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ON THE SET OF PERIODS FOR a MAPS

M. CARME LESEDUARTE AND JAUME LLIBRE

Abstract. Let a be the topological graph shaped like the letter o . We denote

by 0 the unique branching point of a , and by O and I the closures of the

components of a \ {0} homeomorphics to the circle and the interval, respec-

tively. A continuous map from a into itself satisfying that / has a fixed point

in O, or / has a fixed point and /(0) € I is called a a map. These are the

continuous self-maps of a whose sets of periods can be studied without the

notion of rotation interval. We characterize the sets of periods of all a maps.

1. Introduction and main results

Let E be a topological space. Our goal in this work will be to describe the
structure of the set of periods for some class of self-maps on E.

The set of natural numbers, real numbers and complex numbers will be de-
noted by N, R and C respectively.

For a map / : E —► E we use the symbol /" to denote fofo -o/ ( n e N

times), f° denotes the identity map on E. Then, for a point x e E we define
the orbit of x, denoted by Orb/(x), as the set (fn(x) : n = 0, 1, 2, • • •}. We

say that a: is a fixed point of / if f(x) = x. We say that x is a periodic

point of f of period k € N (or k-periodic) if fk(x) = x and f'(x) # x for
1 < i < k. In this case we say that the orbit of x is a periodic orbit of period
k. Note that if x is a periodic point of period k, then Orbf(x) has exactly k
elements, each of which is a periodic point of period k . We denote by Per(/)
the set of periods of all periodic points of /.

From now on, the topological space E will denote one of the following spaces:

I = {(*, y) e R2 : 0 < ;c < 1 and y = 0},

Y={zeC:z3e[0, 1]},

O = {(x, y) sR2 : x2 + (y + I)2 = 1},

<T = IUO.

The point 0 e Y or the 0 = (0, 0) € a are called branching points.
An interval map is a continuous self-map on the interval I.  Similarly we

define Y maps, circle maps and sigma maps.
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We remark that any interval map or any Y map always has a fixed point,
but there are circle maps and sigma maps without fixed points.

Our objective in this section is to describe the structure of the set Per(/) for
a class of sigma maps. To this end, we need to introduce some orderings in the
set of natural numbers adding or removing some few elements.

The Sarkovskii ordering >s on the set Nj = N U {2o0} is given by

3 >s 5 >s 7 >s ■ ■ ■ >s 2 • 3 >s 2 • 5 >s 2 • 7 >s ■ ■ ■ >s 22 • 3 >s 22 • 5 >s 22 • 7 >s
• • • >, 2" • 3 >, 2" • 5 >s 2" - 7 >, • • • >, 2°° >, • • ■ >s 2" >s ■ ■ ■ >s 24 >s 23 >s
22 >s 2 >s 1.

More precisely, if k = k' • 2P where p &N and k' is odd, we have:

(i)   k>s2°°   if   k' > 1,
(ii)   2°°>sk   if   k! m 1,

and if n = n' • 29 where q & N and «' is odd, then we have n >s k if and

only if one of the following cases occurs:

(iii) k' > 1, n' > 1   and   p > q,
(iv) k' > n' > 1    and   p = q ,
(v) k'=l   and   «' > 1,

(vi) k! = 1, ri m 1    and   p<q.

We shall use the symbols >j, <s and <, in the natural way. We have to include

the symbol 2°° to ensure the existence of supremum of every subset with respect

to the ordering >s. For n e N, we denote S(n) = {k € N : n >s k}. So
S(2~) = {2':/ = 0,1,2,---}.

Now we state the Sarkovskii Theorem, which is proved in [Sa] (see also [St],
[BGMY] and [ALM2]).

Theorem 1.1 (Interval Theorem).

(a) If f is an interval map, then Per(/) = S(n) for some n e Ns.
(b) If n eNj, then there exists an interval map f such that Per(/) = S(n).

If we want to get a similar result for the Y space, we need two new orderings.

The green ordering >g on N \ {2} is given by
5 >g 8 >g A >g 11 >g 14 >g 7 >g 17 >g 20 >g 10 >g ■ ■ ■ >g 3 • 3 >g 3 • 5 >g

3'7>g--->g3-2'3>g3-2'5>g3-2-7>g--->g3-22'3>g3-22-5>g
3>22'7>g--->g3-23>g3-22>g3-2>g3-l>gl.

The first part of this ordering can be rewittren as
6-1 >£ 6 + 2 >£ 3+1 >g 2-6-1 >£ 2-6 + 2 >g 2-3 + 1 >g 3-6-1 >£

3-6 + 2 >g 3-3+1 >^ •■• .
To be more precise, denote by the symbol = congruences modulus 3. We

have k >g n for k, n e N \ {2} if and only if n > 1 and one of the following
cases occurs:

(i) k£0,n£0,k = n,k>n,
(ii) k = l,n = 2,2k>n,

(iii) k = 2,n=l,k>2n,
(iv) a: = 0,m^éO,
(v) k = 0, n = 0,k/3>s n/3,

(vi) k = 1.

The red ordering >r on N \ {2, 4} is given by
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7 >r 10 >r 5>r 13 >r 16 >r 8 >r 19 >r 22 >r 11 >r-->r 3-3 >r 3-5 >r
3 • 1 >r ■ ■ ■ >r 3 • 2 • 3 >r 3 • 2 • 5 >r 3 • 2 • 7 >r • • • >r 3 • 22 - 3 >r 3 • 22 • 5 >r
3 • 22 • 7 >r ■ ■ ■ >r 3 • 23 >r 3 - 22 >r 3 • 2 >r 3 - 1 >r 1.

The first part of this ordering can be rewritten as

6+1 >r 6 + 4 >r 3 + 2 >r 2-6+1 >r 2-6 + 4 >r 2-3 + 2 >r 3-6+1 >r
3-6 + 4 >r 3-3 + 2 >,-•••

We have k >r n for /:, n € N \ {2, 4} if and only if « > 1 and one of the
following cases occurs:

(i)   k£0,n£0,k = n,k>n,
(ii)   k = 2,n=l,2k>n,

(iii)   k = l,n = 2,k>2n,
(iv)   A: = 0, ti^O,
(v)   k = 0,n = 0,k/3>sn/3,

(vi)   Â: = 1.

For « e N \ {2} denote G(n) = {k e N : n >g k} , for « e N \ {2, 4} denote
-R(h) = {it e N : n >r k} and additionally C7(3-2°°) = R(3-2°°) = {l}U{3n : n e
S(2°°)} . We also denote Ng = (N\{2})u{3-200} and N, = (N\{2, 4})u{3-2°°} .

The next theorem is due to Alsedà, Llibre and Misiurewicz [ALM1] for Y
maps with the branching point fixed and to Baldwin for arbitrary Y maps [Ba].

Theorem 1.2 ( Y Theorem).

(a) // / is an Y map, then Per(/) = S(ns) U G(ng) U R(nr) for some
ns &Ns,ng e Ng and n,eN,.

(b) If ns e Nj, ng e Ng and nr e Nr, then there exists an Y map f having
the branching point fixed such that Per(/) = S(ns) U G(ng) u R(nr).

We define the Block ordering >b on N¿ = N \ {1} as the converse of the
natural ordering on N; i.e. 2 >b 3 >b A >b ■■■ . For n e Nb, we denote
B(n) = {fceN:n>¿fc}U{l}. Sharkovskii's Theorem has been generalized by
Block to the circle maps having a fixed point in [Bl].

Theorem 1.3 (Circle Theorem).

(a) If f is a circle map having a fixed point, then Per(/) = S(ns) u B(nb)
for some ns G N5 and nb e Nb.

(b) // «j e N5 and nb e N¿, then there exists a circle map f having a fixed
point such that Per(/) = S(ns) U B(nb).

The study of the set of periods for circle maps without fixed points is more
difficult, and needs the notion of rotation interval. Here we do not consider
maps without fixed points, for more details see [ALM2].

In this paper we extend the previous three theorems to a class of sigma maps.
As for circle maps if we want to avoid in a first study of the sigma maps the
problems related with the computation of the set of periods from the rotation
interval, we must add some additional assumptions to the continuity of the
map. While for circle maps it is sufficient to add the assumption that they have
a fixed point, this is not the case for sigma maps. More concretely, in order to
avoid the rotation interval associated to a sigma map in the computation of its
set of periods, we must restrict our attention to the subclass of sigma maps f
such that f has a fixed point and f(0) el, or f has a fixed point in O. In
what follows such sigma maps will be denoted a maps.    We remark that our
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Figure 1.1. This sigma map / satisfies that Per(/) =
Per(/|o) U {1} , and f\o is a circle map of degree 1
without fixed points (see [ALM2].

a maps are the sigma maps such that /(0) e I or / has a fixed point in O,
because in the first case f always has a fixed point in I. In short the unique
sigma maps having a fixed point that are no a maps satisfy that the fixed point

do not belong to O and f(0) £ I ; such maps need the rotation interval for
describing the set of periods, see Figure 1.1 and [ALM2].

The graph of a sigma map / is the subset {(x, f(x)) : x e a} of the
cartesian product a x a, and it can be represented as in Figure 1.1. More
precisely, if in the closed square [pe, p2] x [pe, p2] of Figure 1.1 we identify

the vertical straight lines piPi and p2p4 , and the horizontal straight lines pip¡
and p2pt, we get the space axa. The segment pepi represents I, and the
segment Pip2 with the points pi and p2 identified to the branching point 0
represents O. Roughly speaking we think in the graph of a sigma map like the
graph of an interval map from \pe, p2] into itself with the above identifications.

Our main result is the following one.

Theorem 1.4 ( a Theorem).

(a) If f isa a map, then Per(f) = S(ns)UG(ng)uR(nr)l)B(nb) for some

ns € Nj, ng € Ng, nr € Nr and nb€Nb.

(b) If ns e Nj, ng € Ng, nr e Nr and nb e N¿, then there exists a a map
f having the branching point fixed such that Per(/) = S(ns) U G(ng) U

R(nr)uB(nb).

Theorem 1.4 when the branching point is fixed was proved simultaneously
and in a different way by Llibre, Páranos and Rodriguez see [LPR]. As far
as we know Theorem 1.4 is the first result on the characterization of the set
of periods of continuous self-maps on topological graphs which are not trees
without having fixed all the branching points.

2. Intervals and basic intervals

A closed (respectively open, half-open or half-closed) interval / of E is a sub-
set of E homeomorphic to the closed interval [0, 1] (resp. (0, 1),
[0, 1)). Notice that an interval cannot be a single point.
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Let J be a closed interval of E, and let h : [0, 1] —> y be a homeomor-
phism. Then h(0) = a and h(l) = b are called the endpoints of J. If either
E e {I, Y} or £ = <t and a, b e I, then J will be denoted by [a, b] or
[b, a]. If E = O and a, ¿> e O, then we write [a, b] to denote the closed
interval from a counterclockwise to b. If E = a, aeO and èel, then
[a, b] will denote [a, 0] U [0, b] or [a, 0] U [b, 0], and [b, a] will denote
[b,Q]l>[0,a] or [0,¿]U[0,a].

Notice that it is possible that two different intervals of O or a have the
same endpoints. But two different points of I or Y always determine a unique
closed interval.

Now we define an special class of subintervals of E. Let Q = {qi, q2, •■■ ,
q„} be a finit subset of a. For each pair q¡, q¡ such that q¡ ̂  q¡ we say that the
interval [q¡, q¡] (respectively [q¡, q¡] ) is basic if and only if (q¡, q¡) n Q = 0
(respectively (q¡■■, q¡) n Q = 0 ). The set of all these basic intervals is called the
set of basic intervals associated to Q.

Assume that E = o,Q£Q,Qr\I^0 and Q n O jí 0. Then we consider
Q! = Q U {0}. Clearly there are exactly three basic intervals A, B and C
associated to Q' with 0 as endpoint. Without loss of generality we can assume
that A c I. The endpoint of A, B and C different from 0 is denoted by
xa, xb and xc respectively. We define Li, L2, Li as the three basic intervals

associated to Q containing 0 and such that Li =AUB,L2 = AuC,Li =
B U C. Notice that Li is an interval if and only if xb ^ xc. In what follows,

the intervals A, B, C and the endpoints xa, xb, xc are called the intervals

A, B, C and the endpoints xa, xb, xc associated to Q' ; the intervals Li,L2
and Li are called the basic intervals Lx, L2 and L3 associated to Q.

3. Loops and /-graphs

Let / : E -* E be an E map. If K and / are intervals of E, then we say
that K f-covers J or K -» J (or J <— K ), if there is a closed subinterval M

of K such that /(A/) = /. If K does not /-cover / we write K -» J.
A /?<am of length m is any sequence Jo -* /■ —>•••—► 7W_, -+ /m, where

/o, ^1, • • • , Jm are closed subintervals of E (in general, basic intervals). Fur-
thermore, if Jo = Jm , then this path is called a loop of length m. Such a loop
will be called non-repetitive if there is no integer i, 0 < i < m, such that i
divides m and Jj+i = J¡ for all j, 0 < j < m - i. This means that the loop
is not a repetition of a snorter loop.

Let Q be a finite subset of E. An f-graph of Q is a graph with the basic
intervals as vertices, and such that if K and / are basic intervals and K f-

covers /, then there is an arrow from K to /. Note that the /-graph of Q
is unique up to labeling of the basic intervals. Hence from now on we shall talk

about the f-graph of Q (or just the f-graph for short).

Lemma 3.1. Let f be an E-map and let K, J, L be closed subintervals of E..

If La J and K f-covers J, then K f-covers L.

Proof. By hypotheses, there exists an interval M c K such that f(M) = J.
First we suppose that E = I. Let L = [c, d]. Then there are a, b e M
such that f(a) = c and f(b) = d. We can assume that a < b. Then set
e = sup{x e [a, b] : f(x) = f(a)} and / = inf{;c e [e, b] : f(x) = f(b)}.
Clearly /([<?, /]) = L. So K -» L.



4904 M. CARME LESEDUARTE AND JAUME LLIBRE

Finally assume that E ^ I. There exist homeomorphisms h\f : M —► I =

[0,1] and hj : J —► I. Note that g = hj o f\M o h~j¿/ is an interval map.
Since g(T) = 1,1 /-covers I. By the first part of this proof, I ^-covers
the interval hj(L) c I. Then there exists a closed subinterval TV of I such

that g(N) = hj(L). Therefore h^l(N) is a closed subinterval of M and

f(h-M\N)) = h^ogohM(h^(N)) = L. So K^L.   D

Lemma 3.2. Let f be an E map and let J be a subinterval of E such that J
f-covers J. Then f has a fixed point in J.

Proof. First we consider the case E = I. Set / = [a, b]. Then there are
points c, d e J such that f(c) = a and f(d) = b. We obtain f(c) - c < 0
and f(d)-d > 0. Then by continuity of /, there is a point x between c and
d such that f(x) -x = 0; i.e. f(x) = x.

Finally suppose that E ^ I. Since J-»7, there is a closed interval L of J
such that f(L) = J. Then there exists a homeomorphism h : J —► I = [0, 1]

and we can consider an interval map g defined as g = h o f\L o A-1. Since
g(T) = I, by the first part of this proof there exists y e I such that g(y) = y.
Consequently for x = h~l(y) e L, we have f(x) = h~logoh(x) = h~log(y) =

h~x(y) = x, and we are done.     D

Lemma 33. Let f be an E map and let Jq, J\, -••■ , Jn-\ be closed subin-
tervals of E such that J¡ -* /,+ I for i = 0, 1, ••• , n - 2 and J„-i —► Jo-
Then there exists a fixed point x of f" in J0 such that f'(x) e J¡ for i =
1,2,— ,n-l.

Proof. We shall use backward induction. Let Kn-i c J„-i be a closed interval
such that f(K„-i) = Jo, and suppose we have constructed K¡ c J¡ for some

i > 0, i < n-1 such that f(Kt) = KM if i < n - 1 and f(K¡) = Jo
if i = n - 1. Then, by Lemma 3.1, 7,_i /-covers K¡ and therefore there
exists an interval K¡-i c /,_i such that f(K¡-i) = K¡. Let g be as follows:

g = /k„_, ° • • • ° /k, ° /ko- Then £0 C Jo and g(K0) = J0. Consequently
f"(Ko) = Jo. By continuity of f and Lemma 3.2 /" has a fixed point
x € Ko c J0, such that f(x) e K¡ c J¡ for i = 1, 2, ■ ■ ■ , n - 1.   D

4. Basic assumptions: /, P and k

Let / be a a map. Notice that for proving Theorem 1.4(a) for / it is suffi-
cient to show that if k e Per(/) , then at least one of the sets S(k), G(k), R(k)
or B(k) is contained in Per(/). So in what follows we fix the a map f anda
k e Per(/) and we will prove the claim: at least one of the sets S(k), G(k), R(k)
or B(k) is contained in Per(/). This fixed a map will be called the standard
a map.

Since a a map have fixed points, we can assume that k > I. Furthermore,
since S(2) = {1,2} and G(3) = R(3) = {1,3} we can assume that k > 3.
Due to the fact that k e Per(/), there exists a periodic orbit P = {xi, •■• , xk}
of period k for /. Also in what follows P always will denote a periodic orbit
of period k for f.

5. Reduction to the case PnO\{O}5¿0 and P n I \ {0} # 0

The next proposition shows that if P is contained either in O or in I, then
the claim of Section 4 follows.
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Proposition 5.1. Let f be the standard a map. If either P c O or Pel, then
S(k) or B(k) is contained in Per(f).

Proof. First assume that P c O. We define g : O —► O by g(x) = f(x)
if f(x) e O, and g(x) = 0 otherwise. Then g is continuous and P is a
periodic orbit of period k for g. Furthermore g has a fixed point, because
if /(0) e I, then #(0) = 0 ; otherwise / has a fixed point z in O and so
g(z) = z. From the Circle Theorem it follows that Per(g) = S(ns) U B(nb)

for some ns e N5, nb e Nb . Clearly Per(g) c Per(/). Since k € Per(g), we
get that S(k) or B(k) is contained in Per(g). Consequently S(k) or B(k) is
contained in Per(/).

Now suppose that Pel. We define g : I —► I by g(x) = f(x) if f(x) e I,
and g(x) = 0 otherwise. Then g is an interval map. Furthermore P is a

periodic orbit of period k for g. By the Interval Theorem Per(g) = S(ns)
for some ns ç. Ns. Clearly Per(g) c Per(/). Since k e Per(g), we get

S(k) c Per(g). Therefore S(k) C Per(/).   D

.From wow on we can assume that the periodic orbit P has points in O \ {0}

and points in I \ {0}.
It is important to remark that Proposition 5.1 is not true if P c O, /(O) e O

and / has no fixed points in O. This is due to the fact that in such a case the
circle map g : O —► O defined in the first part of the proof of Proposition 5.1
has no fixed points, and consequently its set of periods depends on the rotation
interval of g (see [ALM2]). Since in this paper we do not deal with the rotation
interval, this fact is the main reason which forces us to restrict our attention to
the class of a maps instead of the class of all sigma maps.

6. Reduction to the case the endpoint of a belongs to P

Denote by qe the endpoint of a, and let pe e P n I be such that (qe, pe)

D P = 0. Notice that such a pe exists in virtue of Section 5.

Lemma 6.1. Let f be the standard a map. Suppose that f(0) e I \ {0} . Then
there exists a fixed point z of f such that z €\pe,0]cl.

Proof. Since (qe, pe) nP = 0, pe € Pill and P is a periodic orbit, we have

that f(pe) $. [qe, Pe] ■ Moreover /(0) e I. Hence by the continuity of /, the
subinterval [pe, 0] c I contains a fixed point of /.     D

In a similar way as in Section 4 where we have fixed /, P and k, now we

shall fix a fixed point of /.
If /(0) = 0 then let x0 = 0.
Suppose that /(0) e O \ {0} . Then by the definition of a map, / has fixed

points in O. We consider the following statements:

(a) [0, /(0)] n P = 0 and the subinterval [0, /(0)] contains fixed points

off.
(b) There is a fixed point z e O of / such that [0, z] n P = 0 and (0, z)

does not contain fixed points of /.

If statement (a) is satisfied, then let xo € [0, /(0)] be such that [0, Xo] c
[0, /(0)] and [0, xo) does not contain fixed points. Suppose that (a) is not
satisfied. If statement (b) holds, let xo = z satisfying (b); otherwise let xo be
an arbitrary fixed point of / in O.
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Suppose that /(0) e I \ {0}. From Lemma 6.1 there is a fixed point z of
/ such that z e [Pe,0]. Then let x0 e I be the fixed point of / such that
[pe, xo) does not contain fixed points.

Remark 6.2. In what follows x0 always will be a fixed point of f satisfying the
above assumptions. Moreover we note that if /(0) ^ 0, then we have either

{/(0),*o}cI or {/(0),x0}cO.

Proposition 6.3. Let f be the standard a map. We can suppose that qe = pe .

Proof. If qe # pe, consider the new topological space a' obtained by shrinking

the interval [qe, pe] to the point pe . Note that a' is homeomorphic to a. We

define g : a' —> a' by g(x) = f(x) if f(x) e a', and g(x) = pe if f(x) i
a'. By Lemma 6.1, g has a fixed point xo wich verifies the assumptions of
Remark 6.2. Then g is a a map such that P is a periodic orbit of period
k for g and the endpoint of a belongs to P. Since Per(g) c Per(/), it is
sufficient to prove Theorem 1.4(a) for the a maps satisfying that qe=pe ■   □

Remark 6.4. From now on we can assume that qe = pe .

1. Loops and periods

In this section we shall study the relation between the periodic points of /
and the loops of some /-graphs.

As usual if U c a we denote by Int (U), Cl (U) and by dU, the interior,
the closure and the boundary of U respectively. If U is a finite subset of a
we denote by Card(C/) the cardinality of U.

We will use the following proposition for the study of a maps with 0 €
P U {x0} •

Proposition 7.1. Let f be the standard a map. Suppose that 0 € Pu{x0} . Let

Jo -* J\ -» — —* J„ = Jo be a non-repetitive loop of length n in the f-graph
where the J, 's are basic intervals associated to Pu {xo} . If at least one J¡ does
not contain xo, then f has a periodic point of period n.

Proof. By Lemma 3.3, there exists x e Jo such that f(x) = x, and f'(x) e J¡
for i € {1, 2, • • • , n - 1} . If a: has period n, we are done. So suppose that
x has period 5 with 5 a proper divisor of n . Notice that x ^ xo, because xo
is a fixed point and at least one J¡ does not contain Xq . If x e Int(/o), then
Orby(jc) n (P u {xo}) = 0. Since 0 is not a periodic point having orbit different

from P, each f'(x) is on a unique basic interval and consequently the loop is
repetitive, in contradiction with the hypotheses. Hence, the only possibility is

Orb/(x) = P. So Orb/(x) = P and k = s > 3. Furthermore, by Remark 6.4
we may assume that x is the endpoint of a.

Let #0 C Jo be the subinterval constructed in the proof of Lemma 3.3.

Then f(x) e fl(K0) c /, for i e {0, 1, • • • , n - 1} and f(K0) = Kx c Ji.
Since x — fs(x) e fs(Ko) C Js it follows that Js and Jo have a common

endpoint x, which is the endpoint of a, so Jo = Js ■ Both sets Kq and
fs(Ko) are contained in Jo and contain x, an endpoint of Jo. Therefore
L = Ko n fs(Ko) must be a closed interval. In fact, L is either K0 or fs(K0).

Clearly f(L) C f'(K0) C //, f(L) c fs+i(K0) C Js+i and f(L) is a closed
interval for i € {0,1, • • • , S - 1}. Thus /, = Js+i for i £ {0, I, •■• , s - 1}.
Repeating this process we get that the loop Jq —► Ji -+•••—► J„ = J0 is
repetitive, because 5 divides n , in contradiction with the assumptions.   D
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A sequence of subsets W<¡, W\, • • • , W„ = W0 of a is non-repetitive if there
is no integer i, 0 < i < n, such that i divides n and W¡+i = W¡ for all j,

0<j<n-i.
We will using the following result for the a maps with 0 £ P U {xo} .

Proposition 7.2. Let f be the standard a map. Suppose that 0 £ P U {x0}.
Let Jq, Ji, ■■• , Jn = Jo be closed subintervals of a, each one contained in a

basic interval associated to Pu {xo} and such that J¡ -* J¡+i for 0 < i < n - 1.
For each i, 0 < i < n, let V¡ the component of a\(P U {xq}) containing
Int(/,-) and let W¡ = C1(V¡). Suppose that at least one W¡ does not contain 0
(i.e. Wj is an interval) and at least one W¡ does not contain xq . If the sequence
Wo, Wi, ■ ■ • , W„ = Wo is non-repetitive, then f has a periodic point of period

n.

Proof. Without loss of generality we can suppose that Jo C W0 and that W0
is an interval (i.e., Wo does not contain 0). By Lemma 3.3, /" has a fixed

point x such that f'(x) e K¡ c /, for i e {0, 1, ••• , n - 1}, where the
subintervals K¡ 's are defined in the proof of Lemma 3.3. If x has period n ,
we are done. So suppose that x has period s, s a proper divisor of n . Notice
that x ^ xo because xo is a fixed point and at least one W¡ does not contain
xo . If x £ Int(/o), then each f'(x) belongs to a unique W¡ and therefore the
sequence W0, Wx, ■ ■ ■ , W„ = Wq is repetitive, because 5 divides n. So we

must have Orbf(x) = P and k = s.
By Remark 6.4 we can suppose that x is the endpoint of a. Then, we note

that now Wq is not necessarily an interval. Since x = fs(x) e Js c Ws and
x € Jo C Wo, x is a common endpoint of W0 and Ws. So W0 = Ws. We

have x e K0 c Jo c W0, fs(x) = x € Ks c Js c Ws = W0. Note that A:0
and fs(Ko) = Ks are intervals and have x as common endpoint. Therefore

L = Ko<~\fs(Ko) is an interval, either K0 or fs(K0). Furthermore f'(L) is an

interval for 0 < / < s. Clearly f(L) C f(Ko) C J¡, f(L) c fs+i(K0) C Js+i
and so 7, n /J+i contains an interval. Consequently W¡ = Ws+i for 0< i <s.
Repeating this process we get that the sequence W0, Wi, ■■■ ,Wn = W0 is
repetitive, in contradiction with the hypotheses.   G

8. Reduction to monotone maps

The graph of a a map g is the subset {(x, g(x)) : x e a} of a x a, see
Figure 8.1. The segment pePi represents I, and the segment pip2 with the

points pi and p2 identified to the branching point 0 represents O. Roughly
speaking we think in the graph of a or map like the graph of an interval map
from [pe, p2] into itself with the above identifications. This allows us to talk
about local or absolute maximum or minimum for a a map in the same way
as for interval maps. Thus, for instance in the points p and q the a map g

represented in Figure 8.1 has a local minimum and maximum with values m

and M respectively.
Let g be a a map and let [a, b] a closed subinterval of a basic interval

associated to Pu {xo} U {0} . We will say that g is non-monotone in [a, b] if
there exist two different points c,d e[a, b] such that g(c) = g(d), and g is
not constant in the subinterval [c, d] c [a, b]. Otherwise, we say that g is
monotone in [a, b].
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4   11   j>,  -   O    p   p2

Figure 8.1. The graph of a o- map.

Proposition 8.1. Let f be the standard a map. Let U be an open subinterval
of a basic interval associated to P U {xo} u {0}. Suppose that U = (a, b) with

fifl) = f(b) = c, f non-monotone in U, and f(d) # c for d € (a, b). Let g
be the a map defined by g\a\u = f\a\u > ond g\u is constant and equal to c.
Then Per(g) c Per(/).

Proof. Let x be a periodic point of g of period n > 1. If c $. Orb^(x), then
x is a periodic point of period n for / and we are done. So, suppose that
c G Orbg(x) ; i.e., c is a periodic point of period n for g. We shall prove

that n e Per(/). Set x¡ = g¡(c) for 0 < i < n. Therefore g'(c) i U for
1 < /' < n-2 (otherwise c has not period n for g ). Thus x¡ = f(x¡-i) = f'(c)
for 0 < i < n - 1. If f(xn-i) = c, then c is a periodic point of period n for
/ and we are done. So, suppose that /(x„_.) # c. Then xn-i e U. We claim
that gn~l o f has a fixed point in Cl ((7). If (gn~l o f)(Cl(U)) C Cl(i7), the
claim is clear because C1(U) is a closed interval and gn~l o f is continuous
(see Lemma 3.2). Now we assume that (gn~x o f)(Cl(U)) % Cl(£/). Also we

suppose that there are no fixed points of (gn~x ° /)|ci(t/) • So in order to prove
the claim we must obtain a contradiction.

Since (g"-1 o f)(a) = (g"~x o f)(b) = xn.x, (g"~l o f)(Cl(U)) % Cl(U)
and (gn ' o /)|ci(¡7) has no fixed points, the graph of (gn~l o f)\Ci(U) must be

as in Figure 8.2.

■X/i-l

a a\   •*"-' b\

Figure 8.2. The graph of (g"'1 o f)\a{U).
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Now we consider ûi e Cl(U) such that (g"~l °/)(ai) = b and [a, ai) does

not contain points d satisfying (g"~[of)(d) = o. Set Ji = [a, a{\. Wedenote
by J2 the subinterval of C1(U) of the form [bi, b] such that /(/.) = /(72),
such interval exists because f\u does not contain any neighbourhood of c
and f(Cl(U)) £ Cl(f7). Consequently (g"~l o /)(/,) = (gn~x o f)(J2). A
contradiction with Figure 8.2. Hence the claim is proved.

Let x be the fixed point of (gn~l o f)\c\(U) ■ We shall prove that x is a

periodic point of period n for /. We define the sets Z, = g~l~n~l~''>(Cl(U)) for
0 < i < ft-1. Since g(Cl(U)) = c, we have g"-''(Z;) = g"-'-n+1+'(Cl(V)) = c
and g"(Z,) = X/. Therefore, the sets Z, must be pairwise disjoint. Since

x e Cl(U), from x = (g"-1 o f)(x) = gO-'-'W ° ./)(*)) e Cl(t/) we get
(g'°f){x) £Zi for 0< i <n-l. Then, the points (g'of)(x) are all different
for 0 < / < n - 1. Note that / and g coincide in a \ U, thus / and g
coincide in every Z, for 0 < i < n-2. Therefore (gl o f)(x) = f'+i(x) e Z,.

In particular, for i = n-2 we have (g"~2 o f)(x) = f~i(x) e Zn-2 and so

f"(x) = (g""1 of)(x) = x; i.e., n e Per(/).
Now to finish the proof of the proposition we must show that g is a a map.

Since {0, x0} £ U, /(0) = g(0) and /(xo) = g(xo) = *o, so g has fixed
points. If /(0) 6 I then g(0) e I and g isa u map. If /(0) £ I then
Xo € O. Hence, again g is a a map.   D

We consider a as a metric space. We assume for convenience that our metric,
called S on a satisfies the property that if z is in the interval [x, y], then
ô(x, y) = ô(x, z) + ô(z, y). Let C//)/€N he a sequence of a maps, and let
/ be the standard a map. The Cauchy's Criterion for uniform convergence
says that the sequence (/-)i"6N converges uniformly in a if and only if for
every e > 0, there exists «o e N such that S(f¡(x), fj(x)) < e for all x e a,
whenever i, j > no (see Theorem 7.8 of [R]). Another well-known result is the

following: If (/)¡eN converges uniformly to g in a, then g is a sigma map
(see Theorem 7.12 of [R]).

Proposition 8.2. Let f be the standard a map. There exists a a map g such

that g\pU{x0}u{o} = f\pu{xo}u{0} > g\j is monotone for each basic interval J

associated to Pi) {x0} U {0}, and Per(g) c Per(/).

Proof. We define inductively a maps / as follows. Set /i = / and suppose

that / has been defined such that /ku{*o}u{0} = /ku{^o}u{0} and Per(/) c
Per(/). If / is monotone on each basic interval associated to P U {xo} U {0}
for some i, then we are done. Otherwise, there exist two different points a, b e
Int(J), for some basic interval / such that f(a) = f(b) =c, / is not constant
on [a, b] C J and f([a, b]) does not contain any neighbourhood of c. We
can suppose that (a, b) = (a,, b¡) is the largest subinterval of J with the above
properties. Let /+■ be the result of applying Proposition 8.1 to U = (a¡, b¡),
so fi+i is constant on [a,, 6,]. Note that since the interval [a,, b¡] was select
as large as possible, the intervals [a¡, b¡] are pairwise disjoint. Furthermore, /
differs from f+i only on (a¡ ,b¡). Notice that the set of subintervals where /
is not monotone is numerable (we can associate a rational number to each one
such subintervals). In other words, the set of local maxima and minima of / is
numerable. Notice that each / is a a map from Proposition 8.1. Now we will
prove that (/),eN converges uniformly to a sigma map g. If not, there exists
e > 0 such that for every n e N if i, j >n then ô(f, f) > e. This means
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that for each n e N, there exists a subinterval K where / is not monotone

and max {ô(f(x), f(y)) : x, y e K} > e. So there is an infinite set of pairwise
disjoint subintervals K such that f(K) has length larger than s. There is an
accumulation point p of such subintervals, then / is not continuous at p, in

contradiction with the assumptions. Hence (/-)i€n converges uniformly to a

sigma map g. Since /(0) = /(0) and f(xo) = f(xo) = Xo for all i, it follows
that g(0) = /(0) and g(xo) = xq . Hence since / is a a map, also g is a a
map.

We shall prove that Per(g) c Per(/). Let x be a periodic point of g of
period n. Denote by D the set of points c, e a with i e N for which

fi(<*t) = f(bi) = c¡, f non-monotone on [a¡, b¡] and /+i|[a,,è/] = c¡. This
means that D is the set where we "cut" / and obtain the new map /+i. If
Ci ^ Orbg(x) for any c¡ e D, then clearly x is a periodic point of period
n for / for all i e N and we are done. So suppose that c, € Orb^(x) for
some Ci e D; i.e., c, is a periodic point of period n for g. Then as in the
proof of Proposition 8.1 we obtain that n e Per(/+i) c Per(/) c Per(/). This
completes the proof.   D

From now on we will assume that f is monotone on each basic interval asso-
ciated to Pu{^o}U{0}. Notice that after this process xo verifies the properties
of Section 6. We also remark that if / is monotone on each basic interval /
associated to P U {x0} U {0}, then /(/) cannot contain O.

9. Reduction to a maps such that there exists

A CLOSED SUBINTERVAL OF a   /-COVERING O

Eventually we shall consider the circle as a closed subinterval with the end-
points identified to a point.

Let / be the standard a map. Let V = [vx, v2] be a subinterval of a, V

the largest one such that f(V) c O, f(V) ft O and f(d) £ 0 for d e (vx, v2).
We say that V is an upper subinterval if /( V) n (pi, pi + e) = 0 for some e > 0
where pi +e e O. We say that F is a down subinterval if f(V)n(p2—e ,p2) = z
for some e > 0, with p2 - e e O.

Let K be a closed subinterval of a such that there exists a closed subinterval

[c, d] c K with f([c, d]) = O, f(c) = f(d) = 0, and f(x) # 0 for all
x € (c, d), then we say that K f-covers O, or K —* O (or O <— Ä" ).

From now on in this section we assume that there are no closed intervals of a
f-covering O, and under this assumption we prove Theorem 1.4(a).

Since / is monotone on each basic interval associated to P u {x0} U {0} ,
/ has finitely many local extrema (see Section 8); and consequently finitely
many upper and down subintervals. Let J7i, • • • , Ur and D\, ..., Ds be

the upper and down subintervals of / respectively. Let m, be the absolute

minimum of f\rj, and M¡ the absolute maximum of f\o¡. We denote by

m = min{m!, • • • mf} and M = max{Afi, • • • , Ms}.

Lemma 9.1. With the above notation we have that m^O and M ^ 0.

Proof. Suppose m = 0, then by continuity of /, there exists an i e {1, • • • , r}
such that f(Uj) = O, in contradiction with the hypotheses. In the same way,
we get that M ± 0.   D

Now we shall consider an unfolding of a as follows. Define the graph a =
Gi U G2 U Gi where
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Figure 9.1. The unfolding of a.

Gi ={(x,y, z)eR3 :z = 0,    y = 0,    0<x<l},

G2 = {(x, y, z) € R3 : 2 = 0,    x2 + (y + l)2 = 1},

C73 = {(x, y, z) € R3 : y = z,    x2 + (y + 1 )2 = 1} ;

see Figure 9.1.
Clearly Gi U G2 is homeomorphic to a, so we identify o- with G i U (?2.

Consider the projection n : a —► a defined by n(x, y, z) = (x, y, 0). We

denote by m! and M' the points of G3 such that 7r(m') = m and n(M') =

M. For the standard a map / we define / : a —► a as follows. Since
there are no closed subintervals of a /-covering O, and / is monotone in
each basic interval associated to Pu {xq} U {0}, there exists a finite partition
of a into closed subintervals V¡ for i = !,■■■ ,n (i.e., a = \J"=l V¡ and
lnt(Vi) n Int(Fj) = 0 if i ft j ) such that

(i) either f(V¡)c I,
(ii) or/^cO, and /(</) / 0 for d £ Int(Fi),

(iii) the subintervals V¡ are the largest ones satisfying (i) or (ii).

If V¡ is one of the subintervals of a satisfying (i), then define f\v¡ = f\v,■ ■ Let
V¡ be a subinterval of a satisfying (ii). Then V¡ is either an upper subinterval

or a down subinterval. Suppose that V¡ is an upper subinterval. Then for every

r e V¡ we define f(r) = q' £ Gi such that n(q') = /(r) 6 G2. Now assume that

V¡ is a down subinterval. Then for every r € V,'>, we define /(r) = /(r) e C?2.

Clearly / is well-defined. Notice that / = nof :a —► a . Define F = fon :

a —> a .

Lemma 9.2. The map F :a —► a satisfies that Per(F) = S(ns)öG(ng)\jR(nr)

for some ns e Ns, ng £ Ng and HreN,.

Proof. By Lemma 9.1, 0 ^ {m, M} . Furthermore, since there are no closed

intervals of a /-covering O, we have that F(a) is homeomorphic to I or
Y. So, from the Interval Theorem or the Y Theorem, we can write Per(F) =

S(ns) U G(ng) U R(n,) for some ns e N5, ng £ Ng and nr £Nr.   D

Now we shall relate the periodic orbits of / with the periodic orbits of F.

Lemma 9.3. The map F : a —► a satisfies that k £ Per(F).
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Proof. Let x £ P. Then x is a periodic point of period k for f. Also we
can assume, by Section 5, that x £ 1 (so n(x) = x). We have fk(x) = x

and f'(x) 5¿ x for 1 < i < k.  This means that (n o f)k(n(x)) = x.   So

no(fo n)k(x) = x, and by definition %(Fk(x)) = n(x). Thus Fk(x) = x .

Moreover F'(x) ¿x for 1 < i <k, otherwise (fon)'(x) = x for some i <k,

and so (n o /)' o 7t(x) = n(x). Hence f'(n(x)) = it(x) for some 1 < i < k in
contradiction with the hypotheses. Therefore x is a periodic point of period
k for F.   D

Lemma 9.4. If x £a is a periodic point of period n for F, then n(x) £ a is
periodic of period n for f.

Proof. Set Orbf(x) = {pi,p2,--- ,pn) such that F(p¡) = pi+i for 1 <
i < n - 1 and F(p„) = pi. Let q¡ = n(p¡) for 1 < i < n. Notice that
x(Pi) ¥" *(Pj) if i # j, otherwise n(pi) = n(pj) and consequently F (pi) =

(fon)(pi) = (fo7i)(pj) = F(pj) in contradiction with the fact that {pi, ■•■ , pn}

is a periodic orbit of period n.   Then the q¡ 's are pairwise different and

f(q¡) = (nof)(7i(pi)) = n(F(pi)) = n(pi+i) = qM for 1 < i < n - 1 and
f(Qn) = 0i • So {qi, ■ ■ ■ , q„} = Orb/(7r(;c)) is a periodic orbit of period n for

/•   □

Proposition 9.5. Let f be the standard a map. Then S(k), G(k) or R(k) is
contained in Per(/).

Proof. By Lemma 9.3, k £ Per(F) ; and by Lemma 9.4, Per(F) c Per(/).
Then from Lemma 9.2 S(k), G(k) or R(k) is contained in Per(/).   D

Remark 9.6. From now on we can suppose that there exists a closed subinterval
K of a such that K f-covers O. The interval K is not necessarily basic.
Eventually K is the circle.

We remark that the idea of the unfolding of a when there is no closed
interval /-covering O comes from the Ph.D. thesis of Páranos [P]. In fact the
unfolding of a is essentially equivalent to work with the lifting of /. Thus
the ideas of Section 3.5 of [ALM2] are closed to the ones developed here.

10. Reduction to a maps such that every basic interval of
T is /-covered by some basic interval of T

From now on we denote by S or S' the set of all basic intervals associated to
P U {xo} or PU {xo} U {0} respectively.

We shall work with the basic intervals A, B, C, L\, L2 and L3 associated
to P U {x0} U {0} or P u {xo} defined in Section 2.

In this section we can restrict our attention to the a maps satisfying that
each basic interval of 5 is /-covered by some basic interval of S ; or each
basic interval of S \ {£,} is /-covered by some basic interval of S \ {Lj} for
some j £{1,2,3}.

Proposition 10.1. Let f be the standard a map. Suppose that f(0) e lnt(D)
for some D £ S'. If D is not f-covered by any basic interval of {Li,\L2, L3},
then there exists a a map g such that g\pu{Xo) = f\pu{x0}> g(®) £ dD, D
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is not f-covered by any basic interval of {Li, L2, Li}, g is monotone in each
basic interval of S' and Per(g-) c Per(/).

Proof. Since /(0) £ Int(£>) and there is no basic interval of {Li, L2, L3}
/-covering D, it follows that there are closed subintervals A' c A, B' c B
and C c C such that f(A' U B' U C) c D and the image of the endpoints
of A', B' and C is {/(0), z}, where z Is an endpoint of D. Notice that

A'öB'ö C is homeomorphic to Y. We define g\a\{A-uB>uO) = f\e\(A'uB'uC)
and g\A'uB'uc> = z (in particular g(0) = z £ dD). Clearly g is a a map

because g(0) £ D and g(xo) = x0 . Since g\P = f\p , k £ Per(g). Furthermore
g is monotone on each basic interval of S' and Per(g) c Per(/).   D

Remark 10.2. From now on, by Proposition 10.1, we can assume that there are
no basic intervals D £ S' satisfying the following properties : /(O) e Int(D)
and D is not /-covered by any basic interval of {¿1, L2, Li} .

Lemma 10.3. Let f be the standard a map. Then each basic interval J of
S (respectively S') contained in I ¿s f-covered by some basic interval of S
(respectively S').

Proof. Since f(a) is a connected set, the endpoint of I belongs to P (see
Remark 6.4) and the endpoints of all basic intervals belong to P U {xo} (re-
spectively P U {xq} U {0} ), we obtain that every basic interval contained in I
is /-covered by some basic interval of 5 (respectively S' ).   D

Lemma 10.4. Let f be the standard a map. Then each basic interval of 5" is
f-covered by some basic interval of S.

Proof. Notice that if 0 € P U {x0}, then S = S'. We have that each basic
interval of 5" is a subinterval of some basic interval of S. So by Lemma 10.3
each basic interval of S' contained in I is /-covered by some basic interval
of S. On the other hand, since there exists a closed subinterval K of a (non-
necessarily basic) such that K /-covers O we have that each basic interval of
5" n 5 contained in O is /-covered by some basic interval (subinterval of K )
of S, this would be shown as in the proof of Lemma 3.1.   D

Remark 10.5. From now on, by Lemma 10.3 and Lemma 10.4 we can assume
that each basic interval of S' is /-covered by some basic interval of S and

f(a) = a.

Lemma 10.6. Let f be the standard a map. Suppose that 0 0 P\j{xq}. Then
at least two intervals of {Li, L2, L3} are f-covered by some basic intervals of
S.

Proof. From Lemma 10.4 each interval A, B and C is /-covered by some
basic interval of S. For each pair i, j £ {1,2,3}, i ^ j, L¡ n Lj is one
interval of {A, B, C} . We claim that L¡ or Lj is /-covered by some basic
interval of 5. Suppose that L¡ C\Lj = A (the proof is analogous in the other
cases). By Remark 10.5 there exists J £ S such that J —► A. First suppose that

J £ S'. Since / is monotone on J and the endpoints of / are not mapped
in {0}, we have that J -* B or /-»C. Hence / -» L, or / ^ Lj.

Finally we can assume that J i S'. If /(0) e Int(^ U B U C), then /(0) e
lnt(D) for some D e {A, B, C} . By Remark 10.2, D is /-covered by some
interval of {L{, L2, L¡} . Hence there is M e {L\, L2, Li} such that M -► A
and either M -* B or M —► C. So M-»L, or M-» Lj. Otherwise,
/(0) i lnt(A u B U C). Therefore there exists N £ {A, B, C} , N c J such
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that N -* A. By the above arguments N -» L¡or N -* Lj. So the claim is
proved. Consequently at least two intervals of {Li, L2, Li} are /-covered by
some basic intervals of S.   D

Lemma 10.7. Let f be the standard a map. Suppose that 0 £ P U {xq} . Let
J be a basic interval of S. If there is Lj £ S for some j = 1,2,3 such that
Lj —► J, then there exists L¡ for some i= 1,2,3, i ^ j such that L¡ -* J.

Proof. Suppose that Lj -* J for some / = 1,2,3. If /(O) g Int(J), then
A, B or C /-covers /. Notice that each interval A, B and C belongs to
two intervals of {Li, L2, L3} . Hence there is L,■, i = 1,2,3, i ft j, such
that L¡ —► J. So we can assume that /(0) £ lnt(J). Denote by Ji and J2 the
closures of the two connected components of J \ {/(0)} . Set Lj = Mi u M2
where Mx, M2 £ {A, B, C}, and Mi —* Ji, M2 —» J2. Then by continuity,
the interval Mi £ {A, B, C}\{Mi, M2} /-covers either Jx or J2. So, either

M\ U Mi or M2 U Mi  /-covers J, and the result follows.   D

Proposition 10.8. Let f be the standard a map. Suppose 0 f P U {xo}. Then
at least one of the following two statements hold.

(a) Each basic interval of S is f-covered by some basic interval of S.

(b) Each basic interval of S\ {Lj} for some j £ {1,2,3} is f-covered by
some basic interval of S\ {Lj}.

Proof. If statement (a) does not hold, by Lemma 10.4 there is Lj £ S for
some j m 1,2,3 such that there are no basic intervals of S /-covering L¡,
and by Lemma 10.6 the above interval Lj is unique. If Lj -» / for some
J £ S\ {Lj}, then from Lemma 10.7 there exists L, € S such that L¡ -+ J
and statement (b) holds.   D

Notice that if 0 £ P u {xo} , by Lemma 10.4 each basic interval of S = S' is
/-covered by some basic interval of S = S'. So from now on, if 0 £ Pli {xo}

we denote by T the collection of all basic intervals of S = S'. If 0 £ Pö {xo}
we denote by T the collection of all basic intervals of S if (a) of Proposition
10.8 is satisfied, otherwise T = S\ {Lj} for some j £ {1, 2, 3} such that (b)
of Proposition 10.8 is satisfied.

11. Some basic results

In this section we obtain some results wich we are using in the next sections.

Lemma 11.1. Let f be the standard a map. Let Jo be a closed subinterval of
I with endpoints elements of Pli {xo}. Notice that Jo is not necessarily basic.
Then there exists a repetitive or non-repetitive loop of length k containing Jo
formed by closed subintervals of a, in general no basic intervals.

Proof. Set Jo = [x, y]. For each 0 < 1 < k, we define /, recursively as the
closed subinterval with endpoints f'(x) and f'(y) suchthat 7,_i -> J,>. (Note
that if f'(x) or f'(y) belongs to O, then /, perhaps is not unique.) Since

Jo C I, we get Jo = Jk . Thus, we obtain the loop Jq —» Ji —► • • • -* Jk = Jo ■ Of
course, in general /, is not a basic interval and the above loop can be repetitive
or non-repetitive.   D

Remark 11.2. Suppose that g is an interval map. Note that if g2 has a periodic
point z of period s, then z is a periodic point for g with period 25 if 5 is
even, and period s or 25 if 5 is odd.
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Lemma 11.3. Let f be the standard a map. Let z £ I be a fixed point of f.
Denote by D\ and D2 the closures of the two connected components of a\{z},
such that Di is homeomorphic to 1. If f(Di) = D2 and f(D2) = Dx, then
S(k)c?tr(f).
Proof. Notice that the map /2|D| : Z)i —► Dl is an interval map. Therefore
/ has no periodic points of odd period except the period 1. So k is even and
by Remark 11.2 the points of PnDi have period k/2 for /^k, . From the
Interval Theorem it follows that S(k/2) c Peri/2). Since all the periods of /
are even except 1, S(k) c Per(/).   D

Lemma 11.4. Let f be the standard a map. Suppose that each basic interval of
T is f-covered by some basic interval of T different from itself. Suppose that
there is J £ T such that J —► J. Then there is a non-repetitive loop of length
n for each n > k + 1 containing J. Moreover, if N £ T and there is a path
starting at N and ending at J, then we can assume that the loop of length n
contains such a path.

Proof. From Remark 10.5 we have f(a) = a. Set K¡ = f'(J0) for i > 0,
where Jq = J. Notice that each K¡ is a connected set and Cardai n P) > 2.
So from the fact that P is a periodic orbit and Remark 10.5, it follows that there
exists an integer r such that K0 ÇKi c • • ■ ç. Kr = a and Card(AT, nP) > /+1
for i < r. Since P has period k we have that r < Card(ATr_i n P) < k . Since
each basic interval of T is /-covered by some basic interval different from
itself, for each basic interval J¡ £ T, J¡ c K¡ \K¡-i there exists /,_i £ T,
/,_i c Ki-i \ K¡-2 such that /,_i -» J¡. By hypotheses there exists M £ T,
M t¿ Jo such that M —> J0 . Hence there is a loop of length l<r+l<k+l
containing Jo • By construction, this loop is formed by pairwise different basic
intervals and so is non-repetitive. The above loop of length / together with
the loop Jo —► Jo give us a non-repetitive loop of length n for each n >
k + 1 containing Jo . The last statement of the lemma follows easily by the
construction of the non-repetitive loop of length n.   D

Lemma 11.5. Let f be the standard a map. Suppose that each basic interval of

T is f-covered by some basic interval of T different from itself. Suppose that
there are Ii, I2 £ T such that IiC\I2 = {xq} and Ii ^ I2. If J £ T, then there
is a path of length I < k - 1 starting at one of the intervals Ii, I2 and ending
at J.

Proof. By Remark 10.5, f(a) = a. Set K¡ = /'(/, U I2) for i > 0. Notice
that Ki is connected for all i £ N and Cardai n P) > 3. Since P is a
periodic orbit, from Remark 10.5 it follows that there exists an integer r such
that #o ç Ki Ç ■ ■ ■ ç Kr = a and Card(A:; n P) > i + 2 for i < r. From
the fact that P has period k we get that r + 1 < Card(ATr_i n P) < k, and so
r < k -1. From the assumptions, for each basic interval 7, £T, J¡ c K¡ \ K¡-1
there exists J¡-i £ T, J¡-i C K¡-i \K¡-2 such that /¡_| -+ /,. Hence given
J £T there is a path of length / < r < k - 1 starting at one of the intervals 7(
or I2 and ending at J.   D

We denote by 2N the set of all even natural numbers.

Lemma 11.6. Let f be the standard a map. Let K c I and M, N c O be
closed subintervals such that M <=* K «=t N. Suppose that K has endpoints
elements of P U {xq} and K does not contain any proper closed subinterval with
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endpoints in P u {xo} f-covering M and N. Assume that M and N have
disjoint interiors and do not contain any proper closed subinterval f-covering K.

Then Theorem 1.4(a) holds.

Proof. First suppose that at least one interval of {M, N, K} does not contain
xo. Then the subgraph M & K «=t N give us a non-repetitive loop Jo = K —►
/, _>... _► jn = k 0f length n for each « even such that J¡ = K if i is even;

Ji = M and /, = N if i > I is odd and x0 e N ; and J\ = N and /, = M
if i > 1 is odd and Xo £ M. By Lemma 3.3 there exists x £ K such that
f"(x) = x and f'(x) £ J, for 1 < i < n— 1. Since xo does not belong to some
interval of {M, N, K} , and the loop is non-repetitive, x has period n. So
2N c Per(/). If k is even we are done, because S(k) c Per(/). So suppose
k odd. Since K c I and A' has endpoints elements of P u {*o} , by Lemma
11.1 there exists a repetitive or non-repetitive loop of length k containing K.

This loop together with the loops M & K «2 N give us a non-repetitive loop of
length n for each n > k odd. Such a loop can be chosen in such a way that at
least one of its intervals (non necessarily basic intervals) does not contain xo .

Hence we get that S(k) c Per(/).
Finally suppose that Xo £ MnNnK. In particular, this means that Xo = 0.

So we get that Ac K, B -» A <- C and either ^ -*• P. or /I -> C. Without
loss of generality we can assume that B *2 A <- C. Also we can suppose that

there exists z € I such that f(z) £ I or z € O such that f(z) £ O ; otherwise

/(I) = O and /(O) = I and, by Lemma 11.3, S(k) c Per(/). Therefore
since / is monotone on each basic interval of S', there exists J £ S such
that 0 i J and either J ^ AöB or /-»^uC. From Remark 10.5 and
Lemma 11.5, there is a path of length I <k- 1 starting in one of the intervals
A or B and ending in J. Then we consider the non-repetitive loops A *2 B,
A -> .. ■ _► J _♦ A and either B -» • • • -» 7 -* P. or C -♦ • • • -» J -» C of
lengths either 2,/+l <A:,/ + 2</c+l or 2,/ + 2</c + l,/+l < k,
be the rest of this section we will assume that O^Pu {xo} respectively. By

Proposition 7.1 we obtain B(k) C Per(/).   □

In the rest of the section we will assume that 0 £ P U {x0} .

Lemma 11.7. Lei / ôe the standard a map. Let M £ S' be such that /(0) £
Int(M). If Int(M) contains a periodic point of period n > 1, then there exists

L£S', L^M such that L^M.

Proof. From the hypotheses and since / is monotone in M we can choose
a periodic point z of period n such that z £ Int(M) and f"~l(z) £ L for
some L £ S', L £ M. Since z has period n and / is monotone, we have
L^M.   n

Proposition 11.8. Let f be the standard a map. Suppose that there exists J £ S

such that J —► J and J is not f-covered by any basic interval of T different

from itself.
(a) If J i {Li, L2,Li} then Theorem 1.4(a) holds.
(b) If J £ {Li, L2,Li} then we assume that f(0) i Int(J).  Therefore

Theorem 1.4(a) holds.

Proof. Suppose that / g {Li , L2, L3}. Then J £ S'. Since / is not /-
covered by any M £ T\ {J} , from Lemma 10.7, / is not /-covered by any
M £ S\ {J}, and consequently J is not /-covered by any M £ S' \ {J} .
Therefore, from Remark 10.2 we get that /(0) £ Int(/).
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We separate the proof into the following three cases.
Case 1: J c O and / ft L3. Then J £ S'. Since /(O) i Int(J),

by Lemma 11.7, Int(/) does not contain periodic points of period n > 1.
Since / is monotone on each basic interval of S', J -* /, / is not /-
covered by any basic interval of S' different from itself and /(0) ^ Int( J),

we have that f(a \ Int(/)) n Int(J) = 0. Then we consider the Y map g =

f\a\im{j) '■ a\lnt(J) —► <r\Int(7). Clearly g is well-defined, k £ Per(g) and
Per(g) = Per(/). By the Y Theorem the result follows.

Case 2: J c I. Then J £ S'. Since J-»J there exists a fixed point z £ J
of /. Denote by A and D2 the closures of the two connected components of
a \ {z} such that A is homeomorphic to I. Moreover since P is a periodic
orbit it is not possible that /(A ) C A • So, since J —> J, J is not /-covered
by any M £ S' \ {/}, /(O) i lnt(J) and from Remark 10.2 we have that
/(A) = A and /(A) = A • Hence, by Lemma 11.3, statement (a) follows.

Case 3: J £ {L,, L2, L3}. Then /(O) i lnt(J). Therefore, since / — /
we have that A, B or C /-covers J. In particular, / is /-covered by a
basic interval L £ {Li, L2, Li} different from itself. So L <£ T. Set / =
Mi U M2, L = Mill Mi where Mi -* Mi -> M2 and {Mi, M2, M3} =
{A, B, C}. Therefore M2 U A/3 e T. We claim that M2 does not /-cover
Mi. Otherwise M2 -» M1, and since /(0) £ Int(/) M2 also /-covers M2
or Mi and consequently M2 U M3 /-covers J or L. If M2 U M3 —► J we
have a contradiction with the fact that M2 U M¡ £ T and J is not /-covered
by any M £ T\{J} . Suppose that M2 U Af3 -* L. Since L <£ T, from the
definition of T we get that T = S\ {L} and that L is not /-covered by any
basic interval of S, in contradiction with M2llMi £ T and M2UMi £ L. So
the claim is proved.

Since the only basic intervals /-covering / are / and L <fc T, there are no
basic intervals of S' /-covering Mi £ S' different from itself. So the proof of
(b) follows in the same way as the proof of Cases 1 and 2.   □

Remark 11.9. In what follows, from Proposition 11.8, we can assume that if
/ is a basic interval of T such that either J c O and J ^ Li, or J c I,
or J £ {Li, L2, Li} and /(0) £ Int(/), then / is /-covered by some basic
interval of T different from itself.

Proposition 11.10. Let f be the standard a map.   Suppose that each basic
interval of T is f-covered by some basic interval of T different from itself. If
there exists a basic interval J £ S n S'  f-covering itself, then Theorem 1.4(a)
holds.

Proof. By Lemma 11.4 there exists a non-repetitive loop of length n for each
n > k + 1 containing /. Since J £ S nS', 0 $ J. Moreover, if x0 £ J,
by the monotonicity of / on each interval of S', J does not /-cover any
basic interval of T containing xq different from /. Then the loop verifies the
hypotheses of Proposition 7.2 and the result follows.   D

Corollary 11.11. Let f be the standard a map. Suppose that each basic interval

of T is f-covered by some basic interval of T different from itself and that

Xo £ {Xa , Xb , Xc} .

(a) If fk~l(pe) £ 1 then Theorem 1.4(a) holds.
(b) If Xo t¿ xa and f(xa) £ I then Theorem 1.4(a) holds.
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Proof. First suppose that fk~l (pe) £ I, then we claim that the subinterval M =

[pe, fk~x (pe)] contains a fixed point z. Now we prove the claim. The interval

M c I contains points of P (at least pe and fk~l(pe) ). Since P n O ft 0,

and f(fk~x(Pe)) = Pe, it follows that Af —► M. So there is a fixed point in
Af, and the claim is proved. Notice that z ^ xq because xo £ {xa, xb, xc} .
Therefore, from the monotonicity of /, the basic interval of SnS' containing
z /-covers itself. By Proposition 11.10 the result follows.

Finally suppose that xo ^ xa and f(xa) £ I. Now we get that the interval

M = [pe, xa] contains a fixed point z. Since xq £ {xb, xc} c O, we have that

z t¿ xo . Thus the proof follows as before.   D

Lemma 11.12. Let f be the standard a map. If there exists a basic interval

J £ S', J c O such that there are no basic intervals of S' different from J
f-covering J, and f(0) £ Int(/), then Theorem 1.4(a) holds.

Proof. Since /(0) £ Int(7), / is monotone on each basic interval of S',
and there are no basic intervals of S' different from / /-covering J, we
can consider the map g : a \ Int(/) —► a \ lnt(J) defined as / restricted to
a \ Int(7). Clearly g is well-defined and g is either an I map or a Y map.
By Lemma 11.7 Int(7) does not contain periodic points of period n > 1. So
Per(g) = Per(/). Moreover P is a periodic orbit for g. Hence from the
Interval Theorem or the Y Theorem the result follows.   D

Lemma 11.13. Let f be the standard a map. Suppose that each basic interval

of T is f-covered by some different basic interval of T and xo £ {xa, xb, xc}.
Denote by Ii the basic interval of Sr\S' with xo as endpoint. Let {i, j} c
{1,2,3} be with i ^ j such that L¡ n Lj = {xo}. Assume that there is J £
SnS' \ {Ii} such that one of the following subgraphs is satisfied:

(a) J^h^Li^J;
(b) /-£,-/,<_/ and h t± Li.

Then Theorem 1.4(a) holds.

Proof. Clearly 7i n L, = {x0} . Then by Lemma 11.5 there is a path of length
I <k—l starting at one of the intervals Ii or L¡ and ending at /. Suppose that
the path starts at Ii. Then if (a) is satisfied we consider the loops Ii —>•••->

J -> Ii , Ii -*-*J-*Lt-+¡\ and Ix 5* L¡ of lengths l+l <k, 1+2 < k+1
and 2 respectively. If (b) is satisfied, then we consider the loops Ii —*-► / -♦
Ii, Ii -►->J-*L}->I\ and Zi ̂  L¡ of lengths I+ 1 < k, I+ 2 < k+1
and 2 respectively. Suppose that the path starts at L,. Then if (a) is satisfied
we consider the loops L¡■ -* •••—►/—► L¡^ —> Ii -> L¡., L,1 —»...-»/ -♦ /, —► L,
and Ii «=i Li of lengths 1 + 3 < k + 2,1 + 2 < k + 1 and 2 respectively.
If (b) is satisfied, then we consider the loops L¡ -» — -♦/-» 1\ -* L¡,
L¡-*-> J -> Lj: -» 7i -^ Li and h <=* L¡ of lengths 1+2 <k+l,l+3< k+2
and 2 respectively. In all cases we obtain a non-repetitive loop of length n for
each n > k + 1 containing Ii and J. Notice that 0 £ /1 and xo $. J. Then
by the construction of this loop of length n and Proposition 7.2 the result
follows.   D

Lemma 11.14. Let f be the standard a map. Suppose that Xq £ {xb, xc}.
Denote by 7( the basic interval of S n S' with xo as endpoint. Set A =
[Pe, xa] c I and D2 = C1(0 \ (B u C U 70). Suppose that /(A) C A and
/(A) C A • Then Theorem 1.4(a) holds.
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Proof. Notice that P c A U D2. Since /(A) C A and /(A) c Dx k must
be even. Consider the interval map g = f2^ : A —► A • Clearly the points
of A H P have period fc/2 under g. From the Interval Theorem it follows
that S(k/2) c Per(g). Since 1 e Per(/), again from the fact that /(A) c A
and /(A) c A we get that S(k) c Per(/).   D

Lemma 11.15. Let f be the standard a map. Suppose that there exist two
closed subintervals K c I and N c O such that K has endpoints elements of
P U {xo}, and K «2 N. If k is odd then n £ Per(/) for each n> k odd.

Proof. Since K c I has endpoints elements of P U {xo}, by Lemma 11.1 there
is a loop of length k odd containing K. This loop of length k together with
the loop K ?ä N give us a non-repetitive loop of length n for each n > k odd.
By the hypotheses x0 £ KnN, then we obtain that n £ Per(/) for all n > k
odd.   D

12. Maps with OePu {x0}

In this section we will prove Theorem 1.4(a) when Xo = 0 or 0 € P. Then,

under these assumptions S = S' = T.

Proposition 12.1. Let f be the standard a map. Suppose that 0 £ P U {xo}
and that there exists J £ S' such that the unique basic interval of S' f-covering

J is itself. Then Theorem 1.4(a) holds.

Proof. We consider the two possibilities either / c O or 7 c I. If / C O,
then we define the map g = f\a\iM(j) : <r \Int(7) —► a \Int(7). The map g is
well-defined because the unique basic interval of S /-covering J is itself and
/ is monotone on each basic interval of S'. Clearly k £ Per(g) and since /
is monotone in J, Per(g) = Per(/). Moreover g is either an I map or an Y
map. By the Interval Theorem or the Y Theorem, the result follows.

Suppose that / c I. By Lemma 3.2 / has a fixed point y £ J. Denote
by A and A the closures of the two connected components of a \ {y} such
that A is homeomorphic to I. Since J c I and the unique interval of S
/-covering / is itself, we obtain easily /(A) = A and /(A) = A • By
Lemma 11.3 Theorem 1.4(a) holds.   D

Remark 12.2. In what follows we can assume that if 0 £ P U {xo} , then each
basic interval of S is /-covered by some basic interval of 5 different from
itself.

Lemma 12.3. Let f be the standard a map. Suppose that 0 £ Pi) {xo}. If
there is a basic interval J f-covering itself, then Theorem 1.4(a) follows.

Proof. By Remark 12.2 there exists a basic interval M £ S different from J
such that Af -► /. By Lemma 11.4 there is a non-repetitive loop of length n
for each n > k + 1 containing J. We claim that at least one basic interval of
this loop does not contain xq . In fact, if xo £ J, by the monotonicity of / on
each basic interval of S', we have that f(J) does not contain intervals of S
different from J with xo as endpoint. By Proposition 7.1 we get B(k) c Per(/)
and the result follows.   D

Proposition 12.4. Let f be the standard a map. If Xo = 0 then Theorem 1.4(a)
holds.
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Proof. If there is a basic interval J /-covering itself, by Lemma 12.3, the
result follows. So we can suppose that each basic interval does not /-cover
itself. By Remark 9.6, there exists a closed subinterval K of a such that K
/-covers O. We can assume that K has endpoints elements of P u {Xo}.
Since /(0) = 0 and there are no basic intervals /-covering themselves, we get

that K c I. If fk~l(Pe) £ I» then the interval [pe, fk~x(pe)] contains a fixed

point z ,6 0. Therefore, by the monotonicity of /, the basic interval of 5
containing z /-covers itself, in contradiction with the fact that there are no
basic intervals /-covering themselves. Hence fk~l(pe) £ O. So there are two
closed subintervals M, N c O /-covering K in the hypotheses of Lemma
11.6. So the result follows.   D

From now on we can assume that xo ^ 0.

Proposition 12.5. Let f be the standard a map. Suppose that 0 £ P, then
Theorem 1.4(a) holds.

Proof. If there is some basic interval /-covering itself, from Lemma 12.3 the
result follows. So we can assume that each basic interval does not /-cover
itself. Denote by 7i, 72 the two basic intervals having xo as endpoint. We
have Ii ^ I2. Notice that a basic interval J £ {Ii, I2} /-covers 7i if and
only if /-covers 72 .

First suppose that there are no basic intervals /-covering 7] and 72 . If xo £
I, then denote by A and A the closures of the two connected components
of a \ {xo} such that A is homeomorphic to I. Hence /(A) = A and
/(A) = A • From Lemma 11.3 the result follows. If xo £ O, then consider
either the I map or the Y map g defined by / restricted to a \ Int(7i U 72).
Clearly k £ Per(g) and Per(g) = Per(/). So by the Interval Theorem or the
Y Theorem the result follows.

Finally suppose that there is a basic interval J such that 7i <- J —> 72. By
Lemma 11.5 there is a path of length I <k—l starting at one of the intervals 7!
or 72 and ending at J. By construction, this path together with 7i <— J -* I2
and 7i ^ 72 give us a non-repetitive loop of length n for each n > k + 1.
Since xo £ J from Proposition 7.1 it follows that B(k) c Per(/).   D

From now on we can asssume that 0 ^ Pu {xo} .

Remark 12.6. Suppose that there is a basic interval J = [0, x,] e S' for some
x, £ P U {xq} such that /(O) = f(x¡). Notice that from the monotonicity
of / on each basic interval of S', f is constant in J. Then we consider
the new topological space a' homeomorphic to a obtained by shrinking the
interval J to the point 0, and define the a' map g in the natural way as

the a map /|a\int(7). So P is a periodic orbit of period k for g and clearly
Per(g) = Per(/). Now 0 e P U {x0} . From Propositions 12.4 and 12.5 the
result follows.  Hence from now on we can assume that 0 £ P U {xo} and

/(O)  t{f(xa),f(xb),f(xc)}.

13. Maps with /(O) g lnt(Al)Bl)C)

In this section we prove Theorem 1.4(a) when /(0) ji Int(^uPuC). Notice
that from now on 0 can be a periodic or non-periodic point, and if it is periodic
it does not belong to P.
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Proposition 13.1. Let f be the standard a map. Suppose that /(0) £ \nt(A u
B U C) and xo £ {xa, xb, xc}. Then Theorem 1.4(a) holds.

Proof. Let 7i, 72 be the two basic intervals of S with xo as endpoint. Such
intervals exist in virtue of Remark 6.4. Moreover Ii, I2 £ S n S' because

Xo $ {xa, xb, xc} . By hypotheses /(0) £ lnt(A U B U C), hence /(O) £
Int(¿i UL2UL3). Therefore from Remark 11.9 it follows that each basic interval

of T is /-covered by some basic interval different from itself. If 7, —> 7, for
some i m 1, 2, by Proposition 11.10 the result follows. So assume that 7, does
not /'-cover itself for i = 1, 2. Then we get the loop 7i *± I2 .

First suppose that xo e I. Denote by A and A the closure of the two
connected componets of a \ {xo} such that A is homeomorphic to I. If
/(A) = A and /(A) = A by Lemma 11.3 the result follows. Otherwise,
by Remark 10.2, there exists y e A n P such that f(y) £ A n P for some
/ = 1,2. Then since 7! <=& 72, by the continuity of /, there exists a basic
interval J £ S /-covering 7i and 72. By Lemma 10.7, we can assume that
J £T. From the monotonicity of / on 7( and 72 we get that J $ {Ii, I2} .

Now suppose xo £ O. If there are no basic intervals of 5 different from
7] and 72 /-covering 7i or 72, then we consider the Y map g defined by
/ restricted to a \ Int(7] U 72). Clearly g is well-defined, k £ Ptr(g) and
Per(g) c Per(/). From the Y Theorem the result follows. So suppose that
there exists J £ S, J £ {Ii, I2} /-covering Ii or 72. Since Iinl2 = {xo},
if /(0) £ 7, U 72 then 7, «- J — 72 ; if /(0) e 7, U 72 then, by Remark 10.2
we obtain that 7i <- J —► 72. Furthermore, from Lemma 10.7, we can assume
that J £ T.

Finally we consider the two possibilities either xo £ I or xo £ O simultane-
ously. Since we are in the hypotheses of Lemma 11.5, there is a path of length
I <k- 1 starting at one of the intervals 7i, 72 and ending at /. Without loss
of generality we can assume that the loop starts at 7i . So we consider the loops
/, -♦->/-»/]  and 7j —» • • ■ -»• J -* 72 —► 7i  of lengths I + 1 < k and
/ + 2 < k +1 respectively. By construction (see the proof of Lemma 11.5), these
loops are formed by different intervals. The two above loops together with the
loop 7i *± I2 give us a loop of length n for each n > k + 1 containing J and
also containing 7i or I2. Since J £ {Ii, I2} ,-wz have xo £ J. Furthermore
0 £ 7i U 72. By construction of the loop of length n , the associated sequence
of W¡ 's in Proposition 7.2 is non-repetitive. Hence from Proposition 7.2 we
get that B(k) c Per(/).   □

Proposition 13.2. Let f be the standard a map. Suppose that f(0) £

Int(^4 u B U C) and xo £ {xa, xb, xc}. Then Theorem 1.4(a) holds.

Proof. Denote by L = [xo, xi] the basic interval of SnS' with xo as endpoint.
By hypotheses f(0) i Int(^UfiuC), hence /(0) i Int(LiUL2UL3). Therefore
from Remark 11.9 it follows that each basic interval of T is /-covered by some

basic interval different from itself. By Proposition 11.10 we can assume that
each / £ SnS' does not /-cover itself. In particular, 7. does not /'-cover itself.
From Corollary 11.11(a) we can suppose that fk~x(pe) £ O and f(xa) £ O.

If xo = xa, by Remark 6.2, we have /(0) £ I. Since 7i does not /'-cover
itself we get that L -» A. Therefore either 7i -» Li or 7i —► L2. Without loss
of generality we can assume that 7i —» Li . Denote by A and A the closures
of the two connected components of a \ {xo} such that A is homeomorphic
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to I. If /(A) = A and /(A) = A , by Lemma 11.3 the result follows.
Otherwise, since /(0) ^ lnt(A l) B l) C), xo = xa and from Remark 12.6

/(O) j¿ xa , it follows that there exists z £ P n D¡ such that f(z) £ P n A
for some «€{1,2}. By continuity of /, there exists J £ S n S' such that
7i <— J —> A and so either 7i <- / -* Li or 7i <— 7 —► L2.

By symmetry we only need to consider the following three cases.

Case 1: xo = xa and /(0) £ Int(7i). Since /(0) € I, we get A —> L ,
and so Li —> 7i and L2 -* Ii. Then we obtain the loop 7¡ ;=± Li. Since
7i n Li = {x0} , by Lemma 11.5 there is a path of length I <k - I starting at
one of the intervals 7i or Li and ending at J.

First suppose that I¡ *- J -+ L\ . Then we obtain the loops either 7i ^ Li,
/, _>..._>/_►/, and /, _,..._, j _> lx _► /, t or /, t± £, s /_,_>..._>

7-^L, and Li -?-► J -> 7! -» Li of lengths 2, /+1 <fc and / + 2 <*+l
respectively. Then we get a loop of length n for each n > k + 1 containing
J. Notice that {x0, 0} n J = 0. By construction of the loop of length n ,
the associated sequence of W¡ 's of Proposition 7.2 is non-repetitive. Hence

B(k) c Per(/).
Now suppose that 7i <— J —► L2. By Lemma 11.5 there is a path of length

I < k - 1 starting at one of the intervals 7i or Lx and ending at J. If
the path starts at 7i, then we get the loops 7i «a Li, 7i -► — -»/-+ /j
and 7, — • •• — J -* L2 -♦ 7. of lengths 2,/ + l</cand/ + 2<Ä:+l
respectively. If the path starts at Lj, then we obtain the loops 7i «=* Li,
L) -»-..-»/-» /j -»i, and Li ->•■—> 7 —► L2 —> 7i —> Li of lengths
2, / + 2 < fc + 1 and / + 3 < k + 2 respectively. As above, Proposition 7.2
allows us to prove that B(k) c Per(/).

Case 2: xo = xa and /(0) e Int(7i).
Suppose that Li -+ Li . By Lemma 11.4 there is a loop of length n for each

n > k+1 containing Li. Since there exists J £ SnS' such that 7 -* 7i -♦ Lj,
from Lemma 11.4 we can assume that it contains the path J —* 7i —► Li . Since

{xo, 0} n J = 0, by the above construction the loop verifies the hypotheses of
Proposition 7.2. So B(k) c Per(/). Hence in the rest of the proof of Case 2
we can assume that Li does not /-cover Lx.

Subcase (i). Lx ^ 7. . Then, since /(0) € Int(7i), f(xb) £ I. We have the
loop 7i ï± Li. Suppose that 7i ♦- 7 -► Li. So by Lemma 11.5 there is a path
of length I < k - 1 starting at one of the intervals U or Li and ending at
J. This path together with the loop I\X¿L\ give us a loop of length n for
each n > k + 1. Notice that {xo, 0} n 7 = 0 . By construction the above loop
satisfies the hypotheses of Proposition 7.2 and consequently B(k) c Per(/).

So we can assume that there are no basic intervals of SnS' f'-covering
7i U Li. Therefore we have I\ *- J -* L%. In particular L2 £ T. Suppose
that ¿2 -* Ii. Then by Lemma 11.5 we obtain the loops either 7i ^ Li,
/1 _,..._,/_,/, and /,-♦...-#/-♦ £2 -♦ J,, or /1 ♦* JLi ¿ £,,-►...—►
7 —* I\ -* Li and Li ->••■-+ 7 -♦ L2 —> h —» Li of lengths either 2, /+1 < k
and / + 2 < A: + 1, or 2,l + 2<k+l and / + 3 < k + 2 respectively. Since
{xo, 0} n 7 = 0 and by construction from these loops we can obtain a loop of
length n for each n > k + 1 in the hypotheses of Proposition 7.2. So the result
follows.

Hence we can suppose that L2 does not /-cover U . Therefore f(xc) £ O
and either C —* Li or C —> L2 because /(0) £ Int(7i). Suppose that C -* L2,
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Figure 13.1. In Subcase (i) there is Af e SnS', M c O
such that Af -> L3.

then L2 /-covers itself. Consider the path J —> L2. By Lemma 11.4 there
exists a non-repetitive loop of length n for each n > k + 1 containing L2 . By
construction of the above loop we can assume that it contains the path 7 —► L2.

Since {x0, 0} n 7 = 0 and the associated sequence of the W¡ s of Proposition
7.2 is non-repetitive, we get that B(k) c Per(/). Hence we can assume that
C does not /-cover L2. Therefore C —► Li and so L3 —► Li U 7i because
f(xb) £ I. Since f(xb) £ I, f(xc) £ O, each basic interval of SnS' does not
/-cover itself, there are no basic intervals of SnS' /-covering Li U 7i and
from the continuity of /, it follows that there exists M £SnS', Af c O such
that Af -► L3 (see Figure 13.1). In particular L3 £ T. Therefore consider the
paths 7i <- L3 -► Li *2 h . By Lemma 11.5 there is a path of length I <k-l
starting at one of the intervals 7i or Li and ending at L3. So we obtain either

the loops I\ ?ä L\, 7i —►•••-+ L3 -> 7i and 7] -+•••-» L3 —► Li —► 7i , or
7i ?2 L,, L[ -* • • • -» L3 -» Li and Lj -+.••-> L3 -* 7i -> Li of lengths
2,1+1 <k and / + 2 < A: + 1 respectively. So we obtain a loop of length n
for each n>k+l containing 7i and L3. By construction of this loop and
from the facts that 0 £ Ix and x0 £ L3, the associated sequence of W? s of
Proposition 7.2 is non-repetitive. Hence B(k) c Per(/).

Subcase (ii). Li -* Ii. So, since x¿ £ P we have that f(xb) e O. By
Remark 10.2 we get that f(xc) £ I. From the facts that there exists a closed
subinterval K c a /-covering O (see Remark 9.6), each basic interval of
(SnS') U {L¡} does not /-cover itself, /(xc) £ I and /(0) € I, it follows
that K c I (see Figure 13.2). Moreover we can assume that K has endpoints
elements of P U {xo} .

Since f(xb) £ O and fk~x(pe) £ O, there is a closed subinterval Af c O
such that Af +± K.

Let po £ Ii be such that f(po) = 0. Consider K' c K a minimal closed
subinterval /-covering O. Then K' c [pe, Po] ■ Since fk~x(pe) £ O, there are
two minimal closed subintervals M', N' cO\B /-covering [pe, f(0)] such
that Af' and N' have pairwise disjoint interiors. We have M' <— K' —> N'.

First suppose that p0 £ [pe, /(0)]. Then, since K' c [pe, Po], we get that
M' ^ K ^ N'. Thus we obtain a non-repetitive loop of length n for each n

even. Since x0 ¿ M'öN'U K' and 0 £ K' we get that 2N C Per(/). If fe is
even, then we are done because S(k) C Per(/). So we suppose that à: is odd.
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Figure 13.2. In Subcase (ii) the graph of / has only
one fixed point, xo .

Since xo i Mi, from Lemma 11.15 we get that n £ Per(/) for each n > k
odd. Therefore S(k) c Per(/) and the result follows.

Finally suppose that p0 i \pe, f(0)]. Then we have [p0, 0] - [p0, 0) -»
[f(0),Po] (see Figure 13.3) and B -» \p0, 0] (see Figure 13.2). Assume that
/ (0) i Int(P). Then, since 7. -♦ L, , again from Figure 13.2 we have that

[f{0),Po] -» £. So the loops [p0, 0] -» [p0, 0] -» [/(0),p0] - B -» [p0, 0]
give us a non-repetitive loop of length n for each n>k + l. Hence P(/c) c
Per(/). Now assume that p(0) 6 Int(P). Then, since Af' u N' c O \ B
we obtain M' *± K' & N1. Notice that x0 i M' U N' U K'. By the above
arguments S(k) c Per(/).

Case 3: xo = xb. From Corollary 11.11(b) we can suppose that f(xa) £ O.
By Remark 6.2 we have that /(0) £ O. Since 7, -~ 7, , we get 7, -» P. So
either 7i -► P. u ^ = L> or 7i -► B U C = L3.

Subcase (i). Suppose that C -+C. Therefore, since /(0) £ Int(^ líBlíC),
we obtain either C-+A or C-+B. Consequently either C - L2 or C - L3.
Therefore at least one of the following statements is satisfied:

(a) C^L2 and Li^L2^L2,
(b) C ^ Li and L2 -» L3 -► L3.

First assume that (a) holds. If there exists J £ SnS' such that 7 -> L2
or 7 -> L3, then we consider the path 7 -> L2 -► L2 or 7 -» L3 -+ L2 -♦
L2 . Given that each basic interval of T is /-covered by some different basic
interval, by Lemma 11.4 there is a non-repetitive loop of length n for each
n > k + 1 containing L2 . Furthermore we can assume that the above loop of
length n also contains 7. Clearly 0 £ 7 and x0 g L2. By Proposition 7.2
the result follows.

Therefore we suppose that for each J £ SnS', J -» L2 and J -» Li.
Consequently, since either 7, — L, or 7, - L3, we get that 7, — L,. Since
/(0) £ Int(C), from Lemma 11.12 we can assume that there is a basic interval
7o £ S' /-covering C. Taking into account that C c L2 n L3, and that
for each 7 6 5 n 5', 7 -* L2 and / ^ L3, we get that J0 £ {A,B}. In
particular L -» C. Hence Lx -* L2 or L, -* L3. Then consider the path
7i -► Li -» L2 -» L2 or 7! -» L! -♦ L3 -» L2 -» L2. By Lemma 11.4 there is
a non-repetitive loop of length n for each « > k + 1 containing L2 and 7,.
Notice that 0 $ Ix and x0 g L2. Then by Proposition 7.2 the result follows.
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Figure 13.3. The graph of / when Po £ [Pe, f(0)].

Finally suppose that (b) holds. Since C -> C U B, by the monotonicity of
/ on C we get that f(xc) £ O. Notice that either 7i -♦ Li or 7i -+ L3,
and so 7] -/* L2. If there is a basic interval 7e5n5'\{7i} such that either
J —► L2 or 7 -» L3, then we consider either the path 7 -> ¿2 -» L3 —► L3 or
the path 7 -» L3 -* L3. Clearly {0, Xo} fl 7 = 0 . Therefore by Lemma 11.4
and Proposition 7.2 the result follows.

Thus we can assume that L2 is not /-covered by any basic interval of SnS'
and L3 is not /-covered by any basic interval of S n S' \ {7i}. If 7i -»L3,
from the fact that each basic interval of SnS' does not /-cover itself and
by the continuity of /, we have that there exists 7 e S n S' \ {7i} , 7 C O
/-covering C (see Figure 13.4). Consequently either J -* L2 or J -* Li
in contradiction with the assumptions. Hence we can suppose that 7i -* L3.
Therefore 7i -+ Li. In particular 7i -» C. By Lemma 11.12 we can assume
that there is 7o € S' /-covering C. Since for each J £ S D 5", J -** L2
and J '-» Li, we obtain that 7o € {A, B}. Thus Li -> L2 or Li -» L3.
From the facts that fk~x(pe) £ O, /(xc) € O and by the continuity of /, it
follows that there is J £ SnS', J ^ 7i such that J —* A. Moreover either
7 -> Li or 7 -> L2 . By the above assumptions we have that J -* Li. Notice
that {0, xo} n J = 0. Consider the loops J -» Li -+ L2 -» L3 —► L3 or
/ -> Li -* Li -» L3. From Lemma 11.4 and Proposition 7.2 the result follows.

/1

B

A

/

^

£

/

AB/,      7      C

Figure 13.4. The graph of / cannot cross the diagonal

in O \ (B U C).
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Subcase (ii). Suppose that C -» C. First assume that B —» B. Since
/(O) £ O, /(O) jÉ Int(^l U P U C) and / is monotone in B, it follows that
P -> PuC = L3, which implies that Lx -» L3 -► L3. If there is 7 e Sn,S"\{7i}
such that either 7 —> Li or 7 -> L3, then we consider either the path J -+
Li -> L3 -* Li or the path 7 -> L3 -* L3. Clearly {0, xo} n 7 = 0. So by
Lemma 11.4 and Proposition 7.2 the result follows. Hence we can assume that

for each J £SnS'\{L}, J •* Li and J -/► L3. So we claim that f(xc) £ I.
Otherwise, f(xc) £ O, and since any basic interval of SnS' cannot /'-cover

itself, fk~x(pe) £ O and by the continuity of /, there exists J £ S n S' \ {7i}
such that 7 —» P. Therefore either J -* All B = Lx or 7 -» P U C = L3, in
contradiction with the assumptions. Then the claim is proved.

Now, from the facts that f(0) £ O, f(xc) £ I, /(O) g Int(¿ U P U C) and
C -/♦ C, we get that C -» Li. Therefore L2 -» Li and L3 -> Lj. Then we
have L2 -» Li ♦=£ L3 -» L3. If there is J £ S nS' \{Ii} such that J -> L2,
then we consider the path 7 -> L2 —► Li —► L3 —» L3. Since {xo, 0} n 7 = 0,
from Lemma 11.4 and Proposition 7.2 the result holds. Hence we can assume
that 7 -* L2, for each 7 e S n S' \ {7j} . Therefore, since fk~x (pe) £ O and
by the continuity it follows that /(xi ) £ O (otherwise there is J £ SnS'\{Ii}
/-covering Li or L2 or L3 ). Consequently, if we take A = [Pe, xa] and

A = C1(0 \ (B u C U 7i)), we obtain that /(A) C A and /(A) C A (see
Figure 13.5). Thus by Lemma 11.14 the result follows.

So in the rest of this proof we can suppose that B -» B . Since f(xa) £ O
and /(O) e O it follows that A -» A.

First assume that /(0) %\ Int(7i). Therefore, since B •** B by Remark 12.6
/(0) ft xo and so P -♦ 7i. Hence we have Li -» Ii *- Li. Moreover, since
either 7! -+ Li or 7i -> L3 we obtain either Li «^ 7i <- L3 or L3 <=* 7i «- Li.
From the facts that /(0) € Cl(O\(PuCu70), /*-'(#,) e O, there are no basic
intervals of 5" /-covering themselves, and by the continuity of / it follows
that there is 7i c 0, 7i e S' \ {7j} such that B <- Ji -* Ii (notice that 7
can be C and 7i / P). Set 7 = 7> if 7> ft C and 7 = L2 if 7, = C.
Clearly xo £ 7. We have P <- 7 —► Ix . Moreover either J ^> B I) A = Li or

7 —► P U C = L3. So we obtain either Li <- 7 —» 7! or L3 <— 7 -> 7i . Hence
one of the following subgraphs is satisfied:

(a) 7 - 7! «=t L,: «- 7 for 1 e {1, 3} ;
(b) J -* Lj -* Ii *- J and 7i ̂  L, for i, j £ {1, 3} , i ft j.

Clearly 7i nL, = {xo} for / € {1, 3}. Then by Lemma 11.13 the result follows.
Finally assume that /(0) £ Int(7i). Denote by Db and Dc the closures of

the two components of 0\ {0, fk~x(pe)} such that P c Db and C c A • We

have two possibilities: f(xc) € I or f(xc) £ O.

Suppose that /(xc) £ I. Since f(xc) £ I and /(0) £ Int(7i), we get that

C -» Li and so L2 —► Li <— L3. From Remark 10.2 A —» [/(0), Xi] c 7i and
so Li -» 7i. If 7i -► Li, then we have Li ^ 7i . Notice that 7i n Li = {x0} .
Define A = [Pe, xa] C I and A = Cl(0\(PuCu7,)) c O. If /(A) C A and
/(A) C A , then by Lemma 11.14 we are done. Otherwise, there is J £ SnS'

such that J —> A and consequently either 7 —► Li U L or J —> L2. Consider

Li ^ Ii. If 7 —► Lj U 7i, from Lemma 11.5 and Proposition 7.2 the result
holds. If 7 -> L2 , we have the paths 7 —» L2 —► Li and 7 -+ L2 —► L . Then
again from Lemma 11.5 and Proposition 7.2 the result follows.

Then we can suppose that /| 1» Lj. Therefore 7j —► L3 and /(x¡) £ O.
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Figure 13.6. There are two closed subintervals M, N c

O /-covering K.

Since each basic interval of S' does not /-cover itself, /(O) e Int(7i) and
there exists a closed subinterval /-covering O (see Remark 9.6), we have that
there is a closed subinterval K c I such that K —► C1(0 \ (P U 7])). From

the fact that {f(xx), f(0), fk~x(pe)} c O it follows that there are two closed

subintervals M, N c 0\ C1(B U 7i) /-covering K (see Figure 13.6). Hence
we have Af <=£ K <=¿ N. Without loss of generality we can assume that Af c A

and N c Dc. Thus we obtain a non-repetitive loop of length n for each n
even. Since x0 i K we get that 2N c Per(/). If k is even S(k) c Per(/) and
we are done. So we can suppose that k is odd. If f(xa) £ Db , then there is a

minimal closed subinterval K' c [pe, xa] with endpoints elements of P such
that K' & N. Since xo $. K', from Lemma 11.15 we obtain that n £ Per(/)
for each n > k odd. Then S(k) c Per(/) and the result follows.

If f(xa) £ A , then A -* [xi, fk~x(pe)] C Db . By the continuity of / and
from the fact that {/(xi), fk~x(pe)} C O it follows that there is a minimal

closed subinterval Afi c [xi, fk~x(pe)] (and so xo %\ Mi ) such that either
Afi -»¿2 or Af] —► Li U 7j. Therefore ^4 —> Afi and we obtain either the
loops Afi ?s L2 and Afi -» L2 -+ Li —> Afi ; or the loops M\ +2- L\ and
Li —»• 7i —* Li —» Li. So we have a non-repetitive loop of length n for each

n > k odd containing Afi. Since Xo £ Afi we get that S(k) c Per(/).
Finally assume that f(xc) £ O. Since C -** C we have that L3 —► 7! . By

the continuity of / and since each basic interval does not /-cover itself, it
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Figure 13.7. There is #1 c I /-covering O.

follows that there exists 7 e S n S' \ {Ix} , 7 c O such that 7 -» Ix u P. So
either 7 -» 7i u Li or 7 -n¡ 7i U L3. Moreover either 7i -» Li or 7j -» L3.
Suppose that Lj -> 7i. Therefore we have either 7 -> I{ +£ L,■ *- J for

í € {1, 3}, or / -* Lj -» Ii «- J and htt L¡ for i, j e {1, 3}, / ft j. By
Lemma 11.13 the result holds. So from now on we can suppose that Li -* Ji.
Then A -» [/(0), x0] U P c 7, U P and so L2 -» 7i. Since ^ ■* ^, we
get ^4 -» P U C = L3 and consequently Li -+ L3 <- L2. If 7i -♦ L3, then
we consider the loop 7j 5* L3 and the path 7i <- L2 -» L3. Since 0 ^ 7i
and xo fÉ L2, from Lemma 11.5 and Proposition 7.2 the result holds. So
from now on we can suppose that 7i -f* L3. Therefore 7j -» Li. From the
facts that A —» P u C, each basic interval does not /-cover itself and there is a
closed subinterval /-covering O, it follows that there exists a closed subinterval
Ki c I such that K{ -> O (see Figure 13.7). Furthermore, from the fact that

{x0, f(xc), fk~x(Pe)} cO, there are two closed subintervals M, N cO such
that M -^ Ki -^ N. Without loss of generality we can assume that Af c A
and N cDc. Since x0 i Kx we get that 2N c Per(/). If k is even the result
follows. So we can assume that k is odd.

Notice that there is a closed subinterval N' c A such that N' —* I be-
cause {/(xc), /fc-1(Pe)} C O. If f(xa) £ A, then there is a closed subin-
terval K' c ATi with endpoints elements of P /-covering Af. Thus we
have K' ♦=* Af. By Lemma 11.15 « € Per(/) for each n > k odd. Hence
S(k) c Per(/) and we are done. So we can assume that f(xa) £ Db . There-

fore A -* A and consequently L\ '-* De «- la. By the continuity of /
and since {/(xc), fk~l(pe)} C O, there exists a closed subinterval JVj c A

such that either Nx -► L2 or TVi -♦ Li (see again Figure 13.7). Notice
that xo £ Nx. If Ni -* Li then we consider the loops Lx +z Ni and
Li -» L3 -»■ 7j -»L. If A^i -* L2, then we consider the loops L2 & iVi
and L2 ^ L3 -> 7] -» Li -+ iV"i -+ L2. In both cases, from Proposition 7.2
we obtain that n £ Per(/) for each n > k odd. So S(k) c Per(/) and the
proposition follows.   D

14. Maps with /(0) € Int(^ U P U C)

In this section we will prove Theorem 1.4(a) when /(0) £ lnt(A U P u C).

Since /(O) ?é 0, we have that /(O) e Int(^( uBuC) if and only if /(O) e
Int(^) U Int(P) U Int(C).
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Lemma 14.1. Let f be the standard a map. Suppose that f(0) £ IntL4uPuC)
and that each basic interval of T is f-covered by some basic interval of T
different from itself. If there is J £ T such that J -* J, then Theorem 1.4(a)
holds.

Proof. If J £ SnS', then by Proposition 11.10 we are done. So assume that

J £ {Li, L2, Li} . Since /(0) 6 IntL4uPuC) and from the monotonicity of /
on each basic interval of 5", it follows that 7 does not /-cover basic intervals

of {Li, L2, L3}\{7}. If xo € 7, from the facts that /(O) e Int(^uPuC) and
that / is monotone on each basic interval of S', it follows that 7 does not /-
cover basic intervals of T containing xo different from itself. By Lemma 11.4
there is a non-repetitive loop of length n for each n>k+l. By construction,

there are at least two basic intervals of the above loop (perhaps they are the
same) such that one does not contain 0, and the other does not contain xo.
Then the associated sequence of W¡ 's in Proposition 7.2 is non-repetitive and

so B(k) c Per(/).   D

Proposition 14.2. Let f be the standard a map. Suppose that f(0) £
lnt(AuBliC) and xo € {xa, xb, xc}. Then Theorem 1.4(a) holds.

Proof. Denote by 7¡ the basic interval with endpoint xo different from A, B

and C. Set 7i = [xo, Xi]. By symmetry and from Remark 6.2 we need only

consider three cases.
Case 1: /(0) £ lnt(A) and xo = xa . Notice that from the monotonicity of

/ on A, A does not /'-cover any basic interval. By definition of Xo in Section
6, the interval [pe, xo) does not contain fixed points, so fk~x(pe) £ O and

Ix —* A. Then either 7[ —► Li or 7i —► L2. Without loss of generality we can

assume that I\ —* Li. In particular Li € 7\and L[ is /-covered by some basic
interval different from itself. Notice that from Remark 10.2 A is /-covered

by some basic interval of {Li, L2, L3}. So there is z e {xb, xc} such that
f(z) £ P n O. Hence there exists J £SnS', 7cO such that I\ <- J -* A.
Therefore either 7 -* Lx or 7 -> L2. Notice that {x0, 0} n 7 = 0. Now
we consider the three different possibilities for L2, the other basic interval

containing /(0).
Subcase (i). Suppose that L2 £ T. Consequently 7 —► Li. Moreover

Li £ T and /(0) £ L3. By Remark 11.9 each basic interval of T is /-
covered by some basic interval of T different from itself. If there is a basic
interval of T /-covering itself, by Lemma 14.1 the result follows. So suppose
that there are no basic intervals of T /-covering themselves. Hence since

L2 £ T, f(xb) £ I, so we get Li —► 7i . By applying Lemma 11.5 to 7i Ä Li,
there is a path of length I < k — 1 starting at one of the intervals 7i or Li
and ending at 7. This path together with the paths Li <— 7 -+ 7i ^ Lx, give
us a non-repetitive loop of length n for each n > k + 1 in the hypotheses of

Proposition 7.2, so B(k) c Per(/).
Subcase (ii). Suppose that L2 £ T and L2 is not /-covered by any basic

interval of T different from itself. Then 7 -» Li. Moreover C —> C (because
L2 —► L2 ) and by Lemma 11.12 taking the interval C, we can assume that

there exists K £ S', K^C such that K -+ C, so either K -+ B or K -► A .
Since L2 only is /-covered by itself, K —> B. Hence L3 £ T. Consequently
T = S. Hence L3 and Li do not /-cover L2. So f(xb) £ O and consequently



4930 M. CARME LESEDUARTE AND IAUME LLIBRE

Li -» Li (because Li -*• L2). Since /(O) £ L3, by Remark 11.9, L3 is /-
covered by some basic interval of T different from itself. Notice that if L2

/-covers Af for some M £T, then L3 -> Af. Set R=T\ {L2} =S\ {L2} .
Therefore each basic interval of R is /-covered by some basic interval of R

different from itself. Furthermore Li -+ Li <— 7 and {0, xo} n 7 = 0. So,

by Lemma 11.4 interchanging T by R, and Proposition 7.2 it follows that

B(k) C Per(/).
Subcase (iii). Suppose that L2 £ T and L2 is /-covered by some basic

interval different from itself. Since /(0) £ L3, from Remark 11.9 it follows
that each basic interval of T is /-covered by some different basic interval of
T. Notice that T = S or T = S\ {L3}. If there is a basic interval of T
/-covering itself, then by Lemma 14.1 the result follows. Hence we can assume
that each basic interval of T does not /-cover itself. Then from the graph of
T it follows that / has no fixed points in O. Since /(0) £ I, there exists
a closed subinterval K c [pe, Xo] such that K —* O and K has endpoints
elements of PU {xo} . From the facts that fk~' (p€) £ O, and /(0) £ A, we get
that there are two minimal closed subintervals Af, N c O such that Af and
N have disjoint pairwise interiors and M, N —> K. Moreover xo ^ Mli N.
By Lemma 11.6 the result follows.

Case 2: f(0) £ Int(P) and xo = xb. By the monotonicity of / on P we
have that f(B) = [/(0), xo] c P, otherwise P contains a fixed point y ^ xo
in contradiction with the definition of xo in Section 6. Notice that B does not
/-cover any basic interval. Now we will study the two basic intervals containing

/(0) which are Li and L3.
Subcase (i). Suppose that Li £ T. Then by Proposition 10.8, L2, Li £ T.

We claim that L3 is /-covered by some 7i € T \ {L3}. Otherwise suppose
that the only basic interval of T /-covering L3 is itself. Therefore, since

f(B) c P and P U C -* B u C, we have C -» [/(0), 0] c B and C -► C. So
since L2 = Al)C £T and L2 -» Li it follows that A -» [/(0), Xo] C P. Then
either A - [/(0), 0]UA C BuA or A -* [/(0), 0]UC C PuC. Since L, £ F,
we have A —► [/(0), 0] U C and so L¡ —► L3. Then, since I{ nB = {xo} , by
the monotonicity of / on each basic interval of S' we have that each basic
interval of {A, B, C} does not /-cover 7j . Moreover, by Remark 11.9, 7i is

/-covered by some different basic interval of S" . So we can assume that there
exists J0£SnS'\{Ii} such that 70 -> 7i. Since 7i nP = {x0} and Li $. T,
it follows that 7o -> 7i u P U C. In particular 7o -> L3, a contradiction with
the assumptions. So the claim is proved.

Since /(0) £ L2 and there is 7i £ T\ {L3} such that 7i —► L3 , by Remark
11.9 each 7 £ T is /-covered by some basic interval of T\{J} . By Lemma
14.1 we can suppose that for each J £ T, 7 -* 7. In particular 7i -* 7i
and so 7i —► P. Hence either 7i -> P U A = Li or 7j —► P U C = L3.
By hypotheses Li £ T, so we have that 7j —> L3 and thus /(xi ) e O (by
the monotonicity of / on 7i ). On the other hand L3 ■** Li and L3 -/»• ¿1,
which implies that L3 -» B. So we have that L3 —► 7] . More concretely,

C -* [/(0), x0] c B and C -» 7,. So f(xc) £ O (otherwise C ->■ A U C and
consequently L2 —► L2, a contradiction). Then, from the facts that /(xi ) £ O,
/(xc) e 0, 7i n P = {xo}, each basic interval of T does not /-cover itself,

Lj £ T and by the continuity of /, we obtain that there exists 7 £ SnS'\{7i} ,
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A   B     h

Figure 14.1. There exists 7 e SnS' \ {7>} , 7 c O,
/-covering 7! and L3.

7 c O such that 7! <- 7 ->■ L3 (see Figure 14.1). Notice that {x0, 0} n 7 = 0.
Since 7i ^ L3 and 7i n L3 = {xo} , from Lemma 11.5 and Proposition 7.2 we
obtain B(k) c Per(/).

Subcase (ii). Suppose that Li e T and that Li is the unique interval of

T such that /-covers Li . Then, since f(B) = [/(0), Xo] C P, it follows that

A -* [/(0), 0] U A c B u A. Hence /(xa) e I. Since /(Pnl)^Pnl, there
exists M £SnS', Mel such that M -> A. So either Af -+ A U P = L, or
Af —» A U C = L2 . By the assumptions we have that M —> L2. In particular

L2 £ T and L2 is /-covered by M jí L2. Consequently L2 ->» Li. Since
L2 = A U C, A -► [/(0), 0] U A c B U A and P n 7i = {x0} we get that
L2 -*• 7i. Notice that each basic interval of {A, B, C} does not /-cover
7!. So, by Lemma 11.12 there exists N £ S n S' \ {Ix} such that N -> L .
Furthermore either JV —► 7i U P U A or JV -► 7¡ U P U ¿7. By the hypotheses we
have that N —► 7i UL3. In particular L3 e T and L3 is /-covered by N jí Li.

Consider R = T \ {Li} = S \ {Li} . We note that if Li /-covers some 7 e R,
then also L2 /-covers 7. Hence, by Remark 11.9 each basic interval of R is

/-covered by some different basic interval of R. Since f(xa) £ I, by the proof

of Corollary 11.11(b), interchanging T by R, the result holds.
Subcase (iii). Suppose that Li is /-covered by some basic interval of T

different from itself. Now we will study the following three possibilities for
Li.

First suppose that L3 £ T. So by the definition of T we have L2 £ T.
Since /(0) £ L2 by Remark 11.9 each basic interval of T is /-covered by
some different basic interval of T. From Lemma 14.1 we can assume that

each basic interval of T does not /'-cover itself. By Corollary 11.11 (b) we can
suppose that f(xa) e O. Moreover, since 7i -* 7i we have 7i —» P and so
either 7i —► P U A = Li or 7i —> P U C = L3. From the assumption that
L3 f\ T we get that 7i -> Li. Furthermore A -+ [x0, /(O)] C P and A -* 7,
because /(0) e Int(P), f(xa) £ O and L3 £ 7\ By Remark 10.2 we get that
C -» [/(0), 0] c P. Hence L2 = AuC -► 7, UP, and so either L2 -» PuA = Lx
or L2 -» P U C = L3. By the assumptions, we have that L2 -» Li. Therefore

we have the paths L <— L2 —* Lx and 7] t± Lx. Since 7i n Li = {xo}, by
Lemma 11.5 there is a path of length I <k- 1 starting at one of the intervals
7i or Li and ending at L2. If the path starts at Li, then we consider the loops
/_] _,..._> l2 _► £, —+ 7i —» Lj , Li —> • • • —► L2 —»• 7i —» Li and Li ^ 7i of
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lengths 1 + 3 <k + 2, l + 2<k + l and 2 respectively. If the path starts at 7i,
then we consider the loops ti —»-► L% —» h > h —►•••—► L2 —> Li —> 7i and
7i 5* Li of lengths / + 1 < A:, / + 2 < fc + 1 and 2 respectively. Clearly 0 g 7i
and xo ^ L2. Notice that all the above loops contain Ix and L2. Then by the

construction of the loops and by Proposition 7.2 the result holds.
Now suppose that L3 £ T and L3 is the unique basic interval of T f-

covering L3. Then, since B -* [/(0), xo] C B, we have that C -» [/(0), 0] c
P and C —► C. By Lemma 11.12 we can assume that C is /-covered by

some M £ S', M ft C. Moreover, by the hypotheses we have that Lx £ T
and so Lx -» Li. We claim that M ft A. Otherwise, suppose Af = A.

Therefore, since Lx -» Li it follows that A —» O\ (/(0), 0) and A —> A. In
particular L2 —> L2 and L2 —► L3, in contradiction with the assumptions. So

the claim is proved. Notice that Af ft B, because f(B) c P. Then we have
Af i {A, B, C}, and so M £SnS'. Since Af -» C and Af ̂ CuP = L3,
we get that Af —► C U A = L2 . In particular L2 £ T and L2 is /-covered by
Af ft L2 . Notice that if L3 -» JV, for some N £ T\{L3}, then C ~* JV and
consequently L2 —> N. Set R = T\ {Li} = S \ {Li} . Therefore each basic
interval of R is /-covered by some different basic interval of R. From the facts

that Li -» Li, L2 -» Li, C — [0, /(0)]UC c PUC and P — [/(0), x0] C B,
it follows that Li -»L. Then from the proof of Lemma 14.1, interchanging
T by R the result holds.

Finally suppose that L3 £ T and L3 is /-covered by some different basic
interval of T. Since /(0) £ L2, by Remark 11.9 we have that each J £ T
is /-covered by some interval of T\{J} . From Lemma 14.1 we can assume
that for each J £ T, J -» J. In particular Ix -» Ix and so either Ix —► Lx or
7i —► L3. We claim that C -» C. Otherwise suppose that C -» C. Therefore
either C -» [0, /(O)] c P and so L3 -> L3 ; or C -» C U A and L2 -» L2
in contradiction with the fact that for each J £ T, J -» J. Thus the claim
is proved. From Corollary 11.11(a) we can assume that fk~x(pe) £ O. By

Remark 9.6 there is a closed subinterval K c a such that K -* O. From the
fact that f(B) = [/(0), x0] c P, 7^7 for each 7 e T and C -» C, it
follows that A: g O. Then there exists K' c I such that Ä7 -► O \ Int(P) (see

Figure 14.2). From the fact that {fk~x (pe), x0, /(O)} c O it follows that there
are two minimal closed subintervals Af, N c 0\Int(P)   /-covering K'. Then

A      ft     I *-'       C
r 4    B    ',    /(Pe)   C

Figure 14.2.  There is AT' c K n I such that Ä"' *♦
O \ Int(P).
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/(ft)
Figure 14.3.   There is a closed subinterval Af c O
/-covering L2 or Li U 7i .

we get M**K'*±N. Since x0 %\ K' we obtain 2N c Per(/). If k is even,
then S(k) c Per(/) and we are done. Hence we can assume that k is odd.

Denote by A and Db the closures of the two components of O\{0, fk~x(pe)}
such that P c A and C c A -

First assume that A —► 7i . Then Li -* 7i <— L2. From Remark 10.2
and since C -*• C, we have that C -» [/(0), 0] U A c P U A. Consequently
L2 —► Li t— L3. On the other hand, either 7i —► Li or 7i —► L3. Suppose
that 7, -+ Li. If f(P n I) = P n O and /(P n O) = P n I, then k must
be even, in contradiction with the assumptions. Therefore there is J £ SnS'
/-covering either Lx u 7] or L2 . So we consider the loop Ix *2 Lx and the
path either Li <- 7 —► Ix or Lx <— L2 <— 7 -+ L2 —► Ix. From Lemma 11.5
we obtain a non-repetitive loop of length « for each n > k + 1 containing
7. Since {xo, 0} n 7 = 0 from Proposition 7.2 the result follows. Therefore
we can assume that Ix -» Lx. Hence Ix -» L3 and by the monotonicity,
f(xx) £ O. Since {fk~l(pe), /(O)} c O it follows that there exists a closed

subinterval TV c A /-covering I. Moreover, since {/(xi), fk~x(pe)} c O,
by the continuity it follows that there exists a closed subinterval Af c A such
that x0 £ Af and either Af -* L2 or Af -* Lx U 7i (see Figure 14.3). If
f(xa) £ A, then there exists a closed subinterval K' c [pe, xa] c I with
endpoints elements of P such that K' -* Dc. Therefore we have K' «=t N and
x0 $ K'. From Lemma 11.15 the result holds. So suppose that f(xa) £ A •
Then A —► A • In particular Li —► Af *- L2. We consider the loops either
Af î=î Li —► 7i —► L3 -+ Lj ; or Af <=± L2 —» Li —» Af. Thus we obtain a non-
repetitive loop of length n for each n > k odd containing Af. Since xo £ Af
we have S(k) c Per(/).

Finally assume that A -* 7i . Since 7-^7 for each 7 6 T, it follows that
-4 -* [/(0), 0] U C c P U C and so Li -♦ L3. In particular /(x„) e O. Notice
that the closed subinterval K /-covering O is contained in I. If f(xa) £ A,
then there is K' c I, K' with endpoints elements of P such that K' —► A •
From the fact that {xo, fk~l(pe)} C O, there is a closed subinterval Af c A
such that Af -»• AT'. Then we have K' t± M and xo i K'. By Lemma 11.15
the result holds. Otherwise f(xa) £ Db. Hence A -> A and consequently
Li -> A <— L2 . Now we have two possibilities: f(xc) £ O or /(xc) G I.

First suppose that /(xc) e O. Then we get that C -» 7i (because L3-» Li)
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/(ft) ?

/

/

/

A      B    '*     /(ft)   C

Figure 14.4. There is a basic interval of A /-covering
Li or L2.

and so L3 —► 7i <— L2 -» L3. On the other hand either Ix -* L3 or I{ —» L] . If
7i —► L3, then /(xi) e O. Hence there is a basic interval Af £ SnS', AfcO
such that either Af -+ L3 u 7j or M —> L2. Therefore we consider the loop
L3 «£ 7[ and either the paths L3 <— Af —* 7i ; or L3 <— L2 <— Af —> L2 -* 7i . So
from Lemma 11.5 and Proposition 7.2 the result holds. Otherwise, 7] —► Li.

Since {/(xf), /*""'(&>)} C O, there exists M £ SnS', Af c A, such that
either Af —► Li or Af -> L2 (see Figure 14.4). From the fact that Li —► A <—
L2 we obtain either Af *2 Li or Li ^> M t± L2. So we consider either the

loops Lj —► L3 —» /1 -> Li and Lj 51 Af ; or the loops L2 —► L3 —► 7i —► Li —►
Af —> L2 and L2~ï± M. So we obtain a non-repetitive loop of length « for
each « > 5 odd containing Af. Since Xo %\ M the result follows.

Finally suppose that f(xc) £ I. Let pi £ 7i be such that f(pi ) = f(0). Set
U = [0, pi] c P U 7]. We define the map g : a —► a as g\„\u = f\o\u anc*
g\u = {/(0)}. Clearly g(0) = /(0) € O and g has a fixed point z £ B (see
Figure 14.5). So g is a <r map. Moreover P is a periodic orbit of period k
for g. Of course Ptr(g) c Per(/). We remark that g is monotone on each
basic interval associated to P U {z} u {0} . If we denote by A', B' and C the
three basic intervals associated to Pu {z} U {0} with 0 as endpoint, then we
have P' = [0, z] and g(0) = g(z). From Remark 12.6 the result follows.

Case 3: /(0) € Int(P) and xo = xc. We will deal with two basic intervals

containing /(0) which are Li and L3. Notice that by definition of xo in
Section 6, B does not contain fixed points of /. So B -* [/(0), xb]cB.

Subcase (i). Suppose that L3 ^ T. So by definition of T we have that

Li, L2 £ T. Notice that C does not /'-cover C (otherwise L3 = P u C —►
P U C ). Therefore C -» [/(0), xb] c P and C -» 7,. So L2 -» 7j. Since
/(0) € Int(P) and P -► [f(0),xb] — C, by Remark 10.2 we get that A -»
[/(0), 0] c B. Furthermore, from the fact that L3 f\ T we obtain that /(xa) e
I (otherwise Li and L2 /-cover L3 ) and A —> A. Thus L¡ -* Li <— L2.
Therefore Li is /-covered by a basic interval of T different from itself. Since
/(0) £ L2, from Remark 11.9 we have that each basic interval of T is /-
covered by some basic interval different from itself. Since Lt —» Li by Lemma
14.1 the result holds.

Subcase (ii). Suppose that L3 £ T and there are no basic intervals of T

different from L3 /-covering L3. Since P -♦ [/(0), xb] c P and L3 -► L3 it
follows that C -► [0, /(0)] uCcPuC.
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Figure 14.5. The new a map g in U.

First assume that Li g T. Then by the definition of T we have that
L2 £ T. Consequently L2 -* L3 and so A +> [/(0), xb] c P. Therefore
A ^ [0, f(0)] c P. Moreover either A -» A and L, -+ Li, or A -» C
and L[ -»L3. By the assumption Li £ r we get A -» C and Li —► L3.
Thus /(xa) e O and A -» 7i. In particular L2 -+ 7]. Notice that each basic
interval 70 € SnS' does not /-cover P ; otherwise either 7o -» Pu A = Li or
70 -c P U C = L3 in contradiction with the assumptions. Set R = T\ {L3} =

S\{Li, Li}. Notice that Li n L3 = P. We claim that if L3 /-covers Af for
some M £R, then there is 7 e P, 7 # Af such that 7 -* Af. Now we prove
the claim. Since f(C) c L3, P -» Af. Suppose that Af c O. So from the facts
that 7 -*■ P for each J £SnS', xb £ P and by the continuity of /, it follows
that there is 7 e R, J ft M such that 7 -► Af (see Figure 14.6). Suppose that
Af c I. Then f(xb) £ I. Hence from the facts that f(xb) £ I, f(xc) £ O and
by the continuity of / it follows that there is 7 £ R, 7 c O (and so J ft M)
such that 7 -♦ Af. Finally suppose that M = L2. Since A -* C and C -+ C,
clearly L2^L2. Since /(xa) e O, /(xc) e O, f(fk~x(pe)) £ I, each basic

interval of 5 n 5" does not /-cover P and by the continuity of /, it follows
that there is 7 £ S n S' (and so J ft L2) such that J -* L2 (see again Figure
14.6). So the claim is proved.

Hence from Remark 11.9 each basic interval of R is /-covered by some
different basic interval of R. If there is 7 e R   such that 7 —► 7, from the
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Figure 14.6. There is J £T, J ft M such that 7
Af.
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Figure 14.7. The graph of / with /(A) C A and
/(A) c A -

proof of Lemma 14.1, replacing T by R, the result follows. So we can assume
that for each J £ R J -» J. By the proof of Corollary 11.11 (a) we can suppose

that fk~x(pe) £ O. Moreover Ix -» 7) and so Ix -» L2 (since Ix -*» L3 ). We

have the loop Ix ^ L2, with Ix n L2 = {xo}. If there is J £ S nS' such
that 7i <— 7 —► L2, then by the proof of Lemma 11.5 and Proposition 7.2
(replacing T by R ) the result holds. Consequently we can assume that for

each J £ S nS'\ {Ix}, 7 -» Ix and 7 -*■ L2. Set A = [A?, xa] c I and
A = C1(0\(PL)CU7,)) (see Figure 14.7). Therefore we get that /(A) C A
and /(À) C A • Then by Lemma 11.14 the result holds.

Finally assume that L\ e T. Thus we have Li -* L3. Suppose that Li
does not /-cover Li. Then since Li -^ L3, we get that A -> [/(0), xb].
Consequently L2 -* Li and so L2 £ T. Since there are no basic intervals
of T /-covering L2, L3 is the unique interval of T /-covering L3, and
C = L2 n L3, it follows that C is not /-covered by any basic interval of S'
different from itself. Hence by Lemma 11.12 the result follows. So in the rest

of the proof of this subcase we can assume that Li -+ Li . Then f(xa) £ I.
Suppose that Li is /-covered by some different basic interval of T. Notice
that L3 ■* Li. Set R = T \ {L3} . We remark that if L3 -► Af, for Af € R,
then P -> M (because /(xo) = xo and /(C) c L3 ). Consequently Li -» Af.
So by Remark 11.9 each 7 e T is /-covered by some interval T\ {J}. Since
Li -* Li, by the proof of Lemma 14.1, replacing T by R the result holds.

Now we can suppose that Li -► Li and Lx is not /-covered by any basic
interval of T\{LX}. Then A -* [/(O), 0]UA c PUA. Since /(Pnl)gPnl,
there exists z e Pnl suchthat f(z) £ PnO. Then, since xa, z € I, /(xa) e I
and /(z) G O, by the continuity of / it follows that there exists 7o £ S n S',
Jo c I such that 7o -» A. So either 70 -♦ A U P = Li or 7o -» A U C = L2.
By the hypotheses we get that 7o -» L2. In particular L2 £ T. Notice that
each basic interval J £ S nS' does not /-cover P, because otherwise either
7 —► PuA = Li or 7->PuC = L3 in contradiction with the assumptions. Set

R = T\{Li,Li} = S\{Li, Li} . We have Li n L3 = P and /(0) € Int(P).
We claim that if Lx or L3 /-covers Af for some M £R, then there is 7 £ R,
J ft M such that 7 —» Af. Now we prove the claim. If Af = L2 then take
7 = 7o and we are done. Suppose that Af c O. Hence from the facts that
7 -* B for each 7 e SnS', xb £ P, and by the continuity of / it follows (like
in Figure 14.6) that there is J £ R, J ft M such that 7 —» Af. Suppose that
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D,    A    B      Di      /,    C

Figure 14.8. For each J £SnS', J -» C.

Mel. If A —► Af, then take J = L2 and we are done; otherwise, we have

B -* M (because /(C) c O). Therefore f(xb) € I. Since Af c [/(x¿), 0],
f(xc) £ O and by the continuity of /, there exists J £ S n S', 7cO
/-covering Af. Notice that J ft M. So the claim is proved. Hence each
basic interval of R is /-covered by some different basic interval of R. Since
f(xa) £ I, from the proof of Corollary 11.11(b) interchanging T by R the
result holds.

Subcase (hi). Suppose that L3 e T and L3 is /-covered by some basic
interval of T different from itself. Now we shall deal with Lx.

First we assume that Li £ T, then by the definition of T we have that
L2£T. Since /(0) £ L2,by Remark 11.9 we have that each basic interval of
T is /-covered by some different basic interval of T. From Lemma 14.1 we
can assume that each basic interval of T does not /-cover itself. By Corollary
11.11 we can suppose that fk~x(pe) £ O and f(xa) £ O. Since xc = x0,

/(0) £ B and L3 -» Li we have that C -► Ix. Then L2 -♦ 7, and L3 -♦ Ix.
Furthermore, since 7i -*• Ix, we get Ix -> C. Moreover either 7! -► Cu A = L2
or 7i -► C u P = L3. Suppose that there is 7 e S n 5' \ {7.} such that 7 -► C.
Then, since /(x0) = Xo, 7 -► 7i . Moreover either 7 -► C U A = L2 or
7 —► C U P = L3 . Thus one of the following subgraphs is satisfied:

(a) 7 -> 7i +i L,: <- 7 for some i € {2, 3} ;
(b) J -+Lj^Ix^J and 7! «a L, for i,j £{2,3}, i ft j.

By Lemma 11.13 the result follows. So we can assume that for each 7 e

SnS"\{/.}, 7 -* C (see Figure 14.8). Set A = \Pe,xa] c I and A =
C1(0 \ (B u C U 7,)). Therefore we get that /(A) C A and /(A) C A
(because Li £ T). By Lemma 11.14 the result holds.

Assume that Lx £ T and Lx is the unique interval of T /-covering L\.
Since P — [/(0), x¿] c P and Lx -* Li, we have that A -* [/(0), 0] c P
and A ^ A. So f(xa) el. Clearly /(Pnl) £ Pnl. Hence there is z € Pnl
such that /(z) ePnO. Moreover, since f(xa) £ I and by the continuity of
/ it follows that there exists J £ SnS', 7cl such that 7 -+ A. Therefore
either 7 -» A U P = Li or 7 -> A u C U 7. . By the assumptions we get that
7 - L2 U 7,. In particular L2 £ T. Set P = T \ {L,} = S \ {Lx}. Notice
that Lx -»Li. Furthermore if Lx -> M for some M £ R, then A -» Af or
P -+ Af. Consequently L2 -> Af or L3 -> Af. Hence each basic interval of R
is /-covered by some different basic interval of R (see Remark 11.9). Since
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f(xa) € I, by the proof of Corollary 11.11(b), replacing T by R, the result
follows.

Finally assume that Li £ T and that Lx is /-covered by some different
basic interval of T. Since /(0) £ L2, from Remark 11.9 each 7 £ T is

/-covered by some basic interval of T \ {J}. Then by Lemma 14.1 we can

suppose that each basic interval of T does not /'-cover itself. So we have that

7i -» Ii and L3 -» Li. Therefore L -* C and C —► 7i (because /(xo) = xo ).
Thus L2 and L3 /'-cover 7i. Moreover either Zi —► L2 or 7i —» L3. Suppose
that there is 7 e Sn5' \ {7.} such that 7 -♦ C. Then either 7 -» L2 U7, or
7 —» L3 U 7i . Hence one of the following subgraphs is satisfied:

(a) 7 —> 7i 5* L,■■ *- J for some i £ {2, 3} ;
(b) 7 — L; — 7, «- 7 and 7! «* L; for 1, 1 £ {2, 3}, i ft j.

By Lemma 11.13 the result holds. Consequently we can assume that for each

7 -» 5 n 5" \ {7,} , J -» L2 and 7 -* L3. Set A = [A>, *a] C I and D2 =
O \ Int(P U C U 70 . Therefore we get that /(A) C A and /(A) C A • By
Lemma 11.14 the result holds.   D

Proposition 14.3. Let f be the standard a map. Suppose that f(0) £
\nt(A U B U C) and Xq £ {xa, xb, xc}. Then Theorem 1.4(a) holds.

Proof. We denote by Zi, 72 the two basic intervals with xo as endpoint. These
basic intervals exist in virtue of Remark 6.4. Since xo £ {xa, xb, xc}, we have

that Ix, I2 £ S n S'. By symmetry and Remark 6.2 we only need consider the
two following cases.

Case 1: /(0) £ Int(A) and x0 6 I. Without loss of generality we can assume
that 7] c [pe, Xo]. So by the definition of Xo in Section 6 we have that \pe, xo)

does not contain fixed points of /. Consequently Zi -# Ii. So Ii ^> I2. Since

f(P n I) g P n I, it follows that there is zePnl such that f(z) ePnO.
By hypotheses Xo € I. Hence, by the continuity of /, there exists Jo £ SnS'
such that Jo -* A. Therefore either 7o -* A U P = Li or 7o —► A U C = L2.
Without loss of generality we can assume that 7o —► A u B = Lx. Thus Lx £ T
and Lx is /-covered by 7o £ SnS', 7o / Li. Since [pe, xo) does not contain

fixed points of / we get that fk~x(pe) £ [pe, *o] • So since 7i n I2 = {xo},

/(0) € A and f(fk~x(pe)) = pe € I, there is J[ € S\ {Ii, I2} such that
7i <— J[ -» 72 ■ Therefore, from the definition of T, there is Jx £ T\ {Ix, I2}
such that Ii «— 7i -» 72.

Subcase (i). Suppose that L2 £ T. Then by the definition of T we have

Li £ T. Since /(0) £ Int(L3) and L, is /-covered by JQ £ S n S', from
Remark 11.9 it follows that each 7 e T is /-covered by some basic interval
of T\{J}. By Lemma 14.1 we can assume that 7 -** J for each J £ T.
In particular I2 -/» /2 and so 1% -» 7|. Consider the loops /1 ^ 72 and
7i <- 7i -» 72. Since 0 £ 7i and x0 £ 7i , from Lemma 11.5 and Proposition
7.2, we get that B(k) c Per(/). Hence the proposition holds.

Subcase (ii). Suppose that L2£T and there are no basic intervals of T\{L2}

/-covering L2. Consider R = T\ {L2}. Since /(0) £ Int(A) and L2 —* L2,
L2 does not /-cover Li and L3. We claim that if L2 —> M for some M £ R,
then there is J £ R\{Af} such that 7 -► Af. Now we prove the claim. Notice

that since /(0) £ Int(A), if L2 -» Af, then A^Af or C-+Af. If A — Af,
then take J = Lx and we are done. So suppose that C -* Af. If L3 e 7/,
then we take 7 = L3 and we are done. Therefore suppose that L3 £ 7". From
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the facts that /(0) € Int(A), f(fk~x(pe)) = pe £ I and by the continuity of
/, it follows that each basic interval N £ T, N c I is /-covered by some
basic interval of S' different from C. Hence we can assume that Af £ I.

Then Af c O. Since C -+ Af, /(0) € Int(A), AuC — AuC,we have that
A -» [/(0), xa] C A and C ■* f/(0), 0] U C c A U C. By Lemma 11.12 we can
suppose that there is J2 £ S', J2 ft C such that J% -* C. Notice that J2^A
because f(A) c I. Moreover J2 ft B; otherwise Li =AuP-+AuC = L2
in contradiction with the assumptions. Hence 72 £ S nS'. Therefore either
72 —► C U A = L2 or J2—>Cl>B = Li a contradiction. So the claim is proved.

Thus each basic interval of R is /-covered by some different basic interval
of R. By the proof of Lemma 14.1, interchanching T by R, we can assume
that N -» N for each N £ R. In particular 72 -» I2 and so I2-+ Ix . Then we
consider the paths 7] *=i 72 and Ix <— 7i —► 72. Now the proposition follows as
in Subcase (i) but thinking the proof of Lemma 11.5 with R instead of T.

Subcase (Hi). Suppose that L2 £ T and L2 is /-covered by some Af e
T\ {L2}. Since 7o -» Lx and /(0) £ Int(L3), from Remark 11.9 we have
that each 7 £ T is /-covered by some N £ T\{J} . By Lemma 14.1 we can
assume that 7 -** J for each 7 £ T. Then we get I2—>Ii. Consider the paths

7i <- 7i —► I2, Ii *2 72, and the proposition follows as above.
Case 2. f(0) £ Int(P) and Xo £ O. By definition of xo in Section 6 we have

that there are no fixed points of / in P U C. Therefore P —► [/(0), xb]c B,
C -» C and so L3 -v* L3. Notice that Zi n 72 = {xo}. If there are no basic
intervals of T /-covering Iil)I2, then we consider the Y map

g:a\ Int(7, U 72) —► a \ Int(7. U 72)

defined as / restricted to a \ Int(7i U 72). Clearly k £ Per(g). Hence by the
Y Theorem the result follows. So we can assume that there is Jx £ T \ {Ix, I2}

such that 7j <— 7i -» 72. We remark that xo £ 7i and 0 £ Ix U 72 .
Subcase (i). Suppose that Li £ T. Then by definition of T we have that

L2, Li £ T. Since L3 -» Li we get that L3 is /-covered by some different
basic interval of T. Moreover /(0) ^ Int(L2), so by Remark 11.9 we have

that each 7 £ T is /-covered by some different basic interval of T. From
Lemma 14.1 we can assume that 7-^7 for each J £ T. Then we obtain

the loop 7i «=* 72. Therefore consider the above loop together with the path
7i <— 7i -» 72. Since xo f\ Ji and 0 ^ 7i again the proposition follows as in
the Subcase (i) of Case 1.

Subcase (ii). Suppose that LX£T and there are no basic intervals of T\{LX}
/-covering Lx. Since P -* [/(0), xb] c B, we get that f(xa) £ I and A -»
[/(0), 0] U A c P U A. The facts that f(xa) 6 I, /(Pnl)^Pnl and the
continuity of / imply that there is Jo £ SnS', Jo C I such that 70 -* A.
Moreover either 7o —► A U B = Lx or 7o -* A U C = L2. By the hypotheses
we have that 7o —► L2. Therefore L2 £ T and L2 is /-covered by Jq ft L2.
Furthermore L2 -» Lx and so C -** [/(0), xb] c P. Since C -^ C, we get
C -♦ [/(0), 0] U A c P U A. Then L3 = P U C -» Li, and thus L3 0 T. Set
P = T \ {Lx} = 5 \ {L,, L3} . We claim that if L, -» Af for some M £ R,
then there is J2 £ R, J2 ft M such that J2 -* M. Notice that 70 -* L2 and
J0 £ SnS'. Since /(0) e Int(P) and P = L! nL3, then we can assume that

A -» Af or P -» Af. The facts that /(0) e Int(P), f(fk~x(pe)) = Pe £ I
and the continuity of / imply that if Af c I, then Af is /-covered by some
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Figure 14.9. Af is /-covered by some J2£ R\ {Af} .

J2 £ R, J2 ft N (see Figure 14.9). So we can assume that Af c O. From
the facts that xb £ P, Li £ T, Li is not /-covered by any basic interval

of T\{Li} and by the continuity of / it follows that there exists J2 £ R,
J2ft M such that J2 —► Af (see again Figure 14.9). Hence the claim is proved.

Therefore each 7 £ R is /-covered by some basic interval of R\{J} . By the
proof of Lemma 14.1, interchanging P by P,we can assume that 7 -* J for
each J £ R. Then we obtain 7i <=i 72. Consider the above loop and the path
7i <— 7i —► 72. Now the proposition follows as the Subcase (ii) of Case 1.

Subcase (iii). Suppose that Li £ T and that Li is /-covered by some
different basic interval of T. Since L3 ■*» L3 and /(0) £ Int(L2), from
Remark 11.9 we have that each 7 £ T is /-covered by some basic interval of
T\{J} . By Lemma 14.1 we can suppose that 7 -»•» 7 for each J £ T. Then we
obtain fi <=* 72. Consider the above loop together with the path 7i «- 7i —► 72.
This ends as in the Subcase (i).   D

•

15. Proof of Theorem 1.4(b)

The goal of this section is to prove Theorem 1.4(b).

Lemma 15.1. Let ns £ Ns, ng £ Ng and nr £ Nr. Denote by a and b two

endpoints of Y. Then there is an Y map g having the branching point fixed
such that g (a) = a, g(b) = b and Per(g) = S(ns) u G(ng) U R(nr).

Proof. Take ai £ (a, 0) c Y and bx £ (b, 0) c Y. We consider the new topo-

logical space Y = Y\([a, a¡) U [b, bi)) C Y. Of course, Y is homeomorphic to

Y. Then by the Y Theorem there is an Y map g having the branching point

fixed and such that Per(g) = S(ns) U G(ng) u R(nr). Now we define an Y map

g : Y —* Y as follows. Let #(x) = g(x) if x £ Y. Let g rectricted to [a, ax]

be any homeomorphism between [a, ax] and [a, g(ax)] such that g(a) = a

and g(ax) = g(ax). Finally, let g restricted to [b, bx] be any homeomorphism

between [b,bx] and [b, g(bx)] suchthat g(b) = b and g(bx) = g(bx).
By the construction of g we get that g has no periodic points of period

n > 1  in Y\ Y.   Moreover, since g|~ = g it follows that g(0) = 0 and
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Per(g) = Per(i) = S(ns) l)G(ng) llR(nr). Thus g satisfies the statement of the
lemma.   D

Proof of Theorem 1.4(b). Let ns £ Ns, ng £ Ng, nr £ Nr and nb £ Nb,
we need to construct a a map / having the branching point fixed such that

Per(/) = S(ns) u G(ng) u R(nr) U B(nb).
Since Y is homeomorphic to {(x , y)€<r:y>-l}c<x,in the rest of this

proof we shall consider Y = {(x, y) £ a : y > —1} c a. Let U = (a, b) be
the open subinterval of a defined as U = a\Y c O. Clearly a and b are
two endpoints of Y. Let g be the Y map given by Lemma 15.1. We will to

extend g to a a map / as follows. Let f(x) = g(x) if x £ Y. Then notice
that a, b and 0 are fixed points for /. Now we need to define f\u ■

Set n = nb. Let Q = {qi, q2, ■■■ , qn} c U be such that q¡ ^ qj for
i ft j, (a, qi) n Q = 0, (qn , b) n Q = 0 and for each i e {1, 2, • • • , n -
1} (Qi, 01+0 n Ô = 0. Define f(q¡) = qi+i for i e {1, 2, • • • , n - 1} and
f(Qn) = Q\ ■ For each /' e {1, 2, ••• , n - 2} let / restricted to [q¡, q¡+x]
be any homeomorphism between [q¡,qi+i] and [q¡+i,qi+2]. Let / restricted
to [qn-i, qn] be any homeomorphism between [qn-i, qn] and [tf„ , qx]. Let

/ restricted to [q„ , b] be any homeomorphism between [q„, b] and [b, qx].
Finally let / restricted to [a, qx] be any homeomorphism between [a, qx] and
[a, q2] ■

Since /(0) = 0, / is a a map. Of course Q is a periodic orbit of period n
for /. Consider the set of basic intervals associated to Qu{a} . Therefore we

obtain a non-repetitive loop [a, qx] -* [q{, q2] -+[q2,qi]-+-► [qn-\, Qn] -»
[a, qi] -* [a,qi] —» ••• —► [a, qi] of length m for each m > n = nb. By
Lemma 3.3 there exists a fixed point x £[qi, q2] of fm for each m > nb . By

the definition of / x has period m . So B(nb) c Per(/). By construction of
/ all periodic points of / on U have period at least nb . Since f\\ = g, the
set of periods of periodic point of /|y is S(ns) U G(ng) u R(nr). Consequently
Per(/) = 5(«0 U G(«?) u R(nr) U P(n6) and we are done.   D
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