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ON THE SET OF PERIODS FOR ¢ MAPS

M. CARME LESEDUARTE AND JAUME LLIBRE

ABSTRACT. Let o be the topological graph shaped like the letter o . We denote
by O the unique branching point of &, and by O and I the closures of the
components of & \ {0} homeomorphics to the circle and the interval, respec-
tively. A continuous map from & into itself satisfying that f has a fixed point
in O, or f has a fixed point and f(0) €I is called a ¢ map. These are the
continuous self-maps of & whose sets of periods can be studied without the
notion of rotation interval. We characterize the sets of periods of all ¢ maps.

1. INTRODUCTION AND MAIN RESULTS

Let E be a topological space. Our goal in this work will be to describe the
structure of the set of periods for some class of self-maps on E.

The set of natural numbers, real numbers and complex numbers will be de-
noted by N, R and C respectively.

Foramap f:E — E we use the symbol f”* todenote fofo---of (n€N
times), f° denotes the identity map on E. Then, for a point x € E we define
the orbit of x, denoted by Orby(x), as the set {f*(x):n=0,1,2,---}. We
say that x is a fixed point of f if f(x) = x. We say that x is a periodic
point of f of period k € N (or k-periodic) if f*(x) = x and fi(x) # x for
1 < i < k. In this case we say that the orbit of x is a periodic orbit of period
k . Note that if x is a periodic point of period k, then Orb(x) has exactly k
elements, each of which is a periodic point of period k. We denote by Per(f)
the set of periods of all periodic points of f.

From now on, the topological space E will denote one of the following spaces:

I={(x,y)eR*:0<x<landy=0},
Y={zeC: 2z €0, 11},
O={(x,y)eR:x*+(y+1)2=1},
oc=1U0.

The point 0 € Y or the 0= (0, 0) € 6 are called branching points.

An interval map is a continuous self-map on the interval I. Similarly we
define Y maps, circle maps and sigma maps.
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We remark that any interval map or any Y map always has a fixed point,
but there are circle maps and sigma maps without fixed points.
Our objective in this section is to describe the structure of the set Per(f) for
a class of sigma maps. To this end, we need to introduce some orderings in the
set of natural numbers adding or removing some few elements.
The Sarkovskii ordering >; on the set Ny = NU {2*} is given by
35,5557 >+ >52:3>,2:5>,2:7>5+-->:22.3>:22.5>,22.7 >
e > M3 S 2SS 2T > > 2P > > S>> 28 523 >
22>5.2>,1.
More precisely, if k = k’.2? where p € N and k'’ is odd, we have:
(1) k>;2> if kK'>1,
(i) 2° >k if k'=1,
and if n = n' .29 where q € N and »’ is odd, then we have n >; k if and
only if one of the following cases occurs:
(i) k'>1, n>1 and p>gq,
@iv) k¥ >n">1 and p=gq,
(v) =1 and n'>1,
(vi) k=1, n=1 and p<g.
We shall use the symbols >;, <; and <; in the natural way. We have to include
the symbol 2% to ensure the existence of supremum of every subset with respect
to the ordering >;. For n € N; we denote S(n) = {k € N: n >; k}. So
S(2*)={2/:i=0,1,2,---}.
Now we state the Sarkovskii Theorem, which is proved in [Sa] (see also [St],
[BGMY] and [ALM2]).

Theorem 1.1 (Interval Theorem).

(a) If f is an interval map, then Per(f) = S(n) for some n € N;.
(b) If n € N;, then there exists an interval map f such that Per(f) = S(n).

If we want to get a similar result for the Y space, we need two new orderings.
The green ordering >, on N\ {2} is given by

558>,4>5, 11>, 14>, 7>, 17>,20>,10>5--->23:3>,3-5>,
3:7>5-9>53:2:3>,3:2:5>,3:2:7>,:-->,3:22.3>,3.22.5>,
3:22.7>,-4->53:23>,3.225,3.2>,3:1>,1.

The first part of this ordering can be rewittren as

6-1>,6+2>,3+1>,2:6-1>2:6+2>,2-3+1>,3:6-1>,
3:6+2>,3:3+1>,---.

To be more precise, denote by the symbol = congruences modulus 3. We
have k >, n for k, n € N\ {2} if and only if n > 1 and one of the following
cases occurs:

i) k£0,n#0,k=n,k>n,
(i) k=1,n=2,2k>n,
(i) k=2,n=1,k>2n,

(iv) k=0,n#0,
(v) k=0,n=0,k/3>:n/3,
(vi) k=1.

The red ordering >, on N\ {2, 4} is given by
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7>, 10>,5>,13>,16>,8>,19>,22>,11>,--->,3:3>,3.5>,
3.7>--+>,3:2:3>,3:2:5>,3:2:7>,--->,3:22.3>,3.22.5>,
3.22.7>,--->,3.23>,3.22>5,3.2>,3.1>,1.

The first part of this ordering can be rewritten as ‘

6+1>6+4>,3+2>2-6+1>,2:-6+4>,2-342>,3:-6+1>,
3:6+4>,3:-3+2>,---

We have k >, n for k,n e N\ {2, 4} if and only if n > 1 and one of the
following cases occurs:

(i k£0,n#0,k=n,k>n,

(i) k=2,n=1,2k>n,

(i) k=1,n=2,k>2n,

(iv) k=0,n#0,
(v) k=0,n=0,k/3>,n/3,
(vi) k=1.

For n € N\ {2} denote G(n) = {k e N:n >, k}, for n € N\ {2, 4} denote
R(n) = {k € N: n >, k} and additionally G(3:2%°) = R(3-2®)={1}u{3n:n e
S(2%°)} . We also denote N, = (N\{2})u{3:2°} and N, = (N\{2, 4})u{3-2°°}.

The next theorem is due to Alseda, Llibre and Misiurewicz [ALM1] for Y
maps with the branching point fixed and to Baldwin for arbitrary Y maps [Ba].

Theorem 1.2 (Y Theorem).

(@) If f is an Y map, then Per(f) = S(ns) U G(ng) U R(n,) for some
ns €N, ng €Ng and n, €N,.

(b) If n; €Ny, ng € Ny and n, € N,, then there existsan Y map f having
the branching point fixed such that Per(f) = S(ns) U G(ng) U R(n,).

We define the Block ordering >, on N, = N\ {1} as the converse of the
natural ordering on N; ie. 2 >, 3>, 4 >, ---. For n € N,, we denote
B(n)={keN:n >, k}u{1}. Sharkovskii’s Theorem has been generalized by
Block to the circle maps having a fixed point in [Bl].

Theorem 1.3 (Circle Theorem).
(a) If f is a circle map having a fixed point, then Per(f) = S(ns) U B(ny)
for some n; € Ny and n, € N,.
(b) If n; € Ny and n, € Ny, then there exists a circle map f having a fixed
point such that Per(f) = S(ns;) U B(ny).

The study of the set of periods for circle maps without fixed points is more
difficult, and needs the notion of rotation interval. Here we do not consider
maps without fixed points, for more details see [ALM2].

In this paper we extend the previous three theorems to a class of sigma maps.
As for circle maps if we want to avoid in a first study of the sigma maps the
problems related with the computation of the set of periods from the rotation
interval, we must add some additional assumptions to the continuity of the
map. While for circle maps it is sufficient to add the assumption that they have
a fixed point, this is not the case for sigma maps. More concretely, in order to
avoid the rotation interval associated to a sigma map in the computation of its
set of periods, we must restrict our attention to the subclass of sigma maps f
such that f has a fixed point and f(0) € 1, or f has a fixed point in O. In
what follows such sigma maps will be denoted ¢ maps. We remark that our
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FIGURE 1.1. This sigma map f satisfies that Per(f) =
Per(flo) U {1}, and f|o is a circle map of degree 1
without fixed points (see [ALM2].

¢ maps are the sigma maps such that f(0) € I or f has a fixed point in O,
because in the first case f always has a fixed point in I. In short the unique
sigma maps having a fixed point that are no & maps satisfy that the fixed point
do not belong to O and f(0) ¢ I; such maps need the rotation interval for
describing the set of periods, see Figure 1.1 and [ALM2].

The graph of a sigma map f is the subset {(x, f(x)) : x € 6} of the
cartesian product ¢ x &, and it can be represented as in Figure 1.1. More
precisely, if in the closed square [p., p.] % [pe, p2] of Figure 1.1 we identify
the vertical straight lines p,;p; and p,p,, and the horizontal straight lines p,ps
and p,p,, we get the space 6 x 6. The segment p.p, represents I, and the
segment p,p, with the points p; and p, identified to the branching point 0
represents O. Roughly speaking we think in the graph of a sigma map like the
graph of an interval map from [p,, p>] into itself with the above identifications.

Our main result is the following one.

Theorem 1.4 (¢ Theorem).

(a) If f isa o map, then Per(f) = S(ns)UG(ng)UR(n,)UB(ny) for some
ns €Ny, ng €Ng,n, €N, and ny eN,.

(b) If n; € Ng, ng € Ng, n, €N, and n, € Ny, then there exists a 6 map
S having the branching point fixed such that Per(f) = S(ns) U G(ng) U
R(n,) U B(ny).

Theorem 1.4 when the branching point is fixed was proved simultaneously
and in a different way by Llibre, Parafios and Rodriguez see [LPR]. As far -
as we know Theorem 1.4 is the first result on the characterization of the set
of periods of continuous self-maps on topological graphs which are not trees
without having fixed all the branching points. '

2. INTERVALS AND BASIC INTERVALS

A closed (respectively open, half-open or half-closed) interval J of E is a sub-
set of E homeomorphic to the closed interval [0, 1] (resp. (0, 1),
[0, 1)). Notice that an interval cannot be a single point.
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Let J be a closed interval of E, and let 4 : [0, 1] — J be a homeomor-
phism. Then A(0) = a and A(1) = b are called the endpoints of J. If either
Ee€{l,Y} or E=06 and a,b €I, then J will be denoted by [a, b] or
[b,a]. If E=0 and a,b € O, then we write [a, b] to denote the closed
interval from a counterclockwise to b. If E =6, a € O and b € I, then
[a, b] will denote [a, OJU [0, b] or [a,0]U[b, 0], and [b, a] will denote
[6,0]U[O0, a] or [0, b]JUIO, a].

Notice that it is possible that two different intervals of O or & have the
same endpoints. But two different points of I or Y always determine a unique
closed interval.

Now we define an special class of subintervals of E. Let Q= {q;,¢2, ---,
q»} be afinit subset of o . For each pair g;, ¢g; such that g; # g; we say that the
interval [g;, q;] (respectively [g;, ¢;]) is basic if and only if (¢;, ¢;)NQ =2
(respectively (g, ¢;) N Q = @). The set of all these basic intervals is called the
set of basic intervals associated to Q .

Assume that E=06,0 ¢ Q,Q0NnI# @ and QN O # 2. Then we consider
Q' = QU {0}. Clearly there are exactly three basic intervals 4, B and C
associated to Q' with 0 as endpoint. Without loss of generality we can assume
that A C I. The endpoint of 4, B and C different from 0 is denoted by
Xz, Xp and x. respectively. We define L;, L,, L; as the three basic intervals
associated to Q containing 0 and such that L, = AUB,L, = AUC, L; =
B U C. Notice that L3 is an interval if and only if x; # x.. In what follows,
the intervals 4, B, C and the endpoints Xx,, x;, X, are called the intervals
A, B, C and the endpoints x,, X, x. associated to Q'; the intervals L,, L,
and L; are called the basic intervals L,, L, and L; associated to Q .

3. LooPs AND f-GRAPHS

Let f: E— FE bean E map. If K and J are intervals of E, then we say
that K f-covers J or K — J (or J « K), if there is a closed subinterval M
of K such that f(M)=J.If K does not f-cover J we write K » J .

A path of length m is any sequence Jo — J; — -+ = J,_; = J,n, Wwhere
Jo, Ji, -+ , Jm are closed subintervals of E (in general, basic intervals). Fur-
thermore, if Jy = J,,,, then this path is called a loop of length m . Such a loop
will be called non-repetitive if there is no integer i, 0 < i < m, such that |
divides m and J;,; = J; forall j, 0 <j < m—i. This means that the loop
is not a repetition of a shorter loop.

Let Q be a finite subset of E. An f-graph of Q is a graph with the basic
intervals as vertices, and such that if K and J are basic intervals and K f-
covers J, then there is an arrow from K to J. Note that the f-graph of Q
is unique up to labeling of the basic intervals. Hence from now on we shall talk
about the f-graph of Q (or just the f-graph for short).

Lemma 3.1. Let f be an E-map and let K, J, L be closed subintervals of E .
If LcJ and K f-covers J, then K f-covers L.

Proof. By hypotheses, there exists an interval M C K such that f(M) = J.
First we suppose that £ = 1. Let L = [c,d]. Then there are a, b € M
such that f(a) = ¢ and f(b) = d. We can assume that a < b. Then set
e =sup{x € [a, b]: f(x) = f(a)} and [ =inf{x € [e, b]: f(x) = f(b)}.
Clearly f([e,l])=L.So K— L.
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Finally assume that E # I. There exist homeomorphisms Ay : M — I =
[0,1]) and h; : J — I. Note that g = hy o fly oh;,' is an interval map.
Since g(I) = I, I f-covers I. By the first part of this proof, I g-covers
the interval A;(L) C I. Then there exists a closed subinterval N of I such
that g(N) = hy(L). Therefore h;'(N) is a closed subinterval of M and
f(hy (N) =h7'ogohy(hy!(N))=L. So K—L. O

Lemma 3.2. Let f bean E map and let J be a subinterval of E such that J
f-covers J. Then f has a fixed point in J .

Proof. First we consider the case E = I. Set J = [a, b]. Then there are
points ¢, d € J such that f(c) =a and f(d) =b. We obtain f(c)—c<0
and f(d)—-d > 0. Then by continuity of f, there is a point x between ¢ and
d such that f(x)—x=0;ie. f(x)=x.

Finally suppose that E #1. Since J — J, there is a closed interval L of J
such that f(L) = J. Then there exists a homeomorphism 4 :J — I =[0, 1]
and we can consider an interval map g defined as g = ho f| o h~!. Since
g(I) =I, by the first part of this proof there exists y € I such that g(y) =y.
Consequently for x = h~!(y) € L, wehave f(x) =h~'ogoh(x) =h~log(y) =
h~1(y)=x, and we are done. O

Lemma 3.3. Let f bean E map and let Jy, J,, --- , Jo—1 be closed subin-
tervals of E such that J; — Ji.y for i =0,1,--- ,n-2 and J,—, — Jp.
Then there exists a fixed point x of f" in Jy such that fi(x) € J; for i =
1,2,---,n-1.

Proof. We shall use backward induction. Let K,_; C J,—; be a closed interval
such that f(K,-;) = Jy, and suppose we have constructed K; C J; for some
i>0,i<n-1 suchthat f(K;) = K;y; if i <n-1 and f(K;) = J
if i=n-1. Then, by Lemma 3.1, J;_; f-covers K; and therefore there
exists an interval K;_; C Ji—; such that f(K;_,) = K;. Let g be as follows:
& = flk,, 0+ o flx, o flk,- Then Ko C Jo and g(Kp) = Jo. Consequently
f"(Ky) = Jo. By continuity of f” and Lemma 3.2 f* has a fixed point
x € Ko C Jy, such that fi(x)eK;cJ; fori=1,2,--- ,n=1. O

4. BASIC ASSUMPTIONS: f, P AND k

Let f bea ¢ map. Notice that for proving Theorem 1.4(a) for f it is suffi-
cient to show that if k € Per(f) , then at least one of the sets S(k), G(k), R(k)
or B(k) is contained in Per(f). So in what follows we fix the ¢ map f and a
k € Per(f) and we will prove the claim: at least one of the sets S(k), G(k), R(k)
or B(k) is contained in Per(f). This fixed ¢ map will be called the standard
G map.

Since a 6 map have fixed points, we can assume that k > 1. Furthermore,
since S(2) = {1, 2} and G(3) = R(3) = {1, 3} we can assume that k > 3.
Due to the fact that k € Per(f), there exists a periodic orbit P = {x;, --- , X;}
of period k for f. Also in what follows P always will denote a periodic orbit
of period k for f.

5. REDUCTION TO THE CASE PN O\ {0} # @ aND PNI\ {0} # &

The next proposition shows that if P is contained either in O or in I, then
the claim of Section 4 follows.
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Proposition 5.1. Let f be the standard ¢ map. If either P C O or P C1, then
S(k) or B(k) is contained in Per(f).

Proof. First assume that P C O. We define g : O — O by g(x) = f(x)
if f(x) € O, and g(x) = 0 otherwise. Then g is continuous and P is a
periodic orbit of period k for g. Furthermore g has a fixed point, because
if f(0) € I, then g(0) = 0; otherwise f has a fixed point z in O and so
g(z) = z. From the Circle Theorem it follows that Per(g) = S(n;) U B(ny)
for some n; € N, n, € N,. Clearly Per(g) C Per(f). Since k € Per(g), we
get that S(k) or B(k) is contained in Per(g). Consequently S(k) or B(k) is
contained in Per(f).

Now suppose that P c I. We define g : I — I by g(x) = f(x) if f(x) €I,
and g(x) = 0 otherwise. Then g is an interval map. Furthermore P is a
periodic orbit of period k for g. By the Interval Theorem Per(g) = S(ny)
for some n; € N;. Clearly Per(g) C Per(f). Since k € Per(g), we get
S(k) c Per(g). Therefore S(k) C Per(f). O

From now on we can assume that the periodic orbit P has points in O\ {0}
and points in 1\ {0}.

It is important to remark that Proposition 5.1 is not true if P C O, f(0) € O
and f has no fixed points in O. This is due to the fact that in such a case the
circle map g : O — O defined in the first part of the proof of Proposition 5.1
has no fixed points, and consequently its set of periods depends on the rotation
interval of g (see [ALMZ2]). Since in this paper we do not deal with the rotation
interval, this fact is the main reason which forces us to restrict our attention to
the class of & maps instead of the class of all sigma maps.

6. REDUCTION TO THE CASE THE ENDPOINT OF G BELONGS TO P

Denote by ¢, the endpoint of o, and let p, € P NI be such that (g., p.)
N P = 2. Notice that such a p, exists in virtue of Section 5.

Lemma 6.1. Let f be the standard ¢ map. Suppose that f(0) € I\ {0}. Then
there exists a fixed point z of f such that z € [p., 0] CI.

Proof. Since (g.,p.)NP =2, p. € PNI and P is a periodic orbit, we have
that f(p.) ¢ [g., p.]. Moreover f(0) € I. Hence by the continuity of f, the
subinterval [p., 0] C I contains a fixed pointof f. O

In a similar way as in Section 4 where we have fixed f, P and k, now we
shall fix a fixed point of f.
If f(0)=0 thenlet xo=0.
Suppose that f(0) € O\ {0}. Then by the definition of ¢ map, f has fixed
points in O. We consider the following statements:
(a) [0, f(0)]Nn P = 2 and the subinterval [0, f(0)] contains fixed points
of f.
(b) There is a fixed point z € O of f such that [0, z]NnP =2 and (0, z)
does not contain fixed points of f.
If statement (a) is satisfied, then let x, € [0, f(0)] be such that [0, xo] C
[0, f(0)] and [0, xp) does not contain fixed points. Suppose that (a) is not
satisfied. If statement (b) holds, let xo = z satisfying (b); otherwise let xp be
an arbitrary fixed point of f in O.
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Suppose that f(0) € I\ {0}. From Lemma 6.1 there is a fixed point z of
f such that z € [p,, 0]. Then let xo € I be the fixed point of f such that
[pe , xo) does not contain fixed points.

Remark 6.2. In what follows xo always will be a fixed point of f satisfying the
above assumptions. Moreover we note that if f(0) # 0, then we have either
{f(0), xo} cI or {f(0), xo} CO.

Proposition 6.3. Let f be the standard ¢ map. We can suppose that q. = p. .

Proof. If g. # p., consider the new topological space ¢’ obtained by shrinking
the interval [g., p.] to the point p.. Note that ¢’ is homeomorphicto . We
define g:6' — 6’ by g(x) = f(x) if f(x) € 6’',and g(x) =p. if f(x) ¢
¢’. By Lemma 6.1, g has a fixed point xq wich verifies the assumptions of
Remark 6.2. Then g is a ¢ map such that P is a periodic orbit of period
k for g and the endpoint of & belongs to P. Since Per(g) C Per(f), it is
sufficient to prove Theorem 1.4(a) for the 6 maps satisfying that g, =p,. O

Remark 6.4. From now on we can assume that g, = p, .

7. LOOPS AND PERIODS

In this section we shall study the relation between the periodic points of f
and the loops of some f-graphs.

As usual if U C ¢ we denote by Int (U), Cl (U) and by 8U, the interior,
the closure and the boundary of U respectively. If U is a finite subset of &
we denote by Card(U) the cardinality of U.

We will use the following proposition for the study of ¢ maps with 0 €
PuU {XO} .

Proposition 7.1. Let f be the standard 6 map. Suppose that 0 € PU{xp}. Let
Jo— Jy = -+ = J, = Jy be a non-repetitive loop of length n in the f-graph
where the J; ’s are basic intervals associated to P U {xy}. If at least one J; does
not contain Xy, then f has a periodic point of period n.

Proof. By Lemma 3.3, there exists x € Jy such that f*(x) = x,and f/(x) € J;
for ie{1,2,---,n—1}. If x has period n, we are done. So suppose that
x has period s with s a proper divisor of n. Notice that x # xo, because xp
is a fixed point and at least one J; does not contain xp. If x € Int(Jp), then
Orbs(x)N(PU{xo}) = 2. Since O is not a periodic point having orbit different
from P, each f(x) is on a unique basic interval and consequently the loop is
repetitive, in contradiction with the hypotheses. Hence, the only possibility is
Orbs(x) = P. So Orbs(x) = P and k =s > 3. Furthermore, by Remark 6.4
we may assume that x is the endpoint of & . :
Let Ky c J, be the subinterval constructed in the proof of Lemma 3.3.
Then fi(x) € fi(Ko) Cc J; for i€ {0,1,--- ,n—1} and f(Ko) =K, C J,.
Since x = f5(x) € f*(Kp) C Js it follows that J; and J, have a common
endpoint x, which is the endpoint of &, so Jy = J;. Both sets K; and
f*(Ky) are contained in Jy and contain x, an endpoint of Jy. Therefore
L = Ky N f5(Kp) must be a closed interval. In fact, L is either Ky or f*(Kjp).
Clearly fi(L) C fi(Ko) C Ji, fH(L) C f*+(Ko) C Js+; and fi(L) is a closed
interval for i€ {0,1,--- ,s—-1}. Thus J;=J;4; for ie {0,1,.-- ,s—1}.
Repeating this process we get that the loop Jo — J; — - = J, = Jy is
repetitive, because s divides », in contradiction with the assumptions. 0O
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A sequence of subsets Wy, Wy, --- , W, = W, of & is non-repetitive if there
is no integer i, 0 < i < n, such that i divides n and Wj,; = W, for all j,
0<j<n-i.

We will using the following result for the ¢ maps with 0 ¢ P U {xo} .

Proposition 7.2. Let f be the standard ¢ map. Suppose that 0 ¢ P U {xo}.
Let Jy, Ji, -+, J, = Jo be closed subintervals of &, each one contained in a
basic interval associated to PU{xy} and such that J; — Ji., for 0<i<n-1.
For each i, 0 < i < n, let V; the component of & \ (PU {xp}) containing
Int(J;) and let W; = CI(V;). Suppose that at least one W; does not contain 0
(i.e. W; isan interval) and at least one W; does not contain x, . If the sequence
Wo, Wi, --- , Wy = Wy is non-repetitive, then f has a periodic point of period
n.

Proof. Without loss of generality we can suppose that Jy C W, and that W,
is an interval (i.e., W, does not contain 0). By Lemma 3.3, f” has a fixed
point x such that fi(x) € K; c J; for i € {0,1,---,n— 1}, where the
subintervals K;’s are defined in the proof of Lemma 3.3. If x has period n,
we are done. So suppose that x has period s, s a proper divisor of n. Notice
that x # xp because xo is a fixed point and at least one W; does not contain
Xo . If x € Int(Jp), then each fi(x) belongs to a unique W; and therefore the
sequence Wy, W, --- , W, = W, is repetitive, because s divides n. So we
must have Orbs(x) =P and k =s.

By Remark 6.4 we can suppose that x is the endpoint of ¢ . Then, we note
that now W, is not necessarily an interval. Since x = f*(x) € J; C W; and
x € Jy c Wy, x is a common endpoint of W, and W;. So W, = W;. We
have x € Ko C Jo C Wy, f(x)=x € K; C J; C Wy = Wp. Note that K
and f*(Kp) = K; are intervals and have x as common endpoint. Therefore
L = Kyn f5(Ko) is an interval, either Ky or f5(Kp). Furthermore f(L) is an
interval for 0 < i <s. Clearly fi{(L) C f{(Ko) C J;, fi(L)C f*+(Ko) C Js+i
and so J;NJ,,; contains an interval. Consequently W; = W,,; for 0<i<s.
Repeating this process we get that the sequence Wy, Wi, --- , W, = Wy is
repetitive, in contradiction with the hypotheses. O

8. REDUCTION TO MONOTONE MAPS

The graph of a ¢ map g is the subset {(x, g(x)): x € 6} of 6 x &, see
Figure 8.1. The segment p.p; represents I, and the segment p;p, with the
points p; and p, identified to the branching point 0 represents O. Roughly
speaking we think in the graph of a ¢ map like the graph of an interval map
from [p., p;] into itself with the above identifications. This allows us to talk
about local or absolute maximum or minimum for a ¢ map in the same way
as for interval maps. Thus, for instance in the points p and ¢ the ¢ map g
represented in Figure 8.1 has a local minimum and maximum with values m
and M respectively.

Let g be a ¢ map and let [a, b] a closed subinterval of a basic interval
associated to PU {xo} U {0}. We will say that g is non-monotone in [a, b] if
there exist two different points ¢, d € [a, b] such that g(c) = g(d), and g is
not constant in the subinterval [c, d] C [a, b]. Otherwise, we say that g is
monotone in [a, b].
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FIGURE 8.1. The graph of a ¢ map.

Proposition 8.1. Let f be the standard ¢ map. Let U be an open subinterval
of a basic interval associated to P U {xo} U {0}. Suppose that U = (a, b) with
f(a) = f(b)=c, f non-monotone in U, and f(d)#c for de(a, b). Let g
be the 6 map defined by glo\v = flo\u, and glu is constant and equal to c.
Then Per(g) C Per(f).

Proof. Let x be a periodic point of g of period n > 1. If ¢ ¢ Orb,(x), then
x is a periodic point of period n for f and we are done. So, suppose that
¢ € Orbg(x); i.e., ¢ is a periodic point of period n for g. We shall prove
that n € Per(f). Set x; = g'(c) for 0 < i < n. Therefore gi(c) ¢ U for
1 < i< n-2 (otherwise ¢ has not period n for g). Thus x; = f(x;—;) = fi(c)
for 0<i<mn-1.1If f(x,-1) =c, then c is a periodic point of period n for
f and we are done. So, suppose that f(x,-;) # c. Then x,_; € U. We claim
that g"~! o f has a fixed point in C1(U). If (g"! 0 f)(CI(U)) c CI(U), the
claim is clear because Cl(U) is a closed interval and g"~! o f is continuous
(see Lemma 3.2). Now we assume that (g"~! o f)(Cl(U)) £ CI(U). Also we
suppose that there are no fixed points of (g”~! o f)|qy). So in order to prove
the claim we must obtain a contradiction.

Since (g"~'o f)(a) = (8"' & f)(b) = Xn-1, (&' o )(CUV)) & CYV)
and (g"' o f)|cyu) has no fixed points, the graph of (g"~! o f)|cy) must be
as in Figure 8.2.

| 7

U 24 |
7/
L’

s |
7/

Xt KT

1
a a Zn-1 bl h

FIGURE 8.2. The graph of (g"~!o f)|cy) -
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Now we consider a, € CI(U) such that (g"~'o f)(a;) = b and [a, a;) does
not contain points d satisfying (g"~!of)(d) = b. Set J, = [a, a;]. We denote
by J; the subinterval of CI(U) of the form [b;, b] such that f(J;) = f(J2),
such interval exists because f|y does not contain any neighbourhood of ¢
and f(Cl(U)) ¢ C(U). Consequently (g*~'o f)(Ji) = (g" ' o f)(). A
contradiction with Figure 8.2. Hence the claim is proved.

Let x be the fixed point of (g"~! o f)|cyy). We shall prove that x is a
periodic point of period n for f. We define the sets Z; = g~("~1=)(Cl(U)) for
0<i<n-1. Since g(Cl(U)) =c, we have g""{(Z;) = g"~"-"++{(CI(VU)) = ¢
and g"(Z;) = x;. Therefore, the sets Z; must be pairwise disjoint. Since
x € CI(U), from x = (g" ' o f)(x) = g~ 1-I((g" o f)(x)) € C(U) we get
(g0 f)(x) € Z; for 0 < i< n-—1. Then, the points (g0 f)(x) are all different
for 0 <i<n-1. Note that f and g coincide in ¢ \ U, thus f and g
coincide in every Z; for 0 < i < n—2. Therefore (g‘o f)(x) = fi*!(x) € Z;.
In particular, for i = n —2 we have (g" %0 f)(x) = f"~!(x) € Z,—, and so
fM(x)=(g" o f)(x)=x;lie., nePer(f).

Now to finish the proof of the proposition we must show that g is a ¢ map.
Since {0, xo} € U, f(0) = g(0) and f(xo) = g(x0) = X0, so g has fixed
points. If f(0) € I then g(0) € I and g isa 6 map. If f(0) ¢ I then
Xo € O. Hence, again g isa ¢ map. O

We consider o as a metric space. We assume for convenience that our metric,
called & on o satisfies the property that if z is in the interval [x, y], then
d(x,y) =0d(x,z)+d(z,y). Let (fi)ien be a sequence of & maps, and let
f be the standard ¢ map. The Cauchy’s Criterion for uniform convergence
says that the sequence (f),en converges uniformly in ¢ if and only if for
every ¢ > 0, there exists ny € N such that d(fi(x), fi(x)) <e forall x € o,
whenever i, j > ny (see Theorem 7.8 of [R]). Another well-known result is the
following: If (f;)ien converges uniformly to g in o, then g is a sigma map
(see Theorem 7.12 of [R]).

Proposition 8.2. Let f be the standard ¢ map. There exists a ¢ map g such
that glpuixyuioy = flruixejuioy. &l is monotone for each basic interval J
associated to PU {xo} U {0}, and Per(g) C Per(f).

Proof. We define inductively ¢ maps f; as follows. Set f; = f and suppose
that f; has been defined such that fi|puixyu0; = flrugxyuioy and Per(fi) C
Per(f). If f; is monotone on each basic interval associated to P U {xp} U {0}
for some i, then we are done. Otherwise, there exist two different points a, b €
Int(J), for some basic interval J such that fi(a) = fi(b) =c, f; is not constant
on [a,b] c J and f([a, b]) does not contain any neighbourhood of ¢. We
can suppose that (a, b) = (a;, b;) is the largest subinterval of J with the above
properties. Let fi,; be the result of applying Proposition 8.1 to U = (a;, bi),
sO fi+1 is constant on [a;, b;]. Note that since the interval [a;, b;] was select
as large as possible, the intervals [a;, b;] are pairwise disjoint. Furthermore, f;
differs from f;,, only on (a;, b;). Notice that the set of subintervals where f
is not monotone is numerable (we can associate a rational number to each one
such subintervals). In other words, the set of local maxima and minima of f is
numerable. Notice that each f; is a ¢ map from Proposition 8.1. Now we will
prove that (f;);en converges uniformly to a sigma map g. If not, there exists
& > 0 such that for every n € N if i, j > n then d(f;, fj) > &¢. This means
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that for each n € N, there exists a subinterval K where f is not monotone
and max {d(f(x), f(»¥)):x,y € K} > ¢. So there is an infinite set of pairwise
disjoint subintervals K such that f(K) has length larger than ¢. There is an
accumulation point p of such subintervals, then f is not continuous at p, in
contradiction with the assumptions. Hence (f;);ien converges uniformly to a
sigma map g. Since f;(0) = f(0) and fi(xo) = f(xp) = xo for all i, it follows
that g(0) = f(0) and g(xo) = Xo. Hence since f isa ¢ map, also g isa &
map.

We shall prove that Per(g) C Per(f). Let x be a periodic point of g of
period n. Denote by D the set of points ¢; € ¢ with i € N for which
fi(ai) = fi(bi) = ¢i, fi non-monotone on [a;, b;] and fi,i|j4 57 = ¢i. This
means that D is the set where we “cut” f; and obtain the new map f;,;. If
ci ¢ Orbg(x) for any ¢; € D, then clearly x is a periodic point of period
n for f; for all i € N and we are done. So suppose that ¢; € Orb,(x) for
some ¢; € D; i.e., ¢; is a periodic point of period » for g. Then as in the
proof of Proposition 8.1 we obtain that n € Per(f;,;) C Per(f;) C Per(f). This
completes the proof. O

From now on we will assume that f is monotone on each basic interval asso-
ciated to PU{xo}U{0} . Notice that after this process X, verifies the properties
of Section 6. We also remark that if f is monotone on each basic interval J
associated to P U {xp} U {0}, then f(J) cannot contain O.

9. REDUCTION TO 6 MAPS SUCH THAT THERE EXISTS
A CLOSED SUBINTERVAL OF O f -COVERING O

Eventually we shall consider the circle as a closed subinterval with the end-
points identified to a point.

Let f be the standard ¢ map. Let V = [v;, v;] be a subinterval of ¢, V
the largest one such that (V) Cc O, f(V)# O and f(d)#0 for d € (v;, v3).
We say that V is an upper subinterval if f(V)N(p,, p;+¢) =@ for some ¢ >0
where p;+¢ € O. We say that V' is a down subinterval if f(V)N(p—¢, p;) =2
for some ¢ > 0, with p, —¢€O.

Let K be a closed subinterval of & such that there exists a closed subinterval
[c,d] c K with f([c,d]) = O, f(c) = f(d) =0, and f(x) # O for all
x € (c, d), then we say that K f-covers O,or K - O (or O — K).

From now on in this section we assume that there are no closed intervals of ¢
f-covering O, and under this assumption we prove Theorem 1.4(a).

Since f is monotone on each basic interval associated to P U {xp} U {0},
f has finitely many local extrema (see Section 8); and consequently finitely
many upper and down subintervals. Let U;,--- ,U, and D;,..., D; be
the upper and down subintervals of f respectively. Let m; be the absolute
minimum of f|y, and M; the absolute maximum of f|p,. We denote by
m =min{m,, ---m,} and M =max{M,, --- , M;}.

Lemma 9.1. With the above notation we have that m # 0 and M # 0.
Proof. Suppose m = 0, then by continuity of f, there existsan i € {1,--- ,r}

such that f(U;) = O, in contradiction with the hypotheses. In the same way,
we getthat M #0. O

Now we shall consider an unfolding of & as follows. Define the graph & =
G UG, U G3 where
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/ 7 x
FIGURE 9.1. The unfolding of & .

={(x,y,2)eR’:z=
={(x,y,2)eR:z
G3={(x,y,z)€R3 y

see Figure 9.1.
Clearly G, U G, is homeomorphic to &, so we identify ¢ with G, U G;.
Consider the projection 7 : ¢ — & defined by a(x,y,z)=(x,y,0). We
denote by m’ and M’ the points of G3 such that #(m') = m and n(M') =

M . For the standard ¢ map f we define f : 6 — & as follows. Since
there are no closed subintervals of ¢ f-covering O, and f is monotone in
each basic interval associated to P U {xp} U {0}, there exists a finite partition
of o into closed subintervals V; for i = 1,--- ,n (ie, ¢ = U, Vi and
Int(V;) NInt(V;) = @ if i # j) such that
(i) either f(V;) CI,
(ii) or f(V;)c O, and f(d) #0 for d € Int(V;),
(iii) the subintervals V; are the largest ones satisfying (i) or (ii).

If V; is one of the subintervals of o safisfying (i), then define ;ly,. = fly,. Let
V; be a subinterval of & satisfying (ii). Then V; is either an upper subinterval
or a down subinterval. Suppose that V; is an upper subinterval. Then for every

r € V; wedefine f(r) = ¢’ € G; such that n(q’) = f(r) € G;. Now assume that
Viisa down subinterval. Then for every r € V, , we define f (r) = f(r) € G,.
Clearly f is well-defined. Notice that f=zo f 6 — o . Define F = f oT:
6 —o.

Lemma 9.2. The map F : 6 — & satisfies that Per(F) = S(ns)UG(ng)UR(n,)
for some n; € Ng, ng € Ny and n, €N,.

Proof. By Lemma 9.1, 0 ¢ {m, M}. Furthermore, since there are no closed

intervals of ¢ f-covering O, we have that F(o) is homeomorphic to I or
Y. So, from the Interval Theorem or the Y Theorem, we can write Per(F) =
S(ns) UG(ng) UR(n,) for some ng € Ns, n; €Ny and n, €N,. O

Now we shall relate the periodic orbits of f with the periodic orbits of F .
Lemma 9.3. The map F :6 — & satisfies that k € Per(F).

0, y=0, 0<x<1},
0, x*+@+1)2=1},
z, X*+@+1)?=1};
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Proof. Let x € P. Then x is a periodic point of period k for f. Also we
can assume, by Section 5, that x € I (so m(x) = x). We have f*(x) = x

and fi(x) # x for 1 < i < k. This means that (z o f)*(n(x)) = x. So

mo (?o n)%(x) = x, and by definition n(Fk(x)) = n(x). Thus F*(x) = x.
Moreover Fi(x) # x for 1 < i<k, otherwise (fon)'(x) =x forsome i<k,

and so (mo f) om(x) = n(x). Hence fi(n(x)) = m(x) forsome 1 <i<k in
contradiction with the hypotheses. Therefore x is a periodic point of period
k for F. O

Lemma 9.4. If x € ¢ is a periodic point of period n for F, then n(x) € & is
periodic of period n for f.

Proof. Set Orbr(x) = {p1,p2,- - ,pn} such that F(p;) = p;y; for 1 <
i<n-1and F(p,) = p1. Let g = n(p;) for 1 < i < n. Notice that

n(p;) # n(p;) if i # j, otherwise n(p;) = n(p;) and consequently F(p;) =

(fom)(pi) = (fom)(p;) = F(p;) in contradiction with the fact that {p;, --- , pa}
is a periodic orbit of period n. Then the g;’s are pairwise different and

f(@) = (mo f)(®(pi)) = a(F(pi)) = n(Pis1) = giss for 1 < i< n-1 and
f(@n)=a1.S0 {q, , ga} = Orbs(m(x)) is a periodic orbit of period n for
.. O

Proposition 9.5. Let f be the standard ¢ map. Then S(k), G(k) or R(k) is
contained in Per(f).

Proof. By Lemma 9.3, k € Per(F); and by Lemma 9.4, Per(F) C Per(f).
Then from Lemma 9.2 S(k), G(k) or R(k) is contained in Per(f). O

Remark 9.6. From now on we can suppose that there exists a closed subinterval
K of o such that K f-covers O. The interval K is not necessarily basic.
Eventually X is the circle.

We remark that the idea of the unfolding of & when there is no closed
interval f-covering O comes from the Ph.D. thesis of Parafios [P]. In fact the
unfolding of & is essentially equivalent to work with the lifting of f. Thus
the ideas of Section 3.5 of [ALM?2] are closed to the ones developed here.

10. REDUCTION TO 6 MAPS SUCH THAT EVERY BASIC INTERVAL OF
T 1S f-COVERED BY SOME BASIC INTERVAL OF T

From now on we denote by S or S’ the set of all basic intervals associated to
PU{xp} or PU{xo}U {0} respectively.

We shall work with the basic intervals 4, B, C, L,, L, and L3 associated
to PU{xo}U {0} or PU{xo} defined in Section 2.

In this section we can restrict our attention to the o maps satisfying that
each basic interval of S is f-covered by some basic interval of S; or each
basic interval of S\ {L;} is f-covered by some basic interval of S\ {L;} for
some j€{1,2, 3}. '

Proposition 10.1. Let f be the standard ¢ map. Suppose that f(0) € Int(D)
for some D e S'. If D is not f-covered by any basic interval of {L,, L, L3},
then there exists a 6 map g such that g|puix} = flruix}, &(0) € 8D, D
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is not f-covered by any basic interval of {L,, L,, L3} g is monotone in each
basic interval of S’ and Per(g) C Per(f).

Proof. Since f(0) € Int(D) and there is no basic interval of {L;, L,, L3}
f-covering D, it follows that there are closed subintervals 4' ¢ 4, B’ Cc B
and C’ C C such that f(4’ UB'UC’) C D and the image of the endpoints
of A', B’ and C’ is {f(0), z}, where z is an endpoint of D. Notice that
A'UB"UC’ is homeomorphic to Y. We define glo\(susuc) = flo\(arusrucr)
and g|4upuct = z (in particular g(0) = z € D). Clearly g is a 6 map
because g(0) € D and g(xp) = xo . Since g|p = f|p, k € Per(g) . Furthermore
g is monotone on each basic interval of S’ and Per(g) C Per(f). O

Remark 10.2. From now on, by Proposition 10.1, we can assume that there are
no basic intervals D € S’ satisfying the following properties : f(0) € Int(D)
and D is not f-covered by any basic interval of {L,, L,, L3}.

Lemma 10.3. Let f be the standard ¢ map. Then each basic interval J of
S (respectively S') contained in 1 is f-covered by some basic interval of S
(respectively S’).

Proof. Since f(o) is a connected set, the endpoint of I belongs to P (see
Remark 6.4) and the endpoints of all basic intervals belong to P U {xg} (re-
spectively P U {xp} U {0} ), we obtain that every basic interval contained in I
is f-covered by some basic interval of S (respectively S’). O

Lemma 10.4. Let f be the standard ¢ map. Then each basic interval of S’ is
f-covered by some basic interval of S .

Proof. Notice that if 0 € P U {xp}, then S = §’. We have that each basic
interval of S’ is a subinterval of some basic interval of S. So by Lemma 10.3
each basic interval of S’ contained in I is f-covered by some basic interval
of S. On the other hand, since there exists a closed subinterval X of ¢ (non-
necessarily basic) such that K f-covers O we have that each basic interval of
S’'NS contained in O is f-covered by some basic interval (subinterval of K )
of S, this would be shown as in the proof of Lemma 3.1. O

Remark 10.5. From now on, by Lemma 10.3 and Lemma 10.4 we can assume
that each basic interval of S’ is f-covered by some basic interval of S and
flo)=

Lemma 10.6. Let f be the standard ¢ map. Suppose that 0 ¢ PU{xo}. Then
at least two intervals of {L,, L,, L3} are f-covered by some basic intervals of
S.

Proof. From Lemma 10.4 each interval A, B and C is f-covered by some
basic interval of S. For each pair i, j € {1,2,3}, i # j, LiNnL; is one
interval of {4, B, C}. We claim that L; or L; is f-covered by some basic
interval of S. Suppose that L, N L; = A (the proof is analogous in the other
cases). By Remark 10.5 there exists J € .S such that J — 4. First suppose that
J € §'. Since f is monotone on J and the endpoints of J are not mapped
in {0}, we havethat J - B or /- C. Hence J - L, or J = L;.

Finally we can assume that J ¢ S’. If f(0) e Int(t4UBUC), then f(0) €
Int(D) for some D € {4, B, C}. By Remark 10.2, D is f-covered by some
interval of {L,, L,, L3} . Hence thereis M € {L,, L,, L3} such that M — 4
and either M - B or M - C. So M — L; or M — L;. Otherwise,
f(0) ¢ Int(4U BU C). Therefore there exists N € {4, B, C}, N C J such
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that N — 4. By the above arguments N — L; or N — L;. So the claim is
proved. Consequently at least two intervals of {L;, L,, L3} are f-covered by
some basic intervals of S. O

Lemma 10.7. Let f be the standard ¢ map. Suppose that 0 ¢ P U {xo}. Let
J be a basic interval of S. If thereis Lj € S for some j =1, 2,3 such that
L; — J, then there exists L; for some i=1,2,3, i # j suchthat L; — J.
Proof. Suppose that L; — J for some j =1,2,3. If f(0) ¢ Int(J), then
A,B or C f-covers J. Notice that each interval 4, B and C belongs to
two intervals of {L,, L,, L3}. Hence thereis L;, i =1,2,3, i # j, such
that L; — J. So we can assume that f(0) € Int(J). Denote by J; and J, the
closures of the two connected components of J \ {f(0)}. Set L; = M, U M,
where M, M, € {4, B, C}, and M, — J,, M, — J,. Then by continuity,
the interval M3 € {4, B, C}\ {M,, M} f-covers either J, or J>. So, either
M, UM; or M UM; f-covers J, and the result follows. DO

Proposition 10.8. Let f be the standard ¢ map. Suppose 0 ¢ PU{xy}. Then
at least one of the following two statements hold.
(a) Each basic interval of S is f-covered by some basic interval of S .
(b) Each basic interval of S\ {L;} for some j € {1, 2,3} is f-covered by
some basic interval of S\ {L;}.

Proof. If statement (a) does not hold, by Lemma 10.4 there is L; € S for
some j =1, 2, 3 such that there are no basic intervals of S f-covering L;,
and by Lemma 10.6 the above interval L; is unique. If L; — J for some
J € S\ {L;}, then from Lemma 10.7 there exists L; € S such that L, — J
and statement (b) holds. O

Notice that if 0 € PU{xp}, by Lemma 10.4 each basic interval of S =" is
f-covered by some basic interval of S =S’. So from now on, if 0 € PU {xo}
we denote by T the collection of all basic intervals of S=S'. If 0 ¢ PU {x}
we denote by T the collection of all basic intervals of S if (a) of Proposition
10.8 is satisfied, otherwise T = S\ {L;} for some j € {1, 2, 3} such that (b)
of Proposition 10.8 is satisfied.

11. SOME BASIC RESULTS
In this section we obtain some results wich we are using in the next sections.

Lemma 11.1. Let f be the standard ¢ map. Let Jy be a closed subinterval of
I with endpoints elements of P U {x,}. Notice that J, is not necessarily basic.
Then there exists a repetitive or non-repetitive loop of length k containing Jy
formed by closed subintervals of &, in general no basic intervals.

Proof. Set Jy =[x, y]. For each 0 < i < k, we define J; recursively as the
closed subinterval with endpoints f?(x) and f*(y) such that J;_; — J;. (Note
that if fi(x) or fi(y) belongs to O, then J; perhaps is not unique.) Since
JocI,weget Jy=J,. Thus, we obtaintheloop Jo— J1 — --- = Jy = Jy. Of
course, in general J; is not a basic interval and the above loop can be repetitive
or non-repetitive. 0O

Remark 11.2. Suppose that g is an interval map. Note that if g2 has a periodic
point z of period s, then z is a periodic point for g with period 2s if s is
even, and period s or 2s if s is odd.
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Lemma 11.3. Let f be the standard ¢ map. Let z € I be a fixed point of f.
Denote by D, and D, the closures of the two connected components of o\ {z},
such that D, is homeomorphic to 1. If f(D,) = D, and f(D,) = D,, then
S(k) c Per(f).

Proof. Notice that the map f?|p, : Dy — D is an interval map. Therefore
f has no periodic points of odd period except the period 1. So k is even and
by Remark 11.2 the points of P N D, have period k/2 for f?|p, . From the
Interval Theorem it follows that S(k/2) C Per(f?). Since all the periods of f
are even except 1, S(k) C Per(f). DO

Lemma 11.4. Let [ be the standard ¢ map. Suppose that each basic interval of
T is f-covered by some basic interval of T different from itself. Suppose that
there is J € T such that J — J. Then there is a non-repetitive loop of length
n for each n > k + 1 containing J. Moreover, if N € T and there is a path
starting at N and ending at J, then we can assume that the loop of length n
contains such a path.

Proof. From Remark 10.5 we have f(6) = 6. Set K; = fi(Jp) for i > 0,
where Jy = J. Notice that each K; is a connected set and Card(K; N P) > 2.
So from the fact that P is a periodic orbit and Remark 10.5, it follows that there
exists an integer r such that Ko C K| C--- C K, =06 and Card(K;NP) > i+1
for i < r. Since P has period k we have that r < Card(K,—; N P) < k. Since
each basic interval of T is f-covered by some basic interval different from
itself, for each basic interval J; € T, J; C K; \ K;_, there exists J;_, € T,
Ji-1 € K;—; \ K-, such that J;_; — J;. By hypotheses there exists M € T,
M # Jy such that M — J,. Hence there is a loop of length / <r+1<k+1
containing Jy. By construction, this loop is formed by pairwise different basic
intervals and so is non-repetitive. The above loop of length / together with
the loop Jo — Jy give us a non-repetitive loop of length n for each n >
k + 1 containing Jy. The last statement of the lemma follows easily by the
construction of the non-repetitive loop of length n. O

Lemma 11.5. Let f be the standard ¢ map. Suppose that each basic interval of
T is f-covered by some basic interval of T different from itself. Suppose that
thereare I, I, € T suchthat TNl ={xo} and I, 2 L,. If J € T, then there
is a path of length | < k — 1 starting at one of the intervals I,, I, and ending
at J.

Proof. By Remark 10.5, f(6) = 6. Set K; = f/(I, Ul,) for i > 0. Notice
that K; is connected for all i € N and Card(K; N P) > 3. Since P is a
periodic orbit, from Remark 10.5 it follows that there exists an integer r such
that Ko S K, C - C K, =06 and Card(K;NP) > i+2 for i <r. From
the fact that P has period k we get that r + 1 < Card(K,—; N P) < k, and so
r < k—1. From the assumptions, for each basic interval J; € T, J; C K;\ K,
there exists J;_; € T, Ji—; C K;— \ K;—> such that J;_; — J;. Hence given
J €T there is a path of length / < r < k— 1 starting at one of the intervals 7,
or I, and endingat J. O

We denote by 2N the set of all even natural numbers.

Lemma 11.6. Let f be the standard ¢ map. Let K C 1 and M, N C O be
closed subintervals such that M = K =2 N. Suppose that K has endpoints
elements of PU{xo} and K does not contain any proper closed subinterval with
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endpoints in P U {xo} f-covering M and N. Assume that M and N have
disjoint interiors and do not contain any proper closed subinterval f-covering K .
Then Theorem 1.4(a) holds.

Proof. First suppose that at least one interval of {M, N, K} does not contain
Xxo. Then the subgraph M = K = N give us a non-repetitive loop J; = K —
Jy = ---—= J, = K of length n for each n even such that J; = K if i is even;
Ji=M and J;=Nif i>1 isoddand xpe N;and J1 =N and Ji=M
if i > 1 isodd and xo € M. By Lemma 3.3 there exists x € K such that
f"(x)=x and fi(x)€e J; for 1 <i<n-—1. Since x; does not belong to some
interval of {M, N, K}, and the loop is non-repetitive, x has period n. So
2N c Per(f). If k is even we are done, because S(k) C Per(f). So suppose
k odd. Since K cI and K has endpoints elements of P U {xp}, by Lemma
11.1 there exists a repetitive or non-repetitive loop of length k containing X .
This loop together with the loops M 2 K & N give us a non-repetitive loop of
length n for each n > k odd. Such a loop can be chosen in such a way that at
least one of its intervals (non necessarily basic intervals) does not contain Xy .
Hence we get that S(k) C Per(f). .

_Finally suppose that xo € M N NNK . In particular, this means that xp =0.
So we getthat A Cc K, B —» A — C and either A — B or A — C. Without
loss of generality we can assume that B & 4 — C. Also we can suppose that
there exists z € I such that f(z) €I or z € O such that f(z) € O; otherwise
f(@) = O and f(0O) =1 and, by Lemma 11.3, S(k) C Per(f). Therefore
since f is monotone on each basic interval of §’, there exists J € S such
that 0 ¢ J and either J - AUB or J — AU C. From Remark 10.5 and
Lemma 11.5, there is a path of length / < k — 1 starting in one of the intervals
A or B and ending in J. Then we consider the non-repetitive loops 4 =2 B,
A—--->J—> A andeither B—» - -.-—-J —->BorC—---—J—>C of
lengths either 2,/ +1 < k,/+2<k+1or 2,/+2<k+1,l+1<k,
be the rest of this section we will assume that 0 ¢ P U {xo} respectively. By
Proposition 7.1 we obtain B(k) C Per(f). O

In the rest of the section we will assume that 0 ¢ P U {xo}.

Lemma 11.7. Let f be the standard ¢ map. Let M € S’ be such that f(0) ¢
Int(M). If Int(M) contains a periodic point of period n > 1, then there exists
LeS', L#M suchthat L—» M.

Proof. From the hypothezes and since f is monotone in M we can choose
a periodic point z of period n such that z € Int(M) and f"~!(z) € L for
some L €S', L# M. Since z has period n and f is monotone, we have
L-M. O

Proposition 11.8. Let f be the standard ¢ map. Suppose that there exists J € S
such that J — J and J is not f-covered by any basic interval of T different
from itself.
(@) If J ¢ {L;, L,, Ly} then Theorem 1.4(a) holds.
(b) If J € {L,, L, L3} then we assume that f(0) ¢ Int(J). Therefore
Theorem 1.4(a) holds.

Proof. Suppose that J ¢ {L,, L,, L;}. Then J € §’. Since J is not f-
covered by any M € T\ {J}, from Lemma 10.7, J is not f-covered by any
M € S\ {J}, and consequently J is not f-covered by any M € §'\ {J}.
Therefore, from Remark 10.2 we get that f(0) ¢ Int(J).
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We separate the proof into the following three cases.

Case 1: J Cc O and J # L;. Then J € §'. Since f(0) ¢ Int(J),
by Lemma 11.7, Int(J) does not contain periodic points of period n > 1.
Since f is monotone on each basic interval of S, J — J, J is not f-
covered by any basic interval of S’ different from itself and f(0) ¢ Int(J),
we have that f(o \ Int(J)) NInt(J) = 2. Then we consider the Y map g =
flo\lntsy : 6 \Int(J) — o \Int(J). Clearly g is well-defined, k € Per(g) and
Per(g) = Per(f). By the Y Theorem the result follows.

Case2: JclI. Then J € S'. Since J — J there exists a fixed point z € J
of f. Denote by D, and D, the closures of the two connected components of
6 \ {z} such that D; is homeomorphic to I. Moreover since P is a periodic
orbit it is not possible that f(D,) c D, . So, since J — J, J is not f-covered
by any M € §'\ {J}, f(0) ¢ Int(J) and from Remark 10.2 we have that
f(Dy) =D, and f(D,) = D,. Hence, by Lemma 11.3, statement (a) follows.

Case 3. Je{L,,L,,L;}. Then f(0) ¢ Int(J). Therefore, since J — J
we have that 4, B or C f-covers J. In particular, J is f-covered by a
basic interval L € {L;, L, L3} different from itself. So L ¢ T. Set J =
M UM,, L =M, UM; where M| - M; — M, and {Ml,Mz,M:;} =
{4, B, C}. Therefore M, UM; € T. We claim that M, does not f-cover
M, . Otherwise M, — M,, and since f(0) ¢ Int(J) M, also f-covers M,
or M; and consequently M> UM; f-covers J or L. If MbUM; —» J we
have a contradiction with the fact that M, UM; € T and J is not f-covered
by any M € T\ {J}. Suppose that MoUM; — L. Since L ¢ T, from the
definition of T we get that T =S\ {L} and that L is not f-covered by any
basic interval of S, in contradiction with M>,UM; € T and MobUM3 € L. So
the claim is proved.

Since the only basic intervals f-covering J are J and L ¢ T, there are no
basic intervals of S’ f-covering M; € S’ different from itself. So the proof of
(b) follows in the same way as the proof of Cases 1 and 2. O

Remark 11.9. In what follows, from Proposition 11.8, we can assume that if
J is a basic interval of T such that either J Cc O and J # L3, or J C1I,
or Je{L,, Ly, L3} and f(0) ¢ Int(J), then J is f-covered by some basic
interval of T different from itself.

Proposition 11.10. Let f be the standard o map. Suppose that each basic
interval of T is f-covered by some basic interval of T different from itself. If
there exists a basic interval J € SNS' f-covering itself, then Theorem 1.4(a)
holds.

Proof. By Lemma 11.4 there exists a non-repetitive loop of length n for each
n>k+1 containing J. Since J € SNS', 0 ¢ J. Moreover, if xy € J,
by the monotonicity of f on each interval of S’, J does not f-cover any
basic interval of 7' containing x, different from J . Then the loop verifies the
hypotheses of Proposition 7.2 and the result follows. 0O

Corollary 11.11. Let f be the standard ¢ map. Suppose that each basic interval
of T is f-covered by some basic interval of T different from itself and that
Xo € {Xa, Xp, Xc}.

(@) If f*~'(pe) €1 then Theorem 1.4(a) holds.

(b) If xo # x, and f(x,) €1 then Theorem 1.4(a) holds.
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Proof. First suppose that f¥~!(p,) € I, then we claim that the subinterval M =
[pe, f5~1(p.)] contains a fixed point z. Now we prove the claim. The interval
M c 1 contains points of P (at least p, and f*~!(p.)). Since PNO # 2,
and f(f*"'(pe)) = pe, it follows that M — M. So there is a fixed point in
M , and the claim is proved. Notice that z # x; because xy € {x;, X5, X} .
Therefore, from the monotonicity of f, the basic interval of SNS’ containing
z f-covers itself. By Proposition 11.10 the result follows.

Finally suppose that xy # x, and f(x,) € I. Now we get that the interval
M =[p., x,] contains a fixed point z. Since x; € {x;, x.} C O, we have that
z # xo . Thus the proof follows as before. O

Lemma 11.12. Let [ be the standard ¢ map. If there exists a basic interval
J € S', J C O such that there are no basic intervals of S’ different from J
f-covering J, and f(0) ¢ Int(J), then Theorem 1.4(a) holds.

Proof. Since f(0) ¢ Int(J), f is monotone on each basic interval of §’,
and there are no basic intervals of S’ different from J f-covering J, we
can consider the map g : o \Int(J) — o \ Int(J) defined as f restricted to
o \ Int(J). Clearly g is well-defined and g is either an I map or a Y map.
By Lemma 11.7 Int(J) does not contain periodic points of period n > 1. So
Per(g) = Per(f). Moreover P is a periodic orbit for g. Hence from the
Interval Theorem or the Y Theorem the result follows. O

Lemma 11.13. Let f be the standard ¢ map. Suppose that each basic interval
of T is f-covered by some different basic interval of T and xy € {Xa, Xp, X} .
‘Denote by I, the basic interval of SNS' with x, as endpoint. Let {i, j} C
{1,2,3} bewith i # j such that L,NL; = {xo}. Assume that there is J €
SNS"\{I,} such that one of the following subgraphs is satisfied:

@ J-L_2L,~J;

(b) J—PLJ‘—'I| —J and L 2L;.
Then Theorem 1.4(a) holds.

Proof. Clearly I, N L; = {xo}. Then by Lemma 11.5 there is a path of length
! < k-1 starting at one of the intervals I; or L; and ending at J . Suppose that
the path starts at I; . Then if (a) is satisfied we consider the loops I} — --- —
J-I,I,—-----»J—=Li—=1I and I, 2 L; oflengths /+1 <k, [+2<k+l1
and 2 respectively. If (b) is satisfied, then we consider the loops I} — --- —» J —
I, I —>~'-—>J—>Lj—>I| and I); 2 L; of lengths /+1 <k,l+2<k+1
and 2 respectively. Suppose that the path starts at L;. Then if (a) is satisfied
we consider theloops L, —»---—=J—-L;—-I,-L;, Li—».--=>J =1, - L;
and I} ® L; of lengths / +3 < k+2,/+2 < k+ 1 and 2 respectively.
If (b) is satisfied, then we consider the loops L, — --- = J — I} — L;,
Li—...— J—*LJ —I—-L;and I, 2 L; oflengths 1+2 <k+1,1+3<k+2
and 2 respectively. In all cases we obtain a non-repetitive loop of length n for
each n > k+1 containing I; and J. Notice that 0 ¢ I, and xp ¢ J. Then
by the construction of this loop of length » and Proposition 7.2 the result
follows. O

Lemma 11.14. Let f be the standard ¢ map. Suppose that xy € {xp, X.}.
Denote by I, the basic interval of S NS’ with xy as endpoint. Set D, =
[pe,xsd I and D, = CI(O\ (BUCUIL)). Suppose that f(D,) C D, and
f(Dy) c Dy. Then Theorem 1.4(a) holds.
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Proof. Notice that P C D, UD,. Since f(D,) C D, and f(D;) C D; k must
be even. Consider the interval map g = f?|p, : D; — D, . Clearly the points
of D, NP have period k/2 under g. From the Interval Theorem it follows
that S(k/2) C Per(g). Since 1 € Per(f), again from the fact that f(D;) C D,
and f(D,) C D, we get that S(k) C Per(f). O

Lemma 11.15. Let f be the standard & map. Suppose that there exist two
closed subintervals K c 1 and N c O such that K has endpoints elements of
PU{xo},and K = N. If k is odd then n € Per(f) for each n > k odd.

Proof. Since K C I has endpoints elements of PU{xo}, by Lemma 11.1 there
is a loop of length k odd containing K. This loop of length k together with
the loop K & N give us a non-repetitive loop of length n for each n > k odd.
By the hypotheses xo ¢ K N N, then we obtain that n € Per(f) forall n > k
odd. O

12. Mars wiTH 0 € PU {xp}

In this section we will prove Theorem 1.4(a) when xp =0 or 0 € P. Then,
under these assumptions S=85"=T.

Proposition 12.1. Let f be the standard ¢ map. Suppose that 0 € P U {x}
and that there exists J € S’ such that the unique basic interval of S’ f-covering
J is itself. Then Theorem 1.4(a) holds.

Proof. We consider the two possibilities either J C O or J CI. If J C O,
then we define the map g = flg\im(s) : 6 \Int(J) — o \Int(J). The map g is
well-defined because the unique basic interval of S f-covering J is itself and
f is monotone on each basic interval of §’. Clearly k € Per(g) and since f
is monotone in J, Per(g) = Per(f). Moreover g is eitheran I map oran Y
map. By the Interval Theorem or the Y Theorem, the result follows.

Suppose that J C I. By Lemma 3.2 f has a fixed point y € J. Denote
by D; and D, the closures of the two connected components of & \ {y} such
that D; is homeomorphic to I. Since J C I and the unique interval of S
f-covering J is itself, we obtain easily f(D,) = D, and f(D;) = D;. By
Lemma 11.3 Theorem 1.4(a) holds. O

Remark 12.2. In what follows we can assume that if 0 € P U {xo}, then each
basic interval of S is f-covered by some basic interval of S different from
itself.

Lemma 12.3. Let f be the standard ¢ map. Suppose that 0 € PU {xo}. If
there is a basic interval J f-covering itself, then Theorem 1.4(a) follows.

Proof. By Remark 12.2 there exists a basic interval M € § different from J
such that M — J. By Lemma 11.4 there is a non-repetitive loop of length n
for each n > k + 1 containing J. We claim that at least one basic interval of
this loop does not contain Xx;. In fact, if xo € J, by the monotonicity of f on
each basic interval of S’, we have that f(J) does not contain intervals of S
different from J with x; as endpoint. By Proposition 7.1 we get B(k) C Per(f)
and the result follows. O

Proposition 12.4. Let f be the standard ¢ map. If xo = 0 then Theorem 1.4(a)
holds.
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Proof. If there is a basic interval J f-covering itself, by Lemma 12.3, the
result follows. So we can suppose that each basic interval does not f-cover
itself. By Remark 9.6, there exists a closed subinterval K of & such that K
f-covers O. We can assume that K has endpoints elements of P U {Xo}.
Since f(0) =0 and there are no basic intervals f-covering themselves, we get
that K c I. If f*~!(p,) €1, then the interval [p., f*~!(p.)] contains a fixed
point z # 0. Therefore, by the monotonicity of f, the basic interval of S
containing z f-covers itself, in contradiction with the fact that there are no
basic intervals f-covering themselves. Hence f*~!(p,) € O. So there are two
closed subintervals M, N C O f-covering K in the hypotheses of Lemma
11.6. So the result follows. O

From now on we can assume that xo # 0.

Proposition 12.5. Let f be the standard ¢ map. Suppose that 0 € P, then
Theorem 1.4(a) holds.

Proof. If there is some basic interval f-covering itself, from Lemma 12.3 the
result follows. So we can assume that each basic interval does not f-cover
itself. Denote by I;, I, the two basic intervals having x;, as endpoint. We
have I} = I,. Notice that a basic interval J ¢ {I,, I,} f-covers I, if and
only if f-covers I,. )

First suppose that there are no basic intervals f-covering I, and I, . If x5 €
I, then denote by D, and D, the closures of the two connected components
of o\ {x} such that D; is homeomorphic to I. Hence f(D;) = D, and
f(D3) = Dy. From Lemma 11.3 the result follows. If x; € O, then consider
either the I map or the Y map g defined by f restricted to o \ Int(/; UL).
Clearly k € Per(g) and Per(g) = Per(f). So by the Interval Theorem or the
Y Theorem the result follows.

Finally suppose that there is a basic interval J such that I, « J — I,. By
Lemma 11.5 there is a path of length / < k—1 starting at one of the intervals I;
or I, and ending at J. By construction, this path together with I} « J — I,
and I, = I, give us a non-repetitive loop of length n for each n > k + 1.
Since xp ¢ J from Proposition 7.1 it follows that B(k) C Per(f). O

From now on we can asssume that 0 ¢ PU {xo}.

Remark 12.6. Suppose that there is a basic interval J = [0, x;] € S’ for some
x; € PU{xp} such that f(0) = f(x;). Notice that from the monotonicity
of f on each basic interval of S’, f is constant in J. Then we consider
the new topological space ¢’ homeomorphic to 6 obtained by shrinking the
interval J to the point 0O, and define the ¢’ map g in the natural way as
the ¢ map flo\inys)- So P is a periodic orbit of period k for g and clearly
Per(g) = Per(f). Now 0 € PU {xp}. From Propositions 12.4 and 12.5 the
result follows. Hence from now on we can assume that 0 ¢ P U {xo} and

f0) ¢ {f(xa), f(xp), f(xc)}-

13. Mars wiITH f(0) ¢ Int(AUBUC)

In this section we prove Theorem 1.4(a) when f(0) ¢ Int(4UBUC). Notice
that from now on 0 can be a periodic or non-periodic point, and if it is periodic
it does not belong to P.
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Proposition 13.1. Let f be the standard ¢ map. Suppose that f(0) ¢ Int(A4U
BUC) and xo ¢ {X4, Xp, X.}. Then Theorem 1.4(a) holds.

Proof. Let I,, I, be the two basic intervals of S with x; as endpoint. Such
intervals exist in virtue of Remark 6.4. Moreover I,, I, € S NS’ because
Xo & {Xa, Xy, X:}. By hypotheses f(0) ¢ Int(4U B UC), hence f(0) ¢
Int(L,UL,UL3). Therefore from Remark 11.9 it follows that each basic interval
of T is f-covered by some basic interval different from itself. If I; — I; for
some i =1, 2, by Proposition 11.10 the result follows. So assume that /; does
not f-cover itself for i = 1, 2. Then we get theloop I) = I,.

First suppose that xo € I. Denote by D, and D, the closure of the two
connected componets of o \ {xo} such that D, is homeomorphic to I. If
f(Dy) = D, and f(D,) = D, by Lemma 11.3 the result follows. Otherwise,
by Remark 10.2, there exists y € D; N P such that f(y) € D; N P for some
i=1,2. Then since I}, = I,, by the continuity of f, there exists a basic
interval J € § f-covering I} and I,. By Lemma 10.7, we can assume that
J € T. From the monotonicity of f on I} and I, we get that J ¢ {I;, I,}.

Now suppose xy € O. If there are no basic intervals of S different from
I, and I, f-covering I} or I,, then we consider the Y map g defined by
f restricted to & \ Int(Z; U ;). Clearly g is well-defined, k € Per(g) and
Per(g) C Per(f). From the Y Theorem the result follows. So suppose that
there exists J € S, J ¢ {I,, .} f-covering I, or I,. Since I, NI, = {xo},
if f(0) ¢ LUL, then I} — J — L,; if f(0) € I, UL, then, by Remark 10.2
we obtain that I} — J — I, . Furthermore, from Lemma 10.7, we can assume
that JeT.

Finally we consider the two possibilities either xo € I or xy € O simultane-
ously. Since we are in the hypotheses of Lemma 11.5, there is a path of length
I < k-1 starting at one of the intervals I;, I, and ending at J. Without loss
of generality we can assume that the loop starts at I; . So we consider the loops
L —»---wJ->Land I, »---—=J—>1,—> I oflengths /[ +1 < k and
1+2 < k+1 respectively. By construction (see the proof of Lemma 11.5), these
loops are formed by different intervals. The two above loops together with the
loop I} = I, give us a loop of length n for each n > k+ 1 containing J and
also containing I; or I,. Since J ¢ {I,, I}, we have xy ¢ J. Furthermore
0 ¢ I, Ul,. By construction of the loop of length n, the associated sequence
of W;’s in Proposition 7.2 is non-repetitive. Hence from Proposition 7.2 we
get that B(k) C Per(f). O

Proposition 13.2. Let f be the standard ¢ map. Suppose that f(0) ¢
Int(AUBUC) and xo € {x5, Xp, X.}. Then Theorem 1.4(a) holds.

Proof. Denoteby I = [xg, x;] the basic interval of SNS’ with x; as endpoint.
By hypotheses f(0) ¢ Int(4UBUC), hence f(0) ¢ Int(L,UL,UL3). Therefore
from Remark 11.9 it follows that each basic interval of T is f-covered by some
basic interval different from itself. By Proposition 11.10 we can assume that
each J € SNS’ doesnot f-coveritself. In particular, I; doesnot f-cover itself.
From Corollary 11.11(a) we can suppose that f*~!(p,) € O and f(x,) €O.
If xo = x,, by Remark 6.2, we have f(0) € I. Since I, does not f-cover
itself we get that I; — A. Therefore either I} — L, or I} — L,. Without loss
of generality we can assume that I; — L, . Denote by D; and D, the closures
of the two connected components of & \ {xp} such that D, is homeomorphic



4922 M. CARME LESEDUARTE AND JAUME LLIBRE

to I. If f(D,) = D, and f(D,) = D;, by Lemma 11.3 the result follows.
Otherwise, since f(0) ¢ Int(AUBUC), xp = x, and from Remark 12.6
f(0) # x,, it follows that there exists z € P N D; such that f(z) € PN D;
for some i € {1, 2}. By continuity of f, there exists J € SNS’ such that
I, —~J— A4 andsoeither [y —«J— L, or Iy —«J—L,.

By symmetry we only need to consider the following three cases.

Case 1: xo = x, and f(0) ¢ Int(I;). Since f(0) € I, we get 4 — I,
and so L; —» I, and L, — I,. Then we obtain the loop I} = L,;. Since
IInL; ={xy}, by Lemma 11.5 there is a path of length / < k — 1 starting at
one of the intervals I; or L, and ending at J.

First suppose that I; — J — L, . Then we obtain the loops either I}, = L, ,
I] —>—>J—>Il and Il—>--'—->J—'>L1—>Il,Ol' 114_—'L1, Ll—>—->
J—-Liand Ly —»---—J—>1I - L, oflengths 2,/+1<k and /+2 <k+1
respectively. Then we get a loop of length n for each n > k + 1 containing
J . Notice that {xp, 0} N J = @. By construction of the loop of length n,
the associated sequence of W;’s of Proposition 7.2 is non-repetitive. Hence
B(k) C Per(f).

Now suppose that I} — J — L,. By Lemma 11.5 there is a path of length
! < k -1 starting at one of the intervals I; or L; and ending at J. If
the path starts at I, then we get the loops I} 2 L;, I}, —» --- =» J = I,
and I; - -+ = J > L, —» I, oflengths 2,/+1 <k and /+2 < k+1
respectively. If the path starts at L,, then we obtain the loops I}, = L,,
Ly—-.---J—->I—->L and L, » ---—>J —- L, —» I} — L, of lengths
2,/+2<k+1 and /+ 3 < k + 2 respectively. As above, Proposition 7.2
allows us to prove that B(k) C Per(f).

Case 2: xp = x, and f(0) € Int(I).

Suppose that L; — L, . By Lemma 11.4 there is a loop of length n for each
n > k+1 containing L, . Since there exists J € SNS’ suchthat J - I, —» L,
from Lemma 11.4 we can assume that it contains the path J — I, — L, . Since
{x0, 0} nJ = @, by the above construction the loop verifies the hypotheses of
Proposition 7.2. So B(k) C Per(f). Hence in the rest of the proof of Case 2
we can assume that L; does not f-cover L;.

Subcase (i). Ly — I, . Then, since f(0) € Int(I,), f(x;) € I. We have the
loop I 2 L,. Suppose that I, — J — L, . So by Lemma 11.5 there is a path
of length / < k — 1 starting at one of the intervals I; or L; and ending at
J . This path together with the loop I = L, give us a loop of length n for
each n > k + 1. Notice that {xp, 0} N J = &. By construction the above loop
satisfies the hypotheses of Proposition 7.2 and consequently B(k) C Per(f).

So we can assume that there are no basic intervals of SN S’ f-covering
I, UL,. Therefore we have I, — J — L,. In particular L, € T. Suppose
that L, — I;. Then by Lemma 11.5 we obtain the loops either I} & L;,
L—--osJ-sLad I, - --->sJ—->Ly-L,or ) 2L, Li— -
J-I->L and L, »---—=J —= L, — I, —» L, oflengthseither 2,/+1<k
and /+2<k+1,0r 2,/+2<k+1 and /+ 3 < k + 2 respectively. Since
{x0, 0}nJ = 2 and by construction from these loops we can obtain a loop of
length n for each n > k+1 in the hypotheses of Proposition 7.2. So the result
follows.

Hence we can suppose that L, does not f-cover I,. Therefore f(x.) € O
and either C — L, or C — L, because f(0) € Int(I;). Suppose that C — L,,
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FIGURE 13.1. In Subcase (i) thereis M € SNS', M Cc O
such that M — L;.

then L, f-covers itself. Consider the path J — L,. By Lemma 11.4 there
exists a non-repetitive loop of length n for each n > k + 1 containing L,. By
construction of the above loop we can assume that it contains the path J — L, .
Since {xo, 0} N J = 2@ and the associated sequence of the W/ s of Proposition
7.2 is non-repetitive, we get that B(k) C Per(f). Hence we can assume that
C does not f-cover L,. Therefore C — L; and so L; — L; U I, because
f(xp) € 1. Since f(x,) €I, f(x.) € O, each basic interval of SN.S’ does not
f-cover itself, there are no basic intervals of SNS’ f-covering L, UI, and
from the continuity of f, it follows that there exists M € SNS’, M c O such
that M — L; (see Figure 13.1). In particular L; € T . Therefore consider the
paths I} — L3 —» L, = I;. By Lemma 11.5 there is a path of length / <k —1
starting at one of the intervals I; or L, and ending at L;. So we obtain either
theloops 1 =Ly, I, »---—-L3y—-Iand Iy »-.-—- L3 — L, - I, or
I[ 7—’L1, Ll — e —>L3 —)Ll and Ll — "'—>L3—>Il -*Ll oflengths
2,l+1<k and /+2 < k+ 1 respectively. So we obtain a loop of length »
for each n > k + 1 containing I, and L;. By construction of this loop and
from the facts that 0 ¢ I, and xo ¢ L3, the associated sequence of W/s of
Proposition 7.2 is non-repetitive. Hence B(k) C Per(f).

Subcase (ii). L, » I,. So, since x, € P we have that f(x;) € O. By
Remark 10.2 we get that f(x.) € I. From the facts that there exists a closed
subinterval K C o f-covering O (see Remark 9.6), each basic interval of
(SNS)U{L} does not f-cover itself, f(x.) € I and f(0) € I, it follows
that K C I (see Figure 13.2). Moreover we can assume that K has endpoints
elements of PU {xp}.

Since f(x;) € O and f*~!(p,) € O, there is a closed subinterval M c O
such that M =2 K.

Let py € I} be such that f(py) = 0. Consider K’ C K a minimal closed
subinterval f-covering O. Then K’ C [p., po]. Since f*~'(p.) € O, there are
two minimal closed subintervals M’, N’ c O\ B f-covering [p., f(0)] such
that M’ and N’ have pairwise disjoint interiors. We have M’ — K’ — N'.

First suppose that py € [p., f(0)]. Then, since X’ C [p., po], we get that
M' 2 K 2 N'. Thus we obtain a non-repetitive loop of length n for each n
even. Since xo ¢ M'UN'UK’ and 0 ¢ K’ we get that 2N C Per(f). If k is
even, then we are done because S(k) C Per(f). So we suppose that k is odd.
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FIGURE 13.2. In Subcase (ii) the graph of f has only
one fixed point, xg.

Since xo ¢ M;, from Lemma 11.15 we get that n € Per(f) for each n > k
odd. Therefore S(k) C Per(f) and the result follows.

Finally suppose that py ¢ [p., f(0)]. Then we have [py, 0] — [po, 0] —
[£(0), po] (see Figure 13.3) and B — [po, 0] (see Figure 13.2). Assume that
f?(0) ¢ Int(B). Then, since I; — L,, again from Figure 13.2 we have that
[£(0), po]l = B. So the loops [po, 0] — [po, 0] — [f(0), po] = B — [po, 0]
give us a non-repetitive loop of length n for each n > k+ 1. Hence B(k) C
Per(f). Now assume that f2(0) € Int(B). Then, since M'UN Cc O\ B
we obtain M’ =2 K’ & N’. Notice that xo ¢ M’'UN'UK’. By the above
arguments S(k) C Per(f).

Case 3: xy = x;, . From Corollary 11.11(b) we can suppose that f(x,) € O.
By Remark 6.2 we have that f(0) € O. Since I} » I,, we get I, — B. So
either Iy = BUA=L, or I; - BUC=1L;.

Subcase (i). Suppose that C — C . Therefore, since f(0) ¢ Int(AUBUC),
we obtain either C — 4 or C — B. Consequently either C — L, or C — L3.
Therefore at least one of the following statements is satisfied:

(a) C - L, and L3—>L2—->L2,
(b) C—>L3 and L2—>L3—>L3.

First assume that (a) holds. If there exists J € SNS’ such that J — L,
or J — L3, then we consider the path J — Ly, - Ly or J — L3 — L; —
L, . Given that each basic interval of T is f-covered by some different basic
interval, by Lemma 11.4 there is a non-repetitive loop of length n for each
n >k + 1 containing L,. Furthermore we can assume that the above loop of
length n also contains J. Clearly 0 ¢ J and x; ¢ L,. By Proposition 7.2
the result follows.

Therefore we suppose that for each J € SNS', J » L, and J » Ls.
Consequently, since either I; — L, or I; — L3, we get that I; — L, . Since
f(0) ¢ Int(C), from Lemma 11.12 we can assume that there is a basic interval
Jo € 8’ f-covering C. Taking into account that C C L, N L3, and that
foreach J e SNS', J » L, and J -» L3, we get that J, € {4, B}. In
particular L, — C. Hence L, — L, or L, — L. Then consider the path
I, - L -Ly,—-»LyorIy-» L = Ly— L, — L,. By Lemma 11.4 there is
a non-repetitive loop of length n for each n > k + 1 containing L, and I;.
Notice that 0 ¢ I, and xo ¢ L,. Then by Proposition 7.2 the result follows.
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Finally suppose that (b) holds. Since C — C U B, by the monotonicity of
f on C we get that f(x.) € O. Notice that either I, — L, or I; — Ls,
and so I; -» L,. If there is a basic interval J € SN S’ \ {I;} such that either
J — Ly or J — L3, then we consider either the path J — Ly —» L3 — L3 or
the path J — L3 — L;. Clearly {0, xo} N J = @. Therefore by Lemma 11.4
and Proposition 7.2 the result follows.

Thus we can assume that L, is not f-covered by any basic interval of SN.S’
and L; is not f-covered by any basic interval of SNS'\ {,}. If I, — L3,
from the fact that each basic interval of SN S’ does not f-cover itself and
by the continuity of f, we have that there exists J € SNS'\ {;}, J Cc O
f-covering C (see Figure 13.4). Consequently either J — L, or J — L3
in contradiction with the assumptions. Hence we can suppose that I; -» L.
Therefore I} — L,. In particular I; -» C. By Lemma 11.12 we can assume
that there is Jy € S’ f-covering C. Since foreach J € SNS', J » L,
and J -» L3, we obtain that Jy € {4,B}. Thus L, — L, or L; — Lj.
From the facts that f*~!(p,) € O, f(x.) € O and by the continuity of f, it
follows that there is J € SNS’, J # I, such that J — 4. Moreover either
J = L, or J — L,. By the above assumptions we have that J — L, . Notice
that {0, xo} N J = @. Consider the loops J — L, — L, — L3 — L3 or
J—L; — Ly— L3. From Lemma 11.4 and Proposition 7.2 the result follows.

c N ]
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A /
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FIGURE 13.4. The graph of f cannot cross the diagonal
in O\ (BUC).



4926 M. CARME LESEDUARTE AND JAUME LLIBRE

Subcase (ii). Suppose that C -» C. First assume that B — B. Since
f(0) € O, f(0) ¢ Int(AUBUC) and f is monotone in B, it follows that
B — BUC = L;, which implies that L, — L3 — L;. If thereis J € SNS'\{/,}
such that either J — L, or J — L3, then we consider either the path J —
L, —» Ly — L3 or the path J — L3 — L3. Clearly {0, xo} nJ = 2&. So by
Lemma 11.4 and Proposition 7.2 the result follows. Hence we can assume that
foreach J e SNS'\{I;}, J» L, and J -» L3. So we claim that f(x;) €.
Otherwise, f(x.) € O, and since any basic interval of SN S’ cannot f-cover
itself, f*~!(p,) € O and by the continuity of f, there exists J € SNS'\ {I,}
such that J — B. Therefore either J/ - AUB =L, or J - BUC = L3, in
contradiction with the assumptions. Then the claim is proved.

Now, from the facts that f(0) € O, f(x.) €I, f(0) ¢ Int(4UBUC) and
C » C, we get that C — L,;. Therefore L, — L, and L; — L,. Then we
have L, - Ly @ L3 — L3. If thereis J € SNS’'\ {I;} such that J — L,,
then we consider the path J — L, — L; — L3 — L3. Since {xo,0}NJ =@,
from Lemma 11.4 and Proposition 7.2 the result holds. Hence we can assume
that J -» L,, for each J € SNS’\ {I;}. Therefore, since f*~!(p.) € O and
by the continuity it follows that f(x;) € O (otherwise thereis J € SNS'\ {I;}
f-covering L, or L, or L;). Consequently, if we take D; = [p., x,] and
D, =Cl(O\ (BUCUI)), we obtain that f(D;) Cc D, and f(D,;) C D, (see
Figure 13.5). Thus by Lemma 11.14 the result follows.

So in the rest of this proof we can suppose that B - B. Since f(x,;) € O
and f(0) € O it follows that A » A4.

First assume that f(0) ¢ Int(l,). Therefore, since B - B by Remark 12.6
f(0) # xo and so B — I,. Hence we have L; — I, — L;. Moreover, since
either I}, — L, or I} — L; we obtain either L, 2, «— L3 or L; =1, — L,.
From the facts that f(0) € C1(O\(BUCUI)), f*~!(p.) € O, there are no basic
intervals of S’ f-covering themselves, and by the continuity of f it follows
that there is J, ¢ O, J, € 8’ \ {I,} such that B « J; — I, (notice that J,
.canbe C and J1 #B). Set J=J, if J; #C and J =L, if J; =C.
Clearly xp ¢ J. We have B — J — I, . Moreover either J - BUA =L, or
J —= BUC = L;3. So we obtain either L; — J — I, or L3 — J — I, . Hence
one of the following subgraphs is satisfied:

(@ J=1,=2L;«J forie{l, 3};
(b) JoLj—»I,—Jand 2L, fori,je{l,3}, i#J.
Clearly I;NL; = {xo} for i € {1, 3}. Then by Lemma 11.13 the result follows.

Finally assume that f(0) € Int(/;). Denote by D, and D, the closures of
the two components of O\ {0, f*~!(p,)} such that B c D, and C c D.. We
have two possibilities: f(x:) €I or f(x;) €O.

Suppose that f(x;) € I. Since f(x.) € I and f(0) € Int(I;), we get that
C—L, andso L, —» L) — L;. From Remark 10.2 4 — [f(0), x;] Cc I, and
so Ly —»1I,.If I, - L,, then we have L, = I, . Notice that I, N L; = {xp}.
Define D, = [p,, x,] C I and D, = CI(O\(BUCUI,)) c O. If f(D,) C D, and
f(D;) C D, , then by Lemma 11.14 we are done. Otherwise, thereis J € SN.S’
such that J — A4 and consequently either J — L, Ul, or J — L,. Consider
Li=21I.1If J—- L uUl, from Lemma 11.5 and Proposition 7.2 the result
holds. If J — L,, we have the paths J — L, — L, and J —» L, — I;. Then
again from Lemma 11.5 and Proposition 7.2 the result follows.

Then we can suppose that I; - L,. Therefore I} — L; and f(x;) € O.
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FIGURE 13.6. There are two closed subintervals M, N C
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Since each basic interval of S’ does not f-cover itself, f(0) € Int(;) and
there exists a closed subinterval f-covering O (see Remark 9.6), we have that
there is a closed subinterval K C I such that K — CI(O\ (BUI;)). From
the fact that {f(x), f(0), f*~'(p.)} C O it follows that there are two closed
subintervals M, N Cc O\ Cl(BUI,) f-covering K (see Figure 13.6). Hence
we have M 2 K 2 N . Without loss of generality we can assume that M C D,
and N C D,. Thus we obtain a non-repetitive loop of length n for each n
even. Since xy ¢ K we get that 2N C Per(f). If k iseven S(k) C Per(f) and
we are done. So we can suppose that k is odd. If f(x,) € D,, then there is a
minimal closed subinterval K’ C [p,, x,] with endpoints elements of P such
that K’ 2 N. Since xo ¢ K', from Lemma 11.15 we obtain that n € Per(f)
for each n > k odd. Then S(k) C Per(f) and the result follows.

If f(x,) €D, ,then 4 — [x;, f*~!(p.)] C D;. By the continuity of f and
from the fact that {f(x;), f*~'(pe)} C O it follows that there is a minimal
closed subinterval M| C [x;, f*~!(p.)] (and so xo ¢ M;) such that either
M, - Ly or M - LyUI,. Therefore A — M; and we obtain either the
loops My 2 L, and M; — L, — Ly — M,; or the loops M, =2 L, and
Ly — I, - L3y — L,. So we have a non-repetitive loop of length n for each
n > k odd containing M, . Since x, ¢ M; we get that S(k) C Per(f).

Finally assume that f(x.) € O. Since C -» C we have that L; — I,. By
the continuity of f and since each basic interval does not f-cover itseif, it
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follows that there exists J € SNS'\ {I,}, J C O suchthat J — I; UB. So
either / - I, UL, or J — I, UL;. Moreover either I — L, or I, — Ls.
Suppose that L; — I;. Therefore we have either J — I}, 2 L; « J for
ie{l1,3},or JoLi»I —Jand I, 2 L; for i,je{1,3}, i #j. By
Lemma 11.13 the result holds. So from now on we can suppose that L, » I, .
Then 4 — [f(0),xJUB c I,UB and so L, — I;. Since A » A, we
get A - BUC = L; and consequently L, — L; — L,. If I} — L3, then
we consider the loop I} & L; and the path I} — L, — L3. Since 0 ¢ I
and xp ¢ L,, from Lemma 11.5 and Proposition 7.2 the result holds. So
from now on we can suppose that I; -» L3;. Therefore I; — L,. From the
facts that 4 — BUC, each basic interval does not f-cover itself and there is a
closed subinterval f-covering O, it follows that there exists a closed subinterval
K; c I such that K; — O (see Figure 13.7). Furthermore, from the fact that
{x0, f(xc), f5~1(p.)} C O, there are two closed subintervals M, N C O such
that M = K, 2 N. Without loss of generality we can assume that M C D,
and N C D,. Since xo ¢ K, we get that 2N C Per(f). If k is even the result
follows. So we can assume that k is odd.

Notice that there is a closed subinterval N’ c D, such that N’ — I be-
cause {f(xc), f*~'(p.)} ¢ O. If f(x,) € D, then there is a closed subin-
terval K’ ¢ K; with endpoints elements of P f-covering M. Thus we
have K’ @ M. By Lemma 11.15 n € Per(f) for each n > k odd. Hence
S(k) c Per(f) and we are done. So we can assume that f(x,) € D,. There-
fore A — D, and consequently L, — D, «— L,. By the continuity of f
and since {f(x.), f*~'(pe)} C O, there exists a closed subinterval N, C D,
such that either Ny — L, or Ny — L, (see again Figure 13.7). Notice
that xo ¢ N;. If Ny — L, then we consider the loops L, & N; and
Ly - Ly -1, - L. If Ny - L,, then we consider the loops L, = N,
and L, - L3y - I - L, - N; —» L,. In both cases, from Proposition 7.2
we obtain that n € Per(f) for each n > k odd. So S(k) C Per(f) and the
proposition follows. 0O

14. Maps wiTH f(0) € Int(AUBUC)

In this section we will prove Theorem 1.4(a) when f(0) € Int(4UBUC).
Since f(0) # 0, we have that f(0) € Int(4 U BUC) if and only if f(0) €
Int(4) U Int(B) UInt(C).
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Lemma 14.1. Let f be the standard ¢ map. Suppose that f(0) € Int(4UBUC)
and that each basic interval of T is f-covered by some basic interval of T
different from itself. If there is J € T such that J — J, then Theorem 1.4(a)
holds.

Proof. If J € SN .S’, then by Proposition 11.10 we are done. So assume that
Je{L,, L,, L;}. Since f(0) € Int(AUBUC) and from the monotonicity of f
on each basic interval of ', it follows that J does not f-cover basic intervals
of {L,, Ly, L3}\{J}. If xo € J, from the facts that f(0) € Int(4UBUC) and
that f is monotone on each basic interval of §', it follows that J does not f-
cover basic intervals of T containing x, different from itself. By Lemma 11.4
there is a non-repetitive loop of length n for each n > k + 1. By construction,
there are at least two basic intervals of the above loop (perhaps they are the
same) such that one does not contain 0, and the other does not contain xg.
Then the associated sequence of W;’s in Proposition 7.2 is non-repetitive and
so B(k) c Per(f). D

Proposition 14.2. Let f be the standard ¢ map. Suppose that f(0) €
Int(AUBUC) and xy € {x,, Xp, X} . Then Theorem 1.4(a) holds.

Proof. Denote by I, the basic interval with endpoint x, different from 4, B
and C. Set I} = [xp, x;]. By symmetry and from Remark 6.2 we need only
consider three cases.

Case 1: f(0) € Int(4) and xp = x,. Notice that from the monotonicity of
f on A, A does not f-cover any basic interval. By definition of x; in Section
6, the interval [p., xo) does not contain fixed points, so f*~!(p,) € O and
I, = A. Then either I}, —» L, or I; — L,. Without loss of generality we can
assume that I, — L, . Inparticular L, € T,and L, is f-covered by some basic
interval different from itself. Notice that from Remark 10.2 4 is f-covered
by some basic interval of {L,, L,, L3}. So there is z € {x;, x.} such that
f(z) €e PN O. Hence there exists J € SNS’', J CO suchthat I}, — J — 4.
Therefore either J — L; or J — L,. Notice that {x;,0}NnJ = @. Now
we consider the three different possibilities for L,, the other basic interval
containing f(0).

Subcase (i). Suppose that L, ¢ T. Consequently J — L;. Moreover
L; € T and f(0) ¢ L;. By Remark 11.9 each basic interval of T is f-
covered by some basic interval of T different from itself. If there is a basic
interval of T f-covering itself, by Lemma 14.1 the result follows. So suppose
that there are no basic intervals of T f-covering themselves. Hence since
L, ¢ T, f(xp)el,soweget Ly — I, . By applying Lemma 11.5t0o I, 2 L,,
there is a path of length / < k — 1 starting at one of the intervals I, or L,
and ending at J. This path together with the paths L, — J — I} @ L, give
us a non-repetitive loop of length n for each n > k + 1 in the hypotheses of
Proposition 7.2, so B(k) C Per(f).

Subcase (ii). Suppose that L, € T and L, is not f-covered by any basic
interval of T different from itself. Then J — L, . Moreover C — C (because
L, — L,) and by Lemma 11.12 taking the interval C, we can assume that
there exists K € S', K # C such that K — C, so either K — B or K — A4.
Since L, only is f-covered by itself, K — B. Hence L3 € T. Consequently
T =S. Hence L; and L, donot f-cover L,. So f(x;) € O and consequently
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L, - L, (because L, - L,). Since f(0) ¢ L3, by Remark 11.9, L3 is f-
covered by some basic interval of T different from itself. Notice that if L,
f-covers M forsome M € T,then L; - M. Set R=T\{L,} =S\ {L.}.
Therefore each basic interval of R is f-covered by some basic interval of R
different from itself. Furthermore L, — L, — J and {0, x}NJ = 2. So,
by Lemma 11.4 interchanging T by R, and Proposition 7.2 it follows that
B(k) C Per(f).

Subcase (iil). Suppose that L, € T and L, is f-covered by some basic
interval different from itself. Since f(0) ¢ L3, from Remark 11.9 it follows
that each basic interval of T is f-covered by some different basic interval of
T. Notice that T =S or T = S\ {L3}. If there is a basic interval of T
f-covering itself, then by Lemma 14.1 the result follows. Hence we can assume
that each basic interval of T does not f-cover itself. Then from the graph of
T it follows that f has no fixed points in O. Since f(0) € I, there exists
a closed subinterval K C [p., xp] such that K — O and K has endpoints
elements of PU{xo}. From the facts that f*~!(p,) € O, and f(0) € 4, we get
that there are two minimal closed subintervals M, N C O such that M and
N have disjoint pairwise interiors and M, N — K. Moreover xo ¢ MUN .
By Lemma 11.6 the result follows.

Case 2: f(0) € Int(B) and x;, = x, . By the monotonicity of f* on B we
have that f(B) = [f(0), xo] C B, otherwise B contains a fixed point y # Xxo
in contradiction with the definition of x; in Section 6. Notice that B does not
f-cover any basic interval. Now we will study the two basic intervals containing
f(0) which are L, and L;.

Subcase (i). Suppose that L; ¢ T . Then by Proposition 10.8, L,, L; € T .
We claim that L; is f-covered by some J; € T\ {L3}. Otherwise suppose
that the only basic interval of T f-covering L; is itself. Therefore, since
f(BYC B and BUC - BUC,wehave C — [f(0),0]c B and C — C. So
since L, = AUC € T and L, » L; it follows that 4 -» [f(0), xo] € B. Then
either 4 — [f(0), 0JuA C BUA or A—[f(0),0JuCc BUC. Since L, ¢ T,
we have 4 — [f(0),0]UC and so L, — L3. Then, since I; N B = {xp}, by
the monotonicity of f on each basic interval of S’ we have that each basic
interval of {4, B, C} does not f-cover I, . Moreover, by Remark 11.9, I; is
f-covered by some different basic interval of S’. So we can assume that there
exists Jo € SNS'\{I;} suchthat Jy—I;. Since TNB={x} and L, ¢ T,
it follows that Jo — I; UB U C. In particular Jy — L3, a contradiction with
the assumptions. So the claim is proved.

Since f(0) ¢ L, and thereis J; € T\ {L3} such that J; — L3, by Remark
11.9 each J € T is f-covered by some basic interval of T \ {J/}. By Lemma
14.1 we can suppose that foreach J € T, J -» J. In particular I, » I,
and so I; — B. Hence either Iy, - BUA =L, or I, - BUC = Lj3.
By hypotheses L, ¢ T, so we have that I, — L3 and thus f(x;) € O (by
the monotonicity of f on I;). On the other hand L; - L3 and L3 » L,,
which implies that L; -+ B. So we have that L; — I,. More concretely,
C - [f(0),x)]c B and C — I;. So f(x.) € O (otherwise C - AUC and
consequently L, — L,, a contradiction). Then, from the facts that f(x,) € O,
f(x:) € O, I, n B = {xp}, each basic interval of T does not f-cover itself,
L, ¢ T and by the continuity of f, we obtain that there exists J € SNS’\{I},
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FIGURE 14.1. There exists J € SNS'\ {I}, J CO,
f-covering I; and Ls.

J € O such that I, — J — L; (see Figure 14.1). Notice that {x;, 0}nJ =2.
Since I; 2 L3 and I) N L; = {x}, from Lemma 11.5 and Proposition 7.2 we
obtain B(k) C Per(f).

Subcase (ii). Suppose that L, € T and that L, is the unique interval of
T such that f-covers L,. Then, since f(B) = [f(0), xo] C B, it follows that
A—[f(0),0]Jud c BUA. Hence f(x,) €I. Since f(PNI)¢Z PNI, there
exists M €e SNS’', M cI such that M — 4. So either M - AUB =1L, or
M — AU C = L,. By the assumptions we have that M — L,. In particular
L, €T and L, is f-covered by M # L,. Consequently L, - L. Since
L, =AUC, 4 - [f(0),00ud Cc BUA and BNI, = {xo} we get that
L, » I,. Notice that each basic interval of {4, B, C} does not f-cover
I;. So, by Lemma 11.12 there exists N € SNS’'\ {I,} such that N — I,.
Furthermore either N - I; UBU A or N — I; UBUC. By the hypotheses we
have that N — I, UL . In particular L; € T and L; is f-coveredby N # L;.
Consider R=T\{L,} =S\{L,}. We note that if L, f-coverssome J € R,
then also L, f-covers J. Hence, by Remark 11.9 each basic interval of R is
f-covered by some different basic interval of R. Since f(x,) € I, by the proof
of Corollary 11.11(b), interchanging T by R, the result holds.

Subcase (iii). Suppose that L; is f-covered by some basic interval of T
different from itself. Now we will study the following three possibilities for
L.

First suppose that L3 ¢ T. So by the definition of T we have L, € T.
Since f(0) ¢ L, by Remark 11.9 each basic interval of T is f-covered by
some different basic interval of 7. From Lemma 14.1 we can assume that
each basic interval of T does not f-cover itself. By Corollary 11.11(b) we can
suppose that f(x,) € O. Moreover, since I} -» I; we have I}, — B and so
either |, = BUA =L; or I}, - BUC = L;. From the assumption that
Ly ¢ T we get that I} — L,. Furthermore 4 — [xp, f(0)] C B and 4 — I,
because f(0) € Int(B), f(x,) €O and L3 ¢ T. By Remark 10.2 we get that
C - [f(0), 01 c B. Hence L, = AUC — I;UB, and so either L, — BUA =L,
or L, - BUC = L;. By the assumptions, we have that L, — L. Therefore
we have the paths I} — L, — L, and I, @ L,. Since I, N L, = {xo}, by
Lemma 11.5 there is a path of length / < k — 1 starting at one of the intervals
I, or L, and ending at L, . If the path starts at L, , then we consider the loops
Ll —>'-'-—>L2—>L] —->I| —*Ll, Ll —P"'—>L2—>Il —*L] and L| 4-——’11 of
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lengths /+3 < k+2, [+2<k+1 and 2 respectively. If the path starts at I, ,
then we consider the loops I}y - ---— L, —I,, I »---— Ly — L; — I, and
I 2L, oflengths /+1 <k, [+2<k+1 and 2 respectively. Clearly 0 ¢ I,
and xo ¢ L,. Notice that all the above loops contain I; and L,. Then by the
construction of the loops and by Proposition 7.2 the result holds.

Now suppose that L; € T and L; is the unique basic interval of T f-
covering L3. Then, since B — [f(0), xo] C B, we have that C — [f(0), 0] C
B and C — C. By Lemma 11.12 we can assume that C is f-covered by
some M € S’, M # C. Moreover, by the hypotheses we have that L, € T
and so L, - L;. We claim that M # A. Otherwise, suppose M = A4.
Therefore, since L, » L3 it follows that 4 — O\ (f(0),0) and 4 - 4. In
particular L, — L, and L, — L3, in contradiction with the assumptions. So
the claim is proved. Notice that M # B, because f(B) C B. Then we have
M¢ {A,B,C},andso M eSNS'.Since M >C and M » CUB=1L;,
we get that M - CUA = L,. In particular L, € T and L, is f-covered by
M # L,. Notice that if L; — N, for some N € T\ {L3}, then C — N and
consequently L, — N. Set R = T\ {L3;} =S\ {L3}. Therefore each basic
interval of R is f-covered by some different basic interval of R. From the facts
that L, » L3, L, » L3, C — [0, f(0)JuC c BUC and B — [f(0), x0] C B,
it follows that L; — L, . Then from the proof of Lemma 14.1, interchanging
T by R the result holds.

Finally suppose that L; € T and L3 is f-covered by some different basic
interval of T. Since f(0) ¢ L,, by Remark 11.9 we have that each J € T
is f-covered by some interval of T\ {J}. From Lemma 14.1 we can assume
that foreach J € T, J -» J. In particular I, - I; and so either I — L, or
I, — Ly. We claim that C -» C. Otherwise suppose that C — C. Therefore
either C — [0, f(0))c B andso L3 —» L3y;or C - CUA and L, — L,
in contradiction with the fact that for each J € T, J -» J. Thus the claim
is proved. From Corollary 11.11(a) we can assume that f*~!(p,) € O. By
Remark 9.6 there is a closed subinterval X C ¢ such that X — O. From the
fact that f(B) = [f(0),x) C B, J » J foreach J €T and C » C, it
follows that K ¢ O. Then there exists K’ C I such that K’ — O\ Int(B) (see
Figure 14.2). From the fact that {f*~'(p.), X0, f(0)} C O it follows that there
are two minimal closed subintervals M, N ¢ O\Int(B) f-covering K’. Then

cly i |
k-1 \ //
f@) ,
I, 7
Bl M| 7
A /]
/ \/

k-1

FiGure 14.2. There is K’ ¢ K NI such that X' —
O\ Int(B).
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FIGURE 14.3. There is a closed subinterval M Cc O
f-covering L, or LU I, .

weget M 2 K'2 N. Since xo ¢ K’ we obtain 2N C Per(f). If k is even,
then S(k) C Per(f) and we are done. Hence we can assume that k is odd.
Denote by D. and D, the closures of the two components of O\ {0, f*~!(p.)}
such that BC D, and C C D,.

First assume that 4 — I;,. Then L; — I; « L,. From Remark 10.2
and since C » C, we have that C — [f(0),0]u 4 Cc BU A. Consequently
L, - Ly « L3. On the other hand, either I; — L, or I; — L;. Suppose
that ) —» L;. If f(PNI) =PNO and f(PNO) = PNnI, then k must
be even, in contradiction with the assumptions. Therefore there is J € SN .S’
f-covering either L, UI, or L,. So we consider the loop I; = L; and the
path either L, —« J —» I, or L, —« L, « J — L, — I,. From Lemma 11.5
we obtain a non-repetitive loop of length n for each n > k + 1 containing
J. Since {xp, 0} NnJ = @ from Proposition 7.2 the result follows. Therefore
we can assume that I, » L,. Hence I; — L3 and by the monotonicity,
f(x1) € O. Since {f*"!(p.), f(0)} c O it follows that there exists a closed
subinterval N C D, f-covering I. Moreover, since {f(x;), f*~'(p.)} C O,
by the continuity it follows that there exists a closed subinterval M C D, such
that xo ¢ M and either M — L, or M — L, UI, (see Figure 14.3). If
f(x2) € Dy, then there exists a closed subinterval K’ C [p., x,] C I with
endpoints elements of P such that K’ — D, . Therefore we have K’ 2 N and
xo ¢ K'. From Lemma 11.15 the result holds. So suppose that f(x,) € D..
Then A — D. In particular L, — M — L,. We consider the loops either
M2L —-1,-Li—Li;or ML, —» L — M. Thus we obtain a non-
repetitive loop of length n for each n > k odd containing M . Since xo ¢ M
we have S(k) C Per(f).

Finally assume that 4 - I, . Since J -» J for each J € T, it follows that
A—-[f(0),0]JuCcBUC andso L, — L. In particular f(x,) € O. Notice
that the closed subinterval K f-covering O is contained in I. If f(x,) € D,,
then there is K’ C I, K’ with endpoints elements of P such that X' — D;.
From the fact that {x;, f*~!(p,)} C O, there is a closed subinterval M C D,
such that M — K’. Then we have K’ @ M and xy ¢ K’'. By Lemma 11.15
the result holds. Otherwise f(x,) € D,. Hence 4 — D. and consequently
L, - D. — L,. Now we have two possibilities: f(x.) € O or f(x.) €l.

First suppose that f(x.) € O. Then we get that C — I, (because L; = L;)
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FIGURE 14.4. There is a basic interval of D. f-covering
LyorL,.

andso Ly — I} « Ly — L;. On the other hand either I} — L; or I} —» L, . If
I, — Ls, then f(x;) € O. Hence there is a basic interval M € SNS', M C O
such that either M — L; UI; or M — L,. Therefore we consider the loop
L; 2 I, and either the paths Ly — M — I,;0or L3y — Ly —« M — L, = I,. So
from Lemma 11.5 and Proposition 7.2 the result holds. Otherwise, I}, — L;.
Since {f(x:), f*~'(pe)} C O, there exists M € SNS’, M C D,, such that
either M — L, or M — L, (see Figure 14.4). From the fact that L, — D, —
L, we obtain either M 2 L, or L - M 2 L,. So we consider either the
loops Ly - L3 -1, - L, and Ly 2 M ortheloops L, - L3 - I, - L, —
M — L, and L, 2 M. So we obtain a non-repetitive loop of length n for
each n > 5 odd containing M . Since xy ¢ M the result follows.

Finally suppose that f(x.) € I. Let p; € I} be such that f(p,) = f(0). Set
U=[0,p]C BUI,. We define the map g:06 — 6 as gls\v = flos\v and
glu = {f(0)}. Clearly g(0) = f(0) € O and g has a fixed point z € B (see
Figure 14.5). So g is a ¢ map. Moreover P is a periodic orbit of period k
for g. Of course Per(g) C Per(f). We remark that g is monotone on each
basic interval associated to PU {z} U {0} . If we denote by 4’, B’ and C’ the
three basic intervals associated to P U {z} U {0} with O as endpoint, then we
have B’ =[0, z] and g(0) = g(z). From Remark 12.6 the result follows.

Case 3: f(0) € Int(B) and xp = x.. We will deal with two basic intervals
containing f(0) which are L, and L;. Notice that by definition of x; in
Section 6, B does not contain fixed points of f. So B — [f(0), x;]C B.

Subcase (i). Suppose that L; ¢ T. So by definition of 7 we have that
L,,L; € T. Notice that C does not f-cover C (otherwise L; = BUC —
Bu C). Therefore C — [f(0),x,]Cc B and C — I,. So L, — I,. Since
f(0) € Int(B) and B — [f(0), xp] — C, by Remark 10.2 we get that 4 —
[f(0), 0] C B. Furthermore, from the fact that L; ¢ T we obtain that f(x,) €
I (otherwise L, and L, f-cover L3;)and A —» A. Thus L, - L, — L,.
Therefore L; is f-covered by a basic interval of T different from itself. Since
f(0) ¢ L,, from Remark 11.9 we have that each basic interval of T is f-
covered by some basic interval different from itself. Since L; — L; by Lemma
14.1 the result holds.

Subcase (ii). Suppose that L; € T and there are no basic intervals of T
different from L3 f-covering L3. Since B — [f(0), x,] C B and L3 — L; it
follows that C — [0, f(0)JUC Cc BUC.
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FIGURE 14.5. The new ¢ map g in U.

First assume that L, ¢ T. Then by the definition of T we have that
L, € T. Consequently L, » L3 and so 4 » [f(0), x,] C B. Therefore
A — [0, f(0)] ¢ B. Moreover either A - 4 and L, - Ly, or A - C
and L, — L;. By the assumption L, ¢ T weget A - C and L; — L;.
Thus f(x,) € O and 4 — I, . In particular L, — I, . Notice that each basic
interval Jy € SN.S’ does not f-cover B ; otherwise either Jo - BUuA =L, or
Jo = BUC = L3 in contradiction with the assumptions. Set R =T\ {L3} =
S\{L:, Ls3}. Notice that L, N L; = B. We claim that if L; f-covers M for
some M € R, then thereis J € R, J # M such that J — M . Now we prove
the claim. Since f(C) C L3y, B — M . Suppose that M C O. So from the facts
that J - B foreach J € SNS’, x, € P and by the continuity of f, it follows
that thereis J € R, J # M such that J — M (see Figure 14.6). Suppose that
M cI. Then f(x,) € 1. Hence from the facts that f(x;) € I, f(x.) € O and
by the continuity of f it follows that thereis J€ R, JC O (andso J # M)
such that J — M . Finally suppose that M =L,. Since 4 - C and C - C,
clearly L, » L,. Since f(x,) € O, f(x;) € O, f(f*~!(p.)) € I, each basic
interval of SN’ does not f-cover B and by the continuity of f, it follows
that thereis J € SNS’ (and so J # L, ) such that J — L, (see again Figure
14.6). So the claim is proved.

Hence from Remark 11.9 each basic interval of R is f-covered by some
different basic interval of R. If there is J € R such that J — J, from the

C
I 11

/
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]
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FIGURE 14.6. Thereis J € T, J # M such that J —
M.
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FiGURE 14.7. The graph of f with f(D;) C D, and
f(D2) C Dy.

proof of Lemma 14.1, replacing T by R, the result follows. So we can assume
that foreach J € R J -» J. By the proof of Corollary 11.11(a) we can suppose
that f*~!(p,) € O. Moreover I, » I} and so I, — L, (since I} » L;). We
have the loop I, 2 L,, with I} N L, = {xp}. If there is J € SNS’ such
that I; — J — L,, then by the proof of Lemma 11.5 and Proposition 7.2
(replacing T by R) the result holds. Consequently we can assume that for
each Je SNS'\{Ih}, J»1I, and J » L,. Set D; = [p., x,] C I and
D, =CI(O\ (BUCUI)) (see Figure 14.7). Therefore we get that f(D;) C D,
and f(D,) C D,. Then by Lemma 11.14 the result holds.

Finally assume that L; € T. Thus we have L, -» L;. Suppose that L,
does not f-cover L,. Then since L, -» L3, we get that 4 — [f(0), x;].
Consequently L, — L3 and so L, ¢ T . Since there are no basic intervals
of T f-covering L,, L; is the unique interval of T f-covering L;, and
C = L, N L3, it follows that C is not f-covered by any basic interval of S’
different from itself. Hence by Lemma 11.12 the result follows. So in the rest
of the proof of this subcase we can assume that L, — L;. Then f(x,;) € I.
Suppose that L; is f-covered by some different basic interval of 7. Notice
that L; » L;. Set R=T\ {L3}. We remark that if L3 — M, for M € R,
then B — M (because f(x9) = xo and f(C) C L3). Consequently L, — M.
So by Remark 11.9 each J € T is f-covered by some interval 7'\ {J}. Since
L, — L,, by the proof of Lemma 14.1, replacing 7 by R the result holds.

Now we can suppose that L, — L, and L; is not f-covered by any basic
interval of T\{L,}. Then 4 — [f(0), 0Ju4 C BUA. Since f(PNI)¢Z PNI,
there exists z € PNI such that f(z) € PNO. Then, since x,, z €1, f(x;) €l
and f(z) € O, by the continuity of f it follows that there exists Jo € SN.S’,
Jo c I such that Jy — A. So either Jy - AUB =L, or Jy— AUC = L,.
By the hypotheses we get that J; — L,. In particular L, € T. Notice that
each basic interval J € SN.S’ does not f-cover B, because otherwise either
J = BUA=L, or J - BUC = L; in contradiction with the assumptions. Set
R=T\{L,, L3} =S\ {L,, L3}. Wehave L,nL; =B and f(0) € Int(B).
We claim that if L, or Ly f-covers M for some M € R, then thereis J € R,
J # M such that J — M. Now we prove the claim. If M = L, then take
J = Jo and we are done. Suppose that M C O. Hence from the facts that
J » B foreach J € SNS’, x;, € P, and by the continuity of f it follows (like
in Figure 14.6) that thereis J € R, J # M such that J — M . Suppose that



ON THE SET OF PERIODS FOR o MAPS 4937

RN NN )//

I,
7

D, // \J

B 7

A

D s
D AB D I C

FIGURE 14.8. Foreach J e SNnS', J»C.

Mcl. If A— M, then take J = L, and we are done; otherwise, we have
B — M (because f(C) c O). Therefore f(x;) € I. Since M C [f(x;), 0],
f(x;) € O and by the continuity of f, there exists J € SNS', J C O
f-covering M. Notice that J # M. So the claim is proved. Hence each
basic interval of R is f-covered by some different basic interval of R. Since
f(x2) € 1, from the proof of Corollary 11.11(b) interchanging T by R the
result holds. :

Subcase (iii). Suppose that L3 € T and L; is f-covered by some basic
interval of T different from itself. Now we shall deal with L, .

First we assume that L, ¢ T, then by the definition of T we have that
L, e T. Since f(0) ¢ L,, by Remark 11.9 we have that each basic interval of
T is f-covered by some different basic interval of 7. From Lemma 14.1 we
can assume that each basic interval of T does not f-cover itself. By Corollary
11.11 we can suppose that f*~!(p,) € O and f(x;) € O. Since x. = Xp,
f(0)e B and L; » L; we have that C — I,. Then L, —» I, and L; — I;.
Furthermore, since I} » I}, we get I} — C . Moreover either I; - CUA =L,
or I) - CUB = L;. Suppose that thereis J € SNS"\ {I1} such that J — C.
Then, since f(xp) = xo, J — I;. Moreover either J - CUA4 = L, or
J — CUB = L;. Thus one of the following subgraphs is satisfied:

(@ JoI1 2 L;~J forsome i€ {2, 3};
) JoLij—»I5L~Jand 1 2L fori,je{2,3},i#j.

By Lemma 11.13 the result follows. So we can assume that for each J €
SnS'\{L}, J » C (see Figure 14.8). Set D; = [p.,x;] C I and D, =
ClI(O\ (BU CuUI)). Therefore we get that f(D,) C D, and f(D;) C D,
(because L; ¢ T ). By Lemma 11.14 the result holds.

Assume that L, € T and L, is the unique interval of T f-covering L, .
Since B — [f(0), x;)] c B and L; — L,, we have that 4 — [f(0),0] C B
and A — 4. So f(x;) €I. Clearly f(PNI)¢Z PNI. Hence thereis z € PNI
such that f(z) € PN O. Moreover, since f(x,) € I and by the continuity of
f it follows that there exists J € SNS’, J C I such that J — A. Therefore
either J - AUB =L, or J - AUCUI, . By the assumptions we get that
J = Lyul,. In particular L, € T. Set R=T\{L,} =S\ {Li}. Notice
that L, -» L;. Furthermore if L, — M for some M € R, then A - M or
B — M. Consequently L, - M or L; — M . Hence each basic interval of R
is f-covered by some different basic interval of R (see Remark 11.9). Since
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f(xz) € 1, by the proof of Corollary 11.11(b), replacing T by R, the result
follows.

Finally assume that L; € T and that L, is f-covered by some different
basic interval of T'. Since f(0) ¢ L,, from Remark 11.9 each J € T is
f-covered by some basic interval of T\ {J}. Then by Lemma 14.1 we can
suppose that each basic interval of T does not f-cover itself. So we have that
I » I, and L3 » L3. Therefore I), — C and C — I, (because f(xp) = Xxp).
Thus L, and L; f-cover I;. Moreover either I} — L, or I} — L3 . Suppose
that there is J € SNS’\ {I,} such that J — C. Then either J — L, U I, or
J — L3 U, . Hence one of the following subgraphs is satisfied:

(@ J-I)2L;« J forsome i€ {2, 3};

(b) JoLi—»I~Jand h2L; fori,je{2,3},i#].
By Lemma 11.13 the result holds. Consequently we can assume that for each
J-SnS\{}}, J» L, and J » L3. Set D, =[pe,x;] CI and D, =
O\ Int(BU CUI,). Therefore we get that f(D;) C D, and f(D;) C D,. By
Lemma 11.14 the result holds. O

Proposition 14.3. Let f be the standard ¢ map. Suppose that f(0) €
Int(AUBUC) and xy ¢ {X4, Xy, X.}. Then Theorem 1.4(a) holds.

Proof. We denote by I, I, the two basic intervals with x; as endpoint. These
basic intervals exist in virtue of Remark 6.4. Since xo ¢ {x,, X, X} , we have
that I;, I, € SN.S’'. By symmetry and Remark 6.2 we only need consider the
two following cases.

Case 1: f(0) € Int(4) and x, € I. Without loss of generality we can assume
that I; C [p., Xp]. So by the definition of x( in Section 6 we have that [p., xo)
does not contain fixed points of f. Consequently I} » I,. So I, — I,. Since
f(PNnI) ¢ PnI, it follows that there is z € PNI such that f(z) € PNO.
By hypotheses x; € I. Hence, by the continuity of f, there exists J, € SN.S’
such that Jy — A. Therefore either Jy - AUB =L, or Jo - AUC = L,.
Without loss of generality we can assume that Jy - AUB=L,. Thus L, € T
and L, is f-coveredby Jy € SNS’, Jo# L, . Since [p., X;) does not contain
fixed points of f we get that f*~'(p.) ¢ [pe, xo]. Sosince I, NI, = {xo0},
f(0) € 4 and f(f*'(p.)) = p. €1, there is J| € S\ {I;, I} such that
I, — J{ — I, . Therefore, from the definition of T, thereis J; € T\ {I,, I}
suchthat I}, — J, = I,.

Subcase (i). Suppose that L, ¢ T . Then by the definition of 7 we have
L; € T. Since f(0) ¢ Int(L;) and L, is f-covered by Jp € SN.S’, from
Remark 11.9 it follows that each J € T is f-covered by some basic interval
of T\ {J}. By Lemma 14.1 we can assume that J » J foreach J € T.
In particular I, - I, and so I, — I,. Consider the loops I; = I, and
I —J; - I,. Since 0 ¢ I} and xy ¢ J;, from Lemma 11.5 and Proposition
7.2, we get that B(k) C Per(f). Hence the proposition holds.

Subcase (ii). Suppose that L, € T and there are no basic intervals of T\{L;}
f-covering L,. Consider R = T \ {L,}. Since f(0) € Int(4) and L, — L;,
L, doesnot f-cover L; and L;. We claim that if L, — M for some M € R,
then there is J € R\ {M} such that J — M . Now we prove the claim. Notice
that since f(0) € Int(4),if L, M,then A-M or C-M.If A—-> M,
then take J = L, and we are done. So suppose that C — M. If L; € T,
then we take J = L; and we are done. Therefore suppose that L; ¢ 7. From
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the facts that f(0) € Int(4), f(f*~!(p.)) = p. € I and by the continuity of
f, it follows that each basic interval N € T, N c I is f-covered by some
basic interval of S’ different from C. Hence we can assume that M ¢ I.

Then M C O. Since C - M, f(0) € Int(4), AUC — AU C, we have that
A—-[f(0), x;]Cc A4 and C—[f(0),0lJuC Cc AUC. By Lemma 11.12 we can
suppose that there is J, € §’, J, # C such that J, — C. Notice that J, # 4
because f(A) C I. Moreover J, # B; otherwise L, = AUB — AUC = L,
in contradiction with the assumptions. Hence J, € SNS’. Therefore either
J—-CUA=L, or J, - CUB = L3 a contradiction. So the claim is proved.

Thus each basic interval of R is f-covered by some different basic interval
of R. By the proof of Lemma 14.1, interchanching 7 by R, we can assume
that N » N foreach N € R. In particular I, - I, and so I, — I, . Then we
consider the paths I 2 I, and I, « J; — I,. Now the proposition follows as
in Subcase (i) but thinking the proof of Lemma 11.5 with R instead of T .

Subcase (iii). Suppose that L, € T and L, is f-covered by some M €
T\{L,}. Since Jy — L; and f(0) ¢ Int(L3), from Remark 11.9 we have
that each J € T is f-covered by some N € T\ {J}. By Lemma 14.1 we can
assume that J - J foreach J € T. Then we get I, — I, . Consider the paths
I, —J,—1,, I 2 I,, and the proposition follows as above.

Case2. f(0) € Int(B) and xo € O. By definition of x; in Section 6 we have
that there are no fixed points of f in BU C. Therefore B — [f(0), x,] C B,
C - C and so L3 » Lj3. Notice that I; NI, = {xp}. If there are no basic
intervals of T f-covering I, U I,, then we consider the Y map

g:o\Int(l, UL) — o\ Int(Z; U L)

defined as f restricted to & \ Int(/;, U ;). Clearly k € Per(g). Hence by the
Y Theorem the result follows. So we can assume that there is J; € T\ {I,, I}
such that I} — J; — I,. We remark that xo ¢ J, and 0 ¢ I, UI,.

Subcase (i). Suppose that L, ¢ T . Then by definition of T we have that
L,,L; € T. Since L; » L; we get that L; is f-covered by some different
basic interval of 7. Moreover f(0) ¢ Int(L,), so by Remark 11.9 we have
that each J € T is f-covered by some different basic interval of 7. From
Lemma 14.1 we can assume that J -» J for each J € T. Then we obtain
the loop I, = I,. Therefore consider the above loop together with the path
I —Ji—I,. Since xo ¢ J; and 0 ¢ I, again the proposition follows as in
the Subcase (i) of Case 1.

Subcase (ii). Suppose that L; € T and there are no basic intervals of 7\{L,}
f-covering L,. Since B — [f(0), x;] C B, we get that f(x,) €I and 4 —
[f(0),0]uAd C BUA. The facts that f(x;) € I, f(PNI) ¢ PNI and the
continuity of f imply that there is J, € SNS’, Jy c I such that J, — 4.
Moreover either Jy - AUB =L, or J - AU C = L,. By the hypotheses
we have that J; — L,. Therefore L, € T and L, is f-covered by Jy # L,.
Furthermore L, » L, and so C -» [f(0), x,] C B. Since C » C, we get
C-[f(0),0lJu4CBUA. Then L3;=BUC — L,,and thus L3 ¢ T. Set
R=T\{L} =S\{L,, L;}. We claim that if L, - M for some M € R,
then there is J, € R, J, # M such that J, — M . Notice that Jo — L, and
Jo€e SNS’'. Since f(0) € Int(B) and B = L, N L3, then we can assume that
A — M or B — M. The facts that f(0) € Int(B), f(f*"'(p.)) = pe € 1
and the continuity of f imply that if M C I, then M is f-covered by some
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FIGURE 14.9. M is f-covered by some J> € R\ {M}.

J» € R, J, # N (see Figure 14.9). So we can assume that M C O. From
the facts that x, € P, L; ¢ T, L, is not f-covered by any basic interval
of T\ {L,} and by the continuity of f it follows that there exists J>» € R,
J>» # M such that J, — M (see again Figure 14.9). Hence the claim is proved.
Therefore each J € R is f-covered by some basic interval of R\ {J}. By the
proof of Lemma 14.1, interchanging T by R, we can assume that J » J for
each J € R. Then we obtain I, = I,. Consider the above loop and the path
I, — J; — I, . Now the proposition follows as the Subcase (ii) of Case 1.

Subcase (iii). Suppose that L, € T and that L, is f-covered by some
different basic interval of 7. Since L3 » L; and f(0) ¢ Int(L,), from
Remark 11.9 we have that each J € T is f-covered by some basic interval of
T\{J}. By Lemma 14.1 we can suppose that J - J foreach J € T. Then we
obtain I; = I,. Consider the above loop together with the path I, — J; — I>.
This ends as in the Subcase (i). O

15. PROOF OF THEOREM 1.4(b)

| The goal of this section is to prove Theorem 1.4(b).

Lemma 15.1. Let n; € N;, n, € Ng and n, € N,. Denote by a and b two
endpoints of Y. Then there is an Y map g having the branching point fixed
such that g(a) =a, g(b) =b and Per(g) = S(n;) U G(ng) UR(n,).

Proof. Take a € (@a,0)cY and b, € (b,0)CY. We conmder the new topo-
logical space Y= Y\([a, a;)U[b, b)) C Y Of course, Y is homeomorphic to

Y. Then by the Y Theorem there is an Y map g having the branching point
fixed and such that Per(g) = S(n;)U G(ng) UR(n,). Now we define an Y map
g:Y—Y asfollows. Let g(x) = E(x) if xe §."Let g rectricted to [a, a;]
be any homeomorphism between [a, a;] and [a, g(a;)] such that g(a) = a
and g(a,) = g(a;). Finally, let g restricted to [b, b;] be any homeomorphism
between [b, b;] and [b, g(b;)] such that g(b) = b and g(b1) = g(b)).

By the constructlon of g we get that g has no periodic points of period
n>11in Y\ Y. Moreover, since g|~ = g it follows that g(0) = 0 and
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Per(g) = Per(g) = S(ns)U G(ng)UR(n,). Thus g satisfies the statement of the
lemma. O

Proof of Theorem 1.4(b). Let n; € Ny, n, € N,, n, € N, and n, € N,
we need to construct a ¢ map f having the branching point fixed such that
Per(f) = S(n;) U G(ng) UR(n,) U B(ny).

Since Y is homeomorphic to {(x,y) € 6:y > —1} C 6, in the rest of this
proof we shall consider Y= {(x,y) €6 :y > -1} Co. Let U = (a, b) be
the open subinterval of ¢ defined as U =6 \Y C O. Clearly a and b are
two endpoints of Y. Let g be the Y map given by Lemma 15.1. We will to
extend g toa o map f as follows. Let f(x) = g(x) if x € Y. Then notice
that a, b and O are fixed points for . Now we need to define f|y .

Set n =n,. Let Q = {q1,42, - , 4.} C U be such that ¢; # g; for
i#j, (@a,qq)nQ =2, (gn,b)NQ = 2 and foreach i € {1,2,--- ,n—
1} (i, gi+1)NQ = &. Define f(q;) = ¢giy1 for i € {1,2,---,n—1} and
f(gn) = q1. Foreach i € {1,2,---,n—2} let f restricted to [g;, gi+1]
be any homeomorphism between [g;, gi-1] and [g;4+1, gi.2]. Let f restricted
to [gn-1, gn] be any homeomorphism between [g,-;, ¢,] and [gn, q,]. Let
f restricted to [g,, b] be any homeomorphism between [g,, ] and [b, ¢].
Finally let f restricted to [a, g;] be any homeomorphism between [a, ¢;] and
[a, q2].

Since f(0) =0, f isa o map. Of course Q is a periodic orbit of period n
for f. Consider the set of basic intervals associated to QU {a} . Therefore we
obtain a non-repetitive loop [a, ¢1] — [41, 2] = (92, @31 = --- = [@n-1, @n] —
[a,q1] — [a,q1] = --- — [a, q1] of length m for each m > n = n,. By
Lemma 3.3 there exists a fixed point x € [¢;, ¢2] of f™ for each m > n;. By
the definition of f x has period m. So B(n;) C Per(f). By construction of
f all periodic points of f on U have period at least n;. Since fly = g, the
set of periods of periodic point of fly is S(n;)U G(ng)UR(n,). Consequently
Per(f) = S(ns) U G(ng) UR(n,) U B(n,) and we are done. O
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