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STRONG LAWS FOR L- AND U-STATISTICS

J. AARONSON, R. BURTON, H. DEHLING, D. GILAT, T. HILL, B. WEISS

Abstract. Strong laws of large numbers are given for L-statistics (linear com-
binations of order statistics) and for U -statistics (averages of kernels of ran-
dom samples) for ergodic stationary processes, extending classical theorems of
Hoeffding and of Helmers for iid sequences. Examples are given to show that
strong and even weak convergence may fail if the given sufficient conditions are
not satisfied, and an application is given to estimation of correlation dimension
of invariant measures.

1. Introduction

One of the fundamental problems in statistics is the estimation of a parame-
ter θ = θ(F ) of an unknown distribution F , based on functions of observations
X1, X2, . . . from a statistical experiment (see e.g. [Le]). This article will consider
the so called L-, and U -parameters (introduced in §2), which include certain of the
following classical parameters:

Moments

Central moments

Generalized expected maxima

Quantiles

Generalized Gini differences

Mα(F ) = E(Xα);

σα(F ) = E(|X −EX |α);

Pα(F ) = m(Fα);

Qα(F ) = F−1(α) = inf{x : F (x) ≥ α};
gα(F ) = E(|X − X̂|α);

where X and X̂ are independent with distribution F ; EX denotes the expected
value of X ; and m(F )(=

∫
xdF (x)) is the mean of the distribution F .

In the above notation, for example, M1(F ) = P1(F ) = expected value of X ,

σ2(F ) = variance of X , P2(F ) = E(max{X, X̂}), g1(F ) = Gini mean difference of
X , and Q 1

2
(F ) = smallest median of X .

Various functions (statistics) of the observations X1, X2, . . . of the underlying
process can be used to estimate parameters, including the L- and U -statistics de-
scribed below. If the sequence of observations is iid, much is known about the
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limiting behavior of these statistics. On the other hand, iid realizations are some-
times unrealistic, as is often the case when the observations come from real data
which cannot be replicated in computer experiments (see §6).

It is the main purpose of this article to establish strong laws of large numbers
for both L- and U -statistics for ergodic stationary processes (ESP).

Recall that a (real valued) ergodic, stationary process (ESP) with sample space
(Ω,A, P ) is a stochastic sequence (X1, X2, . . . ) of form Xk = f ◦ T k where T is an
ergodic, probability-preserving transformation of the probability space (Ω,A, P ),
and f : Ω→ R is a measurable function. The marginal of the ESP is the distribution
of X1, and the ESP is called integrable if X1 is integrable, and bounded if X1 is
(essentially) bounded.

The organization is as follows: §2 introduces L- and U -parameters and strong
laws for their statistics; §3 and §4 establish the L-parameter and U -parameter
strong laws of large numbers for ergodic stationary processes, respectively; §5 proves
the strong law for U -statistics for weakly Bernoulli sequences; and §6 contains an
application to dimension estimation.

2. L- and U-Parameters and Statistics

Given a probability distribution function F on the real line R, we denote by
F−1 : [0, 1] → [−∞,∞] the lower inverse defined by F−1(0) = ess inf(F ), and for
u ∈ (0, 1],

F−1(u) = inf{x : F (x) ≥ u}.

Given a finite sequence X1, X2, . . . , Xn of random variables, the empirical distribu-
tion function Fn of the random variables X1, X2, . . . , Xn is the random probability
measure determined by

Fn(x) :=
1

n
#{i ≤ n : Xi ≤ x},

and their order statistics {Xn;i : 1 ≤ i ≤ n} are the values of the random variables
in increasing order: Xn;1 ≤ Xn;2 ≤ · · · ≤ Xn;n.

Note that

F−1
n = Xn;11{0} +

n∑
i=1

Xn;i1( i−1
n , in ],

where 1A denotes the indicator function of the set A.

Definition 2.1. θ = θ(F ) is an L-parameter of F if there exists a representing
(finite signed Borel) measure µ = µθ on [0, 1] so that

θ(F ) = θµ(F ) =

∫ 1

0

F−1dµθ for all F for which the integral is defined.

Such representing measures are always unique, as can be established by evaluating
θ for the distributions F of {0, 1}-valued random variables.

In case the representing measure µ is absolutely continuous (a.c.), J = Jµ will de-

note the Radon-Nikodym derivative dµ
dλ where λ (here and throughout) is Lebesgue

measure. The class of all L parameters is denoted by L.
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Intuitively, an L-parameter is a parameter of a distribution which may be ex-
pressed as the a.s. limit of distribution-free linear combinations of the order
statistics of the sample X1, X2, . . . , Xn. Analogous definitions have been given
in a variety of settings (see [Se] and references therein). Although technically
M2(F )(= E(X2)) is not an L-parameter, it may easily be estimated using L-
statistics based on the order statistics for X2

1 , X
2
2 , . . . , X

2
n (see Example 2.2 be-

low for the mean), and similar such straightforward extensions of the definition of
L-parameter are left to the interested reader.

Example 2.2. For the classical parameters listed above, it is easily seen that the
mean M1(F ) and P1(F ) are L-parameters with J(u) ≡ 1; Pα(F ) is an L-parameter
with J(u) = αuα−1 for α ≥ 1; and the Gini mean-difference g1(F ) is an L-parameter
with J(u) = 4u− 2 (e.g. [Se, p.265]).

The main L-parameter result of this article is the next theorem, which extends
the corresponding result for iid sequences (e.g. [He], [vZ]), to conclude that an
L-parameter can be consistently estimated (in the a.s. sense) on the basis of linear
combinations of order statistics of data (L-statistics) arising from ergodic stationary
processes as well.

Definition 2.3. Given an L-parameter θµ, the L-statistic for θµ based on a se-
quence X1, . . . , Xn is

Lµ(X1, . . . , Xn) =

∫
[0,1]

F−1
n dµ = µ({0})Xn;1 +

n∑
i=1

µ

((
i− 1

n
,
i

n

])
Xn;i.

(The inclusion of interval endpoints is only relevant when µ has atoms.) The L-
parameter SLLN is said to hold for (Xk)k∈N and θµ if Lµ(X1, . . . , Xn)→ θµ P -a.s.

Theorem L (SLLN for L-statistics). Let (Xk)k∈N be an ergodic stationary process
with marginal F , and let µ be an atomless finite signed Borel measure on [0, 1]. If
either:

(i) (Xk)k∈N is bounded; or
(ii) (Xk)k∈N is integrable, and µ is absolutely continuous with bounded density,

then

(1) lim
n→∞

Lµ(X1, . . . , Xn) = θµ(F ) P -a.s.

The proof will be given in §3, along with examples to show the conclusions may
fail without boundedness.

It is shown in [G-H, Example 3.1], that the L-parameter SLLN may fail even
for iid sequences when the representing measure has atoms. As a complement to
Theorem L(ii), there are L-parameters with a.c. representing measures for which
the L-statistic SLLN fails for some integrable iid sequences (Example 3.2 below).
Indeed, this failure is also of the corresponding weak law.

Next, U -parameters and their statistics will be introduced and the corresponding
SLLN will be stated.

Definition 2.4. θ = θ(F ) is a U -parameter of F if there is a measurable function
h, called the kernel, h : Rd → R, so that

θ(F ) = θh(F ) =

∫
Rd
hdF (d) for all F for which the integral is defined,
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where here (and throughout), F (d) is the product measure F × · · · ×F on Rd. The
positive integer d is called the order of the kernel. Note that different kernels, with
possibly different orders, may determine the same U -parameter. For example, if
h1(x) = 2x and h2(x, y) = x+ y, then

θh1(F ) = θh2(F ) = 2

∫
R
xdF (x).

However, symmetric kernels of the same order which determine the same U -
parameter coincide, which can be shown by evaluation of the parameters at those
distributions supported on d (the order) points. The class of all U -parameters is
denoted by U .

A U -parameter is often called an estimable parameter, indeed U is exactly the
class of parameters that can be estimated in an unbiased fashion (see [Le]).

Definition 2.5. Given a U -parameter θh, the U -statistic for θh based on a sequence
X1, . . . , Xn is

Uh(X1, . . . , Xn) =
(n− d)!

n!

∑
{h(Xi1 , . . . , Xid) : {ij} distinct, 1 ≤ ij ≤ n}.

Many authors (e.g. [Se, p. 172]) assume (without loss of generality) that h is
symmetric, in which case the U -statistic is also given by

1(
n
d

) ∑
1≤i1<i2<···<id≤n

h(Xi1 , . . . , Xid).

The U -parameter SLLN holds for (Xk)k∈N and θh if Uh(X1, . . . , Xn) → θh P -a.s.
The closely related V -statistic (von Mises statistic) for θh and (Xk)k∈N is

Vh(X1, . . . , Xn) = n−d
∑
{h(Xi1 , . . . , Xid) : 1 ≤ ij ≤ n for all j}.

Example 2.6. For the classical parameters, the mean M1(F ) and P1(F ) are U -
parameters with kernel h(x) = x; for all integral α ≥ 1, Pα(F ) is a U -parameter
with kernel

h(x1, . . . , xα) = x1 ∨ x2 ∨ · · · ∨ xα
(and is not a U -parameter for non-integral α; see Proposition 2.9 below); and
the generalized Gini difference gα(F ) is a U -parameter with kernel h(x1, x2) =
|x1 − x2|α.

The first SLLN for U -parameters is due to Hoeffding ([Hoe], see also [Se, p 190]),
who proved the SLLN for iid sequences with any integrable kernel.

The main U -parameter result of this article is Theorem U below, which extends
Hoeffding’s result to three large classes of nonindependent processes.

Definition 2.7. A product function on Rd is a function of the form

f1 ⊗ · · · ⊗ fd(x1, . . . , xd) = f1(x1) . . . fd(xd)
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where f1, . . . , fd : R → R. For a distribution F on R, the product f1 ⊗ · · · ⊗ fd
is F -integrable if each fi is measurable and

∫
|fi|dF <∞. A measurable function

h : Rd → R is bounded by F -integrable products if |h| ≤ f1 ⊗ · · · ⊗ fd for some F -
integrable product f1⊗· · ·⊗fd. Note that this class includes all bounded measurable
functions, and that if |h| ≤ f1⊗· · ·⊗fd, then |h| ≤ f⊗· · ·⊗f where f = f1∨· · ·∨fd.

The following proposition shows that under the condition of bounded by inte-
grable products, the strong law limiting behavior of U - and V -statistics for ESP’s
is identical. This will be used in the proof of Theorem U below, as well as in several
examples and intermediate results.

Proposition 2.8. Let (Xk)k∈N be an ergodic stationary process, and let h : Rd → R
be bounded by integrable products. Then

lim
n→∞

|Uh(X1, . . . , Xn)− Vh(X1, . . . , Xn)| = 0 a.s.

Proof. Since the conclusion of the Marcinkiewicz SLLN holds for ESP’s (cf. [A]),
if (Yk)k∈N is an ESP with E|Y1|1/d <∞, then n−d

∑n
k=1 Yk → 0 a.s. Thus for an h

of order 2 bounded by an integrable product f1 ⊗ f2, letting f = max{f1, f2} and
Yk = f2(X),

lim
n→∞

|Uh(X1, . . . , Xn)− Vh(X1, . . . , Xn)| ≤ lim
n→∞

n−2
n∑
k=1

|h(Xk, Xk)|

≤ lim
n→∞

n−2
n∑
k=1

f2(Xk)

= lim
n→∞

n−2
n∑
k=1

Yk = 0 a.s.

The general case d > 2 follows similarly. �
Theorem U (SLLN for U -statistics). Let (Xk)k∈N be a stationary ergodic process
with marginal F , and let h : Rd → R be measurable, bounded by an F -integrable
product. If any of the following three conditions hold:

(i) F is discrete;
(ii) h is continuous at F (d)-almost every point;

(iii) (Xk)k∈N is weakly Bernoulli;
then

(2) lim
n→∞

Uh(X1, . . . , Xn) = θh(F ) P -a.s.

There are however ESP’s and bounded kernels for which the corresponding U -
statistic SLLN does not hold, as will be seen in §4. The proofs of (i) and (ii) will
be given in §4 and that of (iii) in §5. By conclusion (ii) it follows that the kernel
h(x, y) = |x− y|α for generalized Gini’s mean difference parameter satisfies the U -
parameter SLLN whenever

∫
R |x|

αdF (x) <∞ because |x−y|α ≤ (1+|x|)α(1+|y|)α.
For the case α = 1, since |x− y| = 2(x ∨ y) − (x + y), it follows from Proposition
2.9 below that h is also an L-parameter.
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The final proposition in this section demonstrates that the set L ∩ U , although
nonempty, is a rather small subset of L∪U . It is particularly noteworthy that any
U -parameter whose kernel h is not homogeneous of order 1 (e.g. h(x1, x2) =
(x1 − x2)2) is not an L-parameter, and on the other hand any continuous non-
polynomial J on [0, 1] generates an L-parameter which is not a U -parameter. By
way of introduction, for a distribution F with finite mean and for a positive integer
k, consider the well-known identity

(3)
k

∫ 1

0

uk−1F−1(u)du =

∫
R
xF k(dx) = E(X̂1 ∨ · · · ∨ X̂k),

where X̂1, . . . , X̂k are independent F -distributed r.v.’s.

The extension of (3) to polynomials by linearity shows that the L-parameter

determined by the polynomial J(u) =
∑d
k=1 ckku

k−1 is equal (for all F with finite
mean) to the U -parameter determined by the kernel

(4) h(x1, . . . , xd) = c1x1 + c2(x1 ∨ x2) + · · ·+ cd(x1 ∨ · · · ∨ xd).

The following proposition shows that the set L ∩ U consists precisely of these pa-
rameters.

Proposition 2.9. The following are equivalent:
(i) θ is both an L-parameter and a U -parameter;
(ii) θ is an L-parameter with a.c. representing measure whose density is a poly-

nomial;
(iii) θ is a U -parameter with kernel which is a linear combination of partial max-

ima (e.g. of form (4) above).

Proof. The equivalence of (ii) and (iii), hence also the implication (ii) or (iii) ⇒
(i), follows from the discussion preceding the statement of the proposition. It thus
remains only to prove that (i) implies (ii). For θ ∈ L ∩ U there is, by definition,
a Borel measure µ on [0, 1] and a measurable function h on Rd (for some d) such
that

(5) θ(F ) =

∫ 1

0

F−1dµ =

∫
Rd
hdF (d)

for all F for which either of these integrals is finite. To prove that in this case µ is
a.c. and J = Jµ is a polynomial, specialize the identity (5) to the one-parameter
family {Fp}0≤p≤1 of Bernoulli distributions, i.e. F−1

p (u) = 1 for 1− p < u ≤ 1 and
0 elsewhere. It is then easy to see that, whatever the function h, the right hand side
of (5) is a polynomial in p; hence also θ(Fp) = µ((1 − p, 1]) must be a polynomial
in p. Hence, µ is a.c. and J is a polynomial. �

3. The L-Parameter SLLN for Ergodic Stationary Processes

The main purpose of this section is to prove Theorem L. Note that it is suffi-
cient (by the Hahn-Jordan decomposition theorem) to establish the L-parameter
SLLN (1) for µ a probability, and therefore we assume without loss of generality
throughout that µ is a probability.
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Lemma 3.1. Suppose (Xk)k∈N is an ergodic stationary process with marginal F .
Then there is a countable set Γ ⊂ [0, 1] satisfying

(6) lim
n→∞

F−1
n (u) = F−1(u) a.s. for all u ∈ [0, 1]\Γ.

Proof. It follows from the ergodic theorem that Fn(x) → F (x) a.s. for all x ∈ R.
Consequently Fn → F weakly a.s., and hence (e.g. [Bi, page 287]) there is a
countable set Γ satisfying (6). �
Proof of Theorem L. To establish (i), note that P -almost surely,

F−1
n → F−1 µ− a.e. on [0, 1]

by Lemma 3.1 since µ is atomless. Also

‖F−1
n ‖L∞([0,1]) ≤ ‖F−1‖L∞([0,1]) = ‖X1‖L∞(Ω) a.s.,

so by Lebesgue’s bounded convergence theorem,∫
[0,1]

F−1
n dµ→

∫
[0,1]

F−1dµ a.s.,

which proves (i).
Part (ii) of Theorem L will be established by an approximation argument using

part (i). For M > 0, consider the continuous truncation function at M defined by

τM (x) =


−M, x < −M,

x, |x| ≤M,

M, x > M.

Note that τM is odd, τM (x) ↑ x as M →∞ for x > 0, and |τM (x)| = |x| ∧M . Also

x− τM (x) = sign (x)(|x| −M)1[−M,M]c(x).

If G is the distribution function of τM (X), then clearly

G−1 = τM ◦ F−1.

Since µ is continuous,∫
[0,1]

F−1
n dµ =

n∑
k=1

Xn;kµ

([
k − 1

n
,
k

n

])

=
n∑
k=1

τM (Xn;k)µ

([
k − 1

n
,
k

n

])
+

n∑
k=1

(Xn;k − τM (Xn;k))µ

([
k − 1

n
,
k

n

])
:= An +Bn.

Now,

An =

∫
[0,1]

F̂−1
n dµ
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where F̂n is the empirical distribution of (τM (Xk))1≤k≤n, and hence, by Theorem
L(i),

An →
∫

[0,1]

τM ◦ F−1dµ.

On the other hand,

|Bn| ≤
n∑
k=1

(|Xn;k| −M)1[|Xn;k|>M]µ

([
k − 1

n
,
k

n

])

≤
n∑
k=1

(|Xn;k| −M)1[|Xn;k|>M]
‖J‖∞
n

:= B̂n =
‖J‖∞
n

n∑
k=1

(|Xk| −M)1[|Xk|>M] → ‖J‖∞E((|X | −M)1[|X|>M])

a.s. by the ergodic theorem.
By assumption of integrability,

E((|X | −M)1[|X|>M])→ 0 as M →∞, and

∫
[0,1]

|F−1|dµ ≤ ‖J‖∞E(|X |) <∞.

By Lebesgue’s dominated convergence theorem∫
[0,1]

τM ◦ F−1dµ→
∫

[0,1]

F−1dµ as M →∞.

Accordingly, given ε > 0, fix M > 1 such that

E((|X | −M)1[|X|>M]) <
ε

‖J‖∞
, and |

∫
[0,1]

τM ◦ F−1dµ−
∫

[0,1]

F−1dµ| < ε

and obtain from the above that a.s.:

|
∫

[0,1]

F−1
n dµ−

∫
[0,1]

F−1dµ|

≤ |An −
∫

[0,1]

τM ◦ F−1dµ|+ B̂n + |
∫

[0,1]

τM ◦ F−1dµ−
∫

[0,1]

F−1dµ|

→
n→∞

E((|X | −M)1[|X|>M]) + |
∫

[0,1]

τM ◦ F−1dµ−
∫

[0,1]

F−1dµ|

< 2ε

and so the L-statistic SLLN (1) follows. �
The conclusion of this section is an example which shows that even the L-

parameter weak law of large numbers may fail for L-parameters with a.c. rep-
resenting measures with unbounded density, even in the classical iid setting. In
particular, the example gives a distribution F of a random variable X ≥ 0 with
EX < ∞, an a.c. representing measure µ with

∫
F−1dµ < ∞, and a subsequence

of positive integers {mk} satisfying P
(∫

[0,1] F
−1
mkdµ > k

)
≥ c > 0 for all k ∈ N.
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Example 3.2. First, a simpler discrete version will be given. Let n0 = 2, and for

k ∈ N let nk = 22k , so nk+1 = n2
k. Let X be a random variable with distribution

F (x) = 1− n−1
k+2 for x ∈ [nk, nk+1), so F−1(1− n−1

k+2) = nk and

EX =
∞∑
k=1

nk(n−1
k+1 − n

−1
k+2) ≤

∞∑
k=1

n−1
k <∞.

Let µ be the purely atomic Borel measure on [0, 1] with µ({1 − n−1
k+2}) =

(k + 1)n−1
k+1 − (k + 2)n−1

k+2, so µ([1− n−1
k+2, 1]) = (k + 1)n−1

k+1, and∫
[0,1]

F−1dµ =
∞∑
k=1

F−1(1− n−1
k+2)µ({1− n−1

k+2}) ≤
∞∑
k=1

nk(k + 1)n−1
k+1

=
∞∑
k=1

(k + 1)n−1
k <∞.

Note that
∫

[0,1]
F−1
n dµ ≥ Xn;nµ

(
1− 1

n , 1
]
, so for mk = nk+2 − 1,

P

(∫
[0,1]

F−1
mk
dµ > k

)
≥ P

(
Xmk;mkµ

(
1−m−1

k , 1
]
> k

)
= P (Xmk;mkµ({1− n−1

k+2}) > k) = P (Xmk;mk > nk+1k/(k − 1))

= 1− [1− F (nk+1k/(k − 1))]mk

= 1− (1− n−1
k+2)mk → 1− e−1 as k →∞.

To obtain an a.c. measure with this same property, simply replace the mass on
{1 − n−1

k } with the same mass uniformly distributed on the interval (1 − (nk −
1)−1, 1− n−1

k ) for each k. Likewise the discreteness of X is also not essential here,
and a continuous analog can be found by convolving F with a U(0, 1) distribution,
for example.

4. The U-Parameter SLLN for Ergodic Stationary Processes

The main purpose of this section is to prove Theorem U(i) and (ii), and give
examples to indicate the significance of the kernel being bounded by an integrable
product, and demonstrate the role played by continuity properties of the kernel. Let
(X1, X2, . . . ) be an ESP with sample space (Ω,A, P ) and marginal distribution F ,
let d ∈ N, and let h be a real-valued, measurable function on Rd with

∫
Rd |h|dF

(d) <
∞.

When d = 1, the U -parameter SLLN (2) is a consequence of the pointwise
ergodic theorem. When d ≥ 2, it is not, as the pointwise ergodic theorem establishes
convergence a.e. on Ωd with respect to the d-fold product measure P× . . .×P rather
than on Ω with respect to P (or on Ωd with respect to the diagonal measure). The
situation in (2) (when d ≥ 2) is complicated by the fact that the convergence is
demanded to be a.e. with respect to a measure which (when F is atomless) is
singular with respect to the measure of integration in the limit. This is seen in the
following example, which shows that the U -parameter SLLN (2) may even fail for
bounded kernels.
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Example 4.1. Consider the Lebesgue-measure-preserving and ergodic transfor-
mation T : [0, 1) → [0, 1) defined by Tω = 2ω(mod 1), and let Xi = T iω.
Denote by G the union of the graphs of T and all its iterates (G is sometimes
called the T -orbit of the diagonal), and let h = 1G. Since the pairs (Xi, Xj)
all lie in G, Uh(X1, . . . , Xn) = 1

n(n−1)

∑
1≤i6=j≤n h(Xi, Xj) = 1 for all n, but∫ ∫

h(x, y)dxdy = 0 because G clearly has (planar) Lebesgue-measure zero.

Let

HF = H
(d)
F = {h ∈ L1(F (d)) : (2) holds for all ESP with marginal distribution F}.

Lemma 4.2. If fi ∈ L1(F ) (1 ≤ i ≤ d) and h = f1 ⊗ · · · ⊗ fd, then h ∈ HF .

Proof. We have

Vh(X1, . . . , Xn) =
d∏
i=1

(
1

n

n∑
k=1

fi(Xk)

)
→

d∏
i=1

(∫
R
fidF

)
=

∫
Rd
hdF (d)

P -a.e. by the pointwise ergodic theorem and Fubini’s theorem. Then (2) follows
from Proposition 2.8. �

Also, HF is clearly a linear space, and in particular, linear combinations of F -
integrable product functions are in HF .

Lemma 4.3 (Sandwich lemma). Suppose that h ∈ L1(F (d)), and that for all ε > 0,
there are u, v ∈ HF such that |u− h| ≤ v F (d)-a.e., and θv(F ) < ε. Then h ∈ HF .

Proof. Given ε > 0, fix u, v ∈ HF satisfying the hypothesis. Then

|Uh(X1, . . . , Xn)− θh(F )| ≤ |Uh(X1, . . . , Xn)− Uu(X1, . . . , Xn)|
+ |(Uu(X1, . . . , Xn)− θu(F )|+ |θu(F )− θh(F )|
≤ U|h−u|(X1, . . . , Xn) + |Uu(X1, . . . , Xn)− θu(F )|+ θv(F ).

The first term in the right hand side is F (d)-a.e. bounded by Uv(X1, . . . , Xn), which
converges to θv(F ) since v ∈ HF , and the second term is o(1) since u ∈ HF . Since
ε is arbitrary, this implies Uh(X1, . . . , Xn)→ θh(F ) a.s. �
Proposition 4.4. If h : Rd → R is bounded with compact support and continuous
at F (d)-a.e. point, then h ∈ HF .

Proof. Since h is Riemann-Stieltjes integrable with respect to F (d), for any ε > 0,
there are d-dimensional step functions u and v (i.e. linear combinations of products
of indicators of intervals) satisfying the approximation condition of Lemma 4.3. �
Proof of Theorem U(i). Assume d = 2, the general argument being analogous. Let
|h| ≤ f ⊗ f with f F -integrable, and let

Γ = {x ∈ R : F ({x}) > 0} =
∞⋃
n=1

Γn

where #Γn <∞, and Γn ⊆ Γn+1.
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Without loss of generality h : Γ× Γ→ R and

h =
∑
a,b∈Γ

h(a, b)1{a}×{b}.

Set
uN =

∑
a,b∈ΓN

h(a, b)1{a}×{b},

and
vN = (f1ΓcN

⊗ f1ΓN ) + (f1ΓN ⊗ f1ΓcN
) + (f1ΓcN

⊗ f1ΓcN
).

By Lemma 4.2 uN , vN ∈ HF , |h− uN | ≤ vN , and∫
Γ2

vNdF
(2) =

(∫
Γ

fdF

)2

−
(∫

ΓN

fdF

)2

→ 0

as N →∞, and (2) follows from Lemma 4.3. �
Proof of Theorem U(ii). Again suppose d = 2, the general argument being anal-
ogous. Suppose |h| ≤ f ⊗ f , where f is F -integrable. Fix M > 0 so that
P (|X | = M) = 0 and F (2)([|h| = M ]) = 0, (i.e. M is a continuity point of

the distributions of |X | and of |h(X, X̂)|, where X, X̂ are iid with distribution F ).
Define uM by

uM(x, y) = h(x, y)1[|h|≤M](x, y)1[−M,M]×[−M,M](x, y),

and

vM = (f ⊗ f)

(
1[−M,M]c×R + 1R×[−M,M]c + 1[f≥

√
M]×R + 1R×[f≥

√
M]

)
.

Clearly, vM ∈ H(2)
F as a sum of F -integrable products. Since h is F (2)-a.e. contin-

uous and F (2)([|h| = M ]) = P (|X | = M) = 0, uM is bounded, of compact support

and F (2)-a.e. continuous. Therefore uM ∈ H(2)
F by Proposition 4.4. To see that

|h− uM | ≤ vM , note that

|h− uM | ≤ |h|
(

1[|h|>M] + 1([−M,M]×[−M,M])c

)
≤ (f ⊗ f)

(
1[f⊗f≥M] + 1R×[−M,M]c + 1([−M,M]c×R

)
≤ vM F (2)-a.e.,

since a, b ≥ 0, ab ≥M ⇒ a ∨ b ≥
√
M . Finally, by Fubini,∫

R2

vMdF
(2) = 2E(f(X))E

(
f(X)(1[f(X)≥

√
M] + 1[|X|>M])

)
→ 0

as M →∞, and the conclusion follows from Lemma 4.3. �
The next example shows that one cannot omit entirely the condition of bound-

edness by integrable products in Theorem U(ii).
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Example 4.5. Let Z0, Z1, . . . be independent, {0, 1}-valued, symmetrically dis-
tributed random variables. Let {Yn : n ≥ 0} be iid rv’s uniform on [0, 1], and
independent of {Zn : n ≥ 0}. Define {Xn : n ≥ 0} by X0 = Y0, and

Xn+1 =

{
Xn if Zn = 1,

Yn+1 if Zn = 0.

Since {Xn} is stationary, and Lebesgue measure is the unique invariant measure
(in fact Lebesgue measure attracts every initial distribution), {Xn : n ≥ 0} is an
ESP and Xn is uniform on [0, 1]. Now choose h : [0, 1] × [0, 1] → R+, continuous
on [0, 1]× [0, 1] \ {(0, 0)}, and such that

∫
[0,1]×[0,1]

hd(λ× λ) = 1 and h(x, x) = 1
x3 .

It will now be shown that the U -SLLN fails for h and {Xn}. Define i0 < i1 <
. . . inductively by i0 = 0 and ik+1 = min{i > ik : Zi = 0 and Zi+1 = 1}, so
{Xin} are conditionally iid U(0, 1) given {Zn : n ≥ 0}, and Xin+1 = Xin . Since
limn→∞ in/n = 4 a.s. (by the ergodic theorem),

lim sup
n→∞

Uh(X1, . . . , Xn) ≥ lim sup
n→∞

1

n2
h(Xin , Xin+1) = lim sup

n→∞

1

n2

1

X3
in

=∞ a.s.,

by the Borel-Cantelli Lemma, the conditional independence of {Xin} and the fact
that P (Xin ≤ 1

n | Zn : n ≥ 0) = 1
n .

It is not clear whether the kernel of Example 4.5 violates the U -statistic weak
law. The kernel in the next example indeed does this.

Example 4.6. Let {Yk} be iid U [0, 1], and let g : (0, 1]→ R+ be a non-negative,
decreasing continuous function such that g(Y0) has a positive stable law of index
1
4 . If Sn =

∑n
k=1 g(Yk); then E(e−tSn) = e−cnt

1/4

where c > 0. Fix M > 0; then
for all t > 0, by Markov’s inequality,

P ([Sn < Mn2]) = P ([e−tSn ≥ e−Mtn2

]) ≤ eMtn2−cnt1/4

,

and choosing t > 0 which minimizes this yields

P ([Sn ≤Mn2]) ≤ e−c′n2/3

where c′ = c′(M) > 0.

It follows from Borel-Cantelli that

1

n2

n∑
k=1

g(Yk)→∞ a.e.

Now choose h : [0, 1]× [0, 1] → R+, continuous on [0, 1]× [0, 1]\{(0, 0)}, and such
that ∫

[0,1]×[0,1]

hd(λ× λ) = 1

and
h(x, x) = g(x).
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It will now be shown that the U -statistic WLLN fails for h and the {Xn} as in
Example 4.5. Let i1 < i2 < . . . be as in that example; setting

tn = max{k : ik ≤ n} ∼
n

4
a.s.,

it follows that

Uh(X1, . . . , Xn) ≥ 1

n(n− 1)

∑
1≤j≤tn

h(Xij , Xij+1)

=
1

n(n− 1)

∑
1≤j≤tn

g(Xij )→∞ a.s.

To obtain a discrete version of this example, simply replace g by a function f ≥ g
defined by f(y) = n on the set {y : n− 1 < g(y) ≤ n}, n = 1, 2, . . . .

The conclusion of this section gives a sufficient condition (Proposition 4.9) for the

indicator function of a countable union of product sets to be in H
(d)
F . The method

works in the absence of continuity and uses approximation with error estimated by
the maximal function of the U -statistic. Although all indicator functions of finite
unions of product sets are in HF (Lemma 4.2), this is not true for countable unions,
as can be seen by looking at such a union of less than full measure which contains
the T -orbit G in Example 4.1.

For h : Rd → R measurable and an ESP (Xk)k∈N, let

M(h) = M(h)(X1, X2, . . . ) = sup
n≥1
|Uh(X1, . . . , Xn)|.

Lemma 4.7. Suppose h ∈ L1(F (d)), and that for all ε > 0 there exists u(ε) ∈
H

(d)
F such that E[M(|h − u(ε)|)] < ε for all ESP with marginal F , and that∫
Rd |h− u(ε)|dF (d) < ε. Then h ∈ H(d)

F .

Proof. For ε > 0, let u(ε) ∈ H(d)
F satisfy the hypotheses. Then

Uh(X1, . . . , Xn) = Uu(ε)(X1, . . . , Xn) + Uh−u(ε)(X1, . . . , Xn).

Since u(ε) ∈ H(d)
F , Uu(ε)(X1, . . . , Xn)→

∫
Rd u(ε)dF (d) a.s. Also,

|Uh−u(ε)(X1, . . . , Xn)| ≤M(|h− u(ε)|),

so for all ε > 0,

G(ε) := lim sup
n→∞

|Uh(X1, . . . , Xn)−
∫
Rd
hdF (d)|

≤
∫
Rd
|h− u(ε)|dF (d) +M(|h− u(ε)|) ≤ ε+M(|h− u(ε)|),

since
∫
Rd |h − u(ε)|dF (d) ≤ EM(|h − u(ε)|) < ε. Thus P ([G(ε) ≥ ε +

√
ε]) ≤

P ([M(|h− u(ε)|) ≥ √ε) ≤ √ε, so G(n−4)→ 0 a.s. by Borel-Cantelli. �
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Given a1, . . . , ad ∈ [0, 1], set

md(a1, . . . , ad) = min
(x1,...,xd)∈[0,1]d,

∑d
i=1 xi=1

d∏
i=1

axii
1− xi

.

It is not hard to show that

m2(a, b) =
(

2 +
√
A2 + 4

)
e
A+2−

√
A2+4

2 (a ∧ b)

where

A = log

(
a ∨ b
a ∧ b

)
.

Note that

(7) m2(a, a) = 4a and m2(a, b) ∼ (a ∧ b)A as A→∞.

Also, there are constants αd > 0 (d ≥ 3) such that

(8) m2(ad;1, ad;2) ≥ md(a1, . . . , ad) ≥ αdm2(ad;1, ad;2) ∀ a1, . . . , an ∈ [0, 1]

where ad;1 ≤ ad;2 ≤ · · · ≤ ad;d are the order statistics of the constants a1, . . . , ad.
The right hand inequality is not used in the sequel and is included for the interested
reader.

Lemma 4.8. If A1, . . . , Ad ∈ B(R) and (Xk)k∈N is an ESP with marginal F , then

E (Md(1A1×···×Ad)) ≤ md(F (A1), . . . , F (Ad)).

Proof. Note first that Md(1A1×···×Ad) = Md(1A1 ⊗ · · · ⊗ 1Ad) ≤
∏d
i=1 M1(1Ai), so

for all (x1, . . . , xd) ∈ [0, 1]d with
∑d
i=1 xi = 1,

E (Md(1A1×···×Ad)) ≤ E
(

d∏
i=1

M1(1Ai)

)
≤

d∏
i=1

‖M1(1Ai)‖L1/xi(P )

≤
d∏
i=1

1

1− xi
‖1Ai‖L1/xi(P ) =

d∏
i=1

F (Ai)
xi

1− xi
,

where the second inequality follows by Hölder’s inequality, and the third inequality
by the maximal inequality (cf. [Ga], Theorem 2.2.3, p. 25). Minimizing this over
x1, . . . , xd establishes the desired inequality. �
Proposition 4.9. Suppose that F is a probability distribution on R and that A =⋃∞
n=1A

(n)
1 × · · · ×A(n)

d , where A
(n)
i ∈ B(R).

If
∑∞
n=1

∏d
k=1 F (A

(n)
k ) < ∞, and

∑∞
n=1 md(F (A

(n)
1 ), . . . , F (A

(n)
d )) < ∞, then

1A ∈ H(d)
F .

Proof. Let ε > 0. By the assumptions, there exists N = N(ε) ≥ 1 such that

∞∑
n=N

d∏
k=1

F (A
(n)
k ) < ε, and

∞∑
n=N

md(F (A
(n)
1 ), . . . , F (A

(n)
d )) < ε.



STRONG LAWS FOR L- AND U-STATISTICS 2859

Set u = u(ε) = 1B, where

B = B(ε) =
N⋃
n=1

A
(n)
1 × · · · ×A(n)

d .

Since B can also be written as a disjoint union of product sets, it follows by Lemma

4.2 that u ∈ H(d)
F as a sum of product functions.

Since 0 ≤ 1A − u ≤
∑∞
n=N 1

A
(n)
1
⊗ · · · ⊗ 1

A
(n)
d

, it follows that∫
Rd
|1A − u|dF (d) ≤

∞∑
n=N

d∏
k=1

F (A
(n)
k ) < ε;

and

E[M(|1A − u|)] ≤
∞∑
n=N

E[M(1
A

(n)
1
⊗ · · · ⊗ 1

A
(n)
d

)]

≤
∞∑
n=N

µd(F (A
(n)
1 ), . . . , F (A

(n)
d )) < ε.

Thus the conditions of Lemma 4.7 are satisfied, and so 1A ∈ H(d)
F . �

Example 4.10. Let F be uniform on [0, 1], let {qn : n ≥ 1} denote the set of
points in [0, 1]2 with rational coordinates, and let A =

⋃∞
n=1 S(qn,

1
4n ) where

S((r, s), δ) := {(x, y) ∈ [0, 1]2 : |x− r|, |y − s| < δ}.
The setA is dense and open in [0, 1]2, but not of full measure, so 1A is not continuous

at F (2)-a.e. point, and 1A ∈ H(2)
F cannot be deduced from Theorem U(ii).

To see that in fact 1A is in H
(2)
F , note that S(qn, 1/4

n) = In×Jn where F (In) =
F (Jn) = 2/4n, so since m2(a, a) = 4a,

∞∑
n=1

m2(F (In), F (Jn)) =
∞∑
n=1

8

4n
<∞, and

∞∑
n=1

F (In)F (Jn) <∞.

By Proposition 4.9, 1A ∈ H(2)
F .

Higher order examples can be constructed using the following result.

Corollary 4.11. Let F be a probability distribution on R, let d ≥ 1, and let A =⋃∞
n=1A

(n)
1 × · · · × A(n)

d , where A
(n)
i ∈ B(R). If εn := min1≤k≤d F (A

(n)
k ) satisfies

lim supn→∞ εn < 1 and
∑∞
n=1 εn log(1/εn) <∞, then 1A ∈ H(d)

F .

Proof. The assumptions imply

∞∑
n=1

d∏
k=1

F (A
(n)
k ) ≤

∞∑
n=1

εn <∞;

and
∞∑
n=1

md(F (A
(n)
1 ), . . . , F (A

(n)
d )) ≤

∞∑
n=1

m2(εn, 1) <∞

by (7) and (8).

By Proposition 4.9, 1A ∈ H(d)
F . �
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5. Weakly Bernoulli Sequences

Example 4.1 shows that the U -statistic SLLN may fail for bounded measurable
kernels whose discontinuity set is large. On the other hand, Hoeffding [Hoe] proved
that the U -statistic SLLN holds for iid random variables and any bounded mea-
surable kernel. The main purpose of this section is to extend Hoeffding’s result
to weakly Bernoulli ESP, proving Theorem U(iii). Actually, a somewhat stronger
result will be proved.

Definition 5.1. A process (Xk)k∈N is called F -regular if for every ε > 0 there is
an integer m ≥ 1 such that for every N ≥ 1, there exists (enlarging the probability
space if necessary) an iid sequence of N -dimensional random vectors ξ′1, ξ

′
2, . . .

whose coordinate marginal distributions are F and which satisfy

lim
K→∞

K−1#{k ≤ K : ξk 6= ξ′k} ≤ ε a.s.,

where ξk = (X(k−1)(N+m)+1, . . . , XkN+(k−1)m), k = 1, 2, . . . .

F -regularity of a sequence says that it is “almost iid for SLLN purposes,” in the
sense that periodic blocks of arbitrarily long sequences differ from those of an iid
sequence only over a set of indices of arbitrarily small density. The next theorem
says that the U -statistic SLLN holds for F -regular sequences and kernels bounded
by integrable products.

Theorem 5.2. Let (Xk)k∈N be a F -regular process and let h : Rd → R be measur-
able and bounded by an F -integrable product. Then

Uh(X1, . . . , Xn)→ θh(F ) a.s.

Proof. In the interest of simplicity, the case d = 2 is presented; the general argument
is similar. Using the truncation argument in the proof of Theorem U(ii), reduce
to the case where h is bounded, say |h| ≤ 1. Let ε > 0, fix m = m(ε) as in
Definition 5.1 and fix an integer N so m

m+N < ε. The idea is to split the integers

up into consecutive blocks of length N (the big blocks) and length m (the small
blocks), respectively and then essentially discard the small blocks and approximate
the sequence of large blocks by an iid sequence. Let nk = (k−1)(m+N) and define
the block vector

ξk = (Xnk+1, . . . , Xnk+N ).

Define the kernel ĥ : RN × RN → R by

ĥ(ξ, η) =
1

N(N − 1)

∑
1≤i6=j≤N

h(Xi, Yj)

where ξ = (X1, . . . , XN ) and η = (Y1, . . . , YN ). Note that for independent ξ and
η (each with F -distributed individual coordinates but otherwise with any joint

distribution on RN ), Eĥ(ξ, η) =
∫
R2 hdF

(2). If n is the sample size, the index of
the last block fully contained in {1, 2, . . . , n} is given by p := [ n

N+m ]. Then∣∣∣∣∣∣Uh(X1, . . . , Xn)− 1

n(n− 1)

∑
1≤k 6=`≤p

nk+N∑
i=nk+1

n`+N∑
j=n`+1

h(Xi, Xj)

∣∣∣∣∣∣ ≤ 2mp

n
+O

(
1

p

)
,
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so ∣∣∣∣∣∣Uh(X1, . . . , Xn)− 1

n(n− 1)

∑
1≤k 6=`≤p

N(N − 1)ĥ(ξk, ξ`)

∣∣∣∣∣∣ ≤ 3ε for p large.

Let K denote the set of k for which ξk = ξ′k. Then |Kc ∩ [1, p]| < εp for all p large,
so, a.s.,∣∣∣∣∣∣

∑
1≤k 6=`≤p

ĥ(ξk, ξ`)−
∑

1≤k 6=`≤p
ĥ(ξ′k, ξ

′
`)

∣∣∣∣∣∣ ≤
∑

1≤k 6=`≤p,k 6∈K or ` 6∈K
|ĥ(ξk, ξ`)− ĥ(ξ′k, ξ

′
`)|

≤ 4p|Kc ∩ [1, p]| < 4p2ε for all p large.

By Hoeffding’s Theorem ([Hoe], the U -statistic SLLN for iid rv’s),

lim
p→∞

1

p(p− 1)

∑
1≤k 6=`≤p

ĥ(ξ′k, ξ
′
`) = E(ĥ(ξ′1, ξ

′
2)) =

∫
R2

hdF (2) a.s.

These estimations imply that

lim sup
n→∞

|Uh(X1, . . . , Xn)−
∫
R2

hdF (2)| < ε+ 4ε3. �

The next basic theorem gives the link between F -regularity and weak Bernoulli;
as no reference is known to the authors, the proof is given for completeness. To-
gether with Theorem 5.2, this will complete the proof of Theorem U(iii). Note
that the converse of Theorem 5.3 is not true, since F -regularity does not imply
stationarity (e.g., the deterministic sequence Xk = 0 if k 6= 2n and = 1 if k = 2n
is F -regular with F = δ0, but is not stationary). Stationarity was not needed in
Theorem 5.2, but is crucial in Theorem 5.3.

Recall that the stationary sequence (Xk)k∈N is called weakly Bernoulli (WB)
(also known as absolutely regular) if d(m; k)→ 0 uniformly in k as m→∞, where
d(m; k) is the supremum of

∑n
i=1 |P (Ai∩Bi)−P (Ai)P (Bi)| over all families of dis-

joint sets Ai∩Bi, i = 1, 2, . . . , n, where Ai ∈ σ(X1, . . . , Xk) and Bi ∈ σ(Xk+m, . . . ).

Theorem 5.3. If (Xk)k∈N is weakly Bernoulli with marginal F , then it is F -
regular.

The following coupling lemma of Berbee is one of the key tools in the proof.
Here

⊥ (X,Y ) =
1

2
‖P(X,Y ) − PX × PY ‖

is the dependence between random vectors X and Y , where ‖ · ‖ denotes the varia-
tional norm on measures, PX , PY , P(X,Y ) are the distributions of X,Y and (X,Y )
respectively, and PX × PY is the product measure. Note that ⊥ (X,Y ) = 0 iff X
and Y are independent.
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Lemma 5.4 ([Ber, Corollary 4.2.5]). Suppose that X,Y are random variables de-
fined on a probability space (Ω, P ). Then there is a random variable Y ′ defined on
(Ω× [0, 1], P ′), where P ′ = P × λ, such that:

(i) Y and Y ′ have the same distribution;

(ii) ⊥ (X̂, Y ′) = 0;

(iii) P ′(Ŷ 6= Y ′) =⊥ (X,Y );
(iv) PZ|(X,Y,W ) = P ′

Ẑ|(X̂,Ŷ ,Ŵ ,Y ′)
for all rv’s Z and W on Ω,

where for rv’s Z and W on Ω, Ẑ is defined on Ω × [0, 1] by Ẑ(ω, t) = Z(ω), and
PZ|W denotes the P -conditional distribution of Z given W .

Proof of Theorem 5.3. Choose m ≥ 1 so that d(m) := supk d(m; k) < ε and for
fixed N define ξk = (X(k−1)(N+m)+1, . . . , XkN+(k−1)m), and set ξ′1 = ξ1. Without

loss of generality, take the underlying measure space to be (RN × RN )N, which is
a complete separable metric space. In Lemma 5.4 take X = (ξ1, ξ

′
1), Y = ξ2 and

denote the resulting Y ′ by ξ′2. Clearly P (ξ2 6= ξ′2) =⊥ (ξ2, ξ1). Note that for all
k ≥ 3,

Pξk|(ξ1,...,ξk−1,ξ′1,ξ
′
2) = Pξk|(ξ1,...,ξk−1),

and thus by a straightforward calculation (cf., [Ber, Prop. 4.1.1])

⊥ (ξk, {ξ1, . . . , ξk−1, ξ
′
1, ξ
′
2}) =⊥ (ξk, {ξ1, . . . , ξk−1}).

Apply Lemma 5.4 again with X = (ξ1, ξ2, ξ
′
1, ξ
′
2) and Y = ξ3 to find Y ′, now denoted

by ξ′3, so that

⊥ (ξ′3, {ξ1, ξ2, ξ′1, ξ′2}) = 0

and

P (ξ′3 6= ξ3) =⊥ (ξ3, {ξ1, ξ2}).

This procedure when iterated yields a measure µ on Ω × Ω with the following
properties:

(9) µ ◦ π−1
1 = µ1 has the distribution of the original {ξk} sequence;

(10) µ ◦ π−1
2 = µ2 has iid coordinates with marginal that of ξ1;

(11) µ{(ω1, ω2) : ω1(k) 6= ω2(k)} ≤ d(m) for all k,

where πi is the projection onto the i-th coordinate, and ωi(k) is the k-th coordinate
of ωi ∈ (RN )N, i.e., an element of RN .

Claim 1. The collection of µ’s satisfying (9)–(11) is convex and weakly closed
(against bounded continuous functions).

The convexity is obvious, while for weak closure note that for fixed k the set
in (11), call it Sk, is open. If f is a continuous function between 0 and 1 with
support in Sk, and µα → µ weakly as α → ∞, with µα satisfying (9)–(11), then
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since 0 ≤ f ≤ 1Sk ,

d(m) ≥
∫

1Skdµ
α ≥

∫
fdµα →

∫
fdµ.

Thus for all such f ,
∫
fdµ ≤ d(m), and since∫

1Skdµ = sup

{∫
fdµ : 0 ≤ f ≤ 1Sk

}
,

it follows that
∫

1Skdµ ≤ d(m), which establishes Claim 1.
Let σ denote the shift on Ω × Ω with σ1, σ2 the shift on the first and second

coordinates. Note that µ1 ◦ σ−1
1 = µ1, µ2 ◦ σ−1

2 = µ2. Form the sequence

(12)
1

L

L∑
`=1

σ` · µ = µL.

Note that µL continues to satisfy (9)–(11). Take a limit point µ̂ which exists by
tightness (if µ1 and µ2 are two fixed regular probability measures on Ω, then the
family of all µ on Ω× Ω which project onto µ1, µ2, respectively, is tight). Since in
variation ‖σ · µL − µL‖ ≤ 2/L, it is clear that σ · µ̂ = µ̂. That is, µ̂ is a stationary
measure under σ, satisfying (9)–(11), so (cf. [vN]) µ̂ can be decomposed as

µ̂ =

∫ 1

0

µ̂tdν(t),

where ν is a Borel probability measure on [0, 1], and µ̂t are stationary ergodic
measures on Ω × Ω. Since both µ1 and µ2 were ergodic under σ1, σ2 respectively,

it follows that for ν-a.e. t, πi(µ̂t) = µi for i = 1, 2, since πi · µ̂ =
∫ 1

0
πi · µ̂tdν(t).

Finally, since d(m) ≥ µ̂(S1) =
∫ 1

0 µ̂t(S1)dν(t), there must be a set of t values of
positive measure where µ̂t(S1) ≤ d(m). Choose any one, call it t0, and observe that
µ̂t0 is an ergodic stationary measure satisfying (9)–(11). Note that by stationarity
µ̂t(Sk) = µ̂t(S1) for all k ≥ 1. Now the ergodic theorem applied to 1S1 yields

lim
K→∞

1

K

K∑
k=1

1S1(σk(ω1, ω2)) =

∫
1S1(ω1, ω2)dµ̂t0(ω1, ω2)

= µ̂t0(S1) ≤ d(m) µ̂t0 -a.e.

and
∑K
k=1 1S1(σk(ω1, ω2)) = #{h ≤ K : ξk 6= ξ′k}, where the (ξk, ξ

′
k) are now the

desired rv’s, with probability measure given by µ̂t0 . �
Together, Theorems 5.2 and 5.3 prove the U -statistic SLLN for weak Bernoulli

sequences with all kernels which are bounded by an integrable product (Theorem
U(iii)). The ESP in Example 4.5 is weakly Bernoulli, the kernel there is integrable
(and continuous except at one point), but nevertheless the U -statistic SLLN fails.
This shows that even when the ESP is weakly Bernoulli, one cannot omit entirely
the condition of boundedness by integrable products in Theorem U.
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6. An Application

Suppose that (Ω, ρ) is a metric space, and that T : Ω → Ω is a measurable
map with invariant measure µ. In many examples it turns out that there exists a
constant δ such that

D(ε) = µ× µ({(x, y) : ρ(x, y) ≤ ε}) ∼ Cεδ

as ε → 0. The exponent δ is called the correlation dimension of µ. For example,
if Ω ⊂ Rm and µ is absolutely continuous with bounded density, then δ is the
topological dimension m.

One possible estimation procedure for δ (suggested in [G-P]) is to estimate D(ε)
by its empirical analog

Dn(ε) :=
1

n(n− 1)
#{1 ≤ i 6= j ≤ n : ρ(Xi, Xj) ≤ ε} = Uh(X1, . . . , Xn)

where h : R2 → R is h(x, y) = 1{ρ(x,y)≤ε}. A regression procedure based on
logD(ε) ≈ logC + d log ε is then used to estimate δ.

Note that this kernel is covered by Theorem U(ii), and Dn(ε) converges a.s. in
the case

F × F ({(x, y) : ρ(x, y) = ε}) = 0

where F is the distribution of X . This convergence is also established (by different
methods) in [Pe, Theorem 1].

For Ω ⊂ Rm (and ρ(x, y) = |x− y|), an alternative procedure (presented in [Ta])
is first to generate iid observations Ri = |Wi − Yi| where dist.(Wi, Yi) = µ × µ.
Assuming that actually for some ε0 > 0,

D(ε) = C · εδ for all ε ≤ ε0,

the conditional distribution of Zi = Ri/ε0 given Ri ≤ ε0 is

P (Zi ≤ t|Zi ≤ 1) = tδ, 0 ≤ t ≤ 1.

Deleting the observations Zi that exceed 1, it is then possible to estimate δ by
standard methods such as maximum likelihood or UMVU. Note that the maximum
likelihood estimate of δ is the reciprocal of

1

n

n∑
i=1,Zi≤1

− logZi =
1

n

n∑
i=1,|Wi−Yi|≤ε0

− log

(
|Wi − Yi|

ε0

)
,

while the UMVU estimator is n−1(n− 1) times this.

The problem with this procedure is that it is not clear how to generate iid
observations of |Wi − Yi| based on the non-iid Xi(ω) = T iω. A natural idea to
remedy this would be to study the average of all log |Xi −Xj |, 1 ≤ i 6= j ≤ n:
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Uĥ(X1, . . . , Xn) =
1

n(n− 1)

∑
1≤i6=j≤n

− log |Xi −Xj |,

where ĥ : R2 → R is ĥ(x, y) = − log |x− y|.
Unfortunately, this cannot work. This kernel log |x − y| does not satisfy the

criteria of Theorem U, and moreover the following example shows that an SLLN
for U -statistics based on it cannot be expected (even when the underlying ESP is
WB).

Example 6.1. Let W1,W2, . . . be iid with a continuous distribution F such that

E

(
| log |W1 −W2||

)
<∞,

and let Y1, Y2, . . . be iid Bernoulli with P (Yi = 1) = p, 0 < p < 1, independent of
(W1, . . . ). Define a stationary, weakly Bernoulli process with invariant distribution
F by X1 = W1 and Xn = Wn(1− Yn) +Xn−1Yn for n > 1. Now (with probability
one) there are infinitely many n with Xn = Xn+1 so the U -statistic with kernel

ĥ(x, y) = − log |x− y| does not satisfy the SLLN, diverging to ∞.
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