Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Comparative asymptotics for perturbed orthogonal polynomials
HTML articles powered by AMS MathViewer

by Franz Peherstorfer and Robert Steinbauer PDF
Trans. Amer. Math. Soc. 348 (1996), 1459-1486 Request permission

Abstract:

Let $\{\Phi _n\}_{n\in \mathbb N_0}$ and $\{\widetilde \Phi _n\}_{n\in \mathbb N_0}$ be such systems of orthonormal polynomials on the unit circle that the recurrence coefficients of the perturbed polynomials $\widetilde \Phi _n$ behave asymptotically like those of $\Phi _n$. We give, under weak assumptions on the system $\{\Phi _n\}_{n\in \mathbb N_0}$ and the perturbations, comparative asymptotics as for $\widetilde \Phi _n^*(z)/ \Phi _n^*(z)$ etc., $\Phi _n^*(z):= z^n\bar \Phi _n(\frac 1z)$, on the open unit disk and on the circumference mainly off the support of the measure $\sigma$ with respect to which the $\Phi _n$’s are orthonormal. In particular these results apply if the comparative system $\{\Phi _n\} _{n\in \mathbb N_0}$ has a support which consists of several arcs of the unit circumference, as in the case when the recurrence coefficients are (asymptotically) periodic.
References
  • N. I. Akhiezer, On polynomials on a circular arc, Soviet Math. Dokl. 1 (1960), 31–34.
  • G. Freud, Orthogonal polynomials, Pergamon Press, 1971.
  • Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
  • Ja. L. Geronimus, Polynomials orthogonal on a circle and interval, International Series of Monographs on Pure and Applied Mathematics, Vol. 18, Pergamon Press, New York-Oxford-London-Paris, 1960. Translated from the Russian by D. E. Brown; edited by Ian N. Sneddon. MR 0133642
  • Ja. L. Geronimus, The application of orthogonal polynomials to the study of certain boundary properties of functions, Zap. Meh.-Mat. Fak. i Har′kov. Mat. Obšč. (4) 27 (1961), 97–112 (Russian). MR 0249629
  • —, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. 3 (1962), 1–78.
  • Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
  • Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
  • Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
  • Attila Máté, Paul Nevai, and Vilmos Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. (2) 134 (1991), no. 2, 433–453. MR 1127481, DOI 10.2307/2944352
  • Paul Nevai and Walter Van Assche, Compact perturbations of orthogonal polynomials, Pacific J. Math. 153 (1992), no. 1, 163–184. MR 1145921
  • L. Golinskii, P. Nevai, and W. Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle J. Approx. Theory (to appear).
  • Franz Peherstorfer, On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas, J. Approx. Theory 70 (1992), no. 2, 156–190. MR 1172017, DOI 10.1016/0021-9045(92)90083-Z
  • —, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. (to appear).
  • F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on arcs of the unit circle, I, J. Approx. Theory (to appear).
  • —, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. (to appear).
  • —, Asymptotic behaviour of orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory (to appear).
  • R. Steinbauer, Orthogonalpolynome auf mehreren Bögen des komplexen Einheitskreises, Ph.D. dissertation, Universitätsverlag Rudolf Trauner, Linz, 1995.
  • E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-Sb. 32 (1977), 199–213.
  • —, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb. 46 (1983), 105–117.
  • —, On asymptotics of polynomials orthogonal on the unit circle with weights not satisfying Szegös condition, Math. USSR-Sb. 58 (1987), 149–167.
  • Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
  • Walter Van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 435–462. MR 1100305
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42C05
  • Retrieve articles in all journals with MSC (1991): 42C05
Additional Information
  • Franz Peherstorfer
  • Affiliation: Institut für Mathematik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
  • Email: franz.peherstorfer@jk.uni-linz.ac.at
  • Robert Steinbauer
  • Affiliation: Institut für Mathematik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
  • Email: robert.steinbauer@jk.uni-linz.ac.at
  • Received by editor(s): March 5, 1994
  • Received by editor(s) in revised form: January 5, 1995
  • Additional Notes: Supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Projektnummer P9267-PHY
  • © Copyright 1996 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 348 (1996), 1459-1486
  • MSC (1991): Primary 42C05
  • DOI: https://doi.org/10.1090/S0002-9947-96-01498-5
  • MathSciNet review: 1322954