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ON THE GROUP OF HOMOTOPY EQUIVALENCES

OF A MANIFOLD

HANS JOACHIM BAUES

Abstract. We consider the group of homotopy equivalences E(M) of a simply
connected manifold M which is part of the fundamental extension of groups
due to Barcus-Barratt. We show that the kernel of this extension is always a
finite group and we compute this kernel for various examples. This leads to
computations of the group E(M) for special manifolds M , for example if M
is a connected sum of products Sn × Sm of spheres. In particular the group
E(Sn × Sn) is determined completely. Also the connection of E(M) with the
group of isotopy classes of diffeomorphisms of M is studied.

The group E(X) of homotopy equivalences of a space X is the set of homotopy
classes of homotopy equivalences X → X . The group structure is induced by map-
composition. The group E(X), i.e. the group of automorphisms of the homotopy
type of X , can be regarded as the homotopy symmetry group of the space X . In
the literature there has been a lot of interest in the computation of such groups;
compare for example the excellent survey article of M. Arkowitz [2].

This paper is concerned with the structure of E(M) in case M is a closed, com-
pact, oriented manifold, or more generally a Poincaré-complex. The computation
of this group is an important step for the diffeomorphism classification of manifolds
by surgery, [40]. The group E(M) is also important for Cooke’s theory [17] of re-
placing homotopy actions by actions. For a differential manifold M the group E(M)
is comparable with the group Π0Diff(M) of isotopy classes of diffeomorphisms of
M . In fact, via the J -homomorphism there is a striking similarity between these
groups as is shown in § 10 below.

Still there is little known on the group E(M) in the literature; only very specific
examples are computed, see [2]. This paper contains on the one hand general results
on the structure of the group E(M), see §1, . . . ,§5; on the other hand our methods
are used for explicit computations, see §6, . . . ,§10.

Let e be a small open cell of the simply connected m-dimensional manifold M

and let
•
M = M − e be the complement. The inclusion f : Sm−1 ⊂

•
M of the

boundary is the attaching map for M . We consider the fundamental extension
of groups due to Barcus-Barratt [42],

E(M |
•
M)� E(M)� E(

•
M,±f).

Here E(M |
•
M) is the subgroup of E(M) consisting of all elements which can be

represented by an orientation preserving map M → M under
•
M . This group is
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abelian and an E(
•
M,±f)-module where E(

•
M,±f) is the group of elements in E(

•
M)

compatible with the attaching map up to sign.

Theorem (1.4). For a simply connected Poincaré-complex M the abelian group

E(M |
•
M) is finite.

We now describe examples of fundamental extensions. For a product of spheres,
Sn × Sn, we get

Theorem (6.3). For n ≥ 1 one has the split extension of groups

Tn ⊕ Tn� E(Sn × Sn)� Gn

where Tn is the torsion subgroup of Π2n+1S
n+1 and where Gn is the subgroup of

Gl2(Z) in (6.1). The direct sum Tn ⊕ Tn is a Gn-module in a canonical way,
see (6.3). In (6.2) the group Tn is listed for n ≤ 10.

Various authors worked on the group E(Sn × Sn) but this result, for the first
time, determines the group completely, see §6. In (6.5) we consider the groups
E(Sm × Sn) for m > n. A computation of such groups is achieved for certain
products Sm × Sn, see Theorem (6.7). In fact, we consider the q-fold connected
sum

qSm × Sn = (Sm × Sn)# · · ·#(Sm × Sn)

and describe the fundamental extension for E(qSm × Sn) for 2 ≤ n < m ≤ 2n− 2,
q ≥ 1, in Theorem (7.9). As a special case we get the following solution:

Corollary (7.10). For Sm × Sn = S6 × S4, S6 × S5, S8 × S5, S8 × S6, S9 × S6,
S10 × S6 one has an isomorphism of groups

E(qSm × Sn) = Gq(π, π, ε,�).

Here the right-hand side is the algebraically defined group in (7.8) depending only
on the data in the list of (7.10). For example for qS9 × S6 we have ε = −1,
π = Z/24, π′ = Z/6, π1 = Z/2, π2 = (Z/2)3, and � : π ⊗ π = Z/2 → π2 is the
inclusion of the first summand Z/2 in π2.

For a general connected sum M of products of spheres we describe E(M), up to
an extension problem, in terms of homotopy groups of spheres, see Theorem (7.6).
The next result computes E(M) for a large class of highly connected manifolds
completely. It can be applied to the connected sum M = qSn × Sn.

Theorem (8.14). Let M be an (n− 1)-connected 2n-dimensional manifold which
is almost parallelizable, n ≥ 2. Then one has the fundamental extension

Hn(M)⊗ Tn� E(M)� Aut(δM )

where δM is the extended intersection form of M and where Tn = Tor Π2n+1(Sn+1).
This extension is split if in addition n is odd or n ∈ {2, 6}. For the canonical
structure of Hn(M)⊗ Tn as an Aut(δM )-module, see (8.14).

In Theorem (8.14) we obtain a more general result for Poincaré-complexes. In the
final section we compare diffeomorphisms of a manifold and homotopy equivalences;
for almost parallelizable (n − 1)-connected 2n-manifolds we describe the image of
the canonical homomorphism

ψ : Π0Diff(M)→ E(M)
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in terms of the J -homomorphism, see Theorem (10.3). For the Hopf-dimensions
4, 8 and 16 we get the following result where we do not assume that M is almost
parallelizable.

Theorem (9.3) and (9.5). Let M be an (n− 1)-connected 2n-dimensional man-
ifold with n ∈ {2, 4, 8}. Then one has the fundamental extension

E(M |
•
M)� E(M)� Aut(δM )

which is split for n = 2. Here E(M |
•
M) is the following Z/2-vectorspace:

E(M |
•
M) ∼=


Kerω2 : H2(M)⊗ Z/2→ Z/2 for n = 2,

H4(M)⊗ Z/2 for n = 4,

(H8(M)⊗ Z/2)2 for n = 8, ω 6= 0,

(H8(M)⊗ Z/2)3 for n = 8, ω = 0.

The map ω2 is given by the second Stiefel-Whitney class of M and we set ω 6= 0 if
the intersection form of M is odd and ω = 0 otherwise. For the intricate structure

of E(M |
•
M) as an Aut(δM )-module see (9.5).

Hence this theorem determines E(M) for n = 2 completely and for n = 4, 8 up
to an extension problem. The case n = 2 of the theorem is the main result in a

recent paper of Cochran-Habegger [18]; the computation of E(M |
•
M) for n = 2

was already achieved in [11]. As a simple application we get, see (9.1):

E(CP2) ∼= Z/2, E(HP2) ∼= Z/2, E(Ca) ∼= Z/2⊕ Z/2.
The group E(RP2) is treated in [9]. The “quadratic algebra” developed in [13]

is crucial for the proofs. Along the way we correct a collection of errors in the
literature on the group E(M). The theorems in this introduction are applications
and illustrations of our new techniques for the computation of E(M). We get the
surprising general result:

Theorem (3.5). Let M be an (n−1)-connected manifold of dimension m ≤ 3n−2,
n ≥ 2, and assume the attaching map for M vanishes under suspension, i.e. Σf '
0. Then one has an isomorphism of E(

•
M,±f)-modules

E(M |
•
M) ∼= Im{Σ : Πm

•
M → Πm+1Σ

•
M}

where Σ is the suspension homomorphism.

We also compute E(M |
•
M) for the delicate dimension m = 3n − 1 and for

connected sums M = M0#M1. Moreover we obtain a criterion for the existence of
a splitting of the fundamental extension, see §5. Further applications will appear
in [15].

1. The fundamental extension for E(M)

Let n ≥ 2 and let M be an (n − 1)-connected closed manifold of dimension
m = 2n+ k or more generally let M be an (n− 1)-connected Poincaré-complex of
dimension m = 2n+ k, k ≥ 0. Poincaré-duality and homology decomposition [24]
show that

M =
•
M ∪f em(1.1)
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is obtained by attaching a cell em where
•
M has the homotopy type of a finite

CW-complex with trivial (n − 1)-skeleton and dimension n + k. For k < n we

see by the Freudenthal suspension theorem that
•
M is homotopy equivalent to a

suspension ΣA where A is a finite CW-complex with trivial (n − 2)-skeleton and
dim(A) = n + k − 1 (below we mainly deal with the case k < n or equivalently
dim(M) < 3n).

The coaction µ : M →M ∨Sm is obtained by the contraction of the boundary of
a small cell in em to a point. This is the usual coaction for the mapping cone Cf of
the attaching map f since by (1.1) we have M = Cf . We denote by [X,V ] the set
of homotopy classes of basepoint preserving maps X → V where we assume that
V is 1-connected and X is well pointed, for example a manifold or a CW-complex.
The coaction µ yields an action of the homotopy group Πm(M) on the homotopy
set [M,M ],

[M,M ]×Πm(M)
+→ [M,M ],(1.2)

which carries a pair (x, α) to x + α = (x, α)µ. Clearly E(M) is the subgroup of
units in the monoid [M,M ]; the neutral element is given by the identity 1 = 1M .

Let E(M |
•
M) be the subgroup of E(M) consisting of all elements which can be

represented by orientation preserving maps M →M which restrict to the identity

of
•
M , or equivalently which are maps under

•
M . Moreover let E(

•
M,±f) be the

group of all pairs x = (x, ε) ∈ E(
•
M)×{+1,−1} for which x∗ : Πm−1

•
M → Πm−1

•
M

satisfies x∗f = εf . Here f ∈ Πm−1

•
M is the homotopy class of the attaching map.

We also write ε = deg x; clearly degx is determined by x ∈ E(
•
M) if 2f 6= 0. The

next result describes a crucial property of the group E(M); compare Barcus-Barratt
[42] and Rutter [44].

(1.3) Proposition. For a 1-connected Poincaré-complex M one has the short exact
sequence of groups

0→ E(M |
•
M)→ E(M)

r→ E(
•
M,±f)→ 0.(a)

Here E(M |
•
M) is an abelian group which is endowed with a surjective homomor-

phism of groups

1+ : Πm(
•
M)� E(M |

•
M)(b)

defined by 1+(α) = 1M + i∗α. The map i :
•
M ↪→M is the inclusion and + is given

by the action (1.2). Moreover the structure of E(M |
•
M) as a left E(

•
M,±f)-module

in the extension (a) can be described by the following formula where a = 1+(α) ∈
E(M |

•
M) and x ∈ E(

•
M,±f),

x · a = 1+(deg(x) · x∗(α)).(c)

The fundamental extension (a) in (1.3) leads to three problems for the com-

putation of E(M): First one has to compute the group E(
•
M,±f), then one has

to compute Πm

•
M and the kernel of 1+ in (b), and finally one has to solve the

extension problem for (a).
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(1.4) Theorem. For a 1-connected Poincaré-complex M the abelian group

E(M |
•
M) is finite.

Proof. If M is not rational equivalent to a sphere, this is proved by Aubry-Lemaire,
see the Addendum in [4]. In case, however, M is rational equivalent to a sphere,

then
•
M is a finite complex which is rational equivalent to a point and hence Πm

•
M

is finite by a result of Sullivan. Hence then E(M |
•
M) is also finite by (1.3).

2. Poincaré-complexes of suspension-type

We say that a manifold or a Poincaré-complex M is of suspension-type if the

space
•
M in (1.1) has the homotopy type of a suspension,

•
M ' ΣA. For example

a product Sn × Sm of two spheres is of suspension type. The next lemma yields
many examples.

(2.1) Lemma. Let M be an (n−1)-connected Poincaré-complex of dimension m <
3n. Then M is of suspension type. Moreover the connected sum M = M0#M1 of
manifolds M0,M1, which are both of suspension type, is again of suspension type.

By (1.3) we see that the group E(M |
•
M) is a quotient of the homotopy group

Πm(
•
M). We now describe the relations for the quotient in case M is of suspension

type. To this end we need the Whitehead-product [u, v] ∈ [ΣU ∧ V,X ] for
u ∈ [ΣU,X ], v ∈ [ΣV,X ] and the James-Hopf-invariants γnβ ∈ [ΣU,ΣB∧n] for
β ∈ [ΣU,ΣB]. Here B∧n is the n-fold smash product B ∧ · · · ∧ B and the James-
Hopf-invariant is defined with respect to the lexicographical ordering from the left,
see [7]. Moreover we use for the one point union U ∨ V the partial suspension,
m ≥ 2,

E : Πm−1(U ∨ V )2 → Πm(ΣU ∨ V )2.

Here Πk(U ∨ V )2 denotes the kernel of r∗ : Πk(U ∨ V ) → Πk(V ) where r =
(0, 1) : U ∨ V → V is the retraction. Using the cone CU of U and the pinch map
π0 : CU → CU/U = ΣU we obtain E by the composition

Πm−1(U ∨ V )2
∼= Πm(CU ∨ V, U ∨ V )y(π0∨1)∗

Πm(ΣU ∨ V, V ) ∼= Πm(ΣU ∨ V )2;

compare (II.11.8) of [8]. Let i1, resp. i2, be the inclusion of U , resp. V , into
U ∨ V . We define the difference operator ∇ : Πm−1(ΣA) → Πm−1(ΣA ∨ ΣA)2

by ∇(f) = −f∗(i2) + f∗(i2 + i1).
The next theorem is based on 2.11 in [43].

(2.2) Theorem. Let M be a 1-connected Poincaré complex of suspension type with
•
M = ΣA and let f : Sm−1 → ΣA be the attaching map. Then 1+ in (1.3) (b)
induces an isomorphism

E(M |
•
M) ∼= Πm(ΣA)/J where J = JM = Im∇(1, f) + Imf∗.

Here f∗ : Πm(Sm−1)→ Πm(ΣA) is induced by f and ∇(1, f) is the homomorphism

∇(1, f) : [Σ2A,ΣA]→ Πm(ΣA)
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which is defined by the formula

∇(1, f)(ξ) = (E∇f)∗(ξ, 1)

= ξ ◦ (Σf) + [ξ, 1](Σγ2f) + [[ξ, 1], 1](Σγ3f) + . . . .

Here 1 = 1ΣA is the identity of ΣA and the sum is taken over all summands
ωn ◦ (Σγnf), n ≥ 1, with ω1 = ξ and ωn = [ωn−1, 1] for n ≥ 2.

Clearly ωn ◦ (Σγnf) is trivial if n is sufficiently large since ΣA is 1-connected.
We now describe an important property of Poincaré complexes of suspension

type which was observed by Stöcker, see (6.1) [38]. For this we have to use Spanier-
Whitehead duality. For finite CW-complexes U , V let

{U, V } = lim{[U, V ]
Σ→ [ΣU,ΣV ]

Σ→ . . . }
be the group of stable maps U → V . We have the stabilization [U, V ]→ {U, V }. A
map u : Sn → U ∧V is a duality map if for any finite CW-complex X the induced
function

uX : {U,X} → {Sn, X ∧ V }, uX{f} = {f ∧ 1V }{u}(2.3)

is an isomorphism, see (2,5,8) [36].

(2.4) Lemma [38]. Let A be a connected finite CW-complex and let f : Sm−1 →
ΣA be a map, m ≥ 4. Then M = ΣA ∪f em is a Poincaré complex if and only if

Σγ2f : Sm → Σ2A ∧A = ΣA ∧ ΣA

is a duality map.

The lemma characterizes all simply connected Poincaré complexes of suspension
type. In particular for a Poincaré complex M = ΣA∪f em the space ΣA is self dual
with respect to Spanier-Whitehead duality.

3. Σ-reducible Poincaré-complexes

Following James [23] we shall say that a pointed space Y is reducible if there is

a map f : Sn → Y inducing isomorphisms of reduced homology groups H̃q for all
q ≥ n. We say that Y is Σr-reducible if the r-fold suspension ΣrY is reducible.

(3.1) Remark. A finite complex Y is S-reducible (stably reducible) if Y is Σn-
reducible for sufficiently large n, compare [3]. Using results of Atiyah [3] and Spivak
[37] we have the following implications. A Poincaré-complex M is S-reducible if
and only if its Spivac-normal fibration is stably trivial. In particular a closed differ-
entiable manifold M is S-reducible if and only if its normal bundle or equivalently
its tangent bundle is J -trivial. This shows that an S-parallelizable manifold is also
S-reducible.

We now consider Σ-reducible Poincaré-complexes.

(3.2) Lemma. Let M =
•
M ∪f em be a 1-connected Poincaré-complex. Then the

following properties are equivalent :

(a) M is Σ-reducible,

(b) there is a homotopy equivalence ΣM ' Σ(Sm ∨
•
M),

(c) the suspension of f is homotopically trivial, Σf ' 0.
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Clearly a product M = Sn × Sm of spheres is Σ-reducible. Moreover the con-
nected sum of Σ-reducible Poincaré complexes is again Σ-reducible. In addition we
have the following examples.

(3.3) Lemma. Let n ≥ 3 and let M be an (n−1)-connected (2n)-manifold which is

differential, or more generally for which
•
M is differential. Then M is Σ-reducible

if
•
M is stably parallelizable (or equivalently parallelizable). In particular M is Σ-

reducible if n ≡ 3, 5, 6, 7(8), i.e. Πn−1SO = 0.

The lemma follows from (8.10) (2) below; see the remark following the proof
of (8.22).

(3.4) Lemma. Let M be a simply connected closed differential manifold of dimen-
sion m = 4 or m = 5. Then M is Σ-reducible if and only if the second Stiefel-
Whitney class ω2 vanishes. In particular each simply connected 5-dimensional
Brieskorn manifold is Σ-reducible. See [15].

The next result computes the group E(M |
•
M) of the fundamental extension for

a large class of Poincaré complexes.

(3.5) Theorem. Let M be an (n − 1)-connected Poincaré complex of dimension
m ≤ 3n− 2, n ≥ 2, and assume M is Σ-reducible. Then one has the isomorphism

of E(
•
M,±f)-modules

E(M |
•
M) ∼= ΣΠm(

•
M)

where the right-hand side is the image of the suspension Σ : Πm(
•
M)→ Πm+1(Σ

•
M).

More precisely one has Ker 1+ = Ker Σ for 1+ in (1.3).

This theorem is a consequence of the more general result (3.7) below. For this
we use the EHP-sequence (in its extended form if m = 3n − 2), see James [22],
Baues [14](7.9).

For the delicate dimension m = 3n − 1 we need the following condition (∗)
which, in particular, is satisfied for 1-connected 5-dimensional Poincaré-complexes,
see [15].

(3.6) Definition. We say that f : Sm−1 → ΣA satisfies condition (∗) if the equa-
tion

Ker[1, 1]∗ + Ker Σ + ImuΣA = ΠmΣA ∧A(∗)
holds. Here we use the homomorphisms [1, 1]∗ : ΠmΣA∧A→ ΠmΣA, Σ : ΠmΣA∧
A→ Πm+1Σ2A ∧A, uΣA : [Σ2A,ΣA]→ ΠmΣA ∧A, uΣA(ξ) = (ξ ∧ 1A) ◦ (Σγ2f).

(3.7) Theorem. Let M be an (n − 1)-connected Poincaré-complex of dimension
m = 2n+ k < 3n, n ≥ 2. As in (2.1) we may assume that M = ΣA∪f em. If M is
Σ-reducible and if for m = 3n− 1 condition (∗) is satisfied for f then one has an
isomorphism

E(M |
•
M) ∼= Πm(ΣA)/W.

Here W is the subgroup generated by all compositions Sm
α→ ΣA∧t

wt→ ΣA, 2 ≤ t ≤
4, where wt is any t-fold Whitehead-product of the identity 1ΣA.
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Proof. We consider the following commutative diagram where X is an (n − 2)-
connected finite CW-complex and where u is the stabilization of γ2f , which is a
duality map by (2.4).

[Σ2A,ΣX ]
ūΣX−−−−→ [Sm,ΣX ∧A]yΣ2

yΣ

[Σ4A,Σ3X ] [Sm+1,ΣX ∧ ΣA]y∼= y∼=
{ΣA,X} uX−−−−→

∼=
{Sm, X ∧ ΣA}

(1)

Here uX is defined as in (2.3) and uΣX carries an element ξ ∈ [Σ2A,ΣX ] to
(ξ ∧ A)(Σγ2f) where A denotes the identity 1A. The homomorphism Σ in the
diagram is surjective by the Freudenthal-suspension theorem. Moreover Σ2 in (1)
is surjective by the Freudenthal theorem for X = A ∧ A and X = A ∧ A ∧ A. We
also observe that Σ in the diagram is an isomorphism for n > 2; for n = 2 the
homomorphism Σ is still an isomorphism for X = A ∧ A or X = A ∧ A ∧ A. For
n = 2 and X = A the kernel of Σ is given by the image of

[1ΣA∧A, 1ΣA∧A]∗ : ΠmΣA∧4 → ΠmΣA∧2.(2)

Since we assume Σf = 0 we see by the extended EHP-sequence that we can
write

f = [1, 1] ◦ u+ [[1, 1], 1] ◦ v.(3)

Here 1 is the identity of ΣA and u ∈ Πm−1(ΣA∧A), v ∈ Πm−1(ΣA∧A∧A). Only
for m = 3n− 1 the element v might be nontrivial.

We have to show that the group J in (2.2) coincides with the group W in the
theorem. Since Σf = 0 it is easy to see by (3) and the definition of J , that one
has an inclusion J ⊂ W . For this one only needs the Barcus-Barrat formula for
Whitehead-products of the form [α ◦ β, 1ΣA]. In our range this formula yields

[α ◦ β, 1ΣA] = [α, 1ΣA](β ∧A) + [[α, 1ΣA], α]T132(γ2(β) ∧A)(4)

(compare [7]). For example for [ξ, 1] in (2.2) we set ξ = α ◦ β with α = 1ΣA and
β = ξ.

Next we show the inclusion W ⊂ Im∇(1, f) = J ′ ⊂ J . For this we first check
that w4 ◦α ∈ J ′; see the definition of wt in (3.7) where we set t = 4. By definition
of ∇ we know for any ξ = [[1, 1], 1] ◦ ξ′ that

∇ξ = [[[1, 1], 1] ◦ ξ′, 1] ◦ (Σγ2f)

= [[[1, 1], 1], 1](ξ′ ∧A) ◦ (Σγ2f)

= [[[1, 1], 1], 1]uΣX(ξ′) with X = A ∧A ∧A
(5)

is an element in J ′. On the other hand (1) shows that uΣX is surjective, hence
also w4 ◦ α ∈ J ′ for all four-fold Whitehead-products. At this point we also use
the Jacobi-identity for Whitehead-products.
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Now we show, in a similar way, that all w3 ◦α are elements in J ′. By definition
of ∇ we know for any ξ = [1, 1] ◦ ξ′ that ∇ξ = (6) + (7),

[[1, 1] ◦ ξ′, 1] ◦ (Σγ2f),(6)

[[[1, 1, ] ◦ ξ′, 1], 1] ◦ (Σγ3f),(7)

is an element in J ′. Here (7) is of the form w4 ◦ α which we have seen to be in J ′
too. Therefore by (4) the element

(6) = [[1, 1], 1] ◦ (ξ′ ∧A) ◦ (Σγ2f)(8)

= [[1, 1], 1] ◦ uΣX(ξ′) with X = A ∧A

is in J ′. Again (1) shows that here uΣX is surjective so that all elements w3 ◦ α
are in J ′ where w3 = [[1, 1], 1].

Finally we show that all elements of the form w2 ◦ α lie in J ′. By definition of
∇ we know for any ξ that ∇ξ = (9) + (10),

[ξ, 1] ◦ (Σγ2f),(9)

[[ξ, 1]1] ◦ (Σγ3f),(10)

is an element in J ′. Here we know that (10) is an element in J ′ by the arguments
above since we can use (4). On the other hand (4) shows (9) = (11) + (12),

[1, 1] ◦ (ξ ∧A) ◦ (Σγ2f) = [1, 1]uΣA(ξ),(11)

[[1, 1], 1]T132 ◦ (γ2ξ ∧A) ◦ (Σγ2f).(12)

Here we also know that (12) is an element in J ′ so that therefore (11) is in J ′ too.
Using condition (∗) for f diagram (1) and (2) show that for X = A any element
γ ∈ [Sm,ΣA ∧A] is of the form

γ = uΣA(ξ) + [1ΣA∧A, 1ΣA∧A] ◦ η + λ(13)

where λ ∈ Ker[1, 1]∗. Therefore [1, 1] ◦ γ = (11) + (14),

[1, 1] ◦ [1ΣA∧A, 1ΣA∧A] ◦ η = [[1, 1], [1, 1]] ◦ η.(14)

The element (14) is of the form w4 ◦ α and hence an element in J ′. Therefore also
w2 ◦ γ = [1, 1] ◦ γ is an element in J ′ for all γ. This completes the proof that
W ⊂ J ′. This proof shows that actually W = J = Im∇(1, f), see (2.2).

4. Connected sums

We consider the group E(M |
•
M) in case M = M0#M1 is a connected sum of

m-dimensional Poincaré complexes. In this case the space
•
M is the one point union

•
M =

•
M0 ∨

•
M1. The attaching map f of the m-cell in M is the sum f = i0f − i1f1

where fτ is the attaching map in Mτ and where iτ : Mτ ⊂M0∨M1 is the inclusion,
τ ∈ {0, 1}. We can use

M = M0#M1 = (
•
M0 ∨

•
M1) ∪f em(4.1)

as the definition of the connected sum of Poincaré complexes. This corresponds
to the usual definition of the connected sum of manifolds. We derive from Theo-
rem (3.5) immediately the following “additivity rule”.
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(4.2) Theorem. Let M0 and M1 be Σ-reducible (n − 1)-connected Poincaré com-
plexes of dimension m ≤ 3n− 2 and let M = M0#M1 be the connected sum. Then
one has the canonical isomorphism

E(M |
•
M) ∼= E(M0 |

•
M0)⊕ E(M1 |

•
M1).

Proof. Using (3.5) we get E(M |
•
M) = ΣΠm(

•
M0 ∨

•
M1) = ΣΠm

•
M0 ⊕ ΣΠm

•
M1 =

E(M0 |
•
M0)⊕ E(M1 |

•
M1).

In general the additivity rule does not hold. For this we consider a connected
sum M = M0#M1 where M0 is Σ-reducible and M1 is not Σ-reducible.

(4.3) Theorem. Let M0 and M1 be (n − 1)-connected Poincaré complexes of di-
mension m < 3n − 2 and let M = M0#M1 be the connected sum where M0 is
Σ-reducible. Then one has the isomorphism

E(M |
•
M) ∼= E(M0 |

•
M0)/V ⊕ E(M1 |

•
M1).

Here V is the image of the homomorphism

(Σ2f1)∗ : Σ[Σ
•
M1,

•
M0]→ ΣΠm

•
M0 = E(M0 |

•
M0)

which carries an element Σξ, ξ ∈ [Σ
•
M1,

•
M0], to the composition (Σξ) ◦ (Σ2f1)

where f1 is the attaching map of M1.

We omit the proof since a more general result also for the delicate dimension
m = 3n− 1 is proved in [15].

5. The extension problem

In the next two results we consider the extension problem in the fundamental
extension for E(M) in (1.3). For this we consider the inclusion

ΣΠm

•
M ⊂ Πm+1Σ

•
M(5.1)

as an inclusion of E(
•
M,±f)-modules, the action of x ∈ E(

•
M,±f) on both sides

being given by the formula x · a = deg(x) · (Σx)∗(a).

(5.2) Theorem. Let M be a 1-connected Σ-reducible Poincaré-complex and assume

E(M |
•
M) ∼= ΣΠm

•
M as for example in (3.5). Moreover assume the inclusion (5.1)

admits a retraction in the category of E(
•
M,±f)-modules. Then the fundamental

extension for E(M) is split.

Proof. We consider the following diagram in the category of groups

E(M |
•
M) ∼= ΣΠm

•
M ⊂ Πm+1(Σ

•
M)y y

E(M)
Σ−−−−→ E(ΣM)y y

E(
•
M,±f)

Σ′−−−−→ {+1,−1}× E(Σ
•
M)
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The assumptions in (5.2) imply that the upper square commutes. The lower square
commutes since Σ′ carries x to the pair (deg(x),Σx). Both columns are extension

of groups. The right-hand side is split since ΣM ' Sm+1 ∨ Σ
•
M . Hence by the

retraction for (5.1) also the left-hand side is split.

The next result can be applied for all (n − 1)-Poincaré complexes of dimension
≤ 3n− 2.

(5.3) Theorem. Let M be a 1-connected Poincaré complex of suspension type with
•
M = ΣA and let the attaching map of M be of the form f = [1, 1] ◦ u : Sm−1 →
ΣA ∧ A → ΣA. Moreover assume that Σ : [A,A] → [ΣA,ΣA] is injective and the
composition

Πm(ΣA ∧A)
[1,1]∗→ Πm(ΣA)

1+

→ E(M |
•
M)

is trivial. Then there is a homomorphism s for which the diagram

E(M)

r

E(u)

s

⊂ E(
•
M,±f)

commutes. Here E(u) is the subgroup of E(
•
M,±f) consisting of all Σx ∈ E(ΣA)

with x ∈ [A,A] and (Σx ∧ x)∗u = ±u.

Proof. For the proof we use the following explicit model ωA of the Whitehead
product [1, 1]. The advantage of ωA is its naturality, see (2) below. Let CA be the
reduced cone on A and let π0 : CA→ CA/A = ΣA be the quotient map. Then the
product π0 × π0 yields the map of pairs

π0 × π0 : (CA× CA,CA
·
× CA)→ ΣA× ΣA,ΣA ∨ ΣA)

where CA
·
× CA = CA×A ∪A× CA. Using the restriction of π0 × π0 we get the

composition

ωA : CA
·
× CA→ ΣA ∨ ΣA

∇→ ΣA(1)

where ∇ is the folding map. It is clear that ωA is natural with respect to pointed
maps ξ : A→ B, that is

(Σξ)ωA = ωB ξ̂, ξ̂ = Cξ×̇Cξ.(2)

Since we assume that A is well pointed we have a homotopy equivalence h :

Σ(A ∧ A) ' CA
·
× CA and it is well known that ωAh = [1, 1] is the Whitehead

product. We now define the section s in (5.3) as follows. For x ∈ E(u) we choose a
map ξx : A→ A in Top∗ such that Σξx represents the homotopy class x. Moreover
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we consider the homotopy commutative diagram in Top∗

Sm−1 deg(x)−−−−→ Sm−1yhu Hx⇒
yhu

CA ×̇CA ξ̂x−−−−→ CA ×̇CAyωA yωA
ΣA

Σξx−−−−→ ΣA

(3)

Here Hx is a homotopy ξ̂xhu ' (hu) deg(x) which exists since x ∈ E(u). Moreover
the bottom square commutes by (2). Hence we can define the principal map (with
canonical G)

s(x) = C(deg(x),Σξx, (ωA)∗Hx, G) ∈ E(M)(4)

(compare (V.2.2)[8]). Here s(x) does not depend on the choice of Hx since we
assume [1, 1]∗1

+ = 0. It remains to show that s is a homomorphism, that is,
s(xy) = (sx)(sy). Here s(x), s(y) and s(xy) are defined by the choices ξx, ξy and
ξxy respectively. The composition ξxξy need not coincide with ξxy. The injectivity
of Σ in (5.3), however, implies that there is a homotopy T : ξxξy ' ξxy. Now
consider the diagrams as in (3) for x, y and xy respectively. These diagrams define
an element α ∈ Πm(ΣA) by the addition of tracks

α = (Σξx)ωAHy + ωAHx deg y − ωAHxy − (ΣT )ωAhu.(5)

Moreover we have s(xy) ± α = (sx)(sy). Now (2) shows that α is of the form
α = ωAβ with

β = ξ̂xHy +Hx deg y −Hxy − T̂ hu.(6)

Hence 1+ ◦ [1, 1]∗ = 0 implies s(xy) = (sx)(sy).

6. Products of spheres

We discuss the group of homotopy equivalences of a product of two spheres. We
first consider the product Sn × Sn. Let ∆8 be the subgroup of Gl2(Z) generated
by the matrices (

0 −1
1 0

)
and

(
0 1
1 0

)
;

This is the dihedral group of order eight (the group of symmetries of the square).
Moreover let Sym be the infinite subgroup of Gl2(Z) generated by(

0 1
1 0

)
,

(
1 2
0 1

)
and

(
0 −1
1 0

)
.

Then we define the group Gn, n ≥ 1, by

Gn =


∆8, n even,

Sym, n odd, n 6= 1, 3, 7,

Gl2(Z), n = 1, 3, 7.

(6.1)
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For a matrix A =
(
a b
c d

)
∈ Gn we obtain deg(A) ∈ {+1,−1} by

deg(A) =

{
ad− bc if n is odd,

ad+ bc if n is even.

Now the fundamental extension for the group E(Sn×Sn) is completely determined
by the following result in which we use the torsion subgroup

Tn = Tor Π2n+1(Sn+1) = ΣΠ2nS
n(6.2)

of the homotopy group Π2n+1(Sn+1), n ≥ 1; for small values of n we use the results
of [39] to list Tn. (See Table 1.)

Table 1

n 1 2 3 4 5 6 7 8 9 10
Tn 0 Z2 Z12 Z2 0 Z2 Z120 3Z2 3Z2 Z12

(6.3) Theorem. For n ≥ 1 one has the split extension

0→ Tn ⊕ Tn → E(Sn × Sn)→ Gn → 0.

Here Tn⊕Tn = (Z⊕Z)⊗Tn is a left Gn-module by A · (a⊗ t) = deg(A) · (A · a)⊗ t
for A ∈ Gn, a ∈ Z⊕ Z, t ∈ Tn.

Remark. The computation of E(Sn×Sn) has an interesting history in the literature.
The case n = 3 was treated by Metzler-Zimmermann [33] and the case n = 7 was
considered by Sawashita [35]. The case n = even was obtained in a paper [26], [27]
by Kahn which, however, contains some odd “misprints”. A complete solution as
in (6.3) did not yet appear in the literature. For us Theorem (6.3) is an immediate
consequence of (1.3), (3.5) and (5.2).

Proof of (6.3). For n = odd, or n = 2, or n = 6 the result is a special case of (8.14)
below. For n = even one can define a splitting s directly by the maps f1, f2 :
Sn×Sn → Sn×Sn with f1(x, y) = (g(y), x) and f2(x, y) = (y, x); here g : Sn → Sn

is a map of degree −1. The splitting s : ∆8 → E(Sn × Sn) is given by

s

(
0 −1
1 0

)
= f1, s

(
0 1
1 0

)
= f2.

Next we consider the group E(Sm × Sn) with 2 ≤ n < m. Let Gm,n be the set
of all triples (µ, ν, ξ) with µ, ν ∈ {+1,−1} and ξ ∈ Πm(Sn) satisfying [ιn, ξ] = 0 for
the generator ιn ∈ ΠnS

n. The set Gm,n is a group by the multiplication law:

(µ, ν, ξ)(µ′, ν′, ξ′) = (µµ′, νν′, (νιn) ◦ ξ′ + µ′ξ).

One readily checks that Gm,n is a split extension

0→ Ker[ιn,−]→ Gm,n → {+1,−1} × {+1,−1} → 0.(6.4)

The next result describes the fundamental extension for E(Sm × Sn).
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(6.5) Theorem. For 2 ≤ n < m one has the extension

0→ Hm,n → E(Sm × Sn)→ Gm,n → 0.

Here Hm,n is given by the direct sum

Hm,n = Πm+n(Sm)/[Πn+1S
m, ιm]⊕Πm+n(Sn)/[Πm+1S

n, ιn]

= ΣΠm+n(Sm)⊕ ΣΠm+n(Sn) for m ≤ 2n− 2.

Moreover Hm,n is a left Gm,n-module by

(µ, ν, ξ) · ({a} ⊕ {b}) = µν({(µιm) ◦ a} ⊕ {(νιn) ◦ b+ ξ ◦ a})
where a ∈ Πm+n(Sm) and b ∈ Πm+n(Sn); the curly bracket denotes the correspond-
ing coset (or the suspension for m ≤ 2n− 2).

Proof. ForM = Sm×Sn the groupHm,n = E(M |
•
M) was computed independently

in [10] and [35], see also (7.6) below. Since the Whitehead product f = [i1, i2] :
Sm+n−1 → Sm∨Sn is the attaching map forM one readily obtains the isomorphism

Gm,n ∼= E(
•
M,±f) which carries (µ, ν, ξ) to the map x : Sm ∨ Sn → Sm ∨ Sn with

xi1 = µi1 + i2ξ, xi2 = νi2. Here we get deg(x) = µν. Hence the structure Hm,n as
a Gm,n-module is now obtained by (1.3) (c) and the left distributivity law.

In general the extension problem for E(Sm×Sn) in (6.5) is not solved. Sawashita
obtained the remarkable result

(6.6) Theorem [35]. The fundamental extension for E(S3 × S5) is not split.

He also computes E(Sm×S3), m ≥ 4, and shows that this group is a split exten-
sion if ω3Σ3 : Πn(S3)→ Πn+3(S3) is trivial. Here ω3 ∈ Π6(S3) is the generator of
Π6(S3) = Z12 given by the commutator maps of the group S3. Moreover he shows
that the extension for E(Sm × S2), m ≥ 3, is always split. Also the extension for
E(Sn+1×Sn) is split for n 6≡ 3 mod 4 and n 6= 2, 6 since then Ker[ιn,−] = 0 in (6.4).
We now use Theorem (5.2) to obtain many new cases for which the extension (6.5)
is split.

(6.7) Theorem. Let 2 ≤ n < m ≤ 2n− 2 and suppose that

Σ : ΣΠn+m(Sn)→ ΣΠn+m+1(Sn+1)

is injective and the image is a direct summand. Then the fundamental extension
for E(Sm × Sn) in (6.5) is split. This for example holds for S6 × S4, S6 × S5,
S8 × S5, S8 × S6, S9 × S6, S10 × S6.

Proof. The assumptions imply that ΣΠk(Sm) = Πk+1(Sm+1) with k = n + m.
Hence the inclusion (5.1) for M = Sm × Sn is given by

Πk+1(Sm+1)⊕ ΣΠk(Sn) ⊂ Πk+1(Sm+1)⊕Πk+1(Sn+1)⊕ Z(1)

where Z is generated by the Whitehead product [i1, i2] ∈ Πk+1(Sm+1 ∨ Sn+1). We
now choose a retraction R for Σ in (6.7) and we define a retraction r of (1) by

r(a⊕ b⊕ t) = a⊕R(Σb)(2)

where a ∈ Πk+1(Sm+1), b ∈ Πk+1(Sn+1), t ∈ Z. We claim that r is actually a

retraction of E(
•
M,±f)-modules. For this we observe that R satisfies R(Σ2b′) = Σb′

since R is a retraction of Σ in (6.7). For (µ, ν, ξ) ∈ Gm,n we first get

r(µ, ν, ξ)(a⊕ b⊕ t) = µνr(a′ ⊕ b′ ⊕ t′)(3)
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with

a′ = µa, b′ = νb+ (Σξ)a+ t[Σξ, νιn+1], t′ = µνt.

Here we have (since a = Σa1)

RΣb′ = R(νΣb+ Σ2ξΣ2a1) = R(νΣb) + (Σξ)a

so that by (2)

(3) = µν(µa⊕ (R(νΣb) + (Σξ)a)).(4)

On the other hand we get

(µ, ν, ξ) · r(a⊕ b⊕ t) = (µ, ν, ξ)(a⊕RΣb)

= µν(µa⊕ (νRΣb+ (Σξ)a))(5)

by the formula in (6.5). This shows that (3)=(5) and hence we obtain the splitting
for E(Sm × Sn) by (5.2).

7. Connected sums of products of spheres

We describe the fundamental extension for the group E(M) where M is a con-
nected sum of products of spheres. For this we need the following notation:

(7.1) Definition. We say that a 1-connected CW-space X is spherical if (i) or
equivalently (ii) is satisfied.

(i) There is an index set R and a homotopy equivalence X '
∨
r∈R Sr where the

right-hand side is a one point union of spheres Sr = Snr , nr ≥ 2.
(ii) The space X has torsion free homology and the Hurewicz homomorphism

h : Π∗X � H̃∗X is surjective.

For the graded homotopy group Π∗X of a spherical space X we define the graded
submodule

[Π∗X, H̃∗X ] ⊂ Π∗X(7.2)

as follows. Let s : H̃∗X → Π∗X be any degree 0 homomorphism with hs = id.

Clearly s exists by (7.1) (ii). Then [Π∗X, H̃∗X ]m ⊂ ΠmX is generated by all

Whitehead products [α, sβ] with α ∈ Π∗X , β ∈ H̃∗X and |α| + |β| − 1 = m.
Choosing the splitting s of h by the equivalence in (7.1) (i) we get

[Π∗X, H̃∗X ]m =
∑
r∈R

[Πm−nr+1(X), ir](7.3)

where ir : Snr → X is given by the one point union in (7.1) (i).

(7.4) Lemma. For a spherical space X the submodule [Π∗X, H̃∗X ] of Π∗X does

not depend on the choice of the splitting s above. Moreover [Π∗X, H̃∗X ] is an
E(X)-submodule of the E(X)-module Π∗X.

The lemma can be proved by the Hilton-Milnor theorem. We now consider a
connected sum

M = (Sa1 × Sb1)#(Sa2 × Sb2)# · · ·#(Saq × Sbq)(7.5)

of products of spheres with q ≥ 1, ar + br = m, 2 ≤ br ≤ ar, r ∈ {1, . . . , q}. Clearly
•
M is spherical.
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(7.6) Theorem. For a connected sum M of products of spheres as above the group

E(
•
M,±f) is completely determined by homotopy groups of spheres. Moreover one

has an isomorphism

E(M |
•
M) ∼= Πm(

•
M)/[Π∗

•
M, H̃∗

•
M ]m

of E(
•
M,±f)-modules where the right-hand side is again completely determined by

the homotopy groups of spheres, see (7.2). For example if M is (n − 1)-connected
and dimM ≤ 3n− 2 we get

E(M |
•
M) ∼=

⊕
k

H̃k(
•
M)⊗ ΣΠm(Sk).

The theorem shows that the group E(M) is computable up to an extension
problem once one has enough knowledge of the structure of homotopy groups of
spheres. Clearly Theorem (7.6) yields Theorem (6.5) as a special case.

Proof. The Hilton-Milnor theorem shows that E(
•
M,±f) and Πm(

•
M) are deter-

mined by homotopy groups of spheres. The composition in E(
•
M,±f) and the

Whitehead product in Π∗(
•
M) involve the distributivity laws of homotopy theory.

For this suspension, Hopf invariants and Whitehead products are needed which we
consider as a part of the structure of homotopy groups of spheres. We now show

that the first isomorphism for E(M |
•
M) in (7.6) holds. For this we use Theo-

rem (2.2); the second isomorphism in (7.6) is an immediate consequence of (3.5).
We have

•
M = ΣA ∨ ΣB where

ΣA = Sa1 ∨ · · · ∨ Saq ,
ΣB = Sb1 ∨ · · · ∨ Sbq .

(1)

Moreover the attaching map f for M can be chosen to be the sum of Whitehead
products

f =

q∑
r=1

[αr, βr] ∈ Πm−1(
•
M)(2)

where αr : Sa1 ⊂ ΣA ⊂
•
M and βr : Sbr ⊂ ΣB ⊂

•
M are the inclusions. For

A1 = A2 = A and B1 = B2 = B we get the difference element

∇f : Sm−1 → ΣA1 ∨ ΣB1 ∨ ΣA2 ∨ΣB2,

∇f = −i2f + (i2 + i1)f(3)

=

q∑
r=1

(−[i2Aαr, i
2
Bβr] + [(i2A + i1A)αr, (i

2
B + i1B)βr])

=

q∑
r=1

([i1Aαr, i
2
Bβr]± [i2Bβr, i

1
Aαr] + [i1Aαr, i

1
Bβr]).

Here iτA, iτB, τ ∈ {1, 2}, denote the corresponding inclusions of ΣA and ΣB re-
spectively. Now the rules for the partial suspension E show E[i1Aαr, i

1
B, βr] = 0
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and

E∇f =

q∑
r=1

([Σi1Aαr, i
2
Bβr]± [Σi2Bβr, i

1
Aαr]).(4)

For ξ = (ξA, ξB) ∈ [Σ2A ∨ Σ2B,ΣA ∨ ΣB] we thus get

∇(1, f)(ξ) = (E∇f)∗(ξ, 1)(5)

=

q∑
r=1

([ξA(Σαr), iBβr]± [ξB(Σβr), iAαr]).

This implies by (7.3)

Im∇(1, f) = [Π∗
•
M, H̃∗

•
M ]m.(6)

Moreover Imf∗ ⊂ Im∇(1, f) since for the generator η ∈ ΠmS
m−1 = Z/2

f ◦ η =
∑
r

[αr, βr]η =
∑
r

[αrη, βr] ∈ [Π∗
•
M, H̃∗

•
M ].(7)

This completes by (5.2) the proof of (7.6).

As an illustration of (7.6) we consider the example of a q-fold connected sum

qSm × Sn = (Sm × Sn)# · · ·#(Sm × Sn).(7.7)

The case m = n is treated in the next section (§8) so that we assume n 6= m. We
need the following types of algebraic groups.

(7.8) Definition. Let Glq(Z) be the general linear group, the automorphism group
of Zq. For an abelian group Π let Πq = Π⊕· · ·⊕Π be the q-fold direct sum and let
Mq(Π) be the abelian group of q × q-matrices ξ = (ξrs ) with entries ξrs ∈ Π. Then
Mq(Π) and Πq are left and right Glq(Z)-modules in the usual way. For a subgroup
Π′ of Π and for ε ∈ {+1,−1} with (1 + ε)Π ⊂ Π′ let

Mq(Π,Π
′, ε) ⊂Mq(Π)(1)

be the subgroup consisting of all matrices ξ with ξrr ∈ Π′ and ξrs = εξsr for r 6= s.
We now define a group Gq(Π,Π

′, ε) which as a set is the product

Gq(Π,Π
′, ε) = Mq(Π,Π

′, ε)×Glq(Z)× {+1,−1}.(2)

The group structure is given by

(ξ,N, δ) · (ξ′,M, δ′) = (δ′M−1ξ(tM)−1 + ξ′, NM, δδ′).

Here tM is the transpose of M ∈ Glq(Z). Clearly one has the split extension

Mq(Π,Π
′, ε)

i� Gq(Π,Π
′, ε)

r� Glq(Z)× {+1,−1}(3)

with r(ξ,N, δ) = (N, δ), i(ξ) = (ξ, 1,+1). Here 1 ∈ Glq(Z) is the neutral element.
The splitting σ of r is σ(N, δ) = (0, N, δ). Next let Π1 and Π2 be abelian groups
and let

� : Π⊗Π1 → Π2, a⊗ λ 7→ a� λ(4)

be a homomorphism. Then the direct sum Πq
1⊕Πq

2 is a Gq(Π,Π
′, ε)-module by the

action

(ξ,N, δ) · (a⊕ b) = (tN−1 · a)⊕ δN(ξ � a+ b)(5)
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for a ∈ Πq
1, b ∈ Πq

2. Here (4) yields the canonical extension

� : Mq(Π)⊗Πq
1 → Πq

2,(6)

which carries ξ ⊗ a to ξ � a, with coordinates

(ξ � a)s =

q∑
r=1

ξrs � ar(7)

for a = a1 ⊕ · · · ⊕ aq ∈ Πq
1. The action (5) defines the group Gq(Π,Π

′, ε,�) which
is the split extension

Πq
1 ⊕Πq

2 � Gq(Π,Π
′, ε,�)� Gq(Π,Π

′, ε).(8)

Using these algebraic groups we are now ready to describe the fundamental exten-
sion for the q-fold connected sum qSm × Sn.

(7.9) Theorem. Let 2 ≤ n < m ≤ 2n− 2 and q ≥ 1. Then one has the extension
of groups

Πq
1 ⊕Πq

2 � E(qSm × Sn)
r� Gq(Π,Π

′, ε)(1)

where

Π1 = ΣΠm+n(Sm), Π2 = ΣΠm+n(Sn),

ε = (−1)n−1, Π = ΠmS
n,

Π′ = Ker{[in, in]∗Σ
n−1 : ΠmS

n → Πm+n−1S
n}.

The Gq(Π.Π
′, ε)-module Πq

1 ⊕Πq
2 in (1) is determined as in (7.8) (5) by the homo-

morphism

� : ΠmS
n ⊗ ΣΠm+nS

m → ΣΠm+nS
n

which carries ξ⊗Σα to the composition Σ(ξ◦α). The extension (1) admits a partial
splitting s for which the diagram

E(qSm × Sn)

r

GLq(Z)× {+1,−1}
s

⊂ Gq(Π,Π
′, ε)

(2)

commutes. Moreover the extension (1) is split if in addition Σ : ΣΠm+n(Sn) →
ΣΠm+n+1(Sn+1) is injective and a direct summand ; hence in this case we have the
isomorphism of groups

E(qSm × Sn) ∼= Gq(Π,Π
′, ε,�).(3)

The next corollary shows explicit examples for which the computation of the
group E(qSM × Sn) is achieved completely.

(7.10) Corollary. For Sm × Sn = S6 × S4, S6 × S5, S8 × S5, S8 × S6, S9 × S6,
S10 × S6 we have an isomorphism of groups

E(qSm × Sn) = Gq(Π,Π
′, ε,�)

where Π,Π′, ε,� are given in Table 2.
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Table 2

Sm × Sn ε Π Π′ Π1 Π2 �
S6 × S4 −1 Z2 0 0 Z2 0
S6 × S5 +1 Z2 0 0 Z2 0
S8 × S5 +1 Z24 Z24 0 Z2 0
S8 × S6 −1 Z2 Z2 Z2 (Z2)2 0
S9 × S6 −1 Z24 Z6 Z2 (Z2)3 6= 0
S10 × S6 −1 0 0 Z2 Z2 ⊕ Z24 0

The list is obtained by an elaborate inspection of Toda’s book [39]. For S9 ×S6

we obtain � 6= 0 since ν6 ∈ Π, ν9ν12 ∈ Π1 and 0 6= ν6ν9ν12 ∈ Π2. For S8×S6 we get
� = 0 since η6η7 ∈ Π, ν8ν11 ∈ Π1 and η6η7ν8ν11 = η6Σ4(ν′η6)ν11 = η6(Σ4ν′)η10ν11

where η6(Σ4ν′)η10 = 0.

Proof of (7.9). We use the same notation as in the proof of (7.6). Hence the at-
taching map for M = qSm × Sn is{

f : Sm+n−1 → ΣA ∨ ΣB, ΣA = Sm ∨ · · · ∨ Sm,
f = Σqr=1[αr, βr], ΣB = Sn ∨ · · · ∨ Sn,

(1)

where αr and βr are the inclusions of Sm and Sn respectively. We identify{
Glq(Z) = E(ΣA) = E(ΣB),

Mq(Π) = [ΣA,ΣB],
(2)

where we use the assumption m ≤ 2n− 2. For a map

(L+ η,N) : ΣA ∨ ΣB → ΣA ∨ΣB

with L ∈ E(ΣA), N ∈ E(ΣB), η ∈ [ΣA,ΣB] we have (L+ η,N) ∈ E(
•
M,±f) if and

only if the following equation holds, δ ∈ {+1,−1}:
q∑
r=1

[(L+ η)αr, Nβr] = δ

q∑
r=1

[αr, βr].(3)

This is equivalent to (4) and (5)

q∑
r=1

[Lαr, Nβr] = δ

q∑
j=1

[αj , βj ],(4)

q∑
r=1

[ηαr, Nβr] = 0.(5)

For Lαr =
∑
s L

r
sαs and Nβr =

∑
tN

r
t βt we thus get equivalently to (4) the

equations ∑
r

LrjN
r
j = δ and

∑
r

LrsN
r
t = 0 for s 6= t(6)

or equivalently

L = δtN−1.(7)
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Next let ξ = N−1 · η. Then we have ξαr =
∑
s βsξ

r
s and hence (5) is equivalent to

0 =

q∑
r=1

[ξαr, βr] =
∑
r,s

[βsξ
r
s , βr].(8)

Here we have

[βrξ
r
r , βr] = βr[in, in](ξrr ∧ Sn−1)(9)

and for r < s

[βsξ
r
s , βr] + [βrξ

s
r , βs] = [βs, βr]ξ

r
s ∧ Sn−1 + [βr, βs]ξ

s
r ∧ Sn−1(10)

= [βs, βr](ξ
r
s ∧ Sn−1 − (−1)n−1ξsr ∧ Sn−1).

Here α∧Sn−1 = χn,mΣn−1α with χn,m ∈ {+1,−1} for all α ∈ ΠmS
n. Now (9) and

(10) show that (8) is equivalent to ξ ∈Mq(Π,Π
′, ε). Hence we get the isomorphism

Gq(Π,Π
′, ε) ∼= E(

•
M,±f)(11)

which carries (ξ,N, δ) to (δtN−1 + Nξ,N). The multiplication law in E(
•
M,±f)

satisfies

(L+ η,N)(L′ + η′, N ′) = (LL′ + ηL′ +Nη′, NN ′)

which shows that (11) is an isomorphism of groups, see (7.8) (2). Using the iso-
morphism (11) we also get by (1.3) (c) the formula for the action in (7.8) (5). Now
the proof of the first part of (7.9) is complete by (3.5). We obtain the splitting
s in (7.9) (2) by (5.3) and (7). Finally we get the isomorphism (7.9) (3) by (5.2)
similarly as in (6.7).

8. (n− 1)-connected 2n-manifolds

We first introduce the algebra which is needed for the metastable range of ho-
motopy theory; for a more extensive treatment see [13].

(8.1) Definition. A quadratic Z-module

M = (Me
H→Mee

P→Me)(1)

is a pair of abelian groups Me, Mee together with homomorphisms H, P which
satisfy

PHP = 2P and HPH = 2H.(2)

Then T = HP − 1 is an involution on Mee, i.e. TT = 1. A morphism f : M → N
between quadratic Z-modules is a pair of homomorphisms f = (fe, fee) which
commute with H and P respectively, feP = Pfee, feeH = Hfe. Let QM(Z) be
the category of quadratic Z-modules which is an abelian category. We identify an
abelian group Π with the quadratic Z-module Π = (Π → 0 → Π); this yields the
inclusion M(Z) ⊂ QM(Z) where M(Z) = Ab is the category of abelian groups
(i.e. Z-modules).

(8.2) Definition. Let A be an abelian group and let M be a quadratic Z-module.
A quadratic form A → M is given by a pair of functions α = (αe, αee) where
αee : A×A→Mee is Z-bilinear and where αe : A→Me satisfies for a, b ∈ A{

αe(a+ b) = αe(a) + αe(b) + Pαee(a, b),

αee(a, a) = Hαe(a).
(1)
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Let HomZ(A,M) be the set of all quadratic forms A → M ; this is an abelian
group by (αe, αee)+(βe, βee) = (αe+βe, αee+βee). Hence we obtain the quadratic
Hom-functor

HomZ : M(Z)op ×QM(Z)→ Ab(2)

which generalizes the classical Hom-functor of abelian groups. On the other hand
we have the quadratic tensor product

⊗Z : M(Z)×QM(Z)→ Ab(3)

which generalizes the classical tensor product of abelian groups. Here A ⊗Z M is
the abelian group generated by the symbols a⊗m, [a, b]⊗n with a, b ∈ A, m ∈Me,
n ∈Mee. The relations are{

(a+ b)⊗m = a⊗m+ b⊗m+ [a, b]⊗H(m),

[a, a]⊗ n = a⊗ P (n),
(4)

where a ⊗m is linear in m and [a, b] ⊗ n is linear in each variable a, b and n. We
point out that A⊗ZM and HomZ(A,M) are additive in M .

(8.3) Lemma. Let A be a finitely generated free abelian group. Then one has the
isomorphism

χ : #A⊗ZM ∼= HomZ(A,M)

which is natural in A. Here we set #A = Hom(A,Z).

Proof. For a, b ∈ HomZ(A,Z) let χ(a ⊗ m) = α = (αe, αee) be given as fol-
lows: (x, y ∈ A), αe(x) = a(x)m + (a(x)(a(x) − 1)/2)PH(m), and αee(x, y) =
a(x)a(y)H(m). Moreover χ([a, b] ⊗ n) = β = (βe, βee) is defined by βe(x) =
a(x)b(x)P (n), and βee(x, y) = a(x)b(y)n+ a(y)b(x)Tn.

Homotopy groups of spheres yield for m < 3n− 2 the quadratic Z-modules

Πm{Sn} = (Πm(Sn)
H→ Πm(S2n−1)

P→ Πm(Sn))(8.4)

where H = γ2 is the Hopf invariant and where P is induced by the Whitehead
product square [ιn, ιn], that is P (α) = [ιn, ιn]◦α. In Πm{Sn} we get the involution
T = HP − 1 = (−1)n.

(8.5) Lemma. Let m < 3n − 2 and suppose X has the homotopy type of a finite
one point union of spheres Sn, n ≥ 2. Then one has isomorphisms

Πm(X) ∼= Hn(X)⊗Z Πm{Sn} ∼= HomZ(Hn(X),Πm{Sn})
which are natural in X.

Proof. Let a, b ∈ Πn(X) ∼= Hn(X). Then the first isomorphism carries a⊗m, resp.
[a, b]⊗ n, to the compositions a ◦m, resp. [a, b] ◦ n, where [a, b] is the Whitehead
product, m ∈ Πm(Sn), n ∈ Πm(S2n−1). The second isomorphism is given by (8.3)
since Hn(X) = #Hn(X).

In addition homotopy groups of the special orthogonal groups yield the quadratic
Z-modules (n ≥ 2)

Πn−1{SOn} = (Πn−1SOn → Z→ Πn−1SOn)(8.6)

together with a map

J = Jn : Πn−1{SOn} → Π2n−1{Sn}(8.7)
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in QM(Z). Here Jee carries 1 ∈ Z to ι2n−1 ∈ Π2n−1(S2n−1) ∼= Z and Je :
Πn−1SOn → Π2n−1S

n is the J -homomorphism so that H in (8.6) coincides with
J−1
ee HJe. Moreover P in (8.6) carries 1 ∈ Z to ∂in where we use the boundary

∂ : ΠnS
n → Πn−1(SOn) of the fibering Sn = SOn+1/SOn.

(8.8) Definition. Let M be a quadratic Z-module with Mee
∼= Z and let A be a

finitely generated free abelian group (i.e. a Z-lattice). We call a quadratic form α :
A→M unimodular if the product αee : A×A→Mee

∼= Z yields an isomorphism
Dα : A ∼= #A where Dα is defined by Dα(x)(y) = 〈Dα(x), y〉 = αee(x, y) for
x, y ∈ A.

(8.9) Remark. Let A be a Z-lattice. Then a pre-n-space in the sense of Wall
[40] is the same as a quadratic form α : A → Πn−1{SOn}; moreover this is an
n-space if α is unimodular. Wall shows that “almost closed differential (n − 1)-
connected 2n-manifolds M” stand in 1-1 correspondence with “n-spaces α”, n ≥ 3.
The correspondence carries M to α = αM where αee is the intersection form of M
and where the function αe : HnM → Πn−1SOn assigns to x ∈ ΠnM = HnM the
classifying map of the normal bundle of an embedded sphere representing x.

We now call two quadratic forms α : A → M and β : B → M equivalent if
there exists an isomorphism y : A ∼= B with αee(y × y) = ±βee and αey = βe.

(8.10) Lemma. Homotopy types of (n − 1)-connected Poincaré complexes M of
dimension 2n are in 1-1 correspondence with equivalence classes of unimodular
quadratic forms A→ Π2n−1{Sn} where A is a Z-lattice, n ≥ 2.

We obtain the correspondence in (8.10) as follows. Let f be the attaching map

of M =
•
M ∪f e2n and let A = HnM = Hn

•
M . Then we have by (8.5) the natural

isomorphism

Π2n−1(
•
M) ∼= A⊗Z Π2n−1{Sn} ∼= Hom(#A,Π2n−1{Sn})(1)

which carries f to the quadratic form βM : B → Π2n−1{Sn} with B = #A =

Hn(
•
M). We call βM the extended cup product of M . One can check that

βM = (βe, βee) coincides with the invariant considered by Kervaire-Milnor in [28].
In fact βee is the cup product pairing HnM×HnM → H2n(M) = Z where HnM =
B, that is, βee(x, y) = 〈x ∪ y, [M ]〉, and βe is the cohomology operation considered
by Kervaire-Milnor, see 8.2 [28]. Wall in Lemma 8 [40] shows that for a closed
differential (n− 1)-connected 2n-manifold M we have

J∗αM = D∗MβM = δM(2)

where J is the map in (8.7) and where DM : HnM → HnM is the inverse of the
Poincaré duality isomorphism ∩[M ] : Hn(M) ∼= HnM . Here ∩[M ] can be identified
with #Dβ = Hom(Dβ ,Z): #A → A where Dβ is given via βee as in (8.8); this is
readily checked by the formula 〈x∪y, [M ]〉 = 〈x, y∩ [M ]〉. Now the correspondence
in (8.10) carries M to the quadratic form

δM = D∗MβM = (#D−1
β )∗βM : A→ Π2n−1{Sn}(3)

which we call the extended intersection form of M ; in fact, δee in δM = (δe, δee)
is the classical intersection form.
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Proof of (8.10). Let u : M → N be a homotopy equivalence with u∗[M ] = ε[N ],

ε ∈ {+1,−1}. Then we get the restriction v :
•
M →

•
N of u with v∗f = εf ′ where

f and f ′ are the attaching maps. Hence by (1) above we get for x = Hn(v) the
equation (#x)∗β = εβ′ with β = βM and β′ = βN . In particular βee(

#x × #x) =
εβ′ee and hence D′ = εxD#x with D′ = Dβ′ and D = Dβ . Therefore we get for
δ = δM , δ′ = δN via (3) the equations (y = x−1)

δe = βe
#D−1 = βe

#(εyD′#y)−1

= (εβ′e
#y)#(εyD′#y)−1

= β′e(
#D′)−1y−1 = δ′ey

−1.

On the other hand one gets in a similar way δee = εδ′ee(y
−1×y−1). Hence δe = δ′ex

and δee = εδ′ee(x× x) so that x is an equivalence.

The J -homomorphism (8.12) induces the homomorphism

J∗ : HomZ(Hn,Πn−1{SOn})→ HomZ(Hn,Π2n−1{Sn})(8.11)

which clearly is injective if Je is injective. Hence αM in (8.10) (2) is determined
by δM in case Je is injective; this is actually the case for n = odd or n ≡ 6 (8),
see (8.21) below. Therefore we get:

(8.12) Remark. Let n be odd or n ≡ 6 (8), n ≥ 3, and let M1,M2 be differential
(n − 1)-connected 2n-manifolds of the same homotopy type. Then for some man-
ifold T homeomorphic to S2n, M1 is diffeomorphic to M2#T . If n = 3, 6, M1 is
diffeomorphic to M2. This corresponds to Theorem 5 of Wall [40], where Wall,
however, does not treat the case n ≡ 1 (8). In this case Je is still injective as
follows from Theorem 1.1 of Adams [1].

Next we determine the group of homotopy equivalences of an (n− 1)-connected
Poincaré complex M of dimension 2n in terms of the classifying invariant δM above.
For this we need the group of automorphisms, Aut(δ), of a quadratic form
δ = (δe, δee) : A→ N . This is the subgroup

Aut(δ) ⊂ Aut(A)(8.13)

consisting of all automorphisms x : A ∼= A that satisfy δex = δe and δee(x×x) = εδee
with ε ∈ {+1,−1}. We set ε = deg(x). If N is an abelian group we have δee = 0
so that the second equation is redundant. On the other hand if H : Ne → Nee
is injective we see by the second equation in (8.2)(9) that the first equation is
redundant; that is, in this case Aut(δ) = {x; δee(x× x) = ±δee}.

(8.14) Theorem. Let M be an (n − 1)-connected Poincaré complex of dimension
2n and let M be Σ-reducible; that is Σδe = 0 where δe : Hn(M) → Π2n−1S

n is
given by the extended intersection form δM = (δe, δee) of M . Then the fundamental
extension (1.3) has the form

Hn(M)⊗ Tn� E(M)
Hn� Aut(δM ).

Here Tn = Tor Π2n+1(Sn+1) is the group in (6.2) and Hn(M)⊗Tn is an Aut(δM)-
module by x · (a⊗ t) = deg(x) · x(a)⊗ t for x ∈ Aut(δM), a ∈ Hn(M) and t ∈ Tn.
The homomorphism Hn carries an element in E(M) to the induced homomorphism
in homology. The fundamental extension for E(M) above is split if in addition n is
odd or n ∈ {2, 6}.
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Proof. The suspension Σ induces a map (m ≤ 3n− 2, n ≥ 2)

Σ = (Σ, 0) : Πm{Sn} → Πm+1{Sn+1}(1)

in QM(Z) where Σe = Σ is the ordinary suspension and where Σee = 0 is trivial,
compare (8.4). Now Σ in (1) induces via (8.5) the suspension homomorphism on
Πm(X) which is the composition

Πm(X) ∼= Hn(X)⊗Z Πm{Sn} σ⊗Σ→ Hn+1(ΣX)⊗Z Πm+1{Sn+1} ∼= Πm+1(ΣX).

(2)

Here σ is the homology suspension σ : Hn(X) ∼= Hn+1(ΣX). Therefore we see
by (8.5) that M is Σ-reducible if and only if Σδe = 0. As in the proof of (8.10) we
get

Aut(δM ) ∼= E(
•
M,±f).(3)

Here we use the naturality of the isomorphisms (8.5) and (8.10) (1). By (3) and
Theorem (3.5) we then obtain the fundamental extension in (8.14). We now deduce
the splitting in (8.14) from Theorem (5.2). For this we consider the inclusion (5.1)

which via (8.5) corresponds to the inclusion (A = Hn

•
M)

A⊗Z ΣΠ2n{Sn} 1⊗i→ A⊗Z Π2n+1{Sn+1}(4)

where i is the inclusion of the image of Σ in (1). In case there is a retraction r in
QM(Z), for which

ΣΠ2n{Sn} i→ Π2n+1{Sn+1} r→ ΣΠ2n{Sn}(5)

is the identity, we see that (4) admits the retraction 1 ⊗ r which is natural in
A. Hence in this case the fundamental extension in (8.14) is split by (5.2). The
retraction r in (5) exists if and only if there is a retraction re of the inclusion
ΣΠ2n(Sn) ⊂ Π2n+1S

n+1 for which re[ιn+1, ιn+1] = 0. This is the case if and only
if n is odd or n ∈ {2, 6}, see [39].

The construction of the retraction 1 ⊗ r of (4) in the proof above illustrates
indeed the usefulness of the quadratic tensor product in (8.2). Our approach avoids
the choice of a basis in HnM ; such a choice would imply a mess of equations
as one can find them in this context often in the literature. Also the following
considerations show the clear advantages of our approach. We describe in more
detail the properties of the quadratic Z-modules Π2n−1{Sn} and Πn−1{SOn}. For
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this we introduce the following list of indecomposable quadratic Z-modules.

Z⊗ =

(
Z (1,1)→ Z⊕ Z (1,1)→ Z

)
,

ZS =
(
Z 2→ Z 1→ Z

)
,

ZΛ = (0→ Z→ 0),

ZΛ
r =

(
Z/2r 0→ Z 2r−1

→ Z/2r
)
,

ZΓ =
(
Z 1→ Z 2→ Z

)
,

ZPr =

(
Z⊕ Z/2r (1,0)→ Z (2,−1)→ Z⊕ Z/2r

)
,

ZP =

(
Z⊕ Z (1,0)→ Z (2,−1)→ Z⊕ Z

)
.

(8.15)

We have obvious quotient maps ZP � ZPr � ZΓ and ZΛ
r � ZΛ in QM(Z). Some

of the quadratic Z-modules in (8.15) correspond to well-known quadratic functors
Ab→ Ab since there are natural isomorphisms (A ∈ Ab)

⊗2(A) = A⊗Z Z⊗ = A⊗A,
S2(A) = A⊗Z ZS = A⊗A/{a⊗ b− b⊗ a},
Λ2(A) = A⊗Z ZΛ = A⊗A/{a⊗ a},
⊗̂2(A) = A⊗Z ZΛ

1 = A⊗A/{a⊗ b+ b⊗ a},
Γ(A) = A⊗Z ZΓ,

P 2(A) = A⊗Z ZP = ∆(A)/∆(A)3.

(8.16)

Here S2(A) and Λ2(A) are the symmetric resp. exterior square. Moreover Γ is the
quadratic functor of J. H. C. Whitehead [41] which is part of the free commutative
ring with divided powers [20, §13]. Moreover P 2(A) is the polynomial construction
given by the augmentation ideal ∆(A) and its third power ∆(A)3 in the groupring
Z[A] of the group A. The sum Z⊗⊕ZP is actually the universal quadratic Z-module,
see [13].

(8.17) Lemma. There are indecomposable quadratic Z-modules SQn , OQn as in
(8.15) and abelian groups SLn , OLn such that for n ≥ 2 one has isomorphisms in
QM(Z)

Π2n−1{Sn} = SQn ⊕ SLn , Πn−1{SOn} = OQn ⊕OLn .

More precisely we obtain the following lists in which we describe SQn , OQn , SLn ,
OLn respectively. We write “g.d.s” for “generates a direct summand” and ΠS

n−1

denotes the stable (n−1)-stem. Using results of Toda in [39] and Kervaire [29] (see
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Wall [40, p. 171]) we get:

Π2n−1{Sn} =



ZΓ, n = 2,

ZP2 ⊕ Z/3, n = 4,

ZP3 ⊕ Z/15, n = 8,

ZΛ ⊕ Z/2, n = 3, 7,

ZS ⊕ΠS
n−1, n even, n /∈ {2, 4, 8},

ZΛ
1 ⊕ΠS

n−1, n odd, n /∈ {3, 7}, [ιn, ιn] g.d.s,

ZΛ
r ⊕ΠS

n−1/{Σαn}, n odd, n /∈ {3, 7},
[ιn, ιn] = 2r−1αn, αn g.d.s. (K)

(8.18)

The divisibilities of the Whitehead square in (K) is relevant with respect to the
Arf invariant problem, see [31].

Πn−1{SOn} =



ZΓ, n = 2,

ZP , n = 4, 8,

ZΛ n = 3, 7,

ZS ⊕Πn−1SO, n even, n /∈ {2, 4, 8},
ZΛ

1 ⊕Πn−1SO, n odd, n /∈ {3, 7}.

(8.19)

For n = 4 see Lemma 20.10 in [32]. We recall that by results of Bott [16] we have
for n ≥ 2:

Πn−1SO =


Z/2, n ≡ 1, 2 (8),

0, n ≡ 3, 5, 6, 7 (8),

Z, n ≡ 0 (4).

(8.20)

There is a canonical inclusion iQn : OQn ⊂ SQn which is the identity except for the
case (K) in (8.18). Moreover we have the homomorphism iLn : OLn → SLn which
is induced by the stable J -homomorphism Πn−1SO → ΠS

n−1. Now the map Jn
between quadratic Z-modules in (8.7) is given by (n /∈ {2, 4, 8})

Jn : Πn−1{SO} = OQn ⊕OLn
iQn⊕i

L
n→ SQn ⊕ SLn = Π2n−1{Sn}(8.21)

For n ∈ {2, 4, 8} the map

Jn : Πn−1{SO} = OQn → SQn ⊕ SLn = Π2n−1{Sn}

is the canonical surjection. HereOQn → SQn is the identity for n = 2 and the quotient
map for n ∈ {4, 8}; the second coordinate OQn → SLn is given by (1, 2) : Z⊕Z→ SLn
for n ∈ {4, 8}.

(8.22) Lemma. Each Σ-reducible (n−1)-connected Poincaré complex of dimension
2n has the homotopy type of a closed manifold.

Proof. We obtain the suspension

Σ : Π2n−1{Sn} = SQn ⊕ SLn → ΠS
n−1

by dividing out the image of P in SQn , see (8.14)(1). This shows by inspection that
Ker(Σ) ⊂ image Jn. Hence the lemma is a consequence of (8.10)(2).
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On the other hand we have ΣJn = 0 if Πn−1SO = 0. Therefore Ker(Σ) =
image Jn in this case and we get by (8.20) the proposition in (3.3).

Since the quadratic Hom functor is additive in the second variable we see that the
extended intersection form δM and the Wall invariant αM in (8.10) yield by (8.17)
quadratic forms {

δQM : HnM → SQn , resp.

αQM : HnM → OQn
(8.23)

which we call the quadratic part and homomorphisms between abelian groups{
δLM : HnM → SLn , resp.

αLM : HnM → OLn

which we call the linear part. The automorphism group (8.13) then satisfies

(8.24) Proposition. Let M be an (n − 1)-connected Poincaré complex of dimen-
sion 2n with extended intersection form δM and attaching map f . Then we have
isomorphisms of groups

E(
•
M,±f) = Aut(δM ) = Aut(δQM ) ∩Aut(δLM ).

Clearly we assume HnM 6= 0. The proposition follows by similar arguments as
in the proof of (8.10). Kahn [26], [27] incorrectly describes the quadratic part, resp.
linar part, of δM = JαM so that therefore his definition of Aut(µ, c) in his main
result is also incorrect; the correct definition would be (8.24).

For the computation of E(M |
•
M) we need the following definitions and facts.

(8.25) Definition. Let A be an abelian group and let M be a quadratic Z-module.
Then one has the natural homomorphism

A⊗ZM H→ A⊗A⊗Mee
P→ A⊗ZM

with

H(a⊗m) = a⊗ a⊗H(m),

H([a, b]⊗ n) = a⊗ b⊗ n+ b⊗ a⊗ T (n),

P (a⊗ b⊗ n) = [a, b]⊗ n,
where T = HP − 1 is the involution.

Let ΣX be a one point union of spheres Sn such that HnΣX = A. Then we
have for n ≤ 3n− 2 the commutative diagram

A⊗Z Πm{Sn} H−−−−→ A⊗A⊗Π2nS
2n+1 P−−−−→ A⊗Z Πm{Sn}y∼= y∼= y∼=

ΠmΣX
γ2−−−−→ ΠmΣX ∧X [1,1]∗−−−−→ ΠmΣX

(8.26)

where we use the isomorphism (8.5). The diagram shows that H in (8.25) corre-
sponds to the James-Hopf invariant γ2 and that P corresponds to the map induced
by the Whitehead product square [1, 1], see §2. The Hopf map ηm ∈ Πm+1S

m =
Z/2, m ≥ 3, is a generator which induces the following maps between quadratic
Z-modules, where ΣΠ2n−1(Sn) is a subgroup of Π2nS

n+1.

Π2n−1{Sn}
η∗2n−1→ Π2n{Sn}

(ηn)∗← Z/2⊗ ΣΠ2n−1(Sn).(8.27)
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We use these maps in QM(Z) in the following result. As usual we also write
A = 1A for the identity of A.

(8.28) Theorem. Let n ≥ 3 and let M be an (n− 1)-connected Poincaré complex
of dimension 2n with A = HnM and attaching map fM ∈ A ⊗Z Π2n−1{Sn} ∼=
Π2n−1(

•
M). Then the module E(M |

•
M) is algebraically given by the isomorphism

E(M |
•
M) ∼= A⊗Π2n{Sn}/J

where J is the following subgroup of A ⊗Z Π2n{Sn} ∼= Π2n(
•
M). The subgroup J

is generated by the element (A⊗ η∗2n−1)(fM ) and by all elements

P (A⊗ ξ)H(fM ) + (A⊗ ηn∗)(ξ ⊗ Σ)(fM )

with ξ ∈ Hom(A,A⊗ Z/2). Here we use the homomorphisms

A⊗Z Π2n−1{Sn} H→ A⊗A A⊗ξ→ A⊗A⊗ Z/2 P→ A⊗Z Π2n{Sn},

A⊗Z Π2n−1{Sn}
ξ⊗Σ→ A⊗ Z/2⊗ ΣΠ2n−1S

n A⊗ηn∗→ A⊗Z Π2n{Sn}.

A description of E(M |
•
M) in terms of quadratic Hom-functors is also possible

by use of the isomorphism in (8.5).

Proof of (8.28). We use the description of J in (2.2) where

ξ ∈ [Σ
•
M,

•
M ] = Hom(A,A⊗Πn+1S

n).

Here ηn ∈ Πn+1S
n = Z/2 is the generator. We have the formula

∇(1, f)(ξ) = ξ ◦ (Σf) + [ξ, 1]Σγ2f

= ξ ◦ (Σf) + [1, 1]∗(A ∧ ξ)Σγ2f

Now using (8.26) we obtain the description of J in (8.28).

For various n the group E(M |
•
M) in (8.28) can be computed in a better way.

We do this in the next section for n ∈ {2, 4, 8}.

9. Manifolds connected with Hopf maps

We consider (n − 1)-connected Poincaré complexes of dimension 2n for n ∈
{2, 4, 8}. These are the cases for which the Hopf invariant problem is relevant.
Moreover each such Poincaré complex has the homotopy type of a topological man-
ifold. As a first example we consider the projective planes. Let RP2, CP2, HP2 be
the real, resp. complex, resp. quaternionic projective plane and let Ca be
the Cayley plane. Recall that E(M) in Top/ ' is defined with respect to maps
which need not be base point preserving; let E(M)∗ be the corresponding group for
basepoint preserving maps, i.e. in Top∗/ '.

E(RP2) = 0, E(RP2)∗ = Z/2,
E(CP2) = Z/2,
E(HP2) = Z/2,
E(Ca) = Z/2⊕ Z/2.

(9.1)

For RP2 see [9, IIIB.18]. Moreover E(CP2) is a special case of (9.3) below since

for M = CP2 we have E(M |
•
M) = 0 and Aut(δM ) = Aut(Z) = Z/2. For the



HOMOTOPY EQUIVALENCES OF A MANIFOLD 4765

manifolds M = HP2 and M = Ca, however, the group Aut(δM) is trivial. In fact
the attaching map of M is the Hopf map ν4, resp. σ8, which is the generator of
Z in Π2n−1S

n = Z ⊕ Z/2r⊕ odd torsion, n = 2r. Hence the extended intersection

form (the quadratic part) is given by δQM = (δe, δee) : Z → ZPr with δe(1) = (1, 0).
Thus we get by (8.2)(1)

δe(−1) = −δe(1) + Pαee(1, 1)

= −δe(1) + P (1)

= −(1, 0) + (2,−1)

= (1,−1) ∈ Z⊕ Z/2r

so that δe(−1) 6= δe(1). Therefore −1 /∈ Aut(δM ). Now the computation of E(M) =

E(M |
•
M) is a consequence of (9.6) below. Compare also [43].

We need the definition of the characteristic element of a quadratic form, see for
example p. 26 of [25].

(9.2) Definition. Let A be a Z-lattice and let β : A × A → Z be a symmetric
bilinear map with odd determinant. Then there exists an element ω0 ∈ A with
β(x, x) ≡ β(x, ω0) mod 2 for all x ∈ A. The element ω = ω0 ⊗ 1 ∈ A⊗Z/2 is well
defined by β and is called the characteristic element of β.

For example, let β = ∪ : H2M × H2M → Z be the cup product pairing of
a 1-connected 4-dimensional Poincaré complex; then the characteristic element of
β = ∪ is the second Stiefel-Whitney class ω2 ∈ H2(M,Z/2) = H2(M) ⊗ Z/2
of M .

(9.3) Theorem. Let M be a 1-connected 4-dimensional Poincaré complex. Then
one has the split extension

Ker ω2 � E(M)� Aut(δM ).

Here ω2 : H2(M)⊗ Z/2 → Z/2 is given by the second Stiefel-Whitney class of M .
Moreover Aut(δM ) acts on Ker ω2 by x · (a ⊗ 1) = x(a) ⊗ 1 for x ∈ Aut(δM ),
a⊗ 1 ∈ Ker ω2.

Proof. This result was recently proved by Cochran-Habegger in [18]. Originally

E(M |
•
M) was computed in [11]; clearly this group can be derived from Theo-

rem (2.2) above. Quinn [34] obtained the formula E(M |
•
M) ∼= Ker ω2, but his

proof was not correct. Cochran-Habegger do this calculation again and also de-
scribe an intricate homotopy theoretic proof for the splitting. If ω2 = 0 we obtain
a new and short proof for the splitting by (8.14) since then M is Σ-reducible; in
fact for ω2 = 0 the extension in (9.3) coincides with the one in (8.14). If ω2 6= 0
one can use results of Freedman to describe a splitting as follows:

Freedman [21] shows that there is a closed topological manifold N which has
the homotopy type of the Poincaré complex M . Let Π0Homeo(N) be the group of
isotopy classes of homeomorphisms of N . Then Quinn [34] proved that the natural
homeomorphism

H2 : Π0Homeo(N)
∼=→ Aut(δN )

is an isomorphism; in fact, surjectivity follows from Freedman’s Theorem (1.5)
Addendum [21] and injectivity can also be proved along the lines of the proof of
Kreck’s result Theorem 1 in [30]. Using this isomorphism the canonical forgetful
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homomorphism Π0Homeo(N)→ E(N) yields the splitting for the extension in (9.3).

For a quadratic Z-module M and an abelian group C let M⊗C be the quadratic
Z-module given by

M ⊗ C = (Me ⊗ C H⊗1→ Mee ⊗ C P⊗1→ Me ⊗ C).

Then the quadratic tensor product satisfies

A⊗Z (M ⊗ C) = (A⊗ZM)⊗ C.

For example we have

ZP ⊗ Z/2 = ZPr ⊗ Z/2 = (Z/2⊕ Z/2 (1,0)→ Z/2 (0,1)→ Z/2⊕ Z/2).(9.4)

This quadratic Z-module is part of the following commutative diagram in QM(Z)
with short exact rows and columns:

Z/2 Z/2

ZS ⊗ Z/2 ZP ⊗ Z/2 Z/2

ZΛ ⊗ Z/2 ZΓ ⊗ Z/2 Z/2

(1)

For a Z-lattice A the functor A⊗Z–, applied to this diagram, yields the follow-
ing commutative diagram with exact rows and columns in Ab, see the notation
in (8.16).

A⊗ Z/2

i

A⊗ Z/2

S2(A⊗ Z/2)
j

P 2(A) ⊗ Z/2 σ
A⊗ Z/2

Λ2(A⊗ Z/2) Γ(A) ⊗ Z/2 A⊗ Z/2

(2)

Here i carries y to i(y) = y · y = {y ⊗ y} and j corresponds to P in (8.25), that is,
j(x · y) = P (x⊗ y). For a homomorphism ω ∈ Hom(A,Z/2) = Hom(A⊗Z/2,Z/2)
we get the next push out diagram in Ab with short exact rows; this diagram defines
E4(ω).

S2(A⊗ Z/2)
j

ω∗ push

P 2(A) ⊗ Z/2 σ

ω̄∗

A⊗ Z/2

Z/2 ⊃ Im(ω) E4(ω) A⊗ Z/2

(3)
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Here ω∗ carries {x⊗y} to ω(x) ·ω(y) for x, y ∈ A where we use the ring structure of
Z/2 = Z/2Z. On the other hand we use ω also for the following push out diagram
which defines E8(ω) for ω 6= 0.

S2(A⊗ Z/2)⊕A⊗ Z/2
j⊕(1,1)

(ω∗,0) push

P 2(A) ⊗ Z/2⊕ (A⊗ Z/2)2

ω̄∗

(A⊗ Z/2)2

Z/2 E8(ω) (A⊗ Z/2)2

(4)

Here ω∗ is defined as in (3) and (1, 1) carries x to x ⊕ x. For ω = 0 we get the
quotient map

ω∗ = σ ⊕ 1⊕ 1 : P 2(A) ⊗ Z/2⊕ (A⊗ Z/2)2 → E8(0) = (A⊗ Z/2)3(5)

where σ is defined in (2). We point out that diagrams (3), (4) and (5) are in the
obvious way diagrams of Aut(ω)-modules with Aut(ω) ⊂ Aut(A) defined in (8.13).

(9.5) Theorem. Let n = 4 or n = 8 and let M be an (n − 1)-connected Poincaré
complex of dimension 2n with extended intersection form δM ∈HomZ(A,Π2n−1{Sn})
with A = HnM . Then δM determines the element ω = ωM ∈ Hom(A,Z/2) which
is the characteristic class of the cup product pairing ∪ : HnM ×HnM → Z. More-
over δM determines the element ν = νM ∈ P 2(A) ⊗ Z/2 which is the reduction
mod 2 of the attaching map of M . The map σ in (9.4) (3) carries ν to the element
σ(ν) ∈ A ⊗ Z/2 which is the Poincaré dual of ω. With these data we have the
fundamental extension

En(ω)/{ω∗(ν)}� E(M)� Aut(δM ).

Here the group En(ω)/{ω∗(ν)} is an Aut(δM )-module via the structure of En(ω)
as an Aut(ω)-module; clearly Aut(δM ) ⊂ Aut(ω).

If ω 6= 0 then also ω∗(ν) 6= 0 since σ(ν) 6= 0. This shows that one has isomor-
phisms of Z/2-vector spaces

E(M |
•
M) ∼=


Hn(M)⊗ Z/2 if n = 4,

(Hn(M)⊗ Z/2)2 if n = 8, ω 6= 0,

(Hn(M)⊗ Z/2)3 if n = 8, ω = 0.

(9.6)

This is also an isomorphism of Aut(δM )-modules in case ω = 0. We point out that
the following three conditions are equivalent for M in the theorem:

(i) the intersection form of M is even,
(ii) the characteristic class of the intersection form vanishes, that is, ω = 0,
(iii) the reduction mod 2 of the suspended attaching map vanishes, that is, σ(ν) =

0.

Hence if M is Σ-reducible then ω = 0 and ω∗(ν) = σ(ν) = 0.

Proof of (9.5). Clearly δM determines the extended cup product and the attaching
map fM by the isomorphisms in (8.10) (1) (2) (3). Recall that for n ∈ {4, 8} with
n = 2r we have

Π2n−1{Sn} = ZPr ⊕ SLn(1)
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where SLn is odd torsion, see (8.18). Hence fM in (8.27) determines the quadratic
part

fQM ∈ A⊗ ZPr .(2)

Here we have A = HnM and #A = Hom(A,Z) = Hn(M). By use of the fol-
lowing commutative diagram we see that σ(ν) is the Poincaré dual of ω. Let
x ∈ Hom(A,Z). Then we get by naturality the commutative diagram

A⊗A

x⊗x

A⊗ ZPz
H A⊗q2Σ

x⊗1

A⊗ Z/2

x⊗Z/2

Z⊗ Z Z⊗ ZPr
H Z⊗q2Σ

Z⊗ Z/2

Z

q2

Z⊕ Z/2r
(1,0) (1,0)

Z/2

(3)

Here q2Σ is given by the composition

q2Σ = (1, 0) : Z⊕ Z/2r Σ→ Z/2r+1 q2→ Z/2(4)

where Σ = (1, 2), since Ker Σ = Im P . Now we know that the cup product
HnM ×HnM → Z satisfies the formula

x ∪ y = (x⊗ y)H(fQM )(5)

where fQM is the quadratic part in (2). Hence by (3) and (1) we get

(q2x) ∪ (q2ω0) = q2x ∪ q2x = q2(x⊗ x)H(fQM )(6)

= (x⊗ Z/2)(A⊗ q2Σ)(fQM ) = (x⊗ Z/2)(σ(ν))

where in the first equation we use ω0 ∈ #A in (9.2) with ω = ω0 ⊗ 1. This shows
that σ(ν) is in fact the Poincaré dual of ω.

We use diagram (3) also in the following computation of the group J in (8.28).
The group Hom(A,A⊗ Z/2) in (8.28) is generated by the compositions

ξ = yq2x : A→ Z→ Z/2→ A⊗ Z/2(7)

with x ∈ #A and y ∈ Hom(Z/2, A ⊗ Z/2). By Poincaré duality each element
z ∈ Z⊗A = A is of the form (see (5))

z = (x⊗A)HfQM .(8)

We now get the following equations where we compute the generators in J , see (8.28).

P (A⊗ ξ)H(fM ) = P (A⊗ yq2)(A⊗ x)HfM

= P (A⊗ yq2)(x⊗A)HfQM

= P (A⊗ yq2)(z).

(9)

On the other hand we get

(A⊗ ηn∗)(ξ ⊗ Σ)(fM ) = (A⊗ ηn∗)(y ⊗ Z/2)(q2x⊗ q2Σ)fQM(10)
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where ηn∗ : Z/2 = Z/2⊗Z/2r+1 → Π2n{Sn} is given by (8.27). By (3) and (6) we
see that

(q2x⊗ q2Σ)fQM = q2x ∪ q2ω0

= (q2x⊗ q2ω0)H(fQM )

= (q2 ⊗ q2ω0)(x⊗A)H(fQM )

= (q2 ⊗ q2ω0)(z).

(11)

Here we also use (5) and (8). Thus (9), (10) and (11) show that J in (8.28) is
generated by the elements{

(A⊗ η∗2n−1)fM ,

P (yq2 ⊗A)(z) + (A⊗ ηn∗)(yq2 ⊗ ω)(z) = R
(12)

where y ∈ Hom(Z/2, A ⊗ Z/2), z ∈ Z ⊗ A. We clearly have q2ω0 = ωM = ω ∈
Hom(A,Z/2) for ω in (9.5). The operator P in (12) is defined for A⊗Π2n{Sn} as
in (8.25). Here we have

Π2n{Sn} =

{
ZP ⊗ Z/2 for n = 4,

(ZP ⊗ Z/2)⊕ (Z/2⊕ Z/2) for n = 8,
(13)

ZP ⊗ Z2 = (Z/2⊕ Z/2 (0,1)→ Z/2 (1,0)→ Z/2⊕ Z/2).(13b)

The isomorphism (13) carries the bases elements 1 ⊕ 0, 0 ⊕ 1 ∈ Z/2 ⊕ Z/2 =
(ZP⊗Z/2)e to Sν′η7, resp. ν4η7 for n = 4 and to Sσ′η15, resp. σ8η15 for n = 8. Here
we have [ι4, ι4]η7 = Sν′η7 and [ι8, ι8]η15 = Sσ′η15 and Hν4η7 = η7, Hσ8η15 = η15.
(See Proposition 2.2, Lemma 5.4, p. 43, 5.11, Lemma 5.14, p. 63 in Toda’s book
[39].) For n = 8 the generators of the summand Z/2 ⊕ Z/2 in (13) are ε8 and
ν8. This description of generators shows that we get η∗2n−1 by the composition in
QM(Z)

η∗2n−1 : Π2n−1{Sn}
q2� Π2n−1{Sn} ⊗ Z/2 = ZP ⊗ Z/2 ⊂ Π2n{Sn}(14)

where we use (1) and the inclusion given by (13). On the other hand we obtain

ηn∗ : Z/2 = Z/2⊗ ΣΠ2n−1(Sn)→ Π2nS
n =

{
(Z/2)2, n = 4,

(Z/2)4, n = 8,
(15)

as follows. We observe that 1 ⊗ ν5 generates Z/2 ⊗ ΣΠ7S
4 and η4∗ carries this

element to

η4∗(1⊗ ν5) = η4ν5 = Sν′η7 = 1⊕ 0 ∈ (Z/2)2(16)

(by p. 44, 5.9 in Toda [39]). Morever 1⊗σ9 generates Z/2⊗ΣΠ15S
8 and η8∗ carries

this generator to (see 7.4 in Toda [39])

η8∗(1⊗ σ9) = η8σ9 = Sσ′η15 + ν8 + ε8(17)

= 1⊕ 0⊕ 1⊕ 1 ∈ (Z/2)4.

Hence we get for ηn∗ in (15) the formula

ηn∗ =

{
(1, 0) for n = 4,

(1, 0, 1, 1) for n = 8.
(18)
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Using (13) we see that

A⊗Π2n{Sn} =

{
P (A)⊗ Z/2 for n = 4,

P (A)⊗ Z/2⊕ (A⊗ Z/2)2 for n = 8.
(19)

Moreover the inclusion (14) shows that the first element in (12) corresponds to

(A⊗ η∗2n−1)fM = ν ∈ P (A)⊗ Z/2 ⊂ A⊗Π2n{Sn}.(20)

On the other hand the second element in (12) can be described as follows. We first
deal with the case n = 4. Then we have the commutative diagram

A⊗ Z/2 i

η4∗

S2(A⊗ Z/2)
j

P 2(A)⊗ Z/2

⊗2(A⊗ Z/2)

q

A⊗A⊗ Z/2

P

(21)

where ji = η4∗ since a⊗Pn = [a, a]⊗n by (8.2)(4) so that η4∗(a⊗ 1) = a⊗ η4∗1 =
a ⊗ P1 = [a, a] ⊗ 1 = j(a · a) = ji(a). The quotient map q carries x ⊗ y to the
equivalence class x · y = {x⊗ y} with j(x · y) = [x, y]⊗ 1 = P (x⊗ y⊗ 1). Now the
second element in (12) coincides with the following element R where y, z ∈ A⊗Z/2
correspond to the elements y, z in (12).

R = j(R′) with R′ = y · z + i(y · ω(z)).(22)

The elements R′ generate the kernel of ω∗ in (9.4)(3). Hence we obtain by (20) the
formula

E(M |
•
M) = E4(ω)/ω∗(ν) for n = 4.(23)

A similar argument yields the result for n = 8. In this case we get by (18),
see (9.4)(4),

R = j(y · z + i(y · ω(z)))⊕ y · ω(z)⊕ y · ω(z).(24)

These elements R generate the kernel of ω∗ in (9.4)(4), (5) so that by (20) we get

E(M |
•
M) = E8(ω)/ω∗(ν) for n = 8.(25)

This completes the proof of Theorem (9.5).

10. Remark on diffeomorphisms

Let M be a differential manifold and let Π0Diff+(M) be the group of isotopy
classes of orientation preserving diffeomorphisms of M . Then we have the homo-
morphism

Ψ : Π0Diff+(M)→ E+(M)(10.1)

which carries an isotopy class of a diffeomorphism h to the homotopy class of h.
Here E+(M) is the subgroup of orientation preserving homotopy equivalences in
E(M). We use the invariants αM and δM in (8.10) and for α = αM or α = δM let
Aut+(α) be the subgroup of Aut(α) consisting of elements x with deg(x) = +1.
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By our result (8.14) we get the following theorem on the homomorphism Ψ above.
In the theorem we use the diagram

Πn(SOn)
S−−−−→ Πn(SOn+1)yJ yJ

Π2n(Sn)
Σ−−−−→ Π2n+1(Sn+1)

where J is the J -homomorphism and where S is induced by the inclusion SOn ⊂
SOn+1. Since the diagram commutes up to sign we get the well defined homomor-
phism

J : SΠn(SOn)→ ΣΠ2n(Sn) = Tor Π2n+1(Sn+1)(10.2)

needed in the following result:

(10.3) Theorem. Let M be a differential (n − 1)-connected 2n-manifold, n ≥ 3,
which is almost parallelizable. Then there is a commutative diagram in which the
columns are short exact, A = HnM .

Ker(Hn)
χ̄

A⊗ SΠnSOn
A⊗J

A⊗ ΣΠ2nS
n

Π0 Diff+(M)
Ψ

Hn

E+(M)

Hn

Aut+(αM )
Ψ̄

Aut+(δM )

Here Hn is given by the homology functor and the inclusion Ψ is surjective if
Jn in (8.7) is injective, i.e. for n odd or n ≡ 6 (8). Moreover χ is surjective
with kernel(χ) ∼= Θ2n+1/{ΣM} where ΣM is an element in the group of (2n + 1)-
dimensional homotopy spheres Θ2n+1 of order 2 and depending only on M .

The homomorphism χ is obtained by the homomorphism χ in [30] via Poincaré
duality; commutativity of the diagram follows from the definition of χ and the
definition of J ; see the proof of Wall of Lemma 8 [40].

(10.4) Corollary. If J in (10.2) is injective then we have Ker Ψ = Ker χ =
Θ2n+1/{ΣM}. Moreover if J in (10.2) is surjective and n odd or n ≡ 6 (8) then
Ψ is surjective. On the other hand if J = 0 in (10.2) and if n is odd or n ≡ 6 (8)
then the fundamental extension for E(M) has a splitting induced by Ψ.

(10.5) Remark. We would like to warn the reader that the paper of Kolosov con-
cerning Ψ in (10.3) (see Math. USSR-Sb. 41 (1982)) contains various errors, in
particular his main result Theorem 1 contradicts results of Kreck [30] and Theo-
rem (10.3) above.
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