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ON THE GROUP OF HOMOTOPY EQUIVALENCES
OF A MANIFOLD

HANS JOACHIM BAUES

ABSTRACT. We consider the group of homotopy equivalences (M) of a simply
connected manifold M which is part of the fundamental extension of groups
due to Barcus-Barratt. We show that the kernel of this extension is always a
finite group and we compute this kernel for various examples. This leads to
computations of the group £(M) for special manifolds M, for example if M
is a connected sum of products S™ x S™ of spheres. In particular the group
E(S™ x S™) is determined completely. Also the connection of £(M) with the
group of isotopy classes of diffeomorphisms of M is studied.

The group £(X) of homotopy equivalences of a space X is the set of homotopy
classes of homotopy equivalences X — X. The group structure is induced by map-
composition. The group £(X), i.e. the group of automorphisms of the homotopy
type of X, can be regarded as the homotopy symmetry group of the space X. In
the literature there has been a lot of interest in the computation of such groups;
compare for example the excellent survey article of M. Arkowitz [2].

This paper is concerned with the structure of £(M) in case M is a closed, com-
pact, oriented manifold, or more generally a Poincaré-complex. The computation
of this group is an important step for the diffeomorphism classification of manifolds
by surgery, [40]. The group (M) is also important for Cooke’s theory [17] of re-
placing homotopy actions by actions. For a differential manifold M the group £(M)
is comparable with the group ITyDiff (M) of isotopy classes of diffeomorphisms of
M. In fact, via the J-homomorphism there is a striking similarity between these
groups as is shown in § 10 below.

Still there is little known on the group £(M) in the literature; only very specific
examples are computed, see [2]. This paper contains on the one hand general results
on the structure of the group £(M), see §1, ... ,§5; on the other hand our methods
are used for explicit computations, see §6, ... ,§10.

Let e be a small open cell of the simply connected m-dimensional manifold M

L]

and let M = M — e be the complement. The inclusion f : S™~! C M of the
boundary is the attaching map for M. We consider the fundamental extension
of groups due to Barcus-Barratt [42],

EM | M)»— EM) —» EM,+f).
Here E(M | M) is the subgroup of £(M) consisting of all elements which can be
represented by an orientation preserving map M — M under M. This group is

Received by the editors August 17, 1994.
1991 Mathematics Subject Classification. Primary 55010, 57050.

©1996 American Mathematical Society
4737



4738 H. J. BAUES

abelian and an £(M, £ f)-module where £(M, £ f) is the group of elements in E(M)
compatible with the attaching map up to sign.

Theorem (1.4). For a simply connected Poincaré-complex M the abelian group
E(M | M) is finite.

We now describe examples of fundamental extensions. For a product of spheres,
S™ x S", we get

Theorem (6.3). Forn > 1 one has the split extension of groups
T, ®T, — ES" xS > G,

where T}, is the torsion subgroup of Ilg,4+1S™T' and where G, is the subgroup of
Gla(Z) in (6.1). The direct sum T, ® T, is a Gy-module in a canonical way,
see (6.3). In (6.2) the group T,, is listed for n < 10.

Various authors worked on the group £(S™ x S™) but this result, for the first
time, determines the group completely, see §6. In (6.5) we consider the groups
E(S™ x S™) for m > n. A computation of such groups is achieved for certain
products S™ x S™, see Theorem (6.7). In fact, we consider the ¢-fold connected
sum

gS™ x S" = (8™ x SM)# - H#(ST x S™)
and describe the fundamental extension for £(¢gS™ x S™) for 2 <n < m < 2n — 2,
g > 1, in Theorem (7.9). As a special case we get the following solution:

Corollary (7.10). For S™ x S™ = 56 x §%,5% x §°, % x 85, 98 x §6, 59 x S6,
S10 % S one has an isomorphism of groups

E(gS™ x 8™) = Gy(m,m,e,0).

Here the right-hand side is the algebraically defined group in (7.8) depending only
on the data in the list of (7.10). For example for ¢S° x S® we have ¢ = —1,
7 =17/24, 7' =7/6, m = Z/2, 72 = (Z/2)?, and ® : 7T @ = Z/2 — ma is the
inclusion of the first summand Z/2 in .

For a general connected sum M of products of spheres we describe £(M), up to
an extension problem, in terms of homotopy groups of spheres, see Theorem (7.6).
The next result computes £(M) for a large class of highly connected manifolds
completely. It can be applied to the connected sum M = ¢gS™ x S™.

Theorem (8.14). Let M be an (n — 1)-connected 2n-dimensional manifold which
is almost parallelizable, n > 2. Then one has the fundamental extension

H,(M)®T, — EM) — Aut(bm)

where 6pr is the extended intersection form of M and where T, = Tor H2n+1(5”+1).
This extension is split if in addition n is odd or n € {2,6}. For the canonical
structure of H,(M) ® Ty, as an Aut(dpr)-module, see (8.14).

In Theorem (8.14) we obtain a more general result for Poincaré-complexes. In the
final section we compare diffeomorphisms of a manifold and homotopy equivalences;
for almost parallelizable (n — 1)-connected 2n-manifolds we describe the image of
the canonical homomorphism

¥ : TIGDiff (M) — E(M)
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in terms of the J-homomorphism, see Theorem (10.3). For the Hopf-dimensions
4, 8 and 16 we get the following result where we do not assume that M is almost
parallelizable.

Theorem (9.3) and (9.5). Let M be an (n — 1)-connected 2n-dimensional man-
ifold with n € {2,4,8}. Then one has the fundamental extension

E(M | M) — E(M) — Aut(6a;)

which is split for n = 2. Here E(M | M) is the following Z/2-vectorspace:
Kerwy : Hy(M)®Z/2 —7Z/2 forn=2,

o JHi(M)®Z/2 forn =4,
EM | M) = (Hs(M) ® Z/2)* forn=8w#0,
(Hs(M)®Z/2)3 forn=8w=0.

The map wo is given by the second Stiefel-Whitney class of M and we set w # 0 if
the intersection form of M is odd and w = 0 otherwise. For the intricate structure

of E(M | J\.4) as an Aut(6pr)-module see (9.5).

Hence this theorem determines £(M) for n = 2 completely and for n = 4,8 up
to an extension problem. The case n = 2 of the theorem is the main result in a

recent paper of Cochran-Habegger [18]; the computation of £(M | M) for n = 2
was already achieved in [11]. As a simple application we get, see (9.1):
ECR)=7Z/2, EMP,) 2Z/2, E(Ca)=Z/2DZ)2.

The group £(RP,) is treated in [9]. The “quadratic algebra” developed in [13]
is crucial for the proofs. Along the way we correct a collection of errors in the
literature on the group £(M). The theorems in this introduction are applications
and illustrations of our new techniques for the computation of £(M). We get the
surprising general result:

Theorem (3.5). Let M be an (n—1)-connected manifold of dimension m < 3n—2,
n > 2, and assume the attaching map for M vanishes under suspension, i.e. L f ~

0. Then one has an isomorphism of E(M,+f)-modules
EM | M) 2Im{Y : 1, — I, 1 XM}
where Y is the suspension homomorphism.

We also compute (M | M) for the delicate dimension m = 3n — 1 and for
connected sums M = My#M;. Moreover we obtain a criterion for the existence of
a splitting of the fundamental extension, see §5. Further applications will appear
in [15].

1. THE FUNDAMENTAL EXTENSION FOR &(M)

Let n > 2 and let M be an (n — 1)-connected closed manifold of dimension
m = 2n + k or more generally let M be an (n — 1)-connected Poincaré-complex of
dimension m = 2n + k, k > 0. Poincaré-duality and homology decomposition [24]
show that

(1.1) M= M Uje™
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L]
is obtained by attaching a cell e”™ where M has the homotopy type of a finite
CW-complex with trivial (n — 1)-skeleton and dimension n + k. For k < n we

see by the Freudenthal suspension theorem that M is homotopy equivalent to a
suspension XA where A is a finite CW-complex with trivial (n — 2)-skeleton and
dim(A) = n+ k — 1 (below we mainly deal with the case k < n or equivalently
dim(M) < 3n).

The coaction p : M — MV .S™ is obtained by the contraction of the boundary of
a small cell in e™ to a point. This is the usual coaction for the mapping cone C'y of
the attaching map f since by (1.1) we have M = Cy. We denote by [X, V] the set
of homotopy classes of basepoint preserving maps X — V where we assume that
V is 1-connected and X is well pointed, for example a manifold or a CW-complex.
The coaction p yields an action of the homotopy group II,,, (M) on the homotopy
set [M, M],
(1.2) [M, M] x I, (M) =5 [M, M],
which carries a pair (z,a) to x + @ = (z,a)u. Clearly £(M) is the subgroup of
units in the monoid [M, M]; the neutral element is given by the identity 1 = 1.

L]
Let £(M | M) be the subgroup of £(M) consisting of all elements which can be
represented by orientation preserving maps M — M which restrict to the identity

of M or equivalently which are Jmaps under M. Moreover let € (M +f) be the
group of all pairs x = (z,¢) € E(M ) x {+1,—1} for which z, : II 1M — Iy 1M
satisfies z. f = ¢f. Here f € Hm_lM is the homotopy class of the attaching map.

We also write ¢ = deg z; clearly degx is determined by = € E(M) if 2f # 0. The
next result describes a crucial property of the group £(M); compare Barcus-Barratt
[42] and Rutter [44].

(1.3) Proposition. For a 1-connected Poincaré-complex M one has the short exact
sequence of groups

(a) 0 — E(M | M) — E(M) 5 (M, £f) — 0.

L]
Here E(M | M) is an abelian group which is endowed with a surjective homomor-
phism of groups

(b) 1+ T (M) — E(M | M)

defined by 1% (a) = 1ps +iwa. The map i : M — M is the inclusion and + is given

by the action (1.2). Moreover the structure of E(M | ]\.4) as a left 5(]\.4, +f)-module
in the extension (a) can be described by the following formula where a = 17 (a) €

E(M | J\.4) and x € 5(]\.4,:|:f),
(c) r+a=1%(deg(z) - 2.(a)).

The fundamental extension (a) in (1.3) leads to three problems for the com-
putation of £(M): First one has to compute the group & (]\.4 ,f), then one has

to compute II,,M and the kernel of 17 in (b), and finally one has to solve the
extension problem for (a).
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(1.4) Theorem. For a I-connected Poincaré-complex M the abelian group
L]
E(M | M) is finite.
Proof. If M is not rational equivalent to a sphere, this is proved by Aubry-Lemaire,
see the Addendum in [4]. In case, however, M is rational equivalent to a sphere,
L] L]

then M is a finite complex which is rational equivalent to a point and hence II,,, M
is finite by a result of Sullivan. Hence then E(M | M) is also finite by (1.3). O

2. POINCARE-COMPLEXES OF SUSPENSION-TYPE

We say that a manifold or a Poincaré-complex M is of suspension-type if the

L] L]
space M in (1.1) has the homotopy type of a suspension, M ~ Y A. For example
a product S™ x S™ of two spheres is of suspension type. The next lemma yields
many examples.

(2.1) Lemma. Let M be an (n—1)-connected Poincaré-complex of dimension m <
3n. Then M is of suspension type. Moreover the connected sum M = My# My of
manifolds My, M1, which are both of suspension type, is again of suspension type.

By (1.3) we see that the group E(M | M) is a quotient of the homotopy group

I1,,,(M). We now describe the relations for the quotient in case M is of suspension
type. To this end we need the Whitehead-product [u,v] € [ZU AV, X] for
u € [XU, X], v € [EV, X] and the James-Hopf-invariants v, 3 € [ZU, ¥ B""] for
3 € |XU,XB]. Here B"" is the n-fold smash product B A --- A B and the James-
Hopf-invariant is defined with respect to the lexicographical ordering from the left,
see [7]. Moreover we use for the one point union U V V the partial suspension,
m > 2,
E:I, 1(UVV)y = I, (U VV),.

Here II;(U V V) denotes the kernel of r, : II(U V V) — II(V) where r =
(0,1) : UVV — V is the retraction. Using the cone CU of U and the pinch map
mo : CU — CU/U = XU we obtain E by the composition

M, (UVV)y = IL,(CUVV,UVV)

J/(ﬂ‘o\/l)*

LL(SUVV,V) =2 IL,(SUV V),

compare (I1.11.8) of [8]. Let i1, resp. iz, be the inclusion of U, resp. V, into
U Vv V. We define the difference operator V : II,,_1(XA) — II,,_1 (XA V X A),

by V(f) = —f*(i2) + [ (i2 4 i1).
The next theorem is based on 2.11 in [43].

(2.2) Theorem. Let M be a 1-connected Poincaré complex of suspension type with
L]

M = YA and let f : S™! — $A be the attaching map. Then 17 in (1.3) (b)
induces an isomorphism

E(M | M) = 11,(SA)/T  where J = Jus = ImV(L, f) + Imf,.
Here f, : 11, (S™7 1) — 11, (S A) is induced by f and YV (1, f) is the homomorphism
V(1, f): [224,2A4] — I1,,(ZA)
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which is defined by the formula

V(L )(€) = (EVf)* (£ 1)
=80 (Bf) + [y f) + [[6 1], U(Ensf) +- ..

Here 1 = 1x4 is the identity of XA and the sum is taken over all summands
W 0 (Bvnf), n > 1, with wy =& and wy, = [wn—1,1] for n > 2.

Clearly wy, o (X,f) is trivial if n is sufficiently large since XA is 1-connected.

We now describe an important property of Poincaré complexes of suspension
type which was observed by Stécker, see (6.1) [38]. For this we have to use Spanier-
Whitehead duality. For finite CW-complexes U, V let

(U, VY =1m{[U,V] 2 [SU,SV] = ...}

be the group of stable maps U — V. We have the stabilization [U,V] — {U,V}. A
map u : S™ — UAV is a duality map if for any finite CW-complex X the induced
function

(2.3) ux {U, X} = {S" XAV}, ux{f}={fA1lvHu}
is an isomorphism, see (2,5,8) [36].

(2.4) Lemma [38]. Let A be a connected finite CW-complex and let f : S™! —
YA be a map, m > 4. Then M = XA Uy e™ is a Poincaré complex if and only if

Yyaf: 8™ = YEPANA=YAANTA
is a duality map.

The lemma characterizes all simply connected Poincaré complexes of suspension
type. In particular for a Poincaré complex M = AUy e™ the space XA is self dual
with respect to Spanier-Whitehead duality.

3. Y-REDUCIBLE POINCARE-COMPLEXES

Following James [23] we shall say that a pointed space Y is reducible if there is

amap f: 5" — Y inducing isomorphisms of reduced homology groups E[q for all
q > n. We say that Y is X"-reducible if the r-fold suspension XY is reducible.

(3.1) Remark. A finite complex Y is S-reducible (stably reducible) if ¥V is 3"~
reducible for sufficiently large n, compare [3]. Using results of Atiyah [3] and Spivak
[37] we have the following implications. A Poincaré-complex M is S-reducible if
and only if its Spivac-normal fibration is stably trivial. In particular a closed differ-
entiable manifold M is S-reducible if and only if its normal bundle or equivalently
its tangent bundle is J-trivial. This shows that an S-parallelizable manifold is also
S-reducible.

We now consider Y-reducible Poincaré-complexes.

L]
3.2) Lemma. Let M = M Uy e™ be a 1-connected Poincaré-complex. Then the
f
following properties are equivalent:

(a) M is X-reducible,

(b) there is a homotopy equivalence M ~ %(S™ Vv M),
(c) the suspension of f is homotopically trivial, ¥ f ~ 0.
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Clearly a product M = S™ x 8™ of spheres is Y-reducible. Moreover the con-
nected sum of Y-reducible Poincaré complexes is again Y-reducible. In addition we
have the following examples.

(3.3) Lemma. Letn > 3 and let M be an (n—1)-connected (2n)-manifold which is

differential, or more generally for which M is differential. Then M is 3-reducible
if M is stably parallelizable (or equivalently parallelizable). In particular M is -
reducible if n = 3,5,6,7(8), i.e. 11,150 = 0.

The lemma follows from (8.10) (2) below; see the remark following the proof
of (8.22).

(3.4) Lemma. Let M be a simply connected closed differential manifold of dimen-
sion m = 4 or m = 5. Then M is X-reducible if and only if the second Stiefel-
Whitney class wo vanishes. In particular each simply connected 5-dimensional
Brieskorn manifold is X-reducible. See [15].

L]
The next result computes the group £(M | M) of the fundamental extension for
a large class of Poincaré complexes.

(3.5) Theorem. Let M be an (n — 1)-connected Poincaré complex of dimension
m < 3n—2,n>2, and assume M is X-reducible. Then one has the isomorphism

of 5(]\.4, +f)-modules

EM | M) = %11, (M)
where the right-hand side is the image of the suspension X : I, (M) — Il 41 (XM).
More precisely one has Ker 1T = Ker X for 11 in (1.3).

This theorem is a consequence of the more general result (3.7) below. For this
we use the EHP-sequence (in its extended form if m = 3n — 2), see James [22],
Baues [14](7.9).

For the delicate dimension m = 3n — 1 we need the following condition (x)
which, in particular, is satisfied for 1-connected 5-dimensional Poincaré-complexes,
see [15].

(3.6) Definition. We say that f: S™~! — YA satisfies condition (x) if the equa-
tion

(%) Ker[l,1]s + Ker X + Imazs = 1I,,XAN A

holds. Here we use the homomorphisms [1,1], : II,,ZAANA - II,, XA, ¥ : II,, A A
A= T 1 X2ANA Tsa : [22A,3A] - 1L, 2AN A Usa(€) = (EA1a) o (Syaf).

(3.7) Theorem. Let M be an (n — 1)-connected Poincaré-complex of dimension
m=2n+k <3n,n>2. Asin (2.1) we may assume that M = XAUse™. If M is
Y-reducible and if for m = 3n — 1 condition (x) is satisfied for f then one has an
isomorphism

E(M | M) = T0,,, (S A) /W,

t
Here W is the subgroup generated by all compositions S™ = SAN % $A, 2 <t <
4, where wt is any t-fold Whitehead-product of the identity 1s4.
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Proof. We consider the following commutative diagram where X is an (n — 2)-
connected finite CW-complex and where u is the stabilization of ~s f, which is a
duality map by (2.4).
224, 2X] 22X, [§m BX A A]
= =

(1) [S4A, 23X (ST SX A XA

- :

(SA, X} —“X . [§m X ATA)

1R

Here ux is defined as in (2.3) and uxx carries an element & € [Y24,3X] to
(§ N A)(Xv2f) where A denotes the identity 14. The homomorphism ¥ in the
diagram is surjective by the Freudenthal-suspension theorem. Moreover ¥ in (1)
is surjective by the Freudenthal theorem for X = AA Aand X = AANAANA. We
also observe that ¥ in the diagram is an isomorphism for n > 2; for n = 2 the
homomorphism ¥ is still an isomorphism for X = AAAor X = AN AN A. For
n =2 and X = A the kernel of ¥ is given by the image of

(2) [Isana, Isanals : I, BAM — 11, DA,

Since we assume X f = 0 we see by the extended EHP-sequence that we can
write

(3) f=0,1ou+][]1,1],1]0wv

Here 1 is the identity of ¥A and v € II,,,_1(XAANA), v € II,,,—1 (EAANANA). Only
for m = 3n — 1 the element v might be nontrivial.

We have to show that the group J in (2.2) coincides with the group W in the
theorem. Since Xf = 0 it is easy to see by (3) and the definition of 7, that one
has an inclusion J C W. For this one only needs the Barcus-Barrat formula for
Whitehead-products of the form [a o 8, 154]. In our range this formula yields

(4) [0 B, 15a] = o, 1] (B A A) + [[a, 1], a]Trz2 (12(5) A A)

(compare [7]). For example for [¢,1] in (2.2) we set £ = a o 8 with a = 154 and
B=c.

Next we show the inclusion W C ImV/(1, f) = J' C J. For this we first check
that w' o € J'; see the definition of w! in (3.7) where we set t = 4. By definition
of V we know for any £ = [[1,1],1] o &’ that

[[1,1),1] 0 ¢, 1] o (Z72f)

[[[7 ]7 ]7 ]( "nNA ) (E")/Qf)
[[[1,1],1], 1usx (&) with X =AAAANA

VE

(5)

is an element in J’. On the other hand (1) shows that uyx is surjective, hence
also w* o a € J' for all four-fold Whitehead-products. At this point we also use
the Jacobi-identity for Whitehead-products.
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Now we show, in a similar way, that all w? o v are elements in J’. By definition
of V we know for any £ = [1,1] o ¢’ that V& = (6) + (7),
(6) [[171] 05/’1] O(E'YQf)a
(7) [[[1’17]05/’1]a1]o(273f>a

4

is an element in J'. Here (7) is of the form w* o & which we have seen to be in J’

too. Therefore by (4) the element

(8) (6) =[[1,1],1] o (¢ A A) o (E2f)

= [[1, 1], 1] Oﬂzx(f/) with X =AANA
is in J’. Again (1) shows that here usx is surjective so that all elements w® o «
are in J' where w® = [[1,1],1].

Finally we show that all elements of the form w? o « lie in J’. By definition of
V we know for any & that V& = (9) + (10),

(9) [§, 1) o (X2f),
(10) [[§; 1] o (Zy31),

is an element in J’. Here we know that (10) is an element in J’ by the arguments
above since we can use (4). On the other hand (4) shows (9) = (11) + (12),

(11) [171]0(5/\A>o(2'72f> = [171]E2A(§)7

(12) [[1,1], 1] 132 0 (72€ A A) o (X2 f).

Here we also know that (12) is an element in J’ so that therefore (11) is in J’ too.
Using condition () for f diagram (1) and (2) show that for X = A any element
v € [S™ EAA A] is of the form

(13) v =Tusxa(§) + [Izana, Isanalon+ A

where A € Ker[1, 1],. Therefore [1,1] oy = (11) + (14),

(14) [1,1] 0 [I5an4, Ixana) on = [[1,1],[1,1]] o n.

The element (14) is of the form w? o a and hence an element in J’. Therefore also
w? o~y = [1,1] o7y is an element in J’ for all v. This completes the proof that
W c J'. This proof shows that actually W = J = ImV(1, f), see (2.2). O

4. CONNECTED SUMS

We consider the group £(M | M) in case M = My#M; is a connected sum of

L]
m-~dimensional Poincaré complexes. In this case the space M is the one point union

M = MgV M;. The attaching map f of the m-cell in M is the sum f =igf — i1 /1
where f; is the attaching map in M, and where i, : M, C MgV M is the inclusion,
7€ {0,1}. We can use

(41) M = My#M, = (MO vV Ml) Uy e™

as the definition of the connected sum of Poincaré complexes. This corresponds
to the usual definition of the connected sum of manifolds. We derive from Theo-
rem (3.5) immediately the following “additivity rule”.
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(4.2) Theorem. Let My and My be 3-reducible (n — 1)-connected Poincaré com-
plexes of dimension m < 3n —2 and let M = Mo#M; be the connected sum. Then
one has the canonical isomorphism

E(M | M) = E(My | Mo) @ E(My | M)).

Proof. Using (3.5) we get £(M | ]\.4) = EHm(J\.L) vV ]\.41) = ZHmMO &) EHm]\.41 =
E(Mo | Mo) & E(My | My). 0

In general the additivity rule does not hold. For this we consider a connected
sum M = My#M; where My is Y-reducible and M; is not Y-reducible.

(4.3) Theorem. Let My and My be (n — 1)-connected Poincaré complexes of di-
mension m < 3n — 2 and let M = My#M, be the connected sum where My s
Y.-reducible. Then one has the isomorphism

E(M | M) = E(My | M)V @ E(M;y | My).
Here V is the image of the homomorphism
(52f1)* : B[EM 1, Mo) — S, Mo = E(My | M)
which carries an element Y€, € € [ My, My), to the composition (X€) o (X2f1)
where f1 is the attaching map of M.

We omit the proof since a more general result also for the delicate dimension
m = 3n — 1 is proved in [15].

5. THE EXTENSION PROBLEM

In the next two results we consider the extension problem in the fundamental
extension for £(M) in (1.3). For this we consider the inclusion

(5.1) Sy M C g1 SM

as an inclusion of £(M, £ f)-modules, the action of x € E(M,+f) on both sides
being given by the formula x + a = deg(zx) « (Xx)«(a).

(5.2) Theorem. Let M be a 1-connected 3-reducible Poincaré-complex and assume

EM | M) =2 XI1,,M as for example in (3.5). Moreover assume the inclusion (5.1)

admits a retraction in the category of E(M,+f)-modules. Then the fundamental
extension for E(M) is split.

Proof. We consider the following diagram in the category of groups
EM | M) = IXI,M C I,+1(EM)

l l

£(M) N £(XM)

l l

E(M, 1) 2 41, -1} x E(5M)
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The assumptions in (5.2) imply that the upper square commutes. The lower square
commutes since ¥/ carries x to the pair (deg(x), Xx). Both columns are extension

of groups. The right-hand side is split since M ~ S™+! v ¥ M. Hence by the
retraction for (5.1) also the left-hand side is split. |

The next result can be applied for all (n — 1)-Poincaré complexes of dimension
<3n-—2.

(5.3) Theorem. Let M be a 1-connected Poincaré complex of suspension type with

M = XA and let the attaching map of M be of the form f = [1,1]ou: S™ ! —
YANA — BA. Moreover assume that ¥ : [A, A] — [EA,XA] is injective and the
composition

[1,1]. 1t °
IL,(ZANA) ST IL,(3A) = E(M | M)

is trivial. Then there is a homomorphism s for which the diagram

Ew) C EM,+f)

commutes. Here E(u) is the subgroup of S(]\.L:I:f) consisting of all Xz € E(XA)
with x € [A, A] and (Xz A z)u = tu.

Proof. For the proof we use the following explicit model w4 of the Whitehead
product [1,1]. The advantage of w4 is its naturality, see (2) below. Let C'A be the
reduced cone on A and let mp : CA — C'A/A = ¥ A be the quotient map. Then the
product 7y X 7 yields the map of pairs

To X o : (CAx CA,CAx CA) — A x LA LAV SA)

where CAx CA=CAx AUA x CA. Using the restriction of mg X my we get the
composition

(1) wa:CAxCA—SAVIAY TA

where V is the folding map. It is clear that w4 is natural with respect to pointed
maps £ : A — B, that is

(2) (D€)wa = wpE, €= CEXCE.

Since we assume that A is well pointed we have a homotopy equivalence h :

S(ANAA) ~ CA x CA and it is well known that wah = [1,1] is the Whitehead
product. We now define the section s in (5.3) as follows. For x € £(u) we choose a
map &, : A — A in Top™ such that 3¢, represents the homotopy class z. Moreover
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we consider the homotopy commutative diagram in Top*

gm-1 LEE, - gmo
| [
(3) CAXCA —S . cAxCA
lw lwA
A 2L 3

Here H, is a homotopy & hu ~ (hu)deg(z) which exists since 2 € £(u). Moreover
the bottom square commutes by (2). Hence we can define the principal map (with
canonical G)

(4) s(z) = C(deg(x), X&, (wa)« Ha, G) € E(M)

(compare (V.2.2)[8]). Here s(x) does not depend on the choice of H, since we
assume [1,1].17 = 0. It remains to show that s is a homomorphism, that is,
s(xy) = (sx)(sy). Here s(z),s(y) and s(xy) are defined by the choices &, &, and
&zy Tespectively. The composition £,&, need not coincide with &;,. The injectivity
of ¥ in (5.3), however, implies that there is a homotopy T : £,&, ~ &;,. Now
consider the diagrams as in (3) for x,y and zy respectively. These diagrams define
an element « € II,,,(3A) by the addition of tracks

(5) a= (X&) )waHy +waHydegy — waHyy — (3T)wahu.

Moreover we have s(xy) + a = (sz)(sy). Now (2) shows that « is of the form
a =wyf with

(6) ﬂ:€$Hy+Hm degy—Hmy —T\hu.
Hence 17 o [1, 1], = 0 implies s(zy) = (sx)(sy). O

6. PRODUCTS OF SPHERES

We discuss the group of homotopy equivalences of a product of two spheres. We
first consider the product S™ x S™. Let Ag be the subgroup of Gl3(Z) generated

by the matrices
0 -1 0 1
() = (10

This is the dihedral group of order eight (the group of symmetries of the square).
Moreover let Sym be the infinite subgroup of Glz(Z) generated by

0 1 1 2 d 0 -1
10 \o 1) * {1 o)
Then we define the group G,, n > 1, by
Ag, n even,

(6.1) Gp = < Sym, nodd, n#1,3,7,
Gls(Z), n=1,3,17.
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For a matrix A = (2Y) € G, we obtain deg(4) € {+1,—1} by

ad — be if n is odd,

ad + be if n is even.

deg(A) = {

Now the fundamental extension for the group £(S™ x S™) is completely determined
by the following result in which we use the torsion subgroup

(6.2) T,, = Tor g, 41 (S™ ™) = X1y, S™

of the homotopy group Ila,,1(S™"1), n > 1; for small values of n we use the results
of [39] to list T;,. (See Table 1.)

TABLE 1

n 1] 2 3 4 5] 6 7 8 9 10
Tn 0 Zg Zlg Zg 0 Zg Zlgo 322 3Z2 Zlg

(6.3) Theorem. Forn > 1 one has the split extension
0—-T,80T,—E&ES"xS") -G, —0.

Here T, 0T, = (Z®Z)RT, is a left G,-module by A-(a®t) =deg(A)-(A-a)Dt
forAeG,, a€ZOZ, teT,.

Remark. The computation of £(S™ x S™) has an interesting history in the literature.
The case n = 3 was treated by Metzler-Zimmermann [33] and the case n = 7 was
considered by Sawashita [35]. The case n = even was obtained in a paper [26], [27]
by Kahn which, however, contains some odd “misprints”. A complete solution as
in (6.3) did not yet appear in the literature. For us Theorem (6.3) is an immediate
consequence of (1.3), (3.5) and (5.2).

Proof of (6.3). For n = odd, or n = 2, or n = 6 the result is a special case of (8.14)
below. For n = even one can define a splitting s directly by the maps fi, fa :
ST x S" — ST x S™ with fi(z,y) = (9(y),z) and fo(z,y) = (y,x); here g : S™ — S™
is a map of degree —1. The splitting s : Ag — E(S™ x S™) is given by

(s )

Next we consider the group £(S™ x S™) with 2 < n < m. Let G, be the set
of all triples (u, v, §) with p,v € {+1,—1} and £ € II,,,(S™) satisfying [tn,&] = 0 for
the generator ¢, € 1I,,5™. The set G, 5, is a group by the multiplication law:

(v, (W, V&) = (i vV, (vig) o & + 1E).

One readily checks that G, ,, is a split extension

(6.4) 0 — Kerfty,—] = G — {+1, -1} x {+1,-1} — 0.

|

The next result describes the fundamental extension for £(S™ x S™).
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(6.5) Theorem. For 2 < n <m one has the extension
0— Hpn— ES™ xS — Gppn — 0.
Here Hy, p, is given by the direct sum
Hym = o (S™) /M 18™ s ] @ oy (S™) /iy 1.8™, 1]
= 3Ly n(S™) ® X140 (S™)  for m < 2n —2.
Moreover Hy, y, is a left Gi, n-module by

(1,0, €) - ({a} @ {b}) = p({(tm) 0 a} ® {(vin) 0 b+ £ 0 a})
where a € Wiy, (S™) and b € I, 4, (S™); the curly bracket denotes the correspond-
ing coset (or the suspension for m < 2n — 2).

Proof. For M = S™x S™ the group H,, , = E(M | M) was computed independently
in [10] and [35], see also (7.6) below. Since the Whitehead product f = [iy, 9] :
Smtn=1 _, §my S" is the attaching map for M one readily obtains the isomorphism
Gm,n = E(M,£f) which carries (u, v, &) to the map z : S™V S™ — §™ Vv S™ with
xiy = piy + 92, xiz = vie. Here we get deg(z) = pv. Hence the structure H,, ,, as
a G, n-module is now obtained by (1.3) (c) and the left distributivity law. |

In general the extension problem for £(S™ x.S™) in (6.5) is not solved. Sawashita
obtained the remarkable result

(6.6) Theorem [35]. The fundamental extension for £(S® x S°) is not split.

He also computes £(S™ x S3), m > 4, and shows that this group is a split exten-
sion if w3¥3 : 11,,(S3) — TL,,43(S?) is trivial. Here w3 € II5(S3) is the generator of
1(S3) = Z12 given by the commutator maps of the group S3. Moreover he shows
that the extension for £(S™ x S?), m > 3, is always split. Also the extension for
E(S™T1x 8™ is split for n # 3 mod 4 and n # 2, 6 since then Ker[t,, _] = 0in (6.4).
We now use Theorem (5.2) to obtain many new cases for which the extension (6.5)
is split.

(6.7) Theorem. Let 2 <n <m < 2n—2 and suppose that

2 Sl (S™) = Sl (S™F)
is injective and the image is a direct summand. Then the fundamental extension
for E(S™ x S™) in (6.5) is split. This for evample holds for S® x S§*, S¢ x S°,
SS % 55’ SS % 56’ 59 % 56; SlO % 56'
Proof. The assumptions imply that X1, (S™) = ;41 (S™F) with & = n + m.
Hence the inclusion (5.1) for M = 8™ x S™ is given by
(1) M1 (8™ @ ZIE(S™) C My 1 (™) @ Mgt (S™) B Z

where Z is generated by the Whitehead product [i1, 2] € gy 1(S™TV S7F1). We
now choose a retraction R for ¥ in (6.7) and we define a retraction r of (1) by

(2) rla®b®t) =a® R(Xb)
where a € Tl 1(S™Y), b € Ty 1 (S™Y), t € Z. We claim that r is actually a

retraction of £(M, & f)-modules. For this we observe that R satisfies R(X20) = X/
since R is a retraction of ¥ in (6.7). For (u,v,§) € Gy, we first get

(3) (v, E)(a@b®t) = prr(d @V o)
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with
a =pa, b =vb+ (38)a+t[XE vint1], t = pvt.
Here we have (since a = Xay)
RYb = R(vEb+ X2%¢%%a;) = R(vEb) + (2€)a
so that by (2)
(4) (3) = jwv(pa @ (R(vSH) + (S€)a)).
On the other hand we get

(b, v,8) -r(a®bot) = (1,1, 8)(a & RYD)
(5) — yw(pa ® (VRS + (5€)a))
by the formula in (6.5). This shows that (3)=(5) and hence we obtain the splitting
for £(S™ x 8™) by (5.2). O

7. CONNECTED SUMS OF PRODUCTS OF SPHERES

We describe the fundamental extension for the group (M) where M is a con-
nected sum of products of spheres. For this we need the following notation:

(7.1) Definition. We say that a 1-connected CW-space X is spherical if (i) or
equivalently (ii) is satisfied.
(i) There is an index set R and a homotopy equivalence X ~\/ . S, where the
right-hand side is a one point union of spheres S, = S™", n, > 2.
(ii) The space X has torsion free homology and the Hurewicz homomorphism
h:II,X — H.X is surjective.
For the graded homotopy group I, X of a spherical space X we define the graded
submodule
(7.2) [L.X, H.X] CIL.X

as follows. Let s : H, X — IL X be any degree 0 homomorphism with hs = id.
Clearly s exists by (7.1) (ii). Then [IL X, H,X],, C IL,X is gencrated by all
Whitehead products [o, sf] with a € ILX, 8 € H.X and |a| + 8] — 1 = m.
Choosing the splitting s of h by the equivalence in (7.1) (i) we get

(7.3) [IL.X, E[*X]m = Z[Hm—nr-i-l(x)?ir]
reR
where i, : S™ — X is given by the one point union in (7.1) (i).
(7.4) Lemma. For a spherical space X the submodule [IL.X, I:T*X] of II, X does

not depend on the choice of the splitting s above. Moreover [II.X, I:T*X] is an
E(X)-submodule of the £(X)-module 11, X .

The lemma can be proved by the Hilton-Milnor theorem. We now consider a
connected sum

(7.5) M = (8% x SP1)#(S52 x SP2)4f - 4(S% x S¥)
of products of spheres with ¢ > 1, a, +b, =m, 2 < b, < a,,r € {1,...,q}. Clearly
M is spherical.
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(7.6) Theorem. For a connected sum M of products of spheres as above the group

L]
E(M,+f) is completely determined by homotopy groups of spheres. Moreover one
has an tsomorphism

E(M | M) = I, (M) /[ILM, H, M]o,

of E(M,+f)-modules where the right-hand side is again completely determined by
the homotopy groups of spheres, see (7.2). For example if M is (n — 1)-connected
and dim M < 3n — 2 we get

E(M | M) @Hk ) ® XI1,, (S*).

The theorem shows that the group £(M) is computable up to an extension
problem once one has enough knowledge of the structure of homotopy groups of
spheres. Clearly Theorem (7.6) yields Theorem (6.5) as a special case.

Proof. The Hilton-Milnor theorem shows that £(M,+f) and II,,(M) are deter-
mined by homotopy groups of spheres. The composition in £(M,+f) and the

L]
Whitehead product in IT. (M) involve the distributivity laws of homotopy theory.
For this suspension, Hopf invariants and Whitehead products are needed which we
consider as a part of the structure of homotopy groups of spheres. We now show

that the first isomorphism for £(M | M) in (7.6) holds. For this we use Theo-
rem (2.2); the second isomorphism in (7.6) is an immediate consequence of (3.5).
We have

M =%AVYEB where
(1) TA=8%y...v 8%,

YB =8 v ... v Sha.

Moreover the attaching map f for M can be chosen to be the sum of Whitehead
products

(2) F= > lor, 8] € Wy (M)

r=1
where a,. : S% C YA C M and S, : S0 ¢ ¥B C M are the inclusions. For
Ay = As = A and B; = By = B we get the difference element
Vf:8m1 5 %A, VEB VIAy V EBsy,
(3) Vf=—iof + (i2+i1)f

q
= Z [iZ0, i58,) + (% + ih) o, (1% +i5)6r])
q
= Z([ihami%ﬁr] £ [i%06r, i) + [ihar, ipf]).
r=1

Here i, i, 7 € {1,2}, denote the corresponding inclusions of ¥A and XB re-
spectively. Now the rules for the partial suspension E show E[i4a,., ik, 3.] = 0
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and
q
(4) EVf =Y ([Sihar, ipB] + [Dig6, ihay)).
r=1

For £ = (£4,€p) € [E?AV ¥?B, XAV XB] we thus get
(5) V(L)) = (EVHED

q
= Z(KA(EQT)J‘B@”] + [éB(Eﬁr>a iAar])~
r=1
This implies by (7.3)
(6) V(1 f) = [[LM, B, M].
Moreover Imf, C ImV/(1, f) since for the generator n € I1,,,S™! = Z/2

(7) f on= Z[araﬁr]n = Z[O‘rn7ﬁr] € [H*M7ﬁ*]\.4]

T T

This completes by (5.2) the proof of (7.6). O

As an illustration of (7.6) we consider the example of a g-fold connected sum
(7.7) gS™ x ST =(S™ x S™)# - H#(S™ x S").

The case m = n is treated in the next section (§8) so that we assume n # m. We
need the following types of algebraic groups.

(7.8) Definition. Let Gl,(Z) be the general linear group, the automorphism group
of Z4. For an abelian group Il let 111 = I1& - - - B II be the g-fold direct sum and let
M,(IT) be the abelian group of ¢ x g-matrices £ = (&) with entries £} € II. Then
M,(IT) and II? are left and right Gl,(Z)-modules in the usual way. For a subgroup
I of IT and for € € {41, —1} with (1 4 &)II C II' let

(1) Mq(H7HI7E) C Mq(H)

be the subgroup consisting of all matrices £ with £ € I’ and &7 = &5 for r # s.
We now define a group G, (II,II', ¢) which as a set is the product

(2) G (ILIl' e) = M (IL,II' &) x Gly(Z) x {+1,—1}.
The group structure is given by
(&, N,8) - (&, M, &) = ( M M)™t + ¢/, NM, 6¢).
Here *M is the transpose of M € Gl,(Z). Clearly one has the split extension

(3) M,(LI, &) - G,(IL I, €) 5 Gly(Z) x {+1, —1}

with 7(§,N,8) = (N, 6), i(§) = (§,1,+1). Here 1 € Gly(Z) is the neutral element.
The splitting o of r is o(N,8) = (0, N, ). Next let II; and II; be abelian groups
and let

(4) ©: M@l =1, a®A—aoA

be a homomorphism. Then the direct sum I & I14 is a G4(IL, IT', e)-module by the
action

(5) (6,N,6)-(a®@b)=('N"'-a)®6N(EOa+Db)
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for a € II{, b € I13. Here (4) yields the canonical extension
(6) O M,(IT) @ II{ — 113,

which carries ¢ ® a to £ ® a, with coordinates
q

(7) (Eoa).=> &oa
r=1

fora=a1 ®--- @ a, € II. The action (5) defines the group G, (I, II', £, ®) which
is the split extension

(8) ¢ & I — G,(ILIT e, 0) — G, (IL I, ¢).

Using these algebraic groups we are now ready to describe the fundamental exten-
sion for the ¢-fold connected sum ¢S™ x S™.

(7.9) Theorem. Let 2 <n <m <2n—2 and g > 1. Then one has the extension
of groups
(1) ¢ ® IS — E£(gS™ x S™) - Gy (IL 1T, ¢)
where

I = X4 (S™), Ip = X040 (S™),

e= (-, I =1,,5",

I = Ker{[in, i)« X" : 11,,8™ — Tpqn—15"}.
The G(ILIT', €)-module II{ ® 113 in (1) is determined as in (7.8) (5) by the homo-
morphism

which carries EQ X to the composition Y(§oar). The extension (1) admits a partial
splitting s for which the diagram

(2) E(gS™ x 8™)
GL,(Z) x {+1,-1} C Gy(ILIT,e)

commutes. Moreover the extension (1) is split if in addition ¥ : X4, (S™) —
EHm+n+1(S"+1) is injective and a direct summand; hence in this case we have the
isomorphism of groups

(3) E(gS™ x S™) =2 G,(II,IT' &, ®).

The next corollary shows explicit examples for which the computation of the
group &£(qgSM x S™) is achieved completely.

(7.10) Corollary. For S™ x S™ = S¢ x §%, 6 x S5 S8 x §5, 88 x §6, 89 x S,
S0 %S¢ we have an isomorphism of groups

E(gS™ x S™) = G,(I,II',¢,®)
where ILII e, ® are given in Table 2.
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TABLE 2

|Smx St eIl I [IL |10, |
Sﬁ X S4 -1 ZQ 0 0 ZQ

SEx S [ +1]Ze |0 0 | Zs

Sg X SS +1 ZQ4 Z24 0 ZQ

SS X Sﬁ -1 ZQ Zg Zg (Z2)2
Sg X Sﬁ -1 224 ZG ZQ (ZQ)B
Slo X 56 —-11]0 0 ZQ ZQ D Z24

The list is obtained by an elaborate inspection of Toda’s book [39]. For S? x S°
we obtain ® # 0 since vg € II, oo € I1; and 0 # vgrgrs € Ilp. For S8 x S6 we get
® = 0 since ngnr € I1, vsvyy € Iy and nenrvsvin = ne St (V/ne)vin = n6(S* ) movia
where 16 (%4)n10 = 0.

Proof of (7.9). We use the same notation as in the proof of (7.6). Hence the at-

taching map for M = ¢S™ x S™ is

1) f:8mtml - BAVEB, TA=8"V..-VS™,
[ =% o, 5], EB=8"Vv-.-vS§",

where a,. and [, are the inclusions of S™ and S™ respectively. We identify

) Gly(Z) = E(2A) = E(SB),
M,(IT) = [SA, 58],
where we use the assumption m < 2n — 2. For a map
(L+n,N):SAVSB — SAVEB
with L € £(SA), N € E(EB), 1 € [EA, £B] we have (L + 1, N) € E(M, +f) if and
only if the following equation holds, § € {+1,—1}:

q q
(3) S TUL +n)ar, NG =8 o, B].
r=1 r=1
This is equivalent to (4) and (5)
(4) Z[LamNﬁT] :6Z[O‘j7ﬁj]7
r=1 j=1
(5) Z[nar, Ng.] =0.
r=1

For Lo, = Y. Lias and NG, = >, N/, we thus get equivalently to (4) the
equations

(6) S LINJ =6 and 3 LIN/ =0 fors#t

or equivalently

(7) L=¢N"1
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Next let & = N~! . 7. Then we have {a, = > 85€7 and hence (5) is equivalent to
q
(8) 0=

T

(G, B, =Y [B:€5, By

1 T,8

Here we have

(9) (B:£5, Br] = Brlin, in) (€L AS™H)
and for r < s

(1()) [ﬁsggvﬁr] + [ﬂr&ﬁa ﬁs] = [5&@]& ASTL + [ﬁra ﬂs]gﬁ A S
= [ﬁsaﬂr](é-g N Sn_l — (_1>n_1§f A Sn_l),

Here aAS™ ! = xp.m 3" Lo with xpm € {+1,—1} for all @ € 11,,S™. Now (9) and
(10) show that (8) is equivalent to & € M, (II,II', £). Hence we get the isomorphism

(11) Gy (IL IV, &) = E(M, + f)

which carries (£, N, 6) to (6N~ + N&, N). The multiplication law in E(M, £f)
satisfies
(L+n,N)(L'+n',N") = (LL" +nL" + Nn', NN')

which shows that (11) is an isomorphism of groups, see (7.8) (2). Using the iso-
morphism (11) we also get by (1.3) (c) the formula for the action in (7.8) (5). Now
the proof of the first part of (7.9) is complete by (3.5). We obtain the splitting
s in (7.9) (2) by (5.3) and (7). Finally we get the isomorphism (7.9) (3) by (5.2)
similarly as in (6.7). O

8. (n — 1)-CONNECTED 2n-MANIFOLDS

We first introduce the algebra which is needed for the metastable range of ho-
motopy theory; for a more extensive treatment see [13].

(8.1) Definition. A quadratic Z-module

(1) M= (M, 2 M. 5 M)

is a pair of abelian groups M., M., together with homomorphisms H, P which
satisty

(2) PHP =2P and HPH =2H.

Then T'= HP — 1 is an involution on M., i.e. TT = 1. A morphism f: M — N
between quadratic Z-modules is a pair of homomorphisms f = (fe, fee) Which
commute with H and P respectively, feP = Pfee, feeH = Hf.. Let QM(Z) be
the category of quadratic Z-modules which is an abelian category. We identify an
abelian group IT with the quadratic Z-module IT = (IT — 0 — II); this yields the
inclusion M(Z) € QM(Z) where M(Z) = Ab is the category of abelian groups
(i.e. Z-modules).

(8.2) Definition. Let A be an abelian group and let M be a quadratic Z-module.
A quadratic form A — M is given by a pair of functions a = (ae, @ce) where
Qee : A X A — M., is Z-bilinear and where o, : A — M, satisfies for a,b € A

1) {ae(a—i—b) = ac(a) + ae(b) + Paee(a,b),
aee(a,a) = Hae(a).
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Let Homgz(A, M) be the set of all quadratic forms A — M; this is an abelian
group by (e, @ee)+(Be, Bee) = (e Pey Qtee + Pec). Hence we obtain the quadratic
Hom-functor
(2) Homy, : M(Z)? x QM(Z) — Ab

which generalizes the classical Hom-functor of abelian groups. On the other hand
we have the quadratic tensor product

(3) ®z : M(Z) x QM(Z) — Ab
which generalizes the classical tensor product of abelian groups. Here A ®z M is
the abelian group generated by the symbols a@m, [a,b]®@n with a,b € A, m € M.,
n € M,.. The relations are
(4) (a+b)@m=a®@m+b®m+ [a,b ® H(m),
[a,al@n=a® P(n),
where @ ® m is linear in m and [a,b] ® n is linear in each variable a,b and n. We
point out that A ®z M and Homy (A, M) are additive in M.
(8.3) Lemma. Let A be a finitely generated free abelian group. Then one has the
isomorphism
X : " A®z M = Homg(A, M)

which is natural in A. Here we set # A = Hom(A,Z).
Proof. For a,b € Homgz(A,Z) let x(a ® m) = o = (e, ) be given as fol-
lows: (z,y € A), ac(x) = alx)m + (a(x)(a(z) — 1)/2)PH(m), and aec(z,y) =
a(x)a(y)H(m). Moreover x([a,b] ® n) = B = (B¢, Lee) is defined by B.(z) =
a(x)b(x)P(n), and Bec(z, y) = a(z)b(y)n + a(y)b(z)T'n.

Homotopy groups of spheres yield for m < 3n — 2 the quadratic Z-modules
(8.4) I {57} = (I (8™) 2 M (82" 5 Tye(S7))

where H = 7, is the Hopf invariant and where P is induced by the Whitehead
product square [tn, tn], that is P(a) = [tn, tn]oa. In 11, {S™} we get the involution
T=HP—1=(-1)"

|

(8.5) Lemma. Let m < 3n — 2 and suppose X has the homotopy type of a finite
one point union of spheres S™, n > 2. Then one has isomorphisms

I, (X) 2 Hy(X) ®z I1,,{S"} = Homz(H"(X),I1,,{S"})
which are natural in X.

Proof. Let a,b € I1,,(X) = H,(X). Then the first isomorphism carries a ® m, resp.
[a,b] ® n, to the compositions a o m, resp. [a,b] o n, where [a,b] is the Whitehead
product, m € IL,,(S™), n € I1,,(S?"~!). The second isomorphism is given by (8.3)
since H™(X) = # H,,(X). |

In addition homotopy groups of the special orthogonal groups yield the quadratic
Z-modules (n > 2)
(86) Hn_l{SOn} = (Hn_lSOn — 7 — Hn_lSOn)
together with a map

(8.7) J =Tn: Uy 1{SO,} — M2, 1 {S"}
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in QM(Z). Here J.. carries 1 € Z to t2,-1 € Ig,_1(S?*"" 1) =2 Z and J. :
II,-150, — Ms,_15™ is the J-homomorphism so that H in (8.6) coincides with
T tHJ.. Moreover P in (8.6) carries 1 € Z to 0i, where we use the boundary
9 :11,5" — II,,_1(S0,,) of the fibering S™ = SO, 1+1/S0,.

(8.8) Definition. Let M be a quadratic Z-module with M. = Z and let A be a
finitely generated free abelian group (i.e. a Z-lattice). We call a quadratic form « :
A — M unimodular if the product ae. : Ax A — M. = Z yields an isomorphism
D, : A = #A where D,, is defined by D,(z)(y) = (Da(z),y) = ee(z,y) for
x,y € A.

(8.9) Remark. Let A be a Z-lattice. Then a pre-n-space in the sense of Wall
[40] is the same as a quadratic form « : A — II,_1{SO,}; moreover this is an
n-space if « is unimodular. Wall shows that “almost closed differential (n — 1)-
connected 2n-manifolds M” stand in 1-1 correspondence with “n-spaces a”, n > 3.
The correspondence carries M to a = ap; where ae is the intersection form of M
and where the function o, : H,M — II,,_150,, assigns to x € II,, M = H, M the
classifying map of the normal bundle of an embedded sphere representing z.

We now call two quadratic forms @ : A — M and 8 : B — M equivalent if
there exists an isomorphism y : A 2 B with qee(y X y) = £8ce and ay = Se.

(8.10) Lemma. Homotopy types of (n — 1)-connected Poincaré complexes M of
dimension 2n are in 1-1 correspondence with equivalence classes of unimodular
quadratic forms A — Ta,_1{S™} where A is a Z-lattice, n > 2.

We obtaln the correspondence in (8.10) as follows. Let f be the attaching map

of M = M Us e* and let A = H,M = H, M Then we have by (8.5) the natural
isomorphism

(1) Hgn 1( ) A@Z HQn 1{3"} HOHl(#A Hgn 1{5”})

which carries f to the quadratic form By : B — I, 1{S"} with B = #A4 =

H™(M). We call 8) the extended cup product of M. One can check that
By = (Be, Pee) coincides with the invariant considered by Kervaire-Milnor in [28].
In fact Be is the cup product pairing H"M x H"M — H?"(M) = Z where H"M =
B, that is, Bec(z,y) = (x Uy, [M]), and G, is the cohomology operation considered
by Kervaire-Milnor, see 8.2 [28]. Wall in Lemma 8 [40] shows that for a closed
differential (n — 1)-connected 2n-manifold M we have

(2) Jwan = Dy = 0

where J is the map in (8.7) and where Dys : H,M — H™M is the inverse of the
Poincaré duality isomorphism N[M] : H™(M) = H,, M. Here N[M] can be identified
with # Dg = Hom(Dg,Z): # A — A where Dg is given via B as in (8.8); this is
readily checked by the formula (xUy, [M]) = (z,yN[M]). Now the correspondence
in (8.10) carries M to the quadratic form

(3) 6y = DBy = (FD5) Bas : A — a1 {5™}

which we call the extended intersection form of M; in fact, 8¢. in 6ps = (¢, bee)
is the classical intersection form.
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Proof of (8.10). Let uw : M — N be a homotopy equivalence with u.[M] = e[N],

e € {+1,—1}. Then we get the restriction v : M — N of u with v,f = ¢f’ where
f and f’ are the attaching maps. Hence by (1) above we get for x = H,(v) the
equation (#*1)*3 = ef’ with 3 = By and 3’ = By. In particular Be.(*x x #x) =
eB., and hence D' = exD#z with D' = Dg and D = Dg. Therefore we get for
§=06m, &' =6y via (3) the equations (y =z~ 1)

6@ = ﬁe#D_l = ﬁe#(gyD/#y)_l
= (eBL7y)# (eyD'#y)~"
=B.(FD) ly Tt =6yt

On the other hand one gets in a similar way 8ce = 6., (y~! x y~1). Hence §, = .z
and .. = €8, (x X x) so that x is an equivalence. |

The J-homomorphism (8.12) induces the homomorphism
(8.11) J« : Homg(Hy, 11,,-1{SO,}) — Homgz(H,, 2,-1{S™})

which clearly is injective if 7. is injective. Hence ajs in (8.10) (2) is determined
by 6a in case J. is injective; this is actually the case for n = odd or n = 6 (8),
see (8.21) below. Therefore we get:

(8.12) Remark. Let n be odd or n = 6 (8), n > 3, and let My, M5 be differential
(n — 1)-connected 2n-manifolds of the same homotopy type. Then for some man-
ifold T homeomorphic to S27, M, is diffeomorphic to Ma#T. If n = 3,6, M; is
diffeomorphic to Ms. This corresponds to Theorem 5 of Wall [40], where Wall,
however, does not treat the case n = 1 (8). In this case [J. is still injective as
follows from Theorem 1.1 of Adams [1].

Next we determine the group of homotopy equivalences of an (n — 1)-connected
Poincaré complex M of dimension 2n in terms of the classifying invariant d,; above.
For this we need the group of automorphisms, Aut(6), of a quadratic form
6 = (8¢, 0¢c) : A — N. This is the subgroup

(8.13) Aut(6) C Aut(A)

consisting of all automorphisms x : A 2 A that satisfy ez = 8, and e (xXx) = €bee
with e € {+1,—1}. We set ¢ = deg(x). If N is an abelian group we have 6., = 0
so that the second equation is redundant. On the other hand if H : N, — N,
is injective we see by the second equation in (8.2)(9) that the first equation is
redundant; that is, in this case Aut(6) = {x; bee(x X ) = £bec }-

(8.14) Theorem. Let M be an (n — 1)-connected Poincaré complex of dimension
2n and let M be X-reducible; that is .6, = 0 where 6. : Hp(M) — Ilg,—1.S™ is
given by the extended intersection form dpr = (8¢, Oce) of M. Then the fundamental
extension (1.3) has the form

Ho(M) @ T, — E(M) 2 Aut(6xy).

Here Ty, = Tor g, +1(S™"1) is the group in (6.2) and H,(M)®T, is an Aut(Spr)-
module by = - (a ®t) = deg(x) - x(a) ®t for x € Aut(bnr), a € H,(M) and t € T,,.
The homomorphism H,, carries an element in E(M) to the induced homomorphism

in homology. The fundamental extension for E(M) above is split if in addition n is
odd or n € {2,6}.
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Proof. The suspension ¥ induces a map (m < 3n —2,n > 2)
(1) Y =(%,0): L, {S"} — Mg {S™ 1}

in QM(Z) where ¥, = ¥ is the ordinary suspension and where .. = 0 is trivial,
compare (8.4). Now ¥ in (1) induces via (8.5) the suspension homomorphism on
I1,,,(X) which is the composition

I (X) = Hp(X) @z I {S™} e Hyp1 (XX) @z Hm+1{5n+1} & 41 (2X).

Here o is the homology suspension o : H,(X) = H,+1(XX). Therefore we see
by (8.5) that M is X-reducible if and only if 3¢, = 0. As in the proof of (8.10) we
get

(3) Aut(6yr) = E(M, £).

Here we use the naturality of the isomorphisms (8.5) and (8.10) (1). By (3) and
Theorem (3.5) we then obtain the fundamental extension in (8.14). We now deduce
the splitting in (8.14) from Theorem (5.2). For this we consider the inclusion (5.1)

which via (8.5) corresponds to the inclusion (A = H,, M)
(4) A®z X2, {5} & A @7 Moy {51}

where i is the inclusion of the image of ¥ in (1). In case there is a retraction r in
QM(Z), for which

(5) STl {S™} 5 Moy 1 {S" '} 5 STy, {S"}

is the identity, we see that (4) admits the retraction 1 ® r which is natural in
A. Hence in this case the fundamental extension in (8.14) is split by (5.2). The
retraction r in (5) exists if and only if there is a retraction r. of the inclusion
S, (S™) C Mgy 1 S™T for which re[tni1,tnt1] = 0. This is the case if and only
if n is odd or n € {2,6}, see [39]. O

The construction of the retraction 1 ® r of (4) in the proof above illustrates
indeed the usefulness of the quadratic tensor product in (8.2). Our approach avoids
the choice of a basis in H,M; such a choice would imply a mess of equations
as one can find them in this context often in the literature. Also the following
considerations show the clear advantages of our approach. We describe in more
detail the properties of the quadratic Z-modules Iy, —1{S™} and II,,_1{SO,}. For
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this we introduce the following list of indecomposable quadratic Z-modules.

Z®_<Z<E>Z@Z<L’PZ),
ZS:(Ziziz),
7 =(0— 17 —0),

A r 0 or—t r
(8.15) Zy = (Z/2 7= 7/2 ),

Zr=(zbz2z),

7P — (z oz/r W2 z0 Z/2T> :

ZP = (zeBZ@)z(QSl’Z@Z) :
We have obvious quotient maps Z” — ZI' — Z'' and Z2 — Z* in QM(Z). Some

of the quadratic Z-modules in (8.15) correspond to well-known quadratic functors
Ab — Ab since there are natural isomorphisms (A € Ab)

®*(A) =A®LZ% = AR A,
S?2(A)=A2,72° =A® A/{a®b—ba},
(5.16) A (A)=A@,Z" = A0 A/{a®a},
&2(A) =A@, 7Y =A@ A/{a®b+b®a},
T(A) = Ay 7',
P2(A) = A, ZF = A(A)/A(A)>.

Here S?(A) and A2(A) are the symmetric resp. exterior square. Moreover I is the
quadratic functor of J. H. C. Whitehead [41] which is part of the free commutative
ring with divided powers [20, §13]. Moreover P?(A) is the polynomial construction
given by the augmentation ideal A(A) and its third power A(A4)? in the groupring
Z[A] of the group A. The sum Z®@©Z? is actually the universal quadratic Z-module,
see [13].

(8.17) Lemma. There are indecomposable quadratic Z-modules S€, O as in
(8.15) and abelian groups SL, OL such that for n > 2 one has isomorphisms in

QM(Z)
My, 1{S"} =859 @ SE, 1, ,1{S0,} =09 ® OL.

More precisely we obtain the following lists in which we describe SQ, O2, Sk,
OF respectively. We write “g.d.s” for “generates a direct summand” and IT5_,

denotes the stable (n — 1)-stem. Using results of Toda in [39] and Kervaire [29] (see



4762 H. J. BAUES

Wall [40, p. 171]) we get:

Y/ n =2,

7Y e7/3, n =4,

Z¥ & 17,/15, n=8,

. A 07/2, n=3,71,
(8.18) Tan-a{S"} = § 75 @n%_l, neven, n ¢ {2,4,8},
7y oIS, n odd, n & {3,7}, [tn, tn] g.d.s,
ZA o1 _ /{Za,}, nodd, n¢{3,7},
[tnstn] = 2" Yo, oy g.dus. (K)

The divisibilities of the Whitehead square in (K) is relevant with respect to the
Arf invariant problem, see [31].

zr, n=2,
VAR n=4,8,
(8.19) 0,_1{SO,} ={ Z* n=3,7,

7% ©11,_150, neven, n¢ {2,4,8},
7Y @ 1,150, nodd, n¢{3,7}.

For n = 4 see Lemma 20.10 in [32]. We recall that by results of Bott [16] we have
for n > 2:

Z)2, n=1,2(8),
(8.20) M,_1S0 =40, n=30567(@),
Z, n=0 (4).
There is a canonical inclusion i% : O¢ € S% which is the identity except for the
case (K) in (8.18). Moreover we have the homomorphism iZ : O — SL which

is induced by the stable J-homomorphism II,, ;SO — II¥_,. Now the map J,
between quadratic Z-modules in (8.7) is given by (n ¢ {2,4,8})

@il
(8.21) T T 1{SO} = 09 @ OF "5 §Q @ SE = 11,1 {S™}
For n € {2,4,8} the map
Tn 1, _1{S0} = 09 — S¢ @ SE =1y, 1{S"}

is the canonical surjection. Here OF — S is the identity for n = 2 and the quotient
map for n € {4,8}; the second coordinate O9 — SE is given by (1,2) : ZOZ — SE
for n € {4,8}.

(8.22) Lemma. FEach X-reducible (n—1)-connected Poincaré complex of dimension
2n has the homotopy type of a closed manifold.

Proof. We obtain the suspension

> HQn_l{Sn} = Sg D Sf; — HS

n—1

by dividing out the image of P in S, see (8.14)(1). This shows by inspection that
Ker(X) C image J,. Hence the lemma is a consequence of (8.10)(2). O
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On the other hand we have X7, = 0 if II,_1S0 = 0. Therefore Ker(X) =
image J,, in this case and we get by (8.20) the proposition in (3.3).

Since the quadratic Hom functor is additive in the second variable we see that the
extended intersection form ¢ps and the Wall invariant ajs in (8.10) yield by (8.17)
quadratic forms

Q . Q
(8.23) {51\4 : HoM — S¥, resp.

a% :H,M — 09
which we call the quadratic part and homomorphisms between abelian groups
{61%4 : H,M — Sk resp.
04%4 cH, M — Osz
which we call the linear part. The automorphism group (8.13) then satisfies

(8.24) Proposition. Let M be an (n — 1)-connected Poincaré complex of dimen-
sion 2n with extended intersection form 6p; and attaching map f. Then we have
isomorphisms of groups

E(M,£f) = Aut(8pr) = Aut(6%) N Aut(s%,).

Clearly we assume H,,M = 0. The proposition follows by similar arguments as
in the proof of (8.10). Kahn [26], [27] incorrectly describes the quadratic part, resp.
linar part, of 6y = Jaar so that therefore his definition of Aut(u,c¢) in his main
result is also incorrect; the correct definition would be (8.24).

For the computation of £(M | M) we need the following definitions and facts.
(8.25) Definition. Let A be an abelian group and let M be a quadratic Z-module.

Then one has the natural homomorphism
A ME A A9 M, & Ay M
with
Ha®m)=a®a® H(m),
H([a,b]@n)=a@b@®n+b®a®T(n),
Pla®@b®n) = la,b] @n,

where T'= HP — 1 is the involution.
Let XX be a one point union of spheres S™ such that H,XX = A. Then we
have for n < 3n — 2 the commutative diagram

Az, {5} — A® A T,,52 —2 A, 11, {5"}

(8.26) lg lg lg

mL,eX —2-  Ieuxax 2o ex
where we use the isomorphism (8.5). The diagram shows that H in (8.25) corre-
sponds to the James-Hopf invariant vo and that P corresponds to the map induced
by the Whitehead product square [1,1], see §2. The Hopf map 7, € II,,415™ =
Z/2, m > 3, is a generator which induces the following maps between quadratic
Z-modules, where YIla, _1(S™) is a subgroup of Iz, S

(8.27) Mon_ 1 {S™} "5 M {57} " 2/2 @ Slap_1 (S™).
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We use these maps in QM(Z) in the following result. As usual we also write
A =14 for the identity of A.

(8.28) Theorem. Letn > 3 and let M be an (n — 1)-connected Poincaré complex

of dimension 2n with A = H,M and attaching map fir € A @z Magp_1{S"} =

Mo,—1(M). Then the module E(M | M) is algebraically given by the isomorphism
EM | M)= AU {S"}/T

where J is the following subgroup of A @z p,{S™} = Mo, (M). The subgroup J
is generated by the element (A® 5, _1)(far) and by all elements

PA@H (fu) + (A® 1. )(E©X)(fum)
with £ € Hom(A, A® Z/2). Here we use the homomorphisms

A @z gp_1{S™} HEAe0Aa A4 ®Z/2 £ A I, {S™},
ARy, Hgn_l{S"} EQ)E AR® Z/2 ® YIls, 1 S™ A(glin* ARz Hgn{Sn}.

A description of E(M | M) in terms of quadratic Hom-functors is also possible
by use of the isomorphism in (8.5).

Proof of (8.28). We use the description of J in (2.2) where

€ € [SM, M] = Hom(A, A @ 1L,15™).
Here n,, € I1,,115™ = Z/2 is the generator. We have the formula
V(L 1)) =& (Bf) + [§1]Eyf
=&o(Bf)+ L1 (ANEEyf
Now using (8.26) we obtain the description of J in (8.28). O

For various n the group £(M | M) in (8.28) can be computed in a better way.
We do this in the next section for n € {2,4, 8}.

9. MANIFOLDS CONNECTED WITH HOPF MAPS

We consider (n — 1)-connected Poincaré complexes of dimension 2n for n €
{2,4,8}. These are the cases for which the Hopf invariant problem is relevant.
Moreover each such Poincaré complex has the homotopy type of a topological man-
ifold. As a first example we consider the projective planes. Let RPy, CP,, HP; be
the real, resp. complex, resp. quaternionic projective plane and let Ca be
the Cayley plane. Recall that £(M) in Top/ ~ is defined with respect to maps
which need not be base point preserving; let £(M)* be the corresponding group for
basepoint preserving maps, i.e. in Top™/ ~.

E(RPy) =0, E(RP)" = 72,
&1 E(HP,) =72,

E(Ca)=7/257)2.
For RP, see [9, ITIB.18]. Moreover £(CP) is a special case of (9.3) below since
for M = CP; we have E(M | M) = 0 and Aut(6p) = Aut(Z) = Z/2. For the
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manifolds M = HP, and M = Ca, however, the group Aut(dss) is trivial. In fact
the attaching map of M is the Hopf map vy, resp. og, which is the generator of
Z in g, 1S™ =Z @ Z/2"® odd torsion, n = 2". Hence the extended intersection
form (the quadratic part) is given by §% = (6e,6ee) : Z — ZE with §.(1) = (1,0).
Thus we get by (8.2)(1)
be(—1) (1) 4+ Paee(1,1)
(1) + P(1)
(17 0) (21 _1)
=(1,-1)eZaZ/2"
so that 8.(—1) # 6¢(1). Therefore —1 ¢ Aut(dps). Now the computation of E(M) =
E(M | M) is a consequence of (9.6) below. Compare also [43].
We need the definition of the characteristic element of a quadratic form, see for
example p. 26 of [25].

= _66
= _66

_|_
_|_

(9.2) Definition. Let A be a Z-lattice and let § : A x A — Z be a symmetric
bilinear map with odd determinant. Then there exists an element wy € A with
B(z,z) = B(x,wp) mod 2 for all x € A. The element w =wo® 1 € ARZ/2 is well
defined by 3 and is called the characteristic element of (.

For example, let 3 = U : H?M x H?M — Z be the cup product pairing of
a l-connected 4-dimensional Poincaré complex; then the characteristic element of
3 = U is the second Stiefel-Whitney class wy € H?(M,7/2) = H*(M) ® Z/2
of M.

(9.3) Theorem. Let M be a 1-connected 4-dimensional Poincaré complex. Then
one has the split extension

Ker wo — E(M) — Aut(dpr).

Here wo : Ho(M) @ Z/2 — Z/2 is given by the second Stiefel-Whitney class of M.
Moreover Aut(6pr) acts on Ker we by z - (a® 1) = z(a) @ 1 for x € Aut(énm),
a®1 € Ker ws.

Proof. This result was recently proved by Cochran-Habegger in [18]. Originally
E(M | M) was computed in [11]; clearly this group can be derived from Theo-

rem (2.2) above. Quinn [34] obtained the formula £(M | M) = Ker wq, but his
proof was not correct. Cochran-Habegger do this calculation again and also de-
scribe an intricate homotopy theoretic proof for the splitting. If wy = 0 we obtain
a new and short proof for the splitting by (8.14) since then M is ¥-reducible; in
fact for wy = 0 the extension in (9.3) coincides with the one in (8.14). If wy # 0
one can use results of Freedman to describe a splitting as follows:

Freedman [21] shows that there is a closed topological manifold N which has
the homotopy type of the Poincaré complex M. Let IlgHomeo(N) be the group of
isotopy classes of homeomorphisms of N. Then Quinn [34] proved that the natural
homeomorphism

H, : TIpHomeo(N) 5 Aut(én)

is an isomorphism; in fact, surjectivity follows from Freedman’s Theorem (1.5)
Addendum [21] and injectivity can also be proved along the lines of the proof of
Kreck’s result Theorem 1 in [30]. Using this isomorphism the canonical forgetful
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homomorphism ITyHomeo(N) — E(N) yields the splitting for the extension in (9.3).
(]

For a quadratic Z-module M and an abelian group C let M ® C be the quadratic
Z-module given by

M®C=MoC"™8" M.2c8 M. 20).

Then the quadratic tensor product satisfies
Az (M®C)=(A®z M) C.

For example we have
94) zPez/2=72Pez/2= (220722 22 % 7/207/2).

This quadratic Z-module is part of the following commutative diagram in QM(Z)
with short exact rows and columns:

(1) 7)2 ———T/2

I |

7Z°R7)2 —— P @Z)2 —»7/2

l l

ZARZ)2 —— TV R7)2—»1)2

For a Z-lattice A the functor A®z—, applied to this diagram, yields the follow-
ing commutative diagram with exact rows and columns in Ab, see the notation
in (8.16).

(2) ARZ2———ARZ/2

S2(A®Z)2) 1 PX(A) @ L)2 — s AR TL/2

AN (ARZ)2) ——T(A)QZ/2— ARZL/2
Here i carries y to i(y) =y -y = {y ® y} and j corresponds to P in (8.25), that is,
j(x-y) = P(zx®y). For a homomorphism w € Hom(A4,Z/2) = Hom(A® Z/2,7/2)

we get the next push out diagram in Ab with short exact rows; this diagram defines
E4 (w)

(3) S2A®Z/2) ~1 s PAA) @72 "% AR TL/2

lw* push lw*

Z/2 D Im(w) E4(w) ARZ/2
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Here w, carries {x®y} to w(z)-w(y) for z,y € A where we use the ring structure of
7/2 = 7Z/2Z. On the other hand we use w also for the following push out diagram
which defines Fg(w) for w # 0.

@) S2(A0z/2) e Acz/2 Y P2A) e z/20 (A0 Z/2)2 — (A®Z/2)?
\L(w*,O) push lw*
Z/2 Eg(w) (A® Z/2)?

Here w, is defined as in (3) and (1,1) carries z to © @ x. For w = 0 we get the
quotient map

(5) W=001@1:PA)R7Z/20 (ARZ/2)* — Es(0) = (A®7Z/2)3

where o is defined in (2). We point out that diagrams (3), (4) and (5) are in the
obvious way diagrams of Aut(w)-modules with Aut(w) C Aut(A) defined in (8.13).

(9.5) Theorem. Let n =4 orn =8 and let M be an (n — 1)-connected Poincaré
complez of dimension 2n with extended intersection form 6y € Homg (A, a,—1{S™})
with A = H,M. Then 6y determines the element w = wy; € Hom(A, Z/2) which
is the characteristic class of the cup product pairing U : H"M x H"M — 7Z. More-
over 8y determines the element v = vy € P%(A) ® Z/2 which is the reduction
mod 2 of the attaching map of M. The map o in (9.4) (3) carries v to the element
o(v) € A® Z/2 which is the Poincaré dual of w. With these data we have the
fundamental extension

B (w)/{@. (1)} — E(M) — Aut(6rs).

)
Here the group E,(w)/{@.(v)} is an Aut(dpr)-module via the structure of Ep(w)
as an Aut(w)-module; clearly Aut(6pr) C Aut(w).

If w # 0 then also @, (v) # 0 since o(v) # 0. This shows that one has isomor-
phisms of Z/2-vector spaces

. H,(M)®7Z/2 if n =4,
(9.6) EM | M)={ (Hy(M)®Z/2)? if n=8,w#0,
(H,(M)®7Z/2)3 if n=8w=0.
This is also an isomorphism of Aut(§s)-modules in case w = 0. We point out that
the following three conditions are equivalent for M in the theorem:

(i) the intersection form of M is even,
(ii) the characteristic class of the intersection form vanishes, that is, w = 0,
(iii) the reduction mod 2 of the suspended attaching map vanishes, that is, o(v) =
0.

Hence if M is ¥-reducible then w = 0 and W, (v) = o(v) = 0.

Proof of (9.5). Clearly 65 determines the extended cup product and the attaching
map far by the isomorphisms in (8.10) (1) (2) (3). Recall that for n € {4,8} with
n = 2" we have

(1) a1 {S"} =2 @ S}
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where SL is odd torsion, see (8.18). Hence fys in (8.27) determines the quadratic
part

(2) & cAawrl.

Here we have A = H,M and #A = Hom(A,Z) = H"(M). By use of the fol-
lowing commutative diagram we see that o(v) is the Poincaré dual of w. Let
2 € Hom(A,Z). Then we get by naturality the commutative diagram

¥ Ao A+ agzr 2% A0 )2
7207+ 7e7P 25 107/2
7 L0 (10) 2oz — 10, (10) 2/
q2
Here g3 is given by the composition
(4) qu:(1,0):Z@Z/2rgz/2r+1gz/2

where ¥ = (1,2), since Ker ¥ = Im P. Now we know that the cup product
H"M x H"M — 7 satisfies the formula

(5) Uy = (z@y)H(f)
where f](Q/[ is the quadratic part in (2). Hence by (3) and (1) we get
(6) (q2) U (gowo) = qox U qoz = o2 @ 2) H(f 1)
= (@ ®Z/2)(A® eX)(fi) = (=8 2/2)(0(v)

where in the first equation we use wg € # A in (9.2) with w = wy ® 1. This shows
that o(v) is in fact the Poincaré dual of w.

We use diagram (3) also in the following computation of the group J in (8.28).
The group Hom(A4, A ® Z/2) in (8.28) is generated by the compositions

(7) E=ypr  A—-Z—7Z/]2—AR7Z/2

with € #A and y € Hom(Z/2,A ® Z/2). By Poincaré duality each element
z€Z® A= Ais of the form (see (5))

(8) 2= (z® AHSY.
We now get the following equations where we compute the generatorsin 7, see (8.28).
P(A®&H (fm) = P(A®yga)(A @ x)H far
(9) = P(A®yg)(x© I
= P(A®yq)(2)-
On the other hand we get
(10) (A®00.)(€ ) (far) = (A© 00y © Z/2) (027 © 425) ]
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where 1,,, : Z/2 =7/2® Z/2" ! — 15, {S™} is given by (8.27). By (3) and (6) we
see that
(g2 ® qQZ)fI\Q/[ = q27 U gawo

=(pr® Q2w0)H(f1\Q/1)
= (42 ® qowo) (x © AVH(f])
= (g2 ® qawo)(2).
Here we also use (5) and (8). Thus (9), (10) and (11) show that J in (8.28) is
generated by the elements
(12) (A®772n 1)fM7
Pyq @ A)(2) + (A®@ 1. )(yg2 @ w)(2) = R

where y € Hom(Z/2,AQ Z/2), z € Z ® A. We clearly have qowg = wy = w €
Hom(A,Z/2) for win (9.5). The operator P in (12) is defined for A ® Il2,{S™} as
n (8.25). Here we have

(11)

¥ @ 17/2 for n =4,

(13) M, {S"} = {(ZP ®7Z)2)® (Z)2®Z)2) forn =S8,

(13b) ZP 02y = (z)202/2 Y 272 2/20 2/2).

The isomorphism (13) carries the bases elements 1 ® 0, 0@ 1 € Z/2 @ Z/2 =
(ZX ®7./2)c to Sv'nz, resp. vanr for n = 4 and to So'ny5, resp. ognys for n = 8. Here
we have [tg, t4)n7 = Sv'n; and [is, t8)ms = So'ms and Huynr = n7, Hosmis = n1s.
(See Proposition 2.2, Lemma 5.4, p. 43, 5.11, Lemma 5.14, p. 63 in Toda’s book
[39].) For m = 8 the generators of the summand Z/2 @ Z/2 in (13) are €5 and
Vg. This description of generators shows that we get 73, _; by the composition in
QM(Z)

(14) Mooy : Moy {87} B Mo 1 {S™} ©2/2 = ZF © Z/2 C Ty, {S™}

where we use (1) and the inclusion given by (13). On the other hand we obtain

o o n_ J(Z)2)?, n=4,
(15) M.+ Z)2=7/2® Xlln1(S") — 120 S _{(2/2)4, n=S8,

as follows. We observe that 1 ® vs generates Z/2 @ Y11;5* and 74, carries this
element to

(16) m,(1®@uvs) =mrs =SV, =100 ¢ (Z/2)2

(by p. 44, 5.9 in Toda [39]). Morever 1 ® 0y generates Z/2® X11155% and 7. carries
this generator to (see 7.4 in Toda [39])

(17) 18, (1 ® 0g) = ns09 = So'mis + 78 + €5
=101l e (Z/2)%
Hence we get for n,, in (15) the formula

1,0 for n = 4,
(18) M. = (1.0) .
(1,0,1,1) for n=38.
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Using (13) we see that

m_ [ PA)©Z)2 for n =4,
(19) AT, {S }_{P(A)®Z/2@(A®Z/2)2 for n = 8.

Moreover the inclusion (14) shows that the first element in (12) corresponds to
(20) (A@n5,_1)fm =v e PA)©L/2 C A® Tz {S"}.

On the other hand the second element in (12) can be described as follows. We first
deal with the case n = 4. Then we have the commutative diagram

(21) ARZLI2— s S2(AQL/2) —— PX(A) © Z/2
g |-
R ARZL2) ——ARARL/2

where ji =14, since a ® P,, = [a,a] ®n by (8.2)(4) so that ng, (a®1) =a®mn, 1=
a® Pl =a,a] ®1 = j(a-a) = ji(a). The quotient map ¢ carries = ® y to the
equivalence class z -y = {x @ y} with j(z-y) = [z,y]®1 = P(z @ y®1). Now the
second element in (12) coincides with the following element R where y,z € AQZ/2
correspond to the elements y, z in (12).

(22) R=j(R) with R =y-z+i(y-w(z)).

The elements R’ generate the kernel of w, in (9.4)(3). Hence we obtain by (20) the
formula

(23) E(M | M) = E4(w)/@.(v) forn = 4.

A similar argument yields the result for n = 8. In this case we get by (18),
see (9.4)(4),

(24) R=jy-z+i(y-w(z) @y -w(z) oy w(z)
These elements R generate the kernel of W, in (9.4)(4), (5) so that by (20) we get

(25) EM | M) =Es(w)/w.(v) forn=238.
This completes the proof of Theorem (9.5). |

10. REMARK ON DIFFEOMORPHISMS

Let M be a differential manifold and let TyDiff { (M) be the group of isotopy
classes of orientation preserving diffeomorphisms of M. Then we have the homo-
morphism

(10.1) U : IDiff | (M) — &, (M)

which carries an isotopy class of a diffeomorphism A to the homotopy class of h.
Here £4 (M) is the subgroup of orientation preserving homotopy equivalences in
E(M). We use the invariants aps and 67 in (8.10) and for o = apy or o = dpy let
Auty () be the subgroup of Aut(a) consisting of elements x with deg(z) = +1.
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By our result (8.14) we get the following theorem on the homomorphism ¥ above.
In the theorem we use the diagram

0,(S0,) —>— T,(SOni1)

7 7

My (S") —— Han41 (S™*1)
where J is the J-homomorphism and where S is induced by the inclusion SO, C
SO, +1. Since the diagram commutes up to sign we get the well defined homomor-
phism
(10.2) J : ST, (SO,,) — ¥, (S™) = Tor Tz, 11 (S™ )
needed in the following result:
(10.3) Theorem. Let M be a differential (n — 1)-connected 2n-manifold, n > 3,

which is almost parallelizable. Then there is a commutative diagram in which the
columns are short exact, A= H, M.

Ker(H,) —X—% A® SIS0, 2275 A ® S11,,5"

I |

I, Diff ;. (M) v £4(M)
- .
Auty (apr) v Auty (6pr)

Here H, is gien by the homology functor and the inclusion VU is surjective if
Tn in (8.7) is injective, i.e. for m odd or n = 6 (8). Moreover X is surjective
with kernel(Y) = Oy, 1/{Zn} where Xy is an element in the group of (2n + 1)-
dimensional homotopy spheres Oqpy1 of order 2 and depending only on M.

The homomorphism ¥ is obtained by the homomorphism x in [30] via Poincaré
duality; commutativity of the diagram follows from the definition of x and the
definition of J; see the proof of Wall of Lemma 8 [40].

(10.4) Corollary. If J in (10.2) is injective then we have Ker ¥ = Ker ¥ =
Oont1/{Enm}. Moreover if J in (10.2) is surjective and n odd or n = 6 (8) then
U is surjective. On the other hand if J =0 in (10.2) and if n is odd or n =6 (8)
then the fundamental extension for E(M) has a splitting induced by V.

(10.5) Remark. We would like to warn the reader that the paper of Kolosov con-
cerning ¥ in (10.3) (see Math. USSR-Sb. 41 (1982)) contains various errors, in
particular his main result Theorem 1 contradicts results of Kreck [30] and Theo-
rem (10.3) above.
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