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THE GENERALIZED BERG THEOREM AND BDF-THEOREM

HUAXIN LIN

Abstract. Let A be a separable simple AF -algebra with finitely many ex-
treme traces. We give a necessary and sufficient condition for an essentially
normal element x ∈ M(A), i.e., π(x) is normal (π : M(A) → M(A)/A is the
quotient map), having the form y + a for some normal element y ∈ M(A)
and a ∈ A. We also show that a normal element x ∈ M(A) can be quasi-
diagonalized if and only if the Fredholm index ind(λ − x) = 0 for all λ 6∈
sp(π(x)). In the case that A is a simple C∗-algebra of real rank zero, with sta-
ble rank one and with continuous scale, K1(A) = 0, and K0(A) has countable
rank, we show that a normal element x ∈M(A) with zero Fredholm index can
be written as

x =
∞∑
n=1

λn(en − en−1) + a,

where {en} is an (increasing) approximate identity for A consisting of projec-
tions, {λn} is a bounded sequence of numbers and a ∈ A with ‖a‖ < ε for any
given ε > 0.

1. Introduction

Let x ∈ B(l2) be a normal operator. The Weyl-von Neumann-Berg theorem says
that

x =
∞∑
n=1

λn(en − en−1) + a,

where {en} is an (increasing) approximate identity for K consisting of projections,
{λn} is a bounded sequence, a ∈ K and ‖a‖ is smaller than any given posi-
tive number, where K is the C∗-algebra of compact operators on l2. Note that
B(l2) = M(K), the multiplier algebra of K. Recently, Terry Loring and Jack Spiel-
berg ([LS]) show that there are normal elements in M(A) which are not quasidi-
agonalizable for some separable simple AF -algebra A with a unique trace (up to
scalar multiplication). Their counterexamples are based on the fact that a normal
element in M(A) may have nonzero Fredholm index. We will consider those sep-
arable simple AF -algebras with finite many (extreme) traces. We found that the
Fredholm index is the only obstruction for quasidiagonality. In the case that A has
continuous scale and K0(A) has countable rank, we show that a normal element
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x ∈M(A) can be written as

x =
∞∑
n=1

λn(en − en−1) + a,

where {en} is an approximate identity for A consisting of projections, {λn} is a
bounded sequence of numbers and a ∈ A with ‖a‖ < ε for any given ε > 0, if
and only if the Fredholm index ind(λ − x) = 0 for all λ 6∈ sp(π(x) (π : M(A) →
M(A)/A is the quotient map). We also found that this obstruction is small, in
fact, it is “infinitesimal”, in the sense that ind(λ − x) must be an infinitesimal
element in K0(A), if x is a normal element in M(A). Therefore if A is a separable
simple AF -algebra with finite extreme traces and with no infinitesimal elements in
K0(A), then every normal element in M(A) can be quasidiagonalized. A related
problem is when an essentially normal element (i.e. π(x) is normal in M(A)/A,
where π : M(A) → M(A)/A is the quotient map) x ∈ M(A) can be written as
x = y+a, where y ∈M(A) is a normal element and a ∈ A. One might imagine that
ind(λ−x) = 0 for all λ 6∈ sp(π(x)) would be necessary and sufficient for x = y+ a.
However, we found that ind(λ − x) = 0 is neither necessary nor sufficient. It
turns out, with some surprise, that an essentially normal element x ∈M(A) can be
written as x = y+a if and only if ind(λ−x) is an infinitesimal element in K0(A) for
every λ 6∈ sp(π(x)) and the remaining Γ(x) is zero, where Γ is an index which will
be defined in section 2. This implies that every essentially normal element in M(A)
has the form y + a, where y ∈ M(A) is normal and a ∈ A, if A is a finite matroid
algebra. One may view these results as some version of a generalized BDF-theorem
for essentially normal elements.
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2. C∗-algebras with weak (FN)

Recall that a C∗-algebra A is said to have real rank zero if the set of selfadjoint
elements with finite spectrum is dense in As.a.. This class of C∗-algebras is cur-
rently under intensive study (see [BP], [BBEK], [BDR], [BKR], [Ell2]-[Ell3], [EE],
[G], [R], [Zh1]-[Zh6], [EGLP]and [Ln3]-[Ln13], etc.). In this section, we consider
the problem when a normal element in a C∗-algebra of real rank zero can be ap-
proximated by normal elements in the algebra with finite spectrum. It is clear that
the unitaries which are not connected with the identity in the unitary group can
not be approximated by normal elments with finite spectra. The notion of weak
(FU) (a C∗-algebra A is said to have weak (FU) if the set of unitaries with finite

spectra is dense in the connected component of a unitary group of Ã containing
the identity) was introduced by N. C. Phillips ([Ph]). It has been shown ([Ln7])
that every C∗-algebra with real rank zero has weak (FU). The problem for general
normal elements is much more complicated. We begin with the following definition.
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Definition 2.1. Let φ : C(X) → A be a monomorphism. The map φ induces a
homomorphism

φ∗ : K1(C(X))→ K1(A).

In particular, if x is a normal element in A, then x gives a monomorphism φ :
C(sp(x))→ A. We define γ(x) = φ∗. Let I be a (closed and two sided) ideal of A.
Suppose that J is the kernel of the composition πI ◦ φ. Then

C(X)/J ∼= C(XI)

for some compact subset XI of X. This induces a monomorphism

φI : C(XI)→ A/I.

We define

Γ(φ) = {(φI)∗ : I is an ideal of A}

and Γ(x) = Γ(φ), γI(x) = φI∗, where φ : C(sp(x)) → A is the map induced by the
normal element x ∈ A. Notice I could be {0}.

Definition 2.2 (cf. [Ln11]). A C∗-algebra A is said to have weak (FN) if every
normal element x ∈ A with Γ(x) = 0 can be approximated by normal elements in
A with finite spectra. It has been shown in [Ln11] that all simple AF -algebras with
countably many extreme traces, purely infinite simple C∗-algebras and separable
simple C∗-algebras with real rank zero, stable rank one and weakly unperforated
K0(A) of countable rank have weak (FN). These algebras include UHF-algebras,
matroid algebras, C∗-algebras of On, the Bunce-Deddens algebras and the irrational
rotation algebras. In the case of AF -algebras and On, since the K1-groups are
trivial, these algebras in fact have (FN). In this section, we will show that some
non-simple C∗-algebras have also weak (FN).

Added in proof (April 1996): It has been shown by the author in 1994 that every
AF-algebra has (FN) and in 1996 by Friis and Rørdam that every C∗-algebra of
real rank zero with connected unitary group and with property (IR) has (FN), and
by the author that every simple C∗-algebra of real rank zero and with property (IR)
has weak (FN). These include all simple C∗-algebras of real rank zero, stable rank
one as well as all purely infinite simple C∗-algebras.

Remark 2.3. We are grateful to Terry Loring who pointed out that our original
definition is not appropriate for non-simple C∗-algebra. Let A = B ⊕ C, where B
is any (unital) C∗-algebra with real rank zero but nontrivial K1-group and C is
any (unital) C∗-algebra with real rank zero. Let u be a unitary in B which is not
connected to the identity in the unitary group of B. Set x = u ⊕ y, where y ∈ C
is a normal element with spectrum sp(y) = D̄ (D̄ is the closed unit disk). Clearly
γ(x) = 0, but x can not be approximated by normal elements in A with finite
spectra. So maps (φI)∗ are needed. It should also be noted that when A is simple,
Γ = γ.

Proposition 2.4. Let A be a C∗-algebra with weak (FN). Then Ã has weak (FN).

Proof. Let x ∈ Ã be a normal element with Γ(x) = 0. Then we may write x = λ+a
for some a ∈ A and λ ∈ C. Clearly, a is a normal element with Γ(a) = 0. The
conclusion follows easily.

The following two lemmas are contained in [Ln9, 4], and [Ln11, 2.7].
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Lemma 2.5. Let A be a C∗-algebra of real rank zero and x ∈ A be a normal
element with γ(x) = 0. For any ε > 0, there is a δ > 0 such that if p ∈ A is a
projection and

‖px− xp‖ < δ/2, and ‖pxp− y‖ < δ/2,

where y ∈ pAp, and λ(1−p)−(1−p)x(1−p) ∈ Inv0((1−p)A(1−p)) if dist(λ, sp(x))
≥ δ, then λp− y ∈ Inv0(pAp), if dist(λ, sp(x)) ≥ δ.

Proof. Suppose that dist(λ, sp(x)) ≥ δ. We notice that

‖(λ− [(1− p)x(1− p) + pxp])− (λ− x)‖ < δ.

Therefore, by [Ln11, 2.3 and 2.7], λp− pxp ∈ Inv0(pAp). Now

‖(λp− y)− (λp− pxp)‖ < δ/2.

Then, by [Ln9, 4] and [Ln11, 2.7], λp− y ∈ Inv0(pAp).

The following is proved in [Ln11, 3.12].

Theorem 2.6 ([Ln11, 3.12]). Let Ω be a compact subset of the plane. For any
ε > 0, there exist δ > 0 and an integer L such that for any (unital) C∗-algebra A
of real rank zero and a normal element x in a C∗-algebra B ⊃ A with sp(x) ⊂ Ω,
if p ∈ A is a projection and if pf(x), f(x)p ∈ A for any f ∈ C(sp(x)),

‖px− xp‖ < δ and λp− pxp ∈ Inv0(pAp)

for λ 6∈ Ω, then there are normal elements y ∈ML(pAp) and z ∈ML+1(pAp) with
finite spectrum sp(y), sp(z) ⊂ Ω such that

‖pxp⊕ y − z‖ < ε.

Lemma 2.7. Let A be a C∗-algebra of real rank zero and I be an ideal of A. Suppose
that A/I has weak (FN) and I is a purely infinite simple C∗-algebra. Then A has
weak (FN).

Proof. Let x ∈ A be a normal element with Γ(x) = 0. For any η > 0, by [Ln11, 4.3]
as in the first few lines in the proof of [Ln11, 4.4], there are λi ∈ sp(x) = X and
nonzero mutually orthogonal projections p′i ∈ A such that

‖x−
n∑
i=1

λip
′
i − p′xp′‖ < η/4 and ‖p′x− xp′‖ < η/4,

where p′ = (1−
∑n
i=1 p

′
i) and {λi} is η/16-dense in X. Set

I⊥ = {a : ai = ia = 0, for i ∈ I}.

From the proof of [Ln11, 4.3], if p′i 6∈ I⊥, by taking a subprojection, one may assume
that p′i ∈ I. Therefore, we may assume that pi = p′i ∈ I, i = 1, 2, ..., k, and {λi}ki=1

is η/16-dense in sp(cx), where c is the central open projection in A∗∗ corresponding

to the ideal I. Set p = 1−
∑k
i=1 pi. From the proof of [Ln11, 3.4]we have

‖x−
k∑
i=1

λipi − pxp‖ < η/4 and ‖px− xp‖ < η/4.
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Set y = pxp. Let π : A → A/I be the quotient map. Then π(y) = π(x). By our
assumption, we may assume that

‖π(y)−
n∑
j=1

αj q̄j‖ < η/8,

where q̄j are mutually orthogonal projections in pAp/I ∼= pAp/pIp and αj ∈
sp(π(x)). Since pAp has real rank zero, by [Zh2, 2.3], every projection in pAp/pIp
lifts to a projection in pAp. Therefore there is a ∈ pIp such that

‖y −
n∑
j=1

αjqj − a‖ < η/8,

where qj are mutually orthogonal projections in pAp. Since I has real rank zero, I
has an approximate identity consisting of projections. Therefore there are projec-
tions ej ∈ qjIqj such that

‖eae− a‖ < η/16, ‖ey − ye‖ < 3η/16

and

‖eye−
n∑
j=1

αjej − eae‖ < η/4,

where e =
∑n
j=1 ej. This also implies that

‖ex− xe‖ < η/2.

Set z =
∑n
j=1 αjej − eae. Then

‖z − exe‖ < η/2.

Notice that cx is a normal element (in A∗∗) and exe = ecxe. Moreover, ef(cx) =
ef(x) ∈ A and f(cx)e = f(x)ce = f(x)e ∈ A. It follows from 2.5 that for any

λ ∈ C \ Xη, λ − z ∈ Inv0(Ĩ), where Xη = {ξ : dist(ξ, sp(cx)) < η}. It then
follows 2.6, if η is small enough, there are normal elements y1 ∈ ML(eIe)) and
y2 ∈ML+1(eIe)) with finite spectra contained in sp(cx) such that

‖z ⊕ y1 − y2‖ < ε/4

for some integer L. Without loss of generality, we may further assume that y1 =∑k
i=1 λidi, where di are mutually orthogonal projections in ML(eIe) such that∑k
i=1 di = the identity of Mk(eIe).
Now we will “absorb” y1. Since I is purely infinite simple C∗-algebra, there is a

partial isometry

v ∈ (p⊕ e⊕ · · · ⊕ e)ML+1(I)(p⊕ e⊕ · · · ⊕ e)
(there are L copies of e) such that v∗div ≤ pi, i = 1, 2, . . . , k,

v∗v =
k∑
i=1

v∗div and vv∗ = e⊕ e⊕ · · · ⊕ e

(there are L copies of e). There is then a partial isometry u such that

u∗(z ⊕ y1)u =
k∑
i=1

λiq
′
i ⊕ z
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and u∗y2u is normal and has finite spectrum, where p′i = v∗div. So

‖
k∑
i=1

λipi ⊕ y − [
n∑
i=1

λi(pi − p′i)⊕
n∑
j=1

αj(qj − ej)⊕ u∗y2u]‖ < ε/2.

Therefore

‖x− [
k∑
i=1

λi(pi − p′i)⊕
n∑
j=1

αj(qj − ej)⊕ u∗y2u]‖ < ε.

Theorem 2.8. Let A be a C∗-algebra of real rank zero. Suppose that there is a
sequence of ideals:

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ In+1 ⊂ · · ·

such that A is the closure of
⋃∞
n=1 In and each In+1/In is a purely infinite simple

C∗-algebra. Then A has weak (FN).

Proof. Let x ∈ A be a normal element with Γ(x) = 0, and let πn : A→ A/In be a
quotient map. Since

dist(x, In)→ 0, as n→∞,

‖πn(x)‖ → 0.

Let Xn = sp(πn(x)). For any ε > 0, there is an integer N such that if n > N,

|λ| < ε/2 for all λ ∈ Xn.

Set a positive continuous function f defined on sp(x) such that f vanishes on XN

and ‖f(ξ)− ξ‖ < ε/2 for all ξ ∈ sp(x). Then we have

‖f(x)− x‖ < ε/2.

Clearly, f(x) ∈ IN . So it is enough to prove the theorem for finitely many In’s.
Suppose that I1 ⊂ I2 = A and I1 and I2/I1 are purely infinite simple C∗-algebras
and A has real rank zero. Since purely infinite simple C∗-algebras have weak (FN)
(see [Ln11, 4.4]), we can apply 2.7. Suppose that we show that 2.8 holds for n
ideals. Now if I1 ⊂ I2 ⊂ · · · ⊂ In+1 = A, Ik+1/Ik is a purely infinite simple C∗-
algebra for each k and A has real rank zero. By induction assumption, A/I1 has
weak (FN). So 2.7 applies.

Remark 2.9. Let

I → A→ B → 0

be a short exact sequence of C∗-algebras, where B is a Bunce-Deddens algebra and
I is isomorphic to On ⊗ K. Since K1(On ⊗ K) = 0, by [Zh4, 3.2], A has real rank
zero. It follows from 2.7 that A has weak (FN).

Corollary 2.10. Let A be a σ-unital purely infinite simple C∗-algebra with K1(A)
= 0. Then M(A) has weak (FN).

Proof. By [Zh6, 1.3], M(A)/A is purely infinite simple and M(A) has real rank
zero.
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2.11. Let A be a non-elementary separable simple C∗-algebras with real rank zero
and stable rank one. Fix a nonzero projection e ∈ A. Let ∆ be the set of positive
homomorphisms τ from K0(A) into R such that τ(e) = 1 and QT (A) be the set of
(lower semicontinuous) quasitraces τ such that τ(e) = 1. It follows from [BH, III]
that there is an (affine) homeomorphism χ : QT (A) → ∆. We will identify these
two compact sets. In fact ∆ is a Choquet simplex ([BH, II. 4.4]). We will use the
notation Aff(∆) for the set of all real affine continuous functions defined on ∆. The
map χ gives a homomorphism θ : K0(A)→ Aff(∆) (see [BH, III. 1.3]). If K0(A)
is weakly unperforated, then K0(A) has the strict order induced from θ. Moreover,
since A has stable rank one, for any two projections in M∞(A) if τ(p) < τ(q)
for all τ ∈ QT (A), then q � p, i.e., there is a partial isometry v ∈ M∞(A) such
that v∗v = p, vv∗ ≤ q. Furthermore, θ(K0(A)) is dense in Aff(∆). K0(A) is said to
have finite rank (countable rank) if there are only finitely (countably) many extreme
points in ∆. If K0(A) has rank n, then Aff(∆) ∼= Rn. We say that x ∈ K0(A) is
infinitesimal if −εe ≤ x ≤ εe for all 0 < ε ∈ Q (see [Eff, 4]). If K0(A) is weakly
unperforated, by the proof of [Eff, 4.2],

ker θ = {x ∈ K0(A) : x is infinitesimal}.

Let 1̂(τ) = τ(1) = sup{τ(p) : p ∈ A}. We set

S = {τ ∈ ∆ : 1̂(τ) <∞},

J = {f ∈ θ(K0(A)) : f(τ) = 0, if τ ∈ S}
and

SJ = {τ ∈ ∆ : f(τ) = 0, if f ∈ J}.
Then SJ is closed and S ⊂ SJ . One can easily check that SJ is a face of ∆. In
[Ln10], we show that if A is a nonunital separable simple C∗-algebra with real rank
zero, stable rank one and weakly unperforated K0(A), then

(1) K1(M(A)) = {0} (this holds without assuming that K0(A) is weakly unper-
forated);

(2) U(M(A)/A)/U0(M(A)/A) = K1(M(A)/A) = θ−1(J);
Notice that (2) implies that ker θ ⊂ K1(M(A)/A). If the function 1̂(τ) = τ(1) is

continuous on ∆, then we say that A has continuous scale (see [Ln10]and [Ln1]).
If A has continuous scale, then K1(M(A)/A) = ker θ.

The notations and results stated here will be used frequently without warning.

Proposition 2.12. Let A be a separable simple C∗-algebra with real rank zero,
stable rank one, trivial K1(A) and weakly unperforated K0(A) of rank n. Then
M(A)/A has a (finite) sequence of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ Jk+1 = M(A)/A (k ≤ n)

such that Ii+1/Ii is purely infinite simple for each i.

Proof. Fix a nonzero projection e ∈ A. Let τ1, τ2, ..., τn be extreme points of

∆ = {τ : τ(e) = 1},
where τ are quasitraces on A. Suppose that τi(1) =∞, i = 1, 2, ..., k. Set

J+
i = {a ∈M(A)+ : τm(a) <∞,m = 1, 2, ..., k − i+ 1}, i = 1, 2, ..., k + 1.



536 HUAXIN LIN

Let Ji be the ideal generated by J+
i . It is enough to show that Ji+1/Ji is purely

infinite and simple. We also let J0 = A. The fact that we have finite tower A =
I0 ⊂ J1 ⊂ · · · ⊂ Jk+1 = M(A) and Ji/Ji−1 is simple follows from the proof of
Theorem 2 in [Ln1]. We now use induction on k. If k = 0, then A is finite, it
follows from [Ln1] and [Zh2] that M(A)/A is purely infinite simple. Suppose that
2.12 holds for k. Note, by [Ln4, 2.8] (see also [Ln7, 9]), K1(Ji−1) = 0. So every
projection in Ji/Ji−1 lifts to a projection in Ji. Let e ∈ Ji/Ji−1 be a projection.
Then there is a projection E ∈ M(A) such that φi(E) = e, where φi : Ji/Ji−1 is
the quotient map. Thus, by induction assumption, eJi/Ji−1e is a purely infinite
simple C∗-algebra for i = 1, 2, ..., k. Since θ(K0(A)) is dense in Rn, it is easy to
see that there are projections pi ∈ Ji \ Ji−1, i = 2, 3, ..., k. So, there is at least
one nonzero e ∈ Ji/Ji−1. Since Ji/Ji−1 is simple and has nonzero projections, it is
the linear span of projections ([Pd3]). It follows [Zh7, 1.1] that (Ji/Ji−1) ⊗ K has
an approximate identity consisting of projections. Thus (Ji/Ji−1) ⊗ K is a purely
infinite simple C∗-algebra for i = 1, 2, ..., k, whence Ji/Ji−1 is a purely infinite
simple C∗-algebra for i = 1, 2, ..., k.

It remains to show that M(A)/Jk is purely infinite and simple. It suffices to
show that the closure of φk+1(x)(M(A)/Jk)φk+1(x) has an infinite projection for
every positive element x in M(A)/A. By [Zh6, 1.1], the closure x(M(A)/A)x is
the closure of linear combinations of projections in the closure x(M(A)/A)x, which
implies that at leat one projection p in the closure x(M(A)/A)x such that φk+1(p)
is not zero. It is easy to find a projection q ≤ p such that τi(p − q) = ∞ and
τi(q) = ∞ for i = 1, 2, ..., k. In particular φk(q) 6= 0 and φk(p − q) 6= 0. By [Ln10,
3], one shows that φk(p) is equivalent to φk(q). This implies that φk(p) is infinite.

Corollary 2.13. Let A be a separable simple C∗-algebra with real rank zero, sta-
ble rank one, trivial K1(A) and weakly unperforated K0(A) of finite rank. Then
M(A)/A has weak (FN).

Proof. As in the proof of 2.12,K1(Ji) = 0 for each Ji. Then, by repeated application
of [Zh2, 2.3] (also [BP, 3.14]), M(A) has real rank zero. Then 2.13 follows from
2.12, 2.8 and [Ln11] immediately.

3. The generalized Berg theorem

Definition 3.1 (cf. [Zh1, 1.3] and [LS]). Let A be a C∗-algebra. We say that the
Weyl-von Neumann-Berg theorem holds for A if every normal element of M(A) is
quasidiagonal; i.e. given any normal element x ∈ M(A) there is an approximate
identity {en} for A consisting of projections such that

x−
∞∑
n=1

(en − en−1)x(en − en−1) ∈ A,

where the sum is taken in the strict topology.
Loring and Spielberg [LS] show that a normal element x ∈ M(A) may not be

quasidiagonalized. It happens when the normal element x has γ(x) 6= 0. Suppose
that A is a separable simple AF -algebra with finitely many extreme traces. We will
show that a normal element x ∈M(A) is quasidiagonal if and only if γ(x) = 0.

Lemma 3.2 (cf. [Zh1, 3.9]). Let A be a σ-unital C∗-algebra. Suppose that M(A)
has real rank zero. If y ∈ M(A), π(y) is a normal element in M(A)/A and π(y)
can be approximated by normal elements in M(A)/A with finite spectra, then, for
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any ε > 0, there is an approximate identity {en} for A consisting of projections and
a ∈ A such that

y =
∞∑
n=1

(en − en−1)y(en − en−1) + a,

‖a‖ < ε/2, and

‖(en − en−1)y − y(en − en−1)‖ < ε/2n.

Proof. The proof is contained in [Zh1, 3.9]. For any ε > 0, there exist mutually
orthogonal projections q1, q2, ..., qn ∈M(A) and λ1, λ2, ..., λn ∈ sp(y) such that

‖π(y)−
n∑
i=1

λiqi‖ < ε.

Then, since A has real rank zero, each qi =
∑∞
j=1 eij , where eij are mutually

orthogonal projections in qiAqi and the sum converges in the strict topology. So
we may write

n∑
i=1

λiqi =
∞∑
m=1

αmpm,

where {pm} are mutually orthogonal projections in A and
∑∞
m=1 pm converges to

the identity 1 in the strict topology. Then we can apply [Zh1, 3.9] ((b) implies
(e)). To have exactly the same inequalities required in the lemma, one can take a
subsequence of {en} which is still an approximate identity.

Theorem 3.3. Let A be a separable simple C∗-algebra with real rank zero, stable
rank one, trivial K1(A), weakly unperforated K0(A) of finite rank. Suppose that
every quasitrace is a trace. Then a normal element x ∈ M(A) is quasidiagonal if
and only if γ(x) = 0.

Proof. Since x is normal, it follows from [Ln13, 1.13] that γI(x) = 0 for every ideal
I of M(A) which contains A but is not A itself.

If γ(x) = 0, then Γ(π(x)) = 0. Since M(A)/A has weak (FN), by 2.13, π(x) can
be approximated by normal elements (in M(A)/A) with finite spectrum. Then we
can apply 3.2.

Now we suppose that x is quasidiagonal. We will show that γ(x) = 0. Let {en}
be an approximate identity for A consisting of projections such that

x−
∞∑
n=1

(en − en−1)x(en − en−1) ∈ A.

Let f ∈ C(sp(x)) such that π(f(x)) is a unitary in M(A)/A. Since {en} is an
approximate identity for A,

‖(en − en−1)x− x(en − en−1)‖ → 0 as n→∞.
It follows that

π[
∞∑
n=1

(en − en−1)f(x)(en − en−1)] = π(f(x)).

Therefore

‖(en − en−1)− (en − en−1)f(x)(en − en−1)∗(en − en−1)f(x)(en − en−1)‖ → 0
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and

‖(en − en−1)− (en − en−1)f(u)(en − en−1)(en − en−1)f(x)(en − en−1)∗‖ → 0

as n→∞. Thus, by a standard argument involving the polar decomposition, there
are unitaries un ∈ (en − en−1)A(en − en−1) such that

‖un − (en − en−1)f(x)(en − en−1)‖ → 0

as n→∞. Notice that
∞∑
n=1

(en − en−1)f(x)(en − en−1)−
∞∑
n=1

un ∈ A.

Therefore

π(
∞∑
n=1

un) = π(f(u)).

Moreover,
∑∞
n=1 un is a unitary in M(A). It follows from [Ln7, 9] that K1(M(A)) =

0. This implies that γ(x) = 0.

Lemma 3.4. Let A be as in 3.2. If x ∈M(A) is a normal element, then im[γ(π(x))]
⊂ ker θ(K0(A)).

Proof. Let f : sp(π(x)) → S1 be a continuous function. Then f(π(x)) is a unitary
in M(A)/A. So there is a partial isometry v ∈ M(A) such that π(v) = f(π(x)).
Let g ∈ C(sp(x)) such that π(g(x)) = f(π(x)). Set y = g(x). Then there is an
element a ∈ A such that v = y + a. Let {en} be an approximate identity for A.
Then a∗y = limn→∞a

∗eny and ay∗ = limn→∞a(eny)∗. Therefore, for any trace τ,
τ(a∗y) = τ(ay∗). Similarly, τ(y∗a) = τ(ya∗). Since y∗y = yy∗, we have

τ(v∗v − vv∗) = τ(a∗a− aa∗) + τ(a∗y − ay∗) + τ(y∗a− ya∗) = 0.

This implies that [v∗v]−[vv∗]∈kerθ(K0(A)). It follows from [Ln7, 9] thatK1(M(A))
= 0. From the six-term exact sequence in K-theory, the map

K1(M(A)/A)→ K0(A)

is injective. Therefore im[γ(x)] ⊂ ker θ(K0(A)).

Corollary 3.5. Let A be as in 3.3. Suppose that K0(A) has no infinitesimal ele-
ments (i.e. ker θ = 0). Then every normal element x ∈M(A) is quasidiagonal.

We would now like to present a stronger version of the Berg theorem for separable
simple AF -algebras with continuous scale and K0(A) of countable rank.

The following lemma is proved in [EGLP, 4.4], even though it stated differently.

Lemma 3.6 (cf. [EGLP, 4.4], [Ln11, 4.8], and [Ln6, 2]). Let A be a unital C∗-
algebra of real rank zero. Let ∆ be a set of countably many (finite) traces on
A. Suppose that ∆ is w∗-compact and the identity of A is a continuous function on
∆. Suppose that φ : C(X)→ A is a monomorphism, where X is a compact metric
space. For any ε > 0, any finitely many f1, f2, ..., fm ∈ C(X), and integer K > 0
there are mutually orthogonal projections p1, p2, ..., pn in A and λ1, λ2, ..., λn ∈ X
such that

‖φ(fs)− (ys +
n∑
i=1

fs(λi)pi)‖ < ε, s = 1, 2, ...,m,
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where ys = (1−
∑n
i=1 pi)φ(fs)(1−

∑n
i=1 pi),

‖(1−
n∑
i=1

pi)φ(fs)− φ(fs)(1−
n∑
i=1

pi)‖ < ε,

t(pk) > Kt(1−
n∑
i=1

pi)

for all t ∈ ∆, s = 1, 2, ...,m, k = 1, 2, ..., n, j = 1, 2, ..., l, and for any λ ∈ X, there
is λi such that

dist(λ, λi) < ε.

Theorem 3.7. Let A be a separable simple C∗-algebra with real rank zero, stable
rank one and continuous scale. Suppose that K1(A) = 0, every quasitrace of A is a
trace and K0(A) has countable rank. Then every normal element x ∈ M(A) with
γ(x) = 0, and ε > 0, there exist an approximate identity {en} for A consisting of
projections and a ∈ A such that

x =
∞∑
n=1

λn(en − en−1) + a

where {λn} is a bounded sequence of complex numbers and ‖a‖ < ε.

Proof. Since A has continuous scale, by [Ln2], M(A)/A is simple, and hence purely
infinite simple ([Zh2, 5.1]). So M(A) and M(A)/A has real rank zero. Let ∆ be as
in 2.11. It follows from 3.6 that for any η > 0 and integer L > 0, there are mutually
orthogonal projections p′i ∈M(A) and λi ∈ sp(x) such that

‖x−
n∑
i=1

λip
′
i − p′xp′‖ < η/4

and

t(p′i) > (L+ 1)t(p′)

for all i and t ∈ ∆, where p′ = 1−
∑n
i=1 p

′
i and {λi} is η/16-dense in sp(x). Since A

has real rank zero and p′iAp
′
i has continuous scale for each i, there is a projection

pi ∈ p′iAp′i for each i such that

t(pi) > (L+ 1)t(p′ +
n∑
i=1

(p′i − pi))

for each i and t ∈ ∆. From the proof of [Ln11, 3.4], we have

‖x−
n∑
i=1

λipi − pxp‖ < η/4,

where p = 1 −
∑n
i=1 pi = p′ +

∑n
i=1(p′i − pi). Set z = pxp. Then π(x) = π(z). It

follows from [Ln12, 7.1] that there is an element a ∈ pAp such that

z =
∞∑
k=1

λn(qn − qn−1) + a
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where λn ∈ sp(x) and {qn} is an approximate identity for pAp consisting of pro-
jections. There is an integer N such that

‖(1− qN )a‖ < η/8 and ‖(a(1− qN )‖ < η/8.

We may write

z =
∞∑

n=N+1

λn(qn − qn−1) + qNzqN + b,

where b ∈ A and ‖b‖ < η/4. We also have

‖qNz − zqN‖ < η/4.

Notice that z = pxp. So qNzqN = qNxqN . By Lemma 2.6, if η is small enough,
there are normal elements z1 ∈ ML(qNAqN ) and z2 ∈ ML+1(qNAqN ) with finite
spectra sp(zi) ∈ sp(x) such that

‖qNzqN ⊕ z1 − z2‖ < ε/8.

Notice that L depends only in ε. We may also assume that z1 =
∑n
i=1 λidi for some

mutually orthogonal projections di ∈ML(qNAqN ). Since t(pi) > t(di) for all t ∈ ∆
and i = 1, 2, ..., n, There is a unitary u ∈ ML+1((1 − p) + qN )A(1 − p) + qN ) such
that

‖
n∑
i=1

λipi + qNzqN − U∗z2U‖ < ε/8.

Furthermore, z3 = U∗z2U ∈ ((1 − p) + qN )A((1 − p) + qN ) and sp(z3) is finite. If
η is small enough, we then have

x =
∞∑

n=N+1

λn(qn − qn−1) + z3 + b1 + b,

where b1 ∈ A and ‖b1 + b‖ < ε.

Corollary 3.8. Theorem 3.7 holds for σ-unital purely infinite simple C∗-algebras
with trivial K1-group.

Proof. The proof is the same as that of 3.7. Notice that in a purely infinite simple
C∗-algebra A any projection is “larger” than any others and in M(A) \A any two
projections are equivalent.

4. The generalized BDF-theorem

In this section, A is always a separable simple C∗-algebra with real rank zero,
stable rank one, trivial K1(A) and weakly unperforated K0(A) of finite rank. Fur-
thermore, we assume that all quasitraces are traces.

4.1. After we discussed the Berg theorem, it would be unnatural not to consider
the BDF-theorem for essentially normal elements. Essentially normal elements
are those elements x ∈ M(A) such that π(x) is normal. The question, as in the
operator theory, is when can an essentially normal element x ∈ M(A) be written
as x = y+ a, where y ∈M(A) is normal and a ∈ A? A natural first thought might
be : “index must be zero.” Well, by 3.7, γI(x) = 0 for any ideal I of M(A) which
strictly contains A, if x is a normal element in M(A). How about the Fredholm
index? Mingo and Spielberg’s examples show that even normal elements can have
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nonzero Fredholm index. So, the second thought is that it would be hopeless to give
a definite answer. However, recent results in extension theory [Ln12] encourage us
to have the third thought. Lemma 3.4 said that normal elements can only have an
infinitesimal nonzero Fredholm index. We discover, by using results in [Ln12], that
an essentially normal element x ∈M(A) with infinitesimal Γ(x) has form y + a.

Lemma 4.2 ([Ln14, 3]). Let p and q be two open projections in A∗∗ both not in A.
If t(p) = t(q) for all t ∈ ∆, where ∆ is the same as in 2.8, then Her(p) ∼= Her(q),
where Her(p) and Her(q) are hereditary C∗-subalgebras corresponding to the open
projection p and q, respectively.

Proof. The proof is exactly the same as that of [Ln14, 3].

Lemma 4.3 (cf. [MS]). For any ζ ∈ ker θ, there is a normal element x ∈ M(A)
such that sp(x) = D̄, sp(π(x)) = S1 and [π(x)] = ζ in K1(M(A)/A).

Proof. Take a nonzero projection e ∈ A. It follows from [EL, 7.3] that there is
a homomorphism φ : C(S2) → eAe such that φ∗(b) = ζ, where b is the “Bott”
element. Let us denote the restriction of φ on C0(D) by φ itself. Then, as in [MS],
φ∗(b) = ζ. Let h be a strict positive element of C0(D) and B = Her(φ(h)), the
hereditary C∗-subalgebra of eAe generated by φ(h). Combining [MS, Proposition]
and [MS, Theorem 2], we obtain a normal element y ∈M(B) such that sp(y) = D̄
and [π(y)] = ζ in K1(M(B)/B).

Since θ(K0(A)) is dense in Rn (see 2.11), there is a projection p ∈ M(A) such
that t(p) = t(q) for all t ∈ ∆, where q is the open projection in A∗∗ corresponding
to B. It follows from 4.2 that B ∼= pAp. Therefore M(B) ∼= pM(A)p. We may
assume that y ∈ pM(A)p. Let 1 be the identity of M(A). Set x = y ⊕ u, where u
is a unitary in (1 − p)M(A)(1 − p). Notice that K1((1 − p)M(A)(1 − p)) = 0. So
sp(x) = D̄ and

[π(x)] = ζ in K1((M(A)/A).

Lemma 4.4. Let X be a compact subset of the closed unit disk D̄, and O1, O2, ...,
On, ... be the sequence of bounded components of C \X. Set

Xi = {λi − ξ : ξ ∈ X}

for some λi ∈ Oi. Let gi : Xi → S1 be a generator of K1(C(X)) corresponding to
Oi. If ζ ∈ ker θ, then for each i, there is a normal element xi ∈ M(A) such that
sp(xi) ⊂ D̄, sp(π(xi)) ⊂ X and

[gi(λi − π(xi))] = ζ and [gj(λj − π(xi))] = 0

in K1(M(A)/A) if j 6= i.

Proof. Notice that we identify S1 with the unit circle on the plane. There is a
compact subset Fi ⊂ Xi such that gi : Fi → S1 is a homeomorphism. Let x ∈M(A)
be the normal element in 4.3. There is fi ∈ C(sp(x)) such that ‖λi − fi‖ ≤ 1 and

π(fi(x)) = g−1
i (π(x)).

Define xi = λi − fi(x).
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Lemma 4.5. Let X be a compact subset of the plane, and let ψ : K1(C(X)) →
ker θ be a homomorphism. Then there is a normal element x ∈ M(A) satisfying
the following:

(1) sp(π(x)) = X,
(2) φ∗ = ψ, where φ : sp(π(x)) → M(A)/A is the isomorphism induced by the

element π(x).

Proof. Without loss of generality, we may assume that X ⊂ D̄. It is easy to con-
struct a sequence of mutually orthogonal projections pi ∈ M(A) \ A such that∑∞
i=1 pn converges to a projection p in the strict topology, where p ∈ M(A) and

1− p 6∈ A. For each i, by applying 4.3, there is xi ∈ piM(A)pi satisfying

[gi(λi − xi)] = ψ(g′i) and [gj(λj − xi)] = 0

for j 6= i and g′i(z) = gi(λi − z). Set

y =
∞∑
i=1

xi.

Note that
∑n
i=1 xi converges to y in the strict topology. Then y is a normal element

in M(A). Take a dense sequence of numbers in X such that each isolated point
occurs infinitely often and an approximate identity {en} for (1−p)A(1−p) consisting
of projections. Set

z =
∞∑
n=1

λn(en − en−1).

Define x = y+z. It is easy to see that the element x satisfies the required conditions.

The following result is basically contained in [Ln12].

Lemma 4.6. Let A be a separable simple C∗-algebra with real rank zero, stable
rank one, K1(A) = 0, weakly unperforated K0(A), and let σ : C(X) → M(A)/A
be an extension, where X is a compact metric space. Suppose that p ∈ M(A)
is a projection such that [π(p)] = 0, i.e., τ(p) ∈ θ(K0(A)) for all τ ∈ ∆, and
σ0 : C(F ) → M(pAp)/pAp is a null extension (see [Ln12, 2.2] or [Ln12, 2.9]),
where F is a compact subset of X. Then σ ⊕ σ0 is unitarily equivalent to σ.

Proof. By [Ln12, 1.5], there is a nonzero projection q ∈M(A) and injective maps

σ′ : C(X)→M((1− q)A(1− p))/(1− q)A(1− q)

and σ1 : C(F )→M(qAq)/qAq such that σ1 is totally trivial and σ = σ′+σ1. Since
σ1 is totally trivial, there exist an approximate identity {en} for qAq consisting of
projections and a dense sequence {ξn} in F with isolated points repeated infinitely
often such that

σ1(f) = π[
∞∑
n=1

f(ξn)(en − en−1)].

One can find nonzero projections dn ≤ (en−en−1) such that
∑∞
n=1 τ(dn) converges

uniformly on ∆. Let q′ =
∑∞
n=1 dn Then q′Aq′ has continuous scale. Furthermore
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the map

σ′1(f) = π[
∞∑
n=1

f(ξn)(en − en−1)]

is an extension of C(F ) by q′Aq′. Fix any point ξ ∈ F. Let h ∈ C(F ) be such that
h(ξ) = 0 and h > 0 elsewhere on F. Denote by B the hereditary C∗-subalgebra
of M(q′Aq′)/q′Aq′ generated by σ′1(h). Then B is σ-unital. It follows from
[Pd2, 15] that B⊥ is a nonzero hereditary C∗-subalgebra of M(q′Aq′)/q′Aq′. Since
M(q′Aq′)/q′Aq′ has real rank zero ([Ln7]), by [BP, 2.6], B⊥ has real rank zero.
Therefore there is a nonzero projection d ∈ B⊥. It is easy to verify that d com-
mutes with imσ′1. Moreover,

σ′1(f) = f(ξ)d+ (1− d)σ′1(f)(1− d)

for all f ∈ C(F ). Since M(q′Aq′)/q′Aq′ is simple ([Ln2]), it is in fact purely in-
finite simple. There is a nonzero projection d′ ≤ d such that [π(q′) − d′] = 0 in
K0(M(A)/A). Let p′ ∈M(A) be a projection such that π(p′) = π(q′)− d′. Set

σ2(f) = f(ξ)d′ + (1− d)σ′1(f)(1− d)

for all f ∈ C(F ). Then σ2 : C(F )→M(p′Ap′)/p′Ap′ is a (totally trivial) extension.
Clearly p′ commutes with imσ. Let σ′′ = p′σ. Then σ = σ′′ ⊕ σ2. It follows from
[Ln12, 2.3] that σ2⊕σ0 is unitarily equivalent to σ2. Therefore, σ⊕σ0 is equivalent
to σ.

Theorem 4.7. Let x ∈ M(A) be an essentially normal element, i.e., π(x) is nor-
mal in M(A)/A. Then x can be written as x = y+ a, where y ∈M(A) is a normal
element and a ∈ A if and only if γ(π(x)) ∈ ker θ and γI(x) = 0 for all ideals I of
M(A) which strictly contain A.

Proof. The “only if” part follows from 3.6 and [Ln13, 1.13].
Suppose now that x ∈M(A), π(x) is normal, γ(π(x)) ∈ ker θ and γI(x) = 0 for

all ideals I which strictly contain A. Suppose that X = sp(π(x)). Let σ : C(X)→
M(A)/A be the extension induced by the normal element π(x). Let p ∈ M(A)
such that [π(p)] = 0, i.e., τ(p) ∈ θ(K0(A)) for all τ ∈ ∆. So pAp has continuous
scale and K1(M(pAp)/pAp) = ker θ (see [Ln10]). By [Ln12, 7.1], there is an
extension σ1 : C(X) → M(pAp)/pAp such that γ1(σ1) = −γ(π(x)). Set B =
(1⊕ p)M2(A)(1⊕ p). Let z(ξ) = ξ for ξ ∈ X. Then Γ(π(x)⊕ σ1(z)) = 0. Therefore,
by 3.5, there is a normal element y1 ∈M(A) such that π(y1) = π(x) ⊕ σ1(z). Now
we use the notation y2 for a normal element in M(pAp) satisfying the conditions
in 4.5, with ψ = γ(π(x)). Let σ2 : C(X)→M(pAp)/pAp be the extension induced
by the normal element π(y2). Then γ1(σ1 ⊕ σ2) = 0. By [Ln12, 7.1], σ1 ⊕ σ2 is
totally trivial. It follows from [Ln12, 4.3] that there is a totally trivial extension
σ3 : C(X) → M(pAp)/pAp such that σ1 ⊕ σ2 ⊕ σ3 is a null extension. It follows
from 4.4 that σ is unitarily equivalent to σ ⊕ σ1 ⊕ σ2 ⊕ σ3. There is a (diagonal)
normal element y3 ∈M(A) such that π(y3) = σ3(z). Since

σ ⊕ σ1 ⊕ σ2 ⊕ σ3(z) = π(y1)⊕ π(y2)⊕ π(y3),

there is a partial isometry u ∈M2(A) such that u∗u = 1, uu∗ = 1⊕ p⊕ p⊕ p and

π(u∗xu) = π(y1)⊕ π(y2)⊕ π(y3).

We conclude that x = y + a, where y = u(y1 ⊕ y2 ⊕ y3)u∗ and a ∈ A.
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Corollary 4.8. Suppose that K0(A) has no infinitesimal elements. Then an es-
sentially normal element x ∈ M(A) has the form x = y + a, where y ∈ M(A) is
normal and a ∈ A if and only if Γ(x) = 0.

Corollary 4.9 (cf. [Ln6, 11.7]). If A is a finite matroid algebra, then every essen-
tially normal element x ∈ M(A) can be written as x = y + a, where y ∈ M(A) is
normal and a ∈ A.

Proof. We notice the fact that if A is a finite matroid algebra, K1(M(A)/A) = 0
(see [Ell1]).
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