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ERRATUM TO “ORTHOGONAL CALCULUS”

MICHAEL S. WEISS

The proof of Theorem 6.3 in my paper Orthogonal calculus [W] contains a gap.
This is caused by an error in the preliminaries [W, 6.2] ; the offending statement is
. . . and happens to be inverse to ρT (b). The purpose of this note is to fill the gap.

Notation. J is the category of finite dimensional real vector spaces with a positive
definite inner product. Morphisms in J are the linear maps respecting the inner
product. E is the category of continuous functors from J to spaces. (The spaces in
question are assumed to be compactly generated Hausdorff, homotopy equivalent to
CW–spaces). A morphism E → F (natural transformation) in E is an equivalence
if E(V ) → F (V ) is a homotopy equivalence for each V in J . An object E in E is
polynomial of degree ≤ n if, for each V in J , the canonical map

ρ : E(V ) −→ holim
06=U⊂Rn+1

E(U ⊕ V )

is a homotopy equivalence. The codomain of ρ, which we also denote by (τnE)(V ),
is a topological homotopy (inverse) limit [W, 5.1] ; more details below, in the proof
of Lemma e.3. To repeat, E is polynomial of degree ≤ n if and only if ρ : E → τnE
is an equivalence.

6.3. Theorem. For any n ≥ 0, there exist a functor Tn : E −→ E taking equiva-
lences to equivalences, and a natural transformation ηn : 1 −→ Tn with the following
properties:

1. Tn(E) is polynomial of degree ≤ n, for all E in E.
2. if E is already polynomial of degree ≤ n, then ηn : E −→ TnE is an equiva-

lence.
3. For every E in E, the map Tn(ηn) : TnE −→ TnTnE is an equivalence.

What we have to re–prove is 1. The remainder of the proof of 6.3 in [W] is
not affected by the error in 6.2. As in [W] define TnE as the homotopy colimit
(telescope in this case) of the direct system

E
ρ−−−→ τnE

τn(ρ)−−−→ τ2
nE

τ2
n(ρ)−−−→ τ3

nE
τ3
n(ρ)−−−→ · · · .(e.1)

It would be equally reasonable to define TnE as the homotopy colimit of

E
ρ−−−→ τnE

ρ−−−→ τ2
nE

ρ−−−→ τ3
nE

ρ−−−→ · · ·(e.2)

where the k–th map in the direct system is ρ : τk−1
n E −→ τn(τk−1

n E). It turns out
that the homotopy colimits of (e.1) and (e.2) are isomorphic, even relative to E.
Namely, the Fubini principle for homotopy limits gives

(τknE)(V ) ∼= holim
06=U1,...,Uk⊂Rn+1

E(U1 ⊕ · · · ⊕ Uk ⊕ V ) .
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Using this as an identification and inspecting the maps in the direct systems (e.1)
and (e.2), one finds that the direct systems are isomorphic.

e.3. Lemma. Let p : G → F be a morphism in E. Suppose that there exists an
integer b such that p : G(W ) → F (W ) is ((n+ 1) dim(W )− b)–connected for all W
in J . Then τn(p) : τnG(W ) → τnF (W ) is ((n + 1) dim(W )− b+ 1)–connected for
all W .

Proof. We begin with a discussion of the homotopy limits involved. Suppose first
that Z is any functor from the poset D of nonzero linear subspaces of Rn+1 to
spaces. Ignoring the topology on D, we can define holim Z as the totalization of
the incomplete cosimplicial space

[k] 7→
∏

L:[k]↪→D
Z(L(k))(e.4)

where L runs over the order–preserving injections from the poset [k] = {1, . . . , k}
to D. (An incomplete cosimplicial space is a covariant functor from the category
with objects [k] for k ≥ 0 and monotone injections as morphisms to the category
of spaces ; the totalization of such a thing is the space of natural transformations
to it from the functor [k] 7→ ∆k.)

We could make (e.4) into a complete cosimplicial space by dropping the injectiv-
ity condition on the order–preserving maps L ; the totalization would not change.
However, totalizations of incomplete cosimplicial spaces are usually easier to under-
stand than totalizations of complete cosimplicial spaces.— In (e.4) it is understood
that a product

∏
i∈S with empty S is a single point ∗ ; therefore the right–hand

side of (e.4) is a point for k > n + 1.
Remembering the topology on D now, we note that D is a union of Grassman-

nians. Let us suppose that the spaces Z(U) are the fibers of a fiber bundle ξ on
D (that is, Z(U) is the fiber over U ∈ D), and that maps Z(U1) → Z(U2) induced
by inclusions U1 ⊂ U2 depend continuously on U1, U2. Then it is appropriate to
replace the incomplete cosimplicial space (e.4) by another incomplete cosimplicial
space,

[k] 7→ Γ(e∗kξ)(e.5)

where ek is the evaluation map L 7→ L(k), with domain equal to the space of
monotone injections L : [k] → D, and codomain D. The symbol Γ denotes a section
space. The totalization of (e.5) is the topological homotopy limit of Z. For us,
the relevant examples are Z(U) := G(U ⊕W ) and Z(U) := F (U ⊕W ) where W is
fixed ; the topological homotopy limits are then τnG(W ) and τnF (W ), respectively.

The space of monotone injections [k] → D is a disjoint union of manifolds C(λ).
Here λ : [k] → [n + 1] is a monotone injection avoiding the element 0 ∈ [n + 1],
and C(λ) consists of those L : [k] → D for which L(i) has dimension λ(i). Writing
λi = λ(i) we find

dim(C(λ)) = (n+ 1− λk)λk +

k−1∑
i=0

(λi+1 − λi)λi

= (n+ 1)λk +

k−1∑
i=0

λiλi+1 −
k∑

i=0

λ2
i

< (n+ 1)λk − k .
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We see from (e.5) that the connectivity of τn(p) : τnG(W ) → τnF (W ) is greater
than or equal to the minimum of the numbers

(connectivity of p : G(L(k)⊕W ) → F (L(k)⊕W )) − dim(C(λ)) − k

taken over all triples (L, λ, k) with L ∈ C(λ) and λ : [k] → [n+1]. By our hypothesis
on p : G → F , the connectivity of p : G(L(k) ⊕W ) → F (L(k) ⊕W )) is at least
equal to (n+ 1)(λk + dim(W ))− b. By the inequality for dim(C(λ)), the minimum
in question is greater than (n+ 1) dim(W )− b.

Remark. The hypothesis in Lemma e.3 is strongly reminiscent of what Goodwillie
in his calculus calls agreement to n–th order, in [Go3] and (for n = 1) in [Go1, 1.13].
Goodwillie also has lemmas similar to e.3, such as [Go1, 1.17] and [Go3, 1.6].

We fix some V in J from now on ; the goal is to prove that ρ from TnE(V ) to
τn(TnE)(V ) is a homotopy equivalence for any E in E .

For W in J let mor(V,W ) be the space of morphisms V → W in J and let
γ1(V,W ) be the Riemannian vector bundle on mor(V,W ) whose total space is the
set of (f, x) in mor(V,W ) ×W with x ⊥ im(f). Let γn+1(V,W ) be the Whitney
sum of n+ 1 copies of γ1(V,W ), and let Sγn+1(V,W ) be the unit sphere bundle of
γn+1(V,W ). We abbreviate

F (W ) := mor(V,W ),

G(W ) := Sγn+1(V,W )

and write p : G → F for the projection. By [W, 4.2, 5.2] the object G in E co–
represents the functor E 7→ τnE(V ) from E to spaces. In more detail, writing
nat(. . . ) for spaces of natural transformations, we have a commutative diagram,
natural in E:

E(V )
ρ−−−−→ τnE(V )y∼= y∼=

nat(F,E)
p∗−−−−→ nat(G,E) .

(e.6)

e.7. Lemma. Tnp : TnG→ TnF is an equivalence.

Proof. It is clear that p : G → F satisfies the hypothesis of Lemma e.3 with b
equal to (n + 1) dim(V ) + 1. (Here V is not a variable ; we fixed it, and used it
in the definition of G and F .) Repeated application of Lemma e.3 shows that the
connectivity of

τkn (p) : τknG(W ) → τknF (W )

tends to infinity as k goes to infinity, for any W in J . Therefore Tnp is an equiva-
lence.

We shall use (e.7) to prove that the commutative square

E(V )
⊂−−−−→ TnE(V )yρ yρ

τnE(V )
⊂−−−−→ τn(TnE)(V )

(e.8)
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can be enlarged to a commutative diagram of the form

E(V ) −−−−→ X −−−−→ TnE(V )yρ yg yρ
τnE(V ) −−−−→ Y −−−−→ τn(TnE)(V )

(e.9)

in which the map g is a homotopy equivalence. (That is, (e.8) is obtained from (e.9)
by deleting the middle column.) According to (e.6), diagram (e.8) is isomorphic to

nat(F,E)
⊂−−−−→ nat(F, TnE)yp∗ yp∗

nat(G,E)
⊂−−−−→ nat(G, TnE)

(e.10)

and clearly (e.10) can be enlarged to

nat(F,E) −−−−→ nat(TnF, TnE)
res−−−−→ nat(F, TnE)yp∗ y(Tnp)

∗
yp∗

nat(G,E) −−−−→ nat(TnG, TnE)
res−−−−→ nat(G, TnE)

(e.11)

where the arrows labelled res are restriction maps. We are now very close to having
constructed a diagram like (e.9). The idea is that since Tnp : TnG → TnF is an
equivalence by Lemma e.7, the middle arrow in (e.11) ought to be a homotopy
equivalence. Of course, it does not work exactly like that.

What is needed here is the notion of cofibrant object in E from the appendix of
[W]. If v : A→ B is an equivalence in E where A and B are cofibrant, then v admits
a homotopy inverse u : B → A, with (natural) homotopies relating vu and uv to
the respective identity maps. Every object in E is the codomain of an equivalence
whose domain is a so–called CW–object [W, A.4], and CW–objects are cofibrant
[W, A.3]. More generally, every morphism w : C → D in E has a factorization

C ↪→ D� −→ D

where D� −→ D is an equivalence and D� is a CW–object relative to D. (I leave def-
inition and proof to the reader.) This factorization can be constructed functorially
in w : C → D, and if C is already cofibrant, then D� will be cofibrant.

We apply this with w equal to the inclusion F → TnF or to the inclusion
G→ TnG. It follows from (e.6) that F and G are cofibrant. Therefore (TnF )� and
(TnG)� in the factorizations

F ↪→ (TnF )� → TnF , G ↪→ (TnG)� → TnG

are cofibrant. Replacing TnF and TnG by (TnF )� and (TnG)� in (e.11) we obtain
a commutative diagram

nat(F,E) −−−−→ nat((TnF )�, TnE)
res−−−−→ nat(F, TnE)yp∗ y yp∗

nat(G,E) −−−−→ nat((TnG)�, TnE)
res−−−−→ nat(G, TnE)

(e.12)

and now the middle arrow is a homotopy equivalence. Diagram (e.12) is the explicit
form or fulfillment of (e.9).
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Proof of 1 in 6.3. We have to show that ρ : TnE(V ) → τn(TnE)(V ) is a homotopy
equivalence. It is enough to show that the vertical arrows in the commutative
diagram

E(V )
ρ−−−−→ τnE(V )

ρ−−−−→ τ2
nE(V )

ρ−−−−→ τ3
nE(V )

ρ−−−−→ · · ·yρ yρ yρ yρ
τnE(V )

τn(ρ)−−−−→ τ2
nE(V )

τn(ρ)−−−−→ τ3
nE(V )

τn(ρ)−−−−→ τ4
nE(V )

τn(ρ)−−−−→ · · ·

(e.13)

induce a map between the homotopy colimits of the rows which is a homotopy
equivalence. It is enough because τn commutes with homotopy colimits over N up
to homotopy equivalence, and because we can define TnE as the homotopy colimit
of (e.2). Denote the homotopy colimits of the rows in (e.13) by P and Q, and the
map under investigation by r : P → Q. For each i ≥ 0 the commutative diagram

τ inE(V )
⊂−−−−→ Pyρ yr

τ i+1
n E(V )

⊂−−−−→ Q

can be enlarged, as in (e.9) and (e.12), to a commutative diagram

τ inE(V ) −−−−→ X −−−−→ Pyρ y yr
τ i+1
n E(V ) −−−−→ Y −−−−→ Q

where the middle vertical arrow is a homotopy equivalence. It follows easily that
r : P → Q is a homotopy equivalence.
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