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INVOLUTORY HOPF ALGEBRAS

D. S. PASSMAN AND DECLAN QUINN

Abstract. In 1975, Kaplansky conjectured that a finite-dimensional semisim-

ple Hopf algebra is necessarily involutory. Twelve years later, Larson and Rad-

ford proved the conjecture in characterisitic 0 and obtained significant partial

results in positive characteristics. The goal of this paper is to offer an efficient

proof of these results using rather minimal prerequisites, no "harpoons", and

gratifyingly few "hits".

Let H be a finite-dimensional Hopf algebra over a field K, and let S: // —> //

denote its antipode. Then H is said to be involutory if S2 = id# or equivalently

if S is an involution on H. In [K], Kaplansky conjectured that a semisimple

Hopf algebra is necessarily involutory, and in a fundamental paper [LR2], Lar-

son and Radford proved this assertion at least for fields of characteristic 0.

Furthermore, they showed that if H is semisimple and cosemisimple and if

char AT = p > (dim^ H)2, then H must again be involutory. A nice exposition

of this material can be found in [N].
While [LR2] is reasonably brief, it depends heavily on certain earlier results

on characters of Hopf algebras as contained in [L] and [LR1], and the combined

proof is substantial. The goal of this paper is to present an efficient proof of
the main results of [LR2] requiring minimal prerequisites. As will be apparent,

our proof follows the same basic outline as that of Larson and Radford, and

therefore we offer nothing new in this regard. However, by computing traces on

certain tensor modules, we are able to obtain the necessary character formulas

quite quickly, and this is where the simplifications occur. In some sense, the

hero of this approach is the linear transformation T described below.

If F is a left //-module, then H <g> V is well known to be //-isomorphic to

H <8> Vf, where Vc is equal to V but with the trivial action determined by the

counit e . This is proved quite simply by considering the map T: H® V —► H® V

given by

T: h <8> v >-+ ̂2 h\ ® h2v       for all h £ H, v £ V.
(h)

Indeed, one shows that T is invertible with inverse

T~x:h®v t-t^hi ®S(h2)v
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and that T intertwines the two representations. We will not need the latter

fact here. Rather, we will just use T and several of its variants to obtain

certain trace equations of interest. Specifically, if p: H® V —► H® V is a linear

transformation, then tr//®!/ T~l pT = trH0V p and, as we will see, equalities

of this nature yield the necessary character formulas. We start with a simple

example.

Let t: H —> K be the element of the dual H* corresponding to the trace

map on H. In other words,

x(a) = txHa5f       for all a £ H

where útg» £ End/¡; H denotes left multiplication by a .

Lemma 1. If x £ H* is the trace element described above, then

T*T = T(l)T = (dimjc#)T

where * is the convolution multiplication of H*. Furthermore, if s: H* -* H* is

the antipode of H*, then s2 and left multiplication by x commute as operators

on H*.

Proof. Let V be any left //-module, and define F0: H <g> V -* H <g> V by

f0:*®t;~£Äi®S(Ä4)v.
(h)

Then T0 is invertible with inverse given by

FT1:/? »dhVA| ®h2v.

(«)

Now, for any a £ H,

x(a) dim* V = (trHa^) dim^ V = trH0V(a^ ® 1) = trff0K T~l(a^ ® \)T0

and furthermore

T0~1(aä' ® Y)Tq:h ® v h-> V^ a\h\ ®a2h2S(hi)v = ^aih ®a2v.

(a)(h) (a)

Thus we see that

tr//®(/ T~x(a¿> ® l)T0 = 'Yj%h(AUs ÍTv a2 = 5ZT(fl') txv a2.
(a) (a)

Finally, let V = H so that dim* H = x(\) and trK b = trHb^> = x(b) for all
b £ H. Then we obtain

x(a)x(\) = ^T(fl|)T(a2) - (T*r)(a);

(a)

and, since this holds for all a g H, we conclude that t(1) t = t * x.

For the second part, recall that the antipode S of H is invertible as a linear

transformation since H is finite dimensional. Thus, S2 is an algebra automor-

phism of H and this implies that

x(S2(h)) = trH S2(h)^ = txHh^ = x(h)

for all h £ H. Furthermore, since s: H* —► //*  is defined by

j(í):A»-»£(S(A))      for all A e//, í g//*,
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the preceding formula translates to the assertion that 52(t) = x . Finally, we use

the fact that s2 is an algebra automorphism of H* to deduce that

s2xj?:Ç h* s2(x * ¿) = s2(x) * s2(C)       for all £ G //*

and
t^s2:¿;h-*t*s2(¿)       for all ¿j G H*.

But s2(t) = t , so í2t^ = x&s2 and the lemma is proved.   D

It can be shown that s(x) = x, but this is not needed here.  On the other

hand, we do require the following simple, but extremely useful, observation.

Lemma 2. Let A and B be finite-dimensional K-vector spaces, and let f and

f be linear transformations from A to A ® (Endx B) with the property that

the operators (£ ® Y)f(a), (£ ® \)f'(a) £ End^ B have the same trace for every

a £ A and ¿; G A* = HomK(A, K). Now let g: A ® B —> A ® B be defined by

g:A®B -Ä A ® (End* B) ® B -Ä A®B

where ev: (End# B) ® B —> B is the evaluation map, and let g':A®B—>A®B

be defined similarly using f . Then tr^^ g = tr^g g'.

Proof. Let {a\, a2, ... , am } be a basis for A , and for all i — 1, 2, ... , m ,

write
m m

f(a¡) = Y,"j® f,j       and       f'(al) = ^ a, ® fi}
j=\ 7=1

where ftJ, f[ , £ Endjt B . If {¿ji, E,2, ... , ¿;m } denotes the dual basis of A*,

then (£j ® l)/(fl,-) = fij and therefore, by assumption, tTgfij = trÄ f¡¡ for

all i, j . Finally observe that A ® B = © X),a¡' ® B and that

m

g(ai®b) = J2<ij®f,j(b)-
7=1

Thus the subspace a, ® B contributes trÄ f, ,• to the trace of g and therefore

m m

tr^ß g = J2tr» f';■ >■ = Htr* fi,i T5 tr/i®B S7
i= 1 /= 1

as required.   D

We recall from [S] that the subspaces of H given by

/'
{x£H\hx = e(h)x forall Ae//}

JH

and

/.
= {x £ H I xh = e(h)x for all h £ H}

H

are both one dimensional and that their elements are called the left and right

integrals of H , respectively. Furthermore, a generalization of Maschke's theo-

rem asserts that H is semisimple precisely when H has a nonzero idempotent

integral.   In this case, the spaces of left and right integrals coincide and the
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nonzero idempotent integral is necessarily unique. Since the counit of the dual

H* is evaluation at 1//, we see that

/   = {Ç £ H* \ p*Ç = p(l)Ç for all p£H*}

and

/   =KG/T \Ç* p = p(\)£, for a\\p£H*}.
Jh*

Now let us define the functionals X, X' £ H* by

X(a) = trn(a^fS2)       for all a £ H

and

X'(a) = trH(a^S'2)       for all a £ H.

Then we have

Lemma 3. With the above notation, X is a left integral of H* and X' is a right

integral.

Proof. We begin with X.   Let  F be a left //-module, and define the linear

transformation T\\H ®V —> H ®V by

F]: h ® v h-> 22 A2 ®h\v.
W

Observe that Fi is a vector space isomorphism with inverse given by

F, l:h®v y-*^2h2®S x(hx)v.

(A)

Now let a £ H and let L: V —* V be a linear transformation. Then

X(a) tty L = trH(a&S2) try L = trH®v(a&S2 ® L) = tr#0K T~l(a^S2 ® L)TX

and

T'l(a^S2®L)Ti:h®v^ £] a2S2(h3) ®S(h2)S~1(al)Lhlv.

(«)(*)

At this point, the preceding lemma comes into play.  Specifically, for fixed

a £ H, we have the linear maps /, f':H —> H ® End/f V given by

/:A>-» J2 a2S2(h3)®S(h2)S~l(al)Lhi

(«)(*)

and

/':Ak J2 a2S2(h3) ® S-^aOLhiSfa).
(a)(h)

Moreover, since

trv^2S(k2)S-l(b)Lk1 = trv^2s-i(b)LklS(k2)
(*) (k)



INVOLUTORY HOPF ALGEBRAS 2661

for all b, k £ H, it is easy to verify that the hypotheses of Lemma 2 are

satisfied. Thus, it follows that the trace of T¡~x(a^S2 ® L)TX is equal to the

trace of the linear operator on H ® V given by

h®v^  Yl a2S2(hi)®S-](al)LhiS(h2)v

= Ya2S2(h)®S-i(al)Lv.
(a)

As a consequence,

X(a) trvL = J2trH((a2)^S2) trv(S-l(ai)L)

= ^2X(a2)trv(S-i(al)L).
(a)

Finally, let V = H, let Ç £ H*, and define L:H -» H by

L:x^i(S(x))lH       for all xe 7/.

Then try L = ¿f ( 1 ) and

trv(S-\al)L) = trv(LS-\ax)) = ^(ax),

so we obtain

A(aK(l) = 5>(a2K(a,) = (<W)(a).
(a)

Since this is true for all a £ H, we conclude that ¿, * X = Ç(i)X for all Ç £ H*

and therefore A is indeed a left integral of //*.

The proof for X' is similar. Again let V be a left //-module, but this time

define T2:H®V ^ H®V by

r2: A ® v h-> ̂2 Ai ® A2w.

(A)

Then T2 is an invertible linear transformation with inverse given by

T2-i:h®v^^2hl®S(h2)v.
(h)

Choose a £ H, and let L: V -* V be an arbitrary linear transformation. Then

X'(a) trv L = trH(a^S~2) Xrv L

= trH<g>v(a^S~2 ®L) = tTHlg)y T~\a^S~2 ® L)T2

and

T~x(a3'S-2®L)T2.h®v^ JT axS~2(hx) ®S~](h2)S(a2)Lh3v.

(«)(*)

Once again, we apply the previous lemma. Here, for fixed a £ H, we have

the linear maps /, f':H —> H ® End/¿ V given by
_

/:ftw  5] c2i5-2(/j1)®5-1(/22)5(fl2)L/!3

(a)(h)
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f:h* Yl axS~2(hx) ® S(a2)Lh3S~l(h2).
(«)(*)

Moreover,

try J2 S-'(Ai)S(b)Lk2 = try £ S(b)Lk2S~Hkx)
(k) (k)

for all elements b, k £ H, so the assumptions of Lemma 2 are certainly satis-

fied. Thus it follows that the trace of T2~l(a¿fS~2 ® L)T2 is equal to the trace

of the linear operator on H ® V given by

h®v^  J2 axS-2(hx)®S(a2)Lh3S-{(h2)v
(«)(*)

= Y,a¡S~2(h)®S(a2)Lv.
(a)

In other words,

X'(a) trvL = Ytr//((ai)^S~2) trv(S(a2)L)
(a)

= ¿2x'(al)trv(S{a2)L).
(a)

Finally, suppose V = H, choose £ £ H*, and define L:H —> H by

L:x^i(S~l(x))\H       for all xe//.

Then tri/L = £(l) and

try(S(a2)L) = trv(LS(a2)) = Ç(a2),

so we obtain

A'(a)í(l) = 5]A'(a1)<í(a2) = (>l'*í)(u).
(a)

Since this holds for all a G //, we conclude that A' * £ = £( 1 )A' for all £ g H*
and therefore A' is a right integral of H*.   G

With this result in hand, we can proceed as in [L] and [LR2], except that

we take an algebra rather than a coalgebra point of view. To start with, recall

from [S] that a nonzero left or right integral ß of H* determines an associative

nondegenerate bilinear form â§:H x H —> K given by âS(a, b) — ß(ab) for

all a, b £ H. In particular, the nondegeneracy implies that H is a Frobenius

algebra and that ß cannot vanish on any nonzero ideal of H .

Proposition 4. If H is a semisimple Hopf algebra, then:

(i)   A is a nonzero left integral of H* and X' is a nonzero right integral.

(ii)   H* is semisimple if and only if trn(S2) ^ 0.
(iii)   S2 stabilizes each ideal of H.

Proof, (i) If e is the nonzero idempotent integral of H, then S2(e) = e and

e has rank 1. Thus X(e) = 1 = X'(e) and Lemma 3 yields the result.

(ii) If A(l) = trH(S2) y£ 0, then A(1)~'A is a nonzero idempotent integral of

H* and therefore H* is semisimple.  Conversely, if H*  is semisimple, then
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since A is nonzero by (i), some scalar multiple of A is a nonzero idempotent

integral. In particular, 0/A*A = A(l)A and therefore tr//(»S2) = A(l) ^ 0.
(iii) Let / be a minimal ideal of H, and note that S2(I) = J is also a

minimal ideal. If / / /, then IJ = 0 and hence

(I&S2)2: H i-» IS2(IH) = // = 0.

In particular, each linear transformation in I&S2 is nilpotent and has trace 0,

so X(I) = tr¡i(l3>S2) = 0, a contradiction. We conclude therefore that each

minimal ideal of H is 5'2-stable and, since H is semisimple, the proposition

is proved.   D

We remark that the converse to (i) above is also true. Specifically, if A or A'

is nonzero, then H is necessarily semisimple. To see this, suppose that A / 0

and let N be the radical of H. Then N is an ^-stable nilpotent ideal of H,

so N^S2 consists of nilpotent operators on H and X(N) — trH(N^S2) = 0.

But A is a nonzero left integral of H* by Lemma 3, so A cannot vanish on a

nonzero ideal of H and hence N = 0, as required.

The proof of the next result requires a small amount of character theory.

Lemma 5. If H is semisimple, then there exists a unique group-like element

g £ H such that:

(i)   A * í = i(g)X for all c; £ H*.
(ii)   X(ag) = X'(a) for all a£H.

(iii)   S4 is the inner automorphism of H induced by g, and S has finite

multiplicative order.

Furthermore, if char AT = 0, then tr h(S2) is real and positive.

Proof, (i) We know that JH. is the one-dimensional /T-space spanned by A,

and it is easy to see that A*¿; is a left integral for any Ç £ H*. Thus, since //** =

H, there exists a unique element g £ H with A * ¡t, = £,(g)X for all ¿; g //*.

Moreover, the map g:H* —> K given by Ç i-> Ç(g) is clearly multiplicative,

and from this and the definition of multiplication in H*, it follows that g is

a group-like element of H. In particular, g is invertible in H and in fact g

has finite multiplicative order.

(ii) We now show that the functional Xs £ H* given by Xg(a) = X(ag) for all

a £ H is a right integral of H*. To this end, observe that since g is invertible

in H, any element of H* is of the form £g;a >-> í(ag) for some £ G H*.

Furthermore, since g is a group-like element, we have

(A* *i*)(fl) = £A*(a,)i*(a2) = Y^a^K(a2g)
(a) (a)

= £A((as),)¿((flár)2) = (X*i){ag) = (X^Y(a)
{ag)

for all a £ H. Thus, by (i) above,

xg*ig = (x*i)g = (i(g)xy = í (g)i* = tg ( i w
and Xs is indeed a right integral of H*. In particular, Xs is a scalar multiple

of A'. But if e denotes the nonzero idempotent integral of //, then since

6g — e(g)e = e , we have

Xg(e) = X(eg) = X(e) = 1 =A'(é>)

and therefore Xs = X'.
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(iii) Let K denote the algebraic closure of K, and let H = H®K 2 H. Since

the nonzero idempotent integral of H is clearly an idempotent integral of H, it

follows that H is also semisimple. Furthermore, since H* = //* 0 K D H*, we

see that the corresponding elements A and A' of H* are the natural extensions

of A and A', respectively. With these observations, it clearly suffices to work

in H, or equivalently, we can now assume that K = K is algebraically closed.

Write H — ©2~Z?=i h as the direct sum of its minimal two-sided ideals.

Since K is algebraically closed, each such minimal ideal is isomorphic to a

full matrix ring over K ; say /, = Md.(K) and let /,-:Md.(Ar) —> K denote the
usual matrix trace. If a, b £ I¡, then the map da,b'-x •-» a-*¿> defines a linear

operator on /, and, as is well known, tv¡t 6a,b = Xi(a)Xi(b) ■

By Proposition 4(iii), /, is S2-stable and therefore, by the Noether-Skolem

Theorem, there exists a unit c, of /, such that S2(x) = c~]xc¡ for all x £ I,■.

Here, of course, c~ ' is the "local inverse" of c, in /,. Let y £ I,. Since the

linear transformation y^S2:H —> // annihilates all the minimal ideals // of

H with j ^ i, we have

A(y)-tr//(^S2) = tr/,(j;^52).

Hence, since

jvJ^5'2:x h-> (yc(_1)xc(       for all x £ I¡,

it follows that

A(T) = tr//(^52) = ^(Tcr,tócí).

In a similar manner, we obtain

V(y) = tr,,(y^s-2) = xi(yci)x,(c-i)

and, as we observed earlier, neither A nor A' can vanish on /,. As a conse-

quence, Xi(c¡) and Zi(c;_1) are both nonzero scalars.

Now, by (ii) above, X'(y) = A(j^g) and therefore

-1
Xi(yct)Xi(c,   ) = X'(y) = X(yg) = x¡(ygiC, ])Xi(c¡)

where g¡ denotes the projection of g into /,. Since the above holds for all

y £ Ii, we see that Xi vanishes on the left ideal of /, generated by the element

c,Xi(c~1)- g¡c~lXi(Ci)

and so this element must be zero. In particular, we have c2 = giXi(c¡)IXi(c7X)

and conclude that

S4(x) = c~2xcf = g~lxg¡       for all x £ I,.

It is now clear that SA is the inner automorphism of // induced by g, and

part (iii) follows since g has finite multiplicative order.

Finally suppose char K — 0 and say S2w = id« . Then cf is a nonzero

scalar matrix in Md¡(K) ; and since K is algebraically closed, we can multiply

c¡ by a suitable scalar to assume that cf = 1 /, . Of course, this implies that

the eigenvalues of c~' are the complex conjugates of the eigenvalues of c, and
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consequently Xi(c7l) isine complex conjugate of Xi(ci) ■ Thus since tr#(S2) =

A(l) and each Xi(cd is nonzero, we have

q q

trH(S2) = J2XiKl)Xi(0 = £ toWP > °
i=l i=i

and the lemma is proved.   D

Recall that a finite-dimensional Hopf algebra is said to be unimodular if its

left and right integral subspaces coincide. As we observed earlier, any semisim-

ple Hopf algebra is necessarily unimodular.

Corollary 6. Let H be semisimple.

(i) If H* is unimodular, then S4 = id#.
(ii) If charK = 0, then H* is semisimple.

Proof, (i) Since H* is unimodular, A is a right integral for H* and therefore

£(i)A = A*¿; = ¿;(g)A      for allied*

where g is the group-like element of H given by part (i) of the previous lemma.

It is now clear that g = 1 and hence S4 = id// by Lemma 5(iii).

(ii) Since char A" = 0, the previous lemma implies that trh(S2) ^ 0 and it

follows from Proposition 4(ii) that H* is semisimple.   D

We can now obtain the main result of [LR2] using the key argument of that
nsnpf

Theorem 7. Let H be a finite-dimensional Hopf algebra over the field K, and

assume that both H and its dual are semisimple. Then dim* H / 0 in K.

Furthermore, if either char AT = 0 or char AT = p > (dim*//)2, then H is

involutory.

Proof. It suffices to assume that m = dim/c H > 1. We continue with all the

previous notation and, in addition, let t £ H = //** correspond to the trace

map on H*. In other words, the trace element t £ H is defined by

{(0 = tr„. &       for all £, £ H*.

Clearly

e(t) = lw.(r) = dimKH* =dimKH

and, by applying Lemma 1 to H*, we see that t2 = (dim*; H)t and that S2
and t$> commute as operators on H.

Now, by assumption, H* is semisimple, so A(1)_1A is a nonzero idempotent

of rank 1 by Proposition 4 and therefore

trHS2 = X(l) = trH.X^.

Furthermore, by definitions of t and A, we have

tr„. A^ = X(t) = trH(t<?S2).

Thus

trH(t^S2) = trHS2 = X( 1)9*0
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and, in particular, t¿>S2 is not nilpotent. Since S2 and ig» commute and

since t2 = (dimjf H)t, it therefore follows that dim*; H is not zero in K . This

also implies that / = (dim/-; H)~lt is a nonzero idempotent of H. Moreover,

since t^S2 = S2t& annihilates (1 - f)H and acts like (dimK H)S2 on ///,
we have

iTfH S2 + tr(i_y)Ä S2 = trw S2 = tr//(^S2) = (dim* //) tr/H S2

and obtain the trace equation

trn_y-)//5'  = (dimjf H — 1) try// S .

By the preceding corollary,  (S2)2 = id//  and, by hypothesis,  char A" jí 2.

Thus S2 is diagonalizable in its action on H and in fact H — EX®E-X where

E¡ = {h£H\S2(h) = ih}

e can define the integers n,

n = dimK(fH nEx)- dimK(fH n E-i)

for /' = ±1. With this, we can define the integers n, n' by

and

rí = dirndl - f)H n £,) - dim*((l - f)H n £_,).

Then clearly,  |«| < dim/f///,  |«'| < dim/<:(l - /)//, and \n\ + \n'\ < m =
dimKH. Furthermore,

trfHS2=Kn       and       tr{X_f)HS2 =K rí

where we temporarily use =k to indicate equality in the field A".  Thus the

trace equation becomes

n' =K (m- i)„.

Furthermore, notice that \(m - l)n - n'\ < m2 and that, by hypothesis, this is

less than char A" if char A" — p > 0. Thus, in all cases, we obtain

n' — (m - 1)«

where this is an equation in the integers.

Finally, if n = 0, then rí = (m - l)n - 0 and trKS2 =K n + n' = 0,
a contradiction. Thus, \n\ > 1, and from (m - 1) > |«'| = (m - 1)|«| it

follows that n = ±1 and «' = ±(m - 1) with the same sign. In particular,

\n\ + \n'\ = m , and this and the common sign imply that H = Ex or H — E_x .

But 1// G Ex , so £[/0; therefore, H — Ex and S2 = id//, as required.    D

A generalization and other applications of the key trace formula tru(t^S2) =

(dim*- //) try// S2 can be found in [Rl]. Related formulas and their applications

are contained in [R2]. Kaplansky's conjecture in characteristic 0 is now an

immediate consequence of Corollary 6(ii) and Theorem 7. Specifically, we have

Corollary 8. A semisimple Hopf algebra in characteristic 0 is involutory.

We close this paper with another relationship between this problem and the

linear transformation T of the introduction. To start with, recall that the trace

element x £ H* is defined by

x(a) — trn(a^)       for all a £ H
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and that A G H* is given by

X(a) = trH(a^S2)       for all a £ H.

Thus if S2 = id//, then certainly x = X. Conversely, if x = A and if H
is semisimple, then the character argument of Lemma 5(iii) easily proves that

S2 = id//. In particular, an alternate approach to Theorem 7 might be to

somehow show directly that x = A. In fact, since t(1)_1t is an idempotent

of //* with t(1)~'t * A(1)~'A = A(1)_1A, the equality could be achieved by
showing that t(1)~'t has rank 1 or equivalently, when charA^ is big enough,

that tr//. t_2» = t(1) . We consider this trace equation from a dual point of view.

Specifically, let t be the trace element of H defined by

£(0 = tr//.<^       for all £ G/T.

Then we have

Lemma 9. Let A: H —> H ® H denote the comultiplication of the Hopf algebra
H, and let t be its trace element.

(i) If {x\, x2, ... , xm }  is a basis for H and if x¡j  and x\ ¡  are the

elements of H uniquely determined by the equations

m m

A(x,) = Y XJ ® xi,J = YX'iJ ® XJ
j=\ ;'=1

for i=l,2,... ,m,then

m m

t = Z_^ X>. ' = ¿_^i Xi, r

i'=l i=l

(ii) If T, T':H ® H -> H 0 H are the linear operators given by

r:A®!)M^Ai«/i2«       and       T':h®vi-^y^h2® hxv

(A) (*)

for all h, v £ H, then

tr//1$> = trh<s,h T = tr//(g)// V.

Proof, (i) Let {¿Ji, i,2, ... ,£,m} be the dual basis for H* corresponding to

the given basis {xx, x2, ... , xm } for H. Then for all i, j, k we have

m

(Ci * £j)(xk) = Y^X'k,q^ÁXl) = Íi(X'k,j)
4=1

and hence
m

Q * Çj =
k=\

ti*Çj=-J2ux'k,j)tk.

By definition of t, it follows that

m m

íi(t) = **.({,)* = ECi(x},y) = Zi$2xj,j) ;
/=i j=\

and since this holds for all i, we conclude that t = Y^= i x) ¡ ■
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In a similar manner, using the defining equations for the x¡j , we can com-

pute the trace of right multiplication by <jy. But H* is a Frobenius algebra, so

left and right multiplication by Çj have the same trace and with this we obtain

* = 2wi=i xi,i ■

(ii) Notice that H ®H = © ¿2?=i xi ® H and that

m

T:xi®v^'YxJ®x>Jv       forallüG//.

Thus the subspace x¡®H contributes tr//(x;,)^ to the trace of T and there-
fore

m

tr//0// T — Y, tTwC*/., fXgf = tr//1&
1=1

by (i) above. Similarly

m

tr//«,// T' = Y2 Kh(A,í)& = tTn *&,
i=i

and the result follows.   Q

Thus a direct computation of tr//®// T, perhaps under the assumption that

H or H* is semisimple, could prove to have interesting consequences. We of

course expect this trace to equal dim^ H.
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