
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 350, Number 3, March 1998, Pages 1277–1284
S 0002-9947(98)02102-3

A CLASSIFICATION THEOREM FOR ALBERT ALGEBRAS

R. PARIMALA, R. SRIDHARAN, AND MANEESH L. THAKUR

Abstract. Let k be a field whose characteristic is different from 2 and 3 and
let L/k be a quadratic extension. In this paper we prove that for a fixed, degree
3 central simple algebra B over L with an involution σ of the second kind over
k, the Jordan algebra J(B, σ, u, µ), obtained through Tits’ second construction
is determined up to isomorphism by the class of (u, µ) in H1(k, SU(B, σ)), thus
settling a question raised by Petersson and Racine. As a consequence, we derive
a “Skolem Noether” type theorem for Albert algebras. We also show that the
cohomological invariants determine the isomorphism class of J(B, σ, u, µ), if
(B, σ) is fixed.

Introduction

Let k be a field with characteristic different from 2 and 3. Exceptional simple
Jordan algebras over k are called Albert algebras. There are rational constructions
due to Tits of all Albert algebras over k, referred to as the first and the second
constructions. We begin by recalling the second construction briefly. Let L/k be
a quadratic extension, bar denoting its nontrivial k-automorphism. Let B be a
degree 3 central simple (associative) algebra over L with an involution σ of the
second kind over k. Let u be a unit of B with σ(u) = u and N(u) = µµ, µ ∈ L,
where N denotes the reduced norm on B. Let H(B, σ) = {x ∈ B|σ(x) = x}. Let
J(B, σ, u, µ) = H(B, σ)⊕B be the Jordan algebra with the multiplication given by

(b0, b)(b
′
0, b

′) = (b0.b
′
0 + ˜buσ(b′) + ˜b′uσ(b), b̃0b

′ + b̃′0b+ µ(σ(b)× σ(b′))u−1),

where x.y = 1
2 (xy + yx), x̃ = 1

2 (t(x)− x) and

x× y = x.y − 1

2
t(x)y − 1

2
t(y)x+

1

2
(t(x)t(y) − t(x · y)),

t denoting the reduced trace of B. The cubic norm of an element (a0, a) of
J(B, σ, u, µ) is given by

n(a0, a) = N(a0) + µN(a) + µN(σ(a)) − t(a0auσ(a)).(∗1)

For any unit w ∈ B, we have an isomorphism

J(B, σ, u, µ) −→ J(B, σ, wuσ(w), N(w)µ)

given by (a0, a) 7→ (a0, aw). The following converse problem is posed in [P-R].

Question. If J(B, σ, u, µ) ' J(B, σ, u′, µ′), then does there exist a unit w ∈ B
such that u′ = wuσ(w), µ′ = N(w)µ?
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In this paper we answer this question in the affirmative (§2, Theorem 2.7). As
a consequence, we prove a “Skolem Noether” type theorem on extensions of iso-
morphisms on certain types of simple Jordan subalgebras of an Albert algebra (§3,
Theorem 3.1). There are cohomological invariants g3 ∈ H3(k,Z/3) and f3, f5 in
H3(k,Z/2) and H5(k,Z/2) respectively, attached to an Albert algebra ([S]). Serre
raised the question whether these invariants determine the isomorphism class of the
Albert algebra. We indeed show that if J(B, σ, u, µ) and J(B, σ, u′, µ′) have the
same invariants, then they are isomorphic (§2, Theorem 2.8).

1. Coordinatization of a certain Tits second construction

Let L/k be a quadratic extension. Let ∗ denote the involution on M3(L) given

by X∗ = Γ−1X
t
Γ, where Γ = 〈γ1, γ2, γ3〉, γi ∈ k with γ1γ2γ3 = 1 and bar denoting

the entrywise action of the automorphism bar of L. Let V ∈ GL3(L) with V ∗ = V .
Suppose further that det V = µµ for some µ ∈ L∗. Then one has the second Tits’
construction J(M3(L), ∗, V, µ) with the underlying space H(M3(L), ∗)⊕M3(L).

The matrix U = V Γ−1 is hermitian, i.e, U
t

= U . Further, det U = det V =
µµ. Let h denote the hermitian form on L3 given by h(x, y) = xUyt. Then the

discriminant of h denoted by disc h is trivial. Let ψ : (
∧3

L3,
∧3

h) ' (L, 〈1〉) be
the trivialization of disc h given by e1 ∧ e2 ∧ e3 7→ µ, ei being the standard basis
vectors of L3. We then have the Cayley algebra (cf. [T]), C = C(L3, h, ψ) = L⊕L3,
with multiplication defined by

(a, v)(a′, v′) = (aa′ − h(v, v′), av′ + a′v + θ(v, v′)),

where θ is defined by the identity

h(v′′, θ(v, v′)) = ψ(v′′ ∧ v ∧ v′),
for all v, v′, v′′ ∈ L3. Also, the norm nC is given by nC(a, v) = nL/k(a) + h(v),
where h(v) = h(v, v). Then one has the reduced Albert algebra H3(C,Γ) which
consists of all 3× 3 matrices

X =

 α1 c γ−1
1 γ3b

γ−1
2 γ1c α2 a
b γ−1

3 γ2a α3

 ,

where αi ∈ k, a, b, c ∈ C, with the multiplication (X,Y ) 7→ 1
2 (XY + Y X). Here

the bar denotes the involution on C = L ⊕ L3 given by (α, v) = (α,−v). Note
that H3(C,Γ) contains H3(L,Γ) = H(M3(L), ∗) as a Jordan subalgebra. The cubic
norm of any element X in H3(C,Γ) as above, is given by

n(X) = α1α2α3 − γ−1
3 γ2α1nC(a)− γ−1

1 γ3α2nC(b)− γ−1
2 γ1α3nC(c) + tC((ca)b),

(∗2)

where, for (α, v) ∈ C, tC(α, v) = tL/k(α). With this notation we have the following.

Theorem 1.1. The map Φ : J(M3(L), ∗, V, µ) → H3(C,Γ), induced by the natural
inclusion H(M3(L), ∗) ↪→ H3(C,Γ) and the map M3(L) → H3(C,Γ) given bya1

a2

a3

 7→
 0 −γ−1

1 a3 γ−1
1 a2

γ−1
2 a3 0 −γ−1

2 a1

−γ−1
3 a2 γ−1

3 a1 0

 ,

is an isomorphism of Jordan algebras, a1, a2, a3 denoting the rows of a matrix in
M3(L).
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Proof. Clearly Φ is an isomorphism of vector spaces. Hence by ([MC-1], p. 507),
to check that Φ is an isomorphism of Jordan algebras, it suffices to check that
it preserves the cubic norms and maps identity to identity. It is clear from the
definition that Φ(1) = 1. Let

(A0, A) =

 α1 c γ−1
1 γ3b

γ−1
2 γ1c α2 a
b γ−1

3 γ2a α3

 ,

a1

a2

a3


be any element of J(M3(L), ∗, V, µ) = H3(L,Γ) ⊕M3(L). Equating the norms of
(A0, A) and Φ(A0, A) (cf. (∗1), (∗2)), we need to verify that

det A0 + µdet A+ µdet A∗ − t(A0AV A
∗) = α1α2α3

−γ−1
3 γ2α1nC(a,−γ−1

2 a1)− γ−1
1 γ3α2nC(b,−γ−1

3 a2)− γ−1
2 γ1α3nC(c,−γ−1

1 a3)

+tC(((c,−γ−1
1 a3)(a,−γ−1

2 a1))(b,−γ−1
3 a2))

i.e.,

det A0 + µdet A+ µdet A∗ − t(A0AV A
∗) = α1α2α3 − γ−1

3 γ2α1n(a)− γ1α1h(a1)

−γ−1
1 γ3α2n(b)− γ2α2h(a2)− γ−1

2 γ1α3n(c)− γ3α3h(a3) + tC((ca− γ3h(a3, a1),

−γ−1
2 ca1 − γ−1

1 āā3 + γ3θ(a3, a1))(b,−γ−1
3 a2)).

We have

det A0 = α1α2α3 − γ−1
3 γ2n(a)− γ−1

1 γ3α2n(b)− γ−1
2 γ1α3n(c) + tL/k(cab).

Further, tC(α, v) = tL/k(α), so that we are reduced to verifying the following
equality:

µdet A+ µdet A∗ − t(A0AV A
∗) = −α1γ1h(a1)− α2γ2h(a2)− α3γ3h(a3)

(∗3)

− γ3tL/k(h(a3, a1)b)− γ1tL/k(h(ca1, a2))

− γ2tL/k(h(āā3, a2)) + tL/k(h(θ(a3, a1), a2)).

We first compute t(A0AV A
∗). We have

AV A∗ = AV Γ−1A
t
Γ = AUA

t
Γ = (aij)Γ,

where aij = h(aj , ai). This gives

t(A0AV A
∗) = α1γ1h(a1) + γ1ch(a1, a2) + γ3bh(a1, a3) + γ1ch(a2, a1)

+α2γ2h(a2) + γ2ah(a2, a3) + γ3bh(a3, a1) + γ2ah(a3, a2) + α3γ3h(a3).

Comparing the above with (∗3), it only remains to verify that

µdet A+ µdet A∗ = tL/k(h(θ(a3, a1), a2)).

By definition of θ, we have

h(θ(a3, a1), a2) = ψ(a2 ∧ a3 ∧ a1) = µdet A = µdet A.

Hence

tL/k(h(θ(a3, a1), a2)) = µdet A+ µdet A = µdet A+ µdet A∗.

For a Jordan algebra J ' H3(C,Γ), C is called the coordinate algebra of J . Its
isomorphism class is uniquely determined by J (cf. [A-J]).
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Corollary 1.2. Let C be any coordinatization of J(M3(L), ∗, V, µ). The norm form
nC of C is given by nC = trL/k(〈1〉 ⊥ h), where h is the hermitian form given by

the matrix V Γ−1.

Proof. By the uniqueness of the coordinate algebra of a reduced Albert algebra (cf.
[A-J]) and by Theorem 1.1 we get C ' C(L3, h, ψ). The corollary now follows (cf.
[T], p. 5124).

2. Classification of Albert algebras

Let k be a field with characteristic different from 2 and 3. Let J be an Albert
algebra over k. Then there exist a 3-fold Pfister form φ3 and a 5-fold Pfister form
φ5 over k such that

QJ ⊥ φ3 ' 〈2, 2, 2〉 ⊥ φ5,

QJ denoting the trace quadratic form of J . This property characterizes φ3 and φ5

up to isomorphism (cf. [S]). Let G be the group of automorphisms of the split
Albert algebra over k. We have the mod 2 cohomological invariants

f3 : H1(k,G) → H3(k,Z/2)

and

f5 : H1(k,G) → H5(k,Z/2),

defined as the Arason invariants of φ3 and φ5 respectively. If J ' H3(C,Γ), then
f3(J) is the Arason invariant of nC and f5(J) is the Arason invariant of nC ⊗
〈1, γ−1

1 γ2〉 ⊗ 〈1, γ−1
2 γ3〉. Following a suggestion of Serre, Rost ([R]) constructed a

mod 3 invariant

g3 : H1(k,G) → H3(k,Z/3).

If J = J(B, σ, u, µ) is a second Tits’ construction Albert algebra corresponding to a
quadratic extension L of k, then g3(J) ∈ H3(k,Z/3) maps to [B]∪[µ] ∈ H3(L,Z/3);
more precisely,

g3(J) = −corL/k([B] ∪ [µ]).

We begin by reviewing a result for Albert algebras belonging to Tits’ first con-
struction and which motivated the question posed in the introduction.

Let k be a field of characteristic different from 2 and 3. Let A be a degree 3
central simple (associative) algebra over k and let µ ∈ k∗. Let Ai = A for i = 0, 1, 2.
On the k−vector space J(A, µ) = A0 ⊕A1 ⊕A2, we define a multiplication by

(a0, a1, a2)(a
′
0, a

′
1, a

′
2) = (a0.a

′
0 + ã1a′2 + ã′1a2, ã0a

′
1 + ã′0a1

+µ−1a2 × a′2, a2ã′0 + a′2ã0 + µa1 × a′1),
where x.y, x̃, x × y are defined as in the introduction. With this multiplication,
J(A, µ) is an Albert algebra. Given µ, µ′ ∈ k∗ with µ′ = N(w)µ for some unit
w ∈ A, there is an isomorphism of J(A, µ) with J(A, µ′) given by (a0, a1, a2) 7→
(wa0w

−1, wa1, a2w
−1). Using the Rost invariant for Albert algebras, Petersson

and Racine ([P-R]) proved that the converse is true, i.e., if J(A, µ) ' J(A, µ′), then
there exists a unit w ∈ A such that µ′ = N(w)µ.

Let L/k be a quadratic extension and J(B, σ, ui, µi) be the Tits’ second con-
struction with respect to units ui ∈ B, σ(ui) = ui and µi ∈ L∗ with N(ui) = µiµi.
The map

(H(B, σ) ⊕B)⊗k L→ B0 ⊕B1 ⊕B2,
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given by
(a0, a)⊗ λ 7→ (λa0, λa, λuiσ(a)),

where B1, B2, B3 are copies of B, gives an isomorphism J(B, σ, ui, µi) ⊗k L '
J(B, µi), i = 1, 2. Thus, in view of the above discussion for algebras of the first
kind, we have

Proposition 2.1 (cf. [P-R], p. 205). If g3(J(B, σ, u1, µ1)) = g3(J(B, σ, u2, µ2)),
then µ−1

1 µ2 ∈ Nrd(B∗).

Proof. Since g3(J(B, σ, u1, µ1)) = g3(J(B, σ, u2, µ2)), we have [B]∪[µ1] = [B]∪[µ2],
which gives [B]∪[µ1µ

−1
2 ] = 0. Hence the algebra J(B, µ1µ

−1
2 ) is reduced ([R]). This

implies µ1µ
−1
2 ∈ Nrd(B∗).

Proposition 2.2. If f3(J(B, σ, u1, µ1)) = f3(J(B, σ, u2, µ2)), then the rank 1 her-
mitian forms 〈u1〉 and 〈u2〉 over (B, σ) are equivalent.

Proof. In view of ([BF-L]), it suffices to prove this after an odd degree base change
of k. Let M be an odd degree extension of k such that BM = B ⊗k M is split
over LM = L ⊗k M . We may therefore assume that (B, σ) = (M3(L), ∗), where ∗
is given by X∗ = Γ−1X

t
Γ, Γ = 〈γ1, γ2, γ3〉, with γi ∈ k∗. We may further assume

that γ1γ2γ3 = 1. Let u1 correspond to the matrix V1 and u2 to the matrix V2 in
M3(L). Then det(Vi) = µiµi, i = 1, 2. By Theorem 1.1,

J(M3(L), ∗, V1, µ1) ' H3(C1(L
3, V1Γ−1, ψ1),Γ)

and
J(M3(L), ∗, V2, µ2) ' H3(C2(L

3, V2Γ−1, ψ2),Γ),

where ψi is the trivialization of disc(ViΓ−1) given by µi, i = 1, 2. We therefore
have

f3(H3(C1(L
3, V1Γ−1, ψ1),Γ)) = f3(H3(C2(L

3, V2Γ−1, ψ2),Γ)),

which implies that nC1 ' nC2 . So, by Corollary 1.2,

trL/k(〈1〉 ⊥ h1) ' trL/k(〈1〉 ⊥ h2),

where hi is the hermitian form given by the matrix ViΓ−1. Thus, trL/k ◦ h1 '
trL/k ◦h2. By a theorem of Jacobson (cf. Appendix 2 of [M-H]), h1 ' h2. So there

exists W ∈ GL3(L) such that WV1Γ−1W
t

= V2Γ−1, i.e., WV1(Γ
−1W tΓ) = V2.

Hence V1 and V2 are hermitian equivalent in (M3(L), ∗), which implies that the
hermitian forms 〈u1〉 and 〈u2〉 over (B, σ) are equivalent.

Proposition 2.3. Let u1, u2 be units in (B, σ) with σ(ui) = ui, n(ui) = µiµi, µi ∈
L∗. Let 〈u1〉 and 〈u2〉 be hermitian equivalent over (B, σ) and let µ−1

1 µ2 be a reduced
norm from B. Then there exists w ∈ B such that

u2 = wu1σ(w), µ2 = n(w)µ1.

Proof. We introduce an equivalence ∼ among the pairs (u, µ), where u ∈ B with
σ(u) = u and n(u) = µµ, µ ∈ L∗, as follows: (u, µ) ∼ (u′, µ′) ⇔ there exists w ∈ B
with u′ = wuσ(w) and µ′ = n(w)µ. We show that (u1, µ1) ∼ (u2, µ2).

Let µ2 = n(w1)µ1. Then (u1, µ1) ∼ (u′, µ2), where u′ = w1u1σ(w1). Since 〈u1〉
and 〈u2〉 are hermitian equivalent, we get that 〈u′〉 is hermitian equivalent to 〈u2〉.
Let w′ ∈ B be such that u2 = w′u′σ(w′). Now

n(u′) = n(w1)n(w1)µ1µ1 = µ2µ2 = n(u2).
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Thus, n(w′)n(w′) = 1. Let λ = n(w′). By the following lemma due to Rost, there
exist w′′ ∈ B such that λ = n(w′′) and w′′u2σ(w′′) = u2. Thus

(u′, µ2) ∼ (u2, λ
−1µ2) ∼ (w′′u2σ(w′′), n(w′′)λ−1µ2) = (u2, µ2).

Therefore, (u1, µ1) ∼ (u2, µ2).

Lemma 2.4 (Rost). Let L/k be a quadratic extension. Let A be a degree 3 central
simple (associative) algebra over L with an involution σ of the second kind. Let
x ∈ L∗ be such that xσ(x) = 1. Assume that x = N(a) for some a ∈ A. Then there
exists a′ ∈ A with x = N(a′) and a′σ(a′) = 1.

In fact, we have the following more general lemma due to Suresh, the proof of
which uses the following result of Merkurjev on norm principle for unitary groups.

Lemma 2.5 (Merkurjev). Let x ∈ L∗. Then x = N(vσ(v)−1) for some v ∈ A∗ if
and only if there exists u ∈ A∗ with uσ(u) = 1 and x = N(u).

Proof. (cf. Theorem 5.1.3 of [BF-P]).

Lemma 2.6 (Suresh). Let L/k be a quadratic extension and A a central simple
(associative) algebra over L of odd degree with an involution of the second kind.
Let x ∈ L be such that xx = 1. If x is the reduced norm of some element of A, then
there exists an element u ∈ A∗ such that uσ(u) = 1 and N(u) = x.

Proof. Let x ∈ L∗ be such that xx = 1 and x = N(v) for some v ∈ A∗. Then there
exists y ∈ L∗ such that x = y(y)−1. Since σ is the identity on k, for λ ∈ k∗ we have
x = λy(λy)−1. Therefore, by Lemma 2.5, it is enough to show that λy is a reduced
norm of some element of A∗ for some λ ∈ k∗. Let [A : L] = (2r + 1)2. We have

N(vry) = N(v)r(y)2r+1 (since σ(y) ∈ L∗)
= xr(y)2r+1

= (yr(y)−r)(y)2r+1

= (yy)ry.

Let λ = (yy)r ∈ k. Then it follows that λy is a reduced norm from A∗, and hence
λy is a reduced norm from A∗. This completes the proof of lemma.

Theorem 2.7. Let k be a field with characteristic different from 2 and 3. Let
L/k be a quadratic extension, B a degree 3 central simple algebra over L with an
involution σ of the second kind. Let ui, i = 1, 2, be units in B with σ(ui) = ui and
n(ui) = µiµi, µi ∈ L∗. Then J(B, σ, u1, µ1) ' J(B, σ, u2, µ2) if and only if there
is w ∈ B with u2 = wu1σ(w) and µ2 = n(w)µ1.

Proof. If u2 = wu1σ(w) and µ2 = n(w)µ1 then, as was remarked in the intro-
duction, the map (a0, a) 7→ (ao, aw) gives an isomorphism of J(B, σ, u1, µ1) with
J(B, σ, u2, µ2).

Conversely, suppose J1 = J(B, σ, u1, µ1) ' J2 = J(B, σ, u2, µ2). Then f3(J1) =
f3(J2) and g3(J1) = g3(J2). The theorem now follows from Propositions 2.1, 2.2
and 2.3.

Theorem 2.8. Let J = J(B, σ, u, µ), J ′ = J(B, σ, u′, µ′) be Albert algebras such
that f3(J) = f3(J

′) and g3(J) = g3(J
′). Then J ' J ′.

Proof. The proof follows from Propositions 2.1, 2.2, 2.3 and the ‘if’ part of Theo-
rem 2.7.
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Remark. Theorem 2.7 asserts that the map H1(k, SU(B, σ)) → H1(k, F4), on the
Galois cohomology, corresponding to the second Tits’ construction, is injective.

3. A Skolem Noether type theorem

In this section we prove the following “Skolem Noether” type theorem.

Theorem 3.1. Let L/k be a quadratic field extension. Let (B, σ), (B′, σ′) be degree
3 central simple algebras over L with involutions of the second kind over k. Let
H(B, σ),H(B′, σ′) denote the 9-dimensional Jordan algebras over k associated to
the symmetric elements in (B, σ), (B′, σ′) respectively. Suppose that H(B, σ) and
H(B′, σ′) are subalgebras of an Albert algebra J over k and α : H(B, σ) ' H(B′, σ′)
is an isomorphism of Jordan algebras. Then α extends to an automorphism of J .

For the proof we need some lemmas (which are also consequences of a more
general result proved by Jacobson [J], p. 210, Theorem 11. However, we give direct
proofs for the sake of completeness.)

Lemma 3.2. Let L/k be a quadratic field extension. Let B be a degree 3 central
simple algebra with an involution σ of the second kind. Let α : H(B, σ) → H(B, σ)
be an automorphism of Jordan algebras. Then α is the restriction of an isomorphism
α̃ : (B, σ) ' (B, σ) or α̃ : (B, σ) ' (Bop, σ) of associative algebras with involutions.

Proof. Consider the map α ⊗ 1 : H(B, σ) ⊗k L ' H(B, σ) ⊗k L. The map ψ :
H(B, σ) ⊗k L → B, given by (x, λ) 7→ xλ, is an isomorphism of Jordan algebras
over L. Let α̃ = ψ ◦ (α⊗ 1) ◦ψ−1 : B ' B. Then α̃ restricts on H(B, σ) to α. By a
theorem of Ancochea ([A]), α̃ is an automorphism or an anti-automorphism of the
algebra B. We show that α̃ commutes with σ. For x ∈ H(B, σ), σ(x) = x, so that

α̃σ(x) = α̃(x) = α(x) = σα̃(x).

Let L = k(j) with j2 ∈ k. Then, α̃σ(j) = α̃(−j) = −j = σα̃(j). Since H(B, σ)
generates B as an L-algebra, it follows that α̃ commutes with σ on the whole of B.
Hence α̃ has the required properties.

Theorem 3.3. Let B be a central simple L-algebra of degree 3 with involutions σ, σ′

of the second kind. Let Qσ, Qσ′ denote the restrictions to H(B, σ) and H(B, σ′),
respectively, of the trace form of B. Then the involutions σ and σ′ are isomorphic
if and only if Qσ and Qσ′ are isometric.

Proof. See [H-K-R-T], Proposition 4.

Lemma 3.4. Let L/k be a quadratic extension of k. Let (B, σ), (B′, σ′) be degree
3 central simple (associative) algebras over L with involutions of the second kind. If
α : H(B, σ) ' H(B′, σ′) is an isomorphism of Jordan algebras, then there exists an

isomorphism α̃ : (B, σ) → (B′, σ′) or α̃ : (B, σ) → (B
′op, σ′) of associative algebras

with involutions, which restricts to α.

Proof. The isomorphism α extends to a Jordan algebra isomorphism

H(B, σ)⊗k L ' H(B′, σ′)⊗k L,

which in turn gives an isomorphism of the Jordan algebra B with B′. By a theorem
of Ancochea, B is isomorphic or anti-isomorphic to B′. Replacing B′ by B

′op, if
necessary, we may assume that B is isomorphic to B′. In view of the fact that α
is an isomorphism of Jordan algebras, we get that Qσ ' Qσ′ . By Theorem 3.3 and
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the fact that B is isomorphic to B′ we conclude that there exists an isomorphism

β̃ : (B, σ) ' (B′, σ′) or (B, σ) ' (B
′op, σ′) of associative algebras with involutions.

Thus β̃ restricts to β : H(B, σ) ' H(B′, σ′). Consider β−1◦α : H(B, σ) → H(B, σ).
By Lemma 3.2, there exists γ : (B, σ) ' (B, σ) or (B, σ) ' (Bop, σ), which restricts

to β−1 ◦ α. Let α̃ = β̃ ◦ γ. Then α̃ satisfies the requirements in the lemma.

Proof of Theorem 3.1. By Lemma 3.4 there is an isomorphism α̃ : (B, σ) → (B′, σ′)
or (B, σ) → (B

′op, σ′) which restricts to α. By ([MC-2]), there are isomorphisms

φ1 : J(B, σ, u, µ) ' J, φ2 : J(B′, σ′, u′, µ′) ' J

for suitable u, µ, u′, µ′, which restrict to the inclusions of H(B, σ) and H(B′, σ′)
in J . We have an isomorphism J(α̃) : J(B, σ, u, µ) ' J(B′, σ′, α(u), µ) given by
(a0, a) 7→ (α(a0), α(a)). But J(B′, σ′, α(u), µ) ' J(B′, σ′, u′, µ′), since both are
isomorphic to J . By Theorem 2.2 of §2, there exists w′ ∈ B′ such that u′ =
w′α(u)σ′(w′), µ′ = N(w′)µ. Let ψ : J(B′, σ′, α(u), µ) ' J(B′, σ′, u′, µ′) be given
by (a′0, a′) 7→ (a′0, a′w′). Then ψ restricts to the identity map on H(B′, σ′). Let
φ = φ2 ◦ ψ ◦ J(α̃) ◦ φ−1

1 . Then for x ∈ H(B, σ), we have φ(x) = φ2ψ(α(x)) = α(x).
Thus φ is an automorphism of J extending α.
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