner basis, as one can check in example (1.12).
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(4.8) Proposition. Let A = K(xx, ... , x„)/(F) be a binomial skew polynomial

ring, with reduced Groebner basis

F = {XjX, - a¡jX¡iXy 11 < i < j < n},

where for 1 < i < j < n one has 1 < i' < j' < n, and x¡>Xy < * XjX¡. Suppose

furthermore that

(4.9) The set {x¡>Xy\l < i < j < n} contains precisely I ~ I elements.

Then the following three conditions hold:

(a) Fop is the reduced Groebner basis of the ideal (Fop).

(b) Aop is a binomial skew polynomial ring.

(c) Aop is left Noetherian.

Proof. It follows from (4.7) that all the elements of Fop are binomials of the

type

Svj' = Xj'Xji — a¡j x¡Xj,

where I < i < j < n, 1 < i' < / < n. Lemma (2.3) shows that for any pair

'"' » /1 1 < k' < j' < n, one has z < j', hence

(4.10) XyXil=HM(gily),

where HM(gi*y) is the highest monomial of gvy , cf. (1.1). Recall now (cf.

[G-Ii]) that given an ideal I in K(X) a monomial u is normal modulo I if it

does not contain as a subword any of the monomials HM(f), where f £ I.
Let N(I) be the set of all normal modulo I monomials. It is known, cf. [Berg,

G-L], that N(I) projects to a if-basis of the algebra B = K(X)/I. Now for
I = (F0*) h is clear that

(4.11) N(I)CN,

where as in (1.1), N is the set of ordered monomials. We shall prove that

equality holds in (4.11). Recall that

(4.12) The algebras A and Aop have the same Hubert series.

(4.13) ./V projects to a üT-basis of A = K(X)/(F), N(I) projects to a .K-basis

of A0* = K(X)I(I).
It follows from (4.10), (4.12), and (4.13) that

N(Fop) = N(I) = N.

It then follows from the Diamond Lemma [Berg] (cf. also (1.6)) that Fop is a

Groebner basis of the ideal (Fop). This proves (4.8a). Obviously (4.8a) implies

(4.8b).
Consider now the set

Fop = {xyXv - a~jXXiXj\l <i <j <n,  1 < /' < / < «}.

It follows from (4.10) that there is an equality

x(i'YxU'Y = X'XJ '

for all V, f , 1 < i' < j' <n . Obviously, the set

{X(,-<)/Xq-/)/|1 < i' < j' <n} = {x¡Xj\l < i < j < «}
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contains precisely (") elements. It follows from here that Aop satisfies the

hypotheses of Corollary (3.17), hence, it is left Noetherian.   D

(4.14) Proof of TheoremC (1.21).
Corollary (3.17) gives the implication (i) => (ii).

(i) => (iii). It follows from Proposition (4.8(c)) that Aop is left Noetherian,

hence A is right Noetherian.
Corollary (4.5(a)) shows that (ii) =*• (i) and (iii) =>■ (i).   D

(4.15) Definition. For the set of semigroup relations

G = {xy • x, = Xi'Xji 11 < i < j < n}

where for I < i < j < n one has 1 < i' < / < n, and i' < j, we say that G

is a semigroup Groebner basis if and only if the corresponding set of relations

F(G) = F = {xj • Xj - Xi'Xy 11 < i < j < n)

is a Groebner basis of the ideal (F) in K(X).

(4.16) Corollary. Let S= (X\G) be a semigroup with set of generators X and

set of relations

G = {x;x, = Xi'Xy\l < i < j <n},

where for 1 < i < j < n one has 1 < ï < j' < n, i' < j. Suppose G is a

semigroup Groebner basis. The the following three conditions are equivalent:

(i) The set {x¡>xy\l <i < j <n} contains precisely (") elements.

(ii) S is left Noetherian.
(iii) S is right Noetherian.

We shall finish with a full list of left and right Noetherian binomial skew
polynomial rings with three and four generators. It turns out that

(4.17) In this case the condition (1.10), V < j' for any i < j appears as a

consequence of left Noetherianness.
By Fi we shall denote a subset of K(X) of the type

(4.18) Fx = {x7x, - ajiX¡iXy\l < i < j < n,  1 < i' < f < «}.

Note that in difference with F , cf. (1.9), (1.10), we do not assume V / j'.

One can easily check using the Groebner basis property (1.4(b)) that

(4.19) Lemma. Let A = K(xx, x2, x-¡)/(Fx) be a binomial skew polynomial

ring. Then A is left (respectively right) Noetherian if and only if one of the

following conditions hold:

(1) F] = {X3X2 - 0x2X3, X3X1 - 6x1X3, X2X1 - cxxx2\abc ± 0}.

(2) Fi = {X3X2 - ÛX1X3, X3X1 - /JX2X3, x2Xi - cxxx2\c2 = 1, ab ^ 0}.

(3) Fi = {X3X2 - 0x2X3, X3X1 - 6x1X2, X2X1 - CX1X3IÍJ2 = 1, be t¿ 0} .

Some more delicate combinatorial arguments show that the following propo-

sition holds.
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(4.20) Proposition. Let A = K(xx, x2, X3, x^)/(Fx) be a binomial skew poly-
nomial ring. Then A is left (respectively right) Noetherian if and only if one of

the following conditions holds:

Fx = {X4X3 — ÛX1X4, X4X2 — 6x3X4, X4X1 — CX2X4, X3X2 — dx2xj,

X3X1 - J_1xiX3, X2X1 - dxxx2\abcd ^ 0},

Fi = {X4X3 — ÍZX2X4, X4X2 — 0X1X4 ,  4x4X1 — CX3X4,

(2) X3X2 — 0x2X3, X3X1 — d   X1X3,

X2X1 - dxxx2\abcd ^ 0},

Fi = {X4X3 — ÍZX2X4, X4X2 — 6x3X4 , X4X1 — CX1X4, X3X2 - ÖX2X3 ,

(3) X3X1 - exxx2, x2xx - fxxx?\d2 = 1,

af = be, abcdef^O},

(4)
Fx = {X4X3 — ÍZX2X4, X4X2 — 6x3X4, X4X1 — CX1X4, X3X2 — ÖX2X3,

X3X1 - exxx-}, x2xx - exxx2\d2 = 1, abcde ^ 0},

Fi = {X4X3 — OX1X4, X4X2 — 6x2X4,

(5) X4X1 — CX3X4, X3X2 - 0x2X3,

X3Xi-exiX3, X2X1 - d~xxxx2\e2 = 1, abcd^O},

Fx = {X4X3 — 0x3X4, X4X2 — 6x1X3, X4X1 — CX2X3, X3X2 — 0X1X4,

(6) X3X1 - ex2x*, X2X1 - fxxx2\abcdef ^ 0,

a2 = f2 = be I cd = cd/be},

Fx = {X4X3 — 0X3X4, X4X2 — 6x2X3, X4X1 — CX1X3, X3X2 — ÖX2X4,

(7) X3X1 - exxX4, x2xx - fxxx2\a2 = 1,

be - cd, cdf # 0},

Fi = {X4X3 — ÛX3X4, X4X2 — 6x1X4, X4X1 — CX2X4, X3X2 - OX1X3,

(8) X3X1 - ex2X3, X2X1 - fxxx2\f = 1,

be = cd, acd ^ 0},

Fi = {X4X3 — ÛX3X4, X4X2 — 6x1X4, X4X1 — CX2X4, X3X2 — 0x2X3,

X3X1 - 0x1X3, x2xx - fxxx2\f2 = 1, abed ^ 0},

Fi = {X4X3 — OX3X4,  X4X2 — 6X2X4,  X4X1 — CX1X2,  X3X2 — OX2X3 ,

X3Xi-exiX4, X2X1 -/xiX3|a6 = 1, cef^O},

Fx = {X4X3 — ÛX3X4 , X4X2 — 6x2X4,  X4X1 — CX1X3 , X3X2 - 0x2X3,

X3X1 - exxx2, x2X[ - /xjx4|a6 = 1, cef ^ 0},
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Fi = {X4X3 — 0X3X4, X4X2 — 6x2X4, X4X1 — cxxx2,

(12) X3X2 - 0*X2X3 , X3X1 - eXiX3 ,

X2X1 - fxxx^ad = 62 = 1, cef t¿ 0},

(13)

(14)

(15)

(16)

F] = {X4X3 — 0X3X4,  X4X2 — 6x2X4, X4X1 — CX1X3 , X3X2 — 6x2X3 ,

X3Xi-exiX4, X2X1 -/X1X2I02 = 1, bcef^O),

Fx = {X4X3 — 0X3X4, X4X2 — 6x2X4, X4X1 — CX1X4, X3X2 — 0X2X3,

X3X1 - exxx^, X2X1 - fxxx2\abcdef ^ 0},

Fi = {X4X3 — 0X3X4,  X4X2 — 6x2X4, X4X1 — 6x1X4, X3X2 — OX1X3,

X3X1 - ex2Xi, x2xx - fxxx2\f2 = 1, abde ^ 0},

F] = {X4X3 — 0X3X4, X4X2 — 0X2X4, X4X1 — CX1X4, X3X2 — 0X2X3,

x3Xi-e\XiX2, X2X1 -/xiX3|o"2 = 1, acf^O},

Fx = {X4X3 — OX3X4, X4X2 — 6x2X3, X4X1 — CX1X4,

(17) X3X2 — 0X2X4,  X3X1 — CX1X3,

X2X1 - fxxx2\a2 = 1, bcdf ,¿ 0}.
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