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SYMPLECTIC GROUP LATTICES

RUDOLF SCHARLAU AND PHAM HUU TIEP

Abstract. Let p be an odd prime. It is known that the symplectic group
Sp2n(p) has two (algebraically conjugate) irreducible representations of degree

(pn +1)/2 realized over Q(
√

εp), where ε = (−1)(p−1)/2. We study the integral
lattices related to these representations for the case pn ≡ 1 mod 4. (The case
pn ≡ 3 mod 4 has been considered in a previous paper.) We show that the
class of invariant lattices contains either unimodular or p-modular lattices.
These lattices are explicitly constructed and classified. Gram matrices of the
lattices are given, using a discrete analogue of Maslov index.

1. Introduction

Let p be an odd prime, and set Sn = Sp2n(p) for the symplectic group of degree
2n over Fp. Euclidean integral lattices in the space of the Weil representation
of Sn have been investigated by several authors (see for instance [BaV], [Dum],
[Gow], [Gro], [Tiep 1], [Tiep 2]). The Weil representation W of Sn is a complex
representation of degree pn that can be obtained from the action of Sn on the
extraspecial group p1+2n

+ (as the outer automorphism group). See, for example,
[Isa], [Sei], or [Ward 1] for a more general approach. W is a sum of two irreducible
representations of degrees (pn − 1)/2 and (pn + 1)/2. ( These two characters seem
to have been first investigated in [BRW].) One of these representations, which we
shall denote by W1, is faithful and has even degree, and the kernel of the other
representation, W2, is the center Z = C2 of Sn. Following [Gow], we shall refer to
W1 and W2 as Weil representations. Weil representations have been characterized
in several ways in [TZa 1], [TZa 2].

Set ε = (−1)(p−1)/2 and suppose that (dimWi, ε) 6= (pn−1
2 , 1). It is shown

in [Gro] that, under this assumption, the character ψi of the representation Wi

generates the field Q(
√
εp) over the rational field Q, and has Schur index 1 over

Q. Hence, there exist an extension Gn of Sn and an absolutely irreducible QGn-
module V affording the Sn-character ψi + ψi, where the bar denotes the algebraic
conjugation of the field Q(

√
εp). The group Gn can be chosen as a homomorphic
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image of the conformal symplectic group

Gn = CSp2n(p) = {ϕ ∈ GL(W )| ∃κ ∈ F•p, ∀u, v ∈ W,
〈ϕ(u), ϕ(v)〉 = κ〈u, v〉},

where W denotes a natural 2n-dimensional Sn-module over Fp, with the symplectic
form 〈·, ·〉. In what follows we shall be concerned with the following two homomor-
phic images of Gn: the factor-group G+

n of Gn by its center Cp−1 (consisting of the
scalar matrices λE2n, λ ∈ F•p), and G−n , the factor-group of Gn by the central group
C(p−1)/2 (consisting of scalar matrices λE2n, λ ∈ F•2p ). Throughout the paper, Cm

denotes the cyclic group of order m, and Em denotes the identity matrix of order
m (over any field).

The lattices for the Weil representations of degree ψ(1) = (pn − 1)/2 have been
investigated in [Gow] and [Gro]. Recall that in this case p ≡ 3 mod 4, according to
our general assumption; see [Tiep 2] for the excluded case. If n is even, then every
ZSn-lattice in V is even unimodular. If n is odd, V contains p-modular invariant
lattices. Recall that an integral lattice Λ is said to be p-modular (or modular
of level p) if the lattices pΛ# (the dual lattice Λ# rescaled by the scalar p) and Λ
are isometric. p-modular lattices have been introduced and investigated in [CoS 1]
and [Que]. In either of these cases, the corresponding representations are globally
irreducible in the sense of Gross [Gro]. Some of the corresponding lattices have
been realized as sublattices of the Mordell-Weil lattices of certain elliptic curves
(cf. [Dum] and [Gro]).

The Weil representations of degree ψ(1) = (pn + 1)/2 are the subject of our
present work, begun in [SchT] and continued in this paper. Here the corresponding
representation cannot be globally irreducible anymore; namely, ψ mod 2 = 1S+η for
some η ∈ IBr2(S). In [SchT], the case pn ≡ 3 mod 4 has been treated. The existence
of unimodular ZG-lattices in V has been established, where G = G−n ' Sn ·C2. All
ZG-lattices contained in V have been classified.

In this paper, we are concerned with the case pn ≡ 1 mod 4. Then W2 viewed
over Q is in fact a faithful representation of PSp2n(p) of degree pn + 1. Moreover,
if p ≡ 3 mod 4, this representation can be extended (in a unique way) to a rational
representation ofG+

n . If p ≡ 1 mod 4, it can be extended to a rational representation
for each of the two groups G+

n and G−n (cf. Proposition 2.3). The reason is that
when p ≡ 1 mod 4 the two groups C2 × G+

n and G−n are isoclinic to each other.
For more detail on isoclinic groups see [Atlas] and [Tiep 2], Lemma 2.11. When
p ≡ 3 mod 4, it follows from this lemma that the rational representation of Sn of
degree pn + 1 is extendible to a rational faithful representation of G+

n if n is even,
and of G−n if n is odd, but not for its isoclinic variant.

From now on we keep the following notation: Sn = Sp2n(p), Gn = CSp2n(p),
Z ∼= Cp−1 the center of G+

n , G+
n = Gn/Z, G−n = Gn/Z

2, θ a fixed generating
element of F•p. Clearly, Gn is generated by Sn and an element ϑn with matrix
diag(En, θEn) in a fixed symplectic basis (e1, . . . , en, f1, . . . , fn) of the natural Sn-
module W = Wn = F2n

p (that is, a basis in which the symplectic form 〈·, ·〉 is
given as follows: 〈ei, ej〉 = 0, 〈fi, fj〉 = 0, 〈ei, fj〉 = δi,j). V = Vn denotes an
irreducible QGn-module with character χ such that χ|Sn = ψ + ψ. Furthermore,
either Kerχ = Z (and then Vn is a faithful G+

n -module), or p ≡ 1 mod 4 and
Kerχ = Z2 (and then Vn is a faithful G−n -module). Under these assumptions χ
exists and is unique by Proposition 2.3. It is clear that there exists a unique (up
to scalar) Gn-invariant positive definite symmetric bilinear form (·, ·) on Vn.
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Our first main result is the following theorem which includes Theorem 1.1 of
[SchT]:

Theorem 1.1. Let p be an odd prime. If p ≡ 3 mod 4, then suppose in addition
that n is odd. Then Vn contains G−n -invariant odd unimodular Euclidean lattices
(of rank pn + 1). If n > 1, these lattices have no roots.

Actually, we provide an explicit construction of a G−n -stable odd unimodular
lattice ∆ = ∆(p, n) contained in Vn (cf. Theorem 3.9 and Corollary 5.4) for n odd,
and a G−n -stable odd unimodular lattice ∆−(p, n) for the case where n is even and
p ≡ 1 mod 4 (cf. Corollary 5.9). In the case p ≡ 3 mod 4 this is just the construction
exposed in [SchT]. The cases pn = 27 and pn = 25 have been considered by
R. Bacher and B. B. Venkov [BaV], and G. Nebe, respectively. The corresponding
lattices have minimum 3. In general, Theorem 7.1 yields min ∆(p, n) ≥ (p + 1)/2
for all n ≥ 3.

Our next results are concerned with p-modular lattices.

Theorem 1.2. Let p be any odd prime. If p ≡ 3 mod 4, then suppose in addition
that n is even. Then Vn contains G+

n -invariant p-modular Euclidean lattices (of
rank pn + 1).

Again, we provide an explicit construction of a G+
n -stable p-modular lattice ∆ =

∆−(p, n) if n is odd and p ≡ 1 mod 4 (cf. Corollary 5.10), respectively ∆ = ∆(p, n)
if n is even (cf. Theorem 4.4 and Corollary 5.6). This result generalizes Theorem
(V.2) of [NPl] dealing with the case n = 1 and p ≡ 1 mod 4. The case n = 2 and
p = 5 has been considered by Nebe; the corresponding 5-modular lattice (∆(5, 2) in
our notation) has minimum 5. As before, Theorem 7.1 yields min ∆(p, n) ≥ (p+1)/2
for all n ≥ 2.

Gram matrices of the lattices ∆(p, n), ∆−(p, n) are given in §5 using a discrete
analogue of Maslov index. In a few words, our explicit constructions can be de-
scribed as follows. First we start with the case n is odd and the group G−n . Using
Lagrangians, an idea going back to [BaV] (cf. §3) and Maslov index (cf. §5), we
explicitly construct the unimodular lattices ∆(p, n) (for any odd prime p). Then
descending from n+1 to n (cf. §4), we obtain the p-modular lattices ∆(p, n) which
are stable under G+

n , for any even n and any odd prime p. Finally, let p ≡ 1 mod 4.
Then the isoclinism between C2 × G+

n and G−n and Proposition 2.4 allow us to
construct the lattices ∆−(p, n), for any n.

We wish to point out that V cannot contain simultaneously invariant unimodu-
lar and p-modular lattices. Namely, the unimodular lattices are acted on faithfully
by G−n , and the p-modular ones by G+

n . Moreover, the invariant unimodular (p-
modular) lattices are essentially unique (if they exist). More precisely, the classifi-
cation of Gn-invariant lattices in Vn is provided by the following theorem. Given a
lattice Γ, let Γ# denote the dual lattice and Γ0 denote the sublattice consisting of
all vectors of even norm in Γ; furthermore, Γ1 = Γ ∩ 2(Γ0)#. Two integral lattices
(Γ, (·, ·)) and (Γ′, (·, ·)′) are called similar if there exist a surjective homomorphism
φ : Γ → Γ′ and a scalar λ ∈ Q such that (φ(u), φ(v))′ = λ(u, v) for any u, v ∈ Γ.

Theorem 1.3. Let p be any odd prime and n any integer. Suppose that Gn acts
irreducibly on an integral lattice Γ of rank pn + 1, with kernel K. If pn = 3 or
pn = p ≡ 1 mod 6, then suppose in addition that Sn acts reducibly on Γ⊗C. Then
one of the following holds.
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(i) Gn/K is equal to G−n for odd n, and G+
n for even n. Furthermore, Γ is

similar to one of the lattices ∆, ∆0, ∆1, where ∆ = ∆(p, n).
(ii) p ≡ 1 mod 4, and Gn/K is equal to G+

n for odd n, and G−n for even n.
Furthermore, Γ is similar to one of the lattices ∆, ∆0, ∆1, where ∆ = ∆−(p, n).

The GL2(p)-invariant (p+1)-dimensional lattices which are not covered by The-
orem 1.3 (here p = 3 or p ≡ 1 mod 6) have been investigated in [NPl], Theorem
(V.4).

The full automorphism groups of all Gn-invariant lattices Λ in Vn have been
determined in [Tiep 1]. In particular, if n > 1, then either Aut(Λ) ∈ {C2×G+

n , G
−
n },

or p = 3 and Aut(Λ) = (C6 · PSp2n(3)) · C2.

2. Implicit proofs

We recall the notations Sn, ψ of degree (pn + 1)/2, Gn, Z, G+
n , G−n . We start

with the following simple observation:

Lemma 2.1. Let p be any odd prime and n any integer. Suppose χ is an irreducible
complex character of Gn of degree pn + 1 with the following properties:

(i) χ restricted to Sn is equal to ψ + ψ;
(ii) χ is rational-valued.

Then one of the following holds.
(a) χ is a faithful character, say χ+, of G+

n ; furthermore, n is even if p ≡
3 mod 4.

(b) χ is a faithful character, say χ−, of G−n ; furthermore, n is odd if p ≡
3 mod 4.

Proof. Let K = Kerχ. Schur’s Lemma and (ii) imply that Z/(Z ∩K) is a cyclic
group of order at most 2. In particular, either K = Z, or K = Z2. Observe that
Gn permutes the two characters ψ and ψ of Sn nontrivially. Denote Ḡ = Gn/K,
S̄ = Sn/(Sn ∩K).

First consider the case K = Z. Since K ⊆ Kerψ, the degree ψ(1) is odd, i.e.
pn ≡ 1 mod 4. Here we have Ḡ = G+

n , S̄ = PSp2n(p), and Ḡ = S̄ ·C2. Clearly, the
desired character χ is now uniquely determined: χ = IndḠ

S̄ (ψ).
Next let K = Z2. If p ≡ 1 mod 4, then Ḡ = (S̄×Z/K) ·C2. If p ≡ 3 mod 4, then

in view of (i) n must be odd, and Ḡ = S̄ · C2. Now the desired character χ exists
and is unique: χ = IndḠ

S̄ (ψ) if p ≡ 3 mod 4, and χ = IndḠ
S̄×Z/K(ψ̃) if p ≡ 1 mod 4

(where ψ̃ is equal to ψ on S̄ and to −ψ(1) on the unique nontrivial element of
Z/K). Clearly, Q(χ) = Q.

As we have mentioned above, C2 × G+
n and G−n are isoclinic to each other if

p ≡ 1 mod 4. In this case, ind(ψ) = 1 (cf. [Gro], Corollary 13.7); hence by
Lemma 2.11 of [Tiep 2] ind(χ+) = ind(χ−) = 1. If p ≡ 3 mod 4 and n is odd,
then ind(ψ) = 0, and ind(χ−) = 1 (see [SchT] or Proposition 2.3 below). Hence by
Lemma 2.11 of [Tiep 2], the corresponding character of degree pn +1 of the isoclinic
variant of G−n (which now is not isomorphic to C2 × G+

n ) has Schur-Frobenius
indicator −1 and so cannot be written over R. Similarly, if p ≡ 3 mod 4, then
ind(ψ) = 0, ind(χ+) = 1, but the corresponding character of degree pn + 1 of the
isoclinic variant of C2 ×G+

n (which is no longer G−n ) cannot be written over R.
The next proposition is an analogue of [SchT], Lemma 5.1.
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Proposition 2.2. Let p be an odd prime and n any integer. Let r be any prime
and let χ be as in Lemma 2.1. Then the following assertions hold.

(i) The reduction χ mod r is irreducible if r 6= 2, p.
(ii) χ mod 2 = 2 · 1Gn + β for a certain β ∈ IBr2(Gn). Furthermore, β is of

symplectic type, if p ≡ 1 mod 4.
(iii) χ mod p = η1 + η2, where η1, η2 ∈ IBrp(Gn) are distinct characters which

can be written over Fp. Furthermore, for k = 1, 2 ηk is not self-dual if χ = χ−, and
ηk is of type + if χ = χ+.

Proof. The case pn ≡ 3 mod 4 has already been handled in [SchT] (cf. the proof
of Theorem 1.1 and Lemma 5.1 therein). Hence in what follows we suppose that
pn ≡ 1 mod 4.

1) It is well-known (see e.g. [Gow], [Gro]) that ψ mod r ∈ IBrr(Sn) for any
odd prime r. Furthermore, ψ mod 2 = 1Sn + α for some α ∈ IBr2(Sn). If x is
a regular unipotent element of Sn, then ψ(x) = (1 ± pn−1√εp)/2. Furthermore,
ϑn interchanges the Sn-conjugacy classes of x and some power of xs and ψ(xs) =
(1∓ pn−1√εp)/2. Therefore, χ mod r ∈ IBrr(Gn) for any prime r, r 6= 2, p. On the
other hand, χ mod 2 = 2 · 1Gn + β for some β ∈ IBr2(Gn). If p ≡ 1 mod 4 , then
the fact that α is of symplectic type has been established in [GoW]. From this it
follows by [Tiep 2], Lemma 2.4 that β is of symplectic type.

2) Consider the reduction χ mod p. Recall that χ|Sn = ψ+ψ. It is shown in [Gro]
that ψ mod p = ψ mod p = η is obtained by restricting the irreducible algebraic
representation of Sp2n(Fp) with highest weight p−1

2 ωn to Sn. Furthermore, due to
Lemma 2.6 [Tiep 3], η is invariant under the action of the distinguished element
ϑn. Therefore, Gn has just two irreducible Brauer characters η1, η2 with ηk|Sn = η
and η1 +η2 = 0 on Gn \Sn. In this case, χ mod p = η1 +η2, since χ = 0 on Gn \Sn.

3) We can embed Sn into T = Sp2n(p2) in the following way. In a natural
2n-dimensional Fp2-module W̃ of T consider a symplectic basis

(e1, . . . , en, f1, . . . , fn).

In this basis we can set W = 〈e1, . . . , en, f1, . . . , fn〉Fp , J = diag(ς−1En, ςEn).
Here ς ∈ Fp2 is chosen with order 2(p − 1) such that θ = ς2. Now we set Sn =
T ∩End(W ) ' Sp2n(p), H = 〈Sn, J〉. Then J2 ∈ Sn and J normalizes Sn; therefore
H ' Sn · C2. Furthermore, H/Z(Sn) ' G+

n .
Assume p ≡ 1 mod 4. Factoring the embedding S ↪→ Sp2n(Fp) through T =

Sp2n(p2), one sees that η is extended to two absolutely irreducible Brauer characters
µ1, µ2 of H . We calculate the value of µ1, µ2 at the element J . If one denotes
σ = exp( πi

p−1 ), then µ1(J) =
∑

u∈I+
n
σ|u|, since n(p− 1)/2 is even in our case. Here

I+
n =

u = (u1, . . . , un) | uj ∈ Z, |uj | ≤ (p− 1)/2,
n∑

j=1

uj ≡ 0 mod 2

 ,

I−n =

u = (u1, . . . , un) | uj ∈ Z, |uj | ≤ (p− 1)/2,
n∑

j=1

uj ≡ 1 mod 2

 ,

S+
n =

∑
u∈I+

n

σ|u|, S−n =
∑

u∈I−n

σ|u|,
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and |u| =∑j uj for u ∈ I±n . Denote also τ = cot( π
2(p−1) ). Then we have

S+
1 =

τ − τ−1

2
, S−1 =

τ + τ−1

2
,

S+
n+1 = S+

n S
+
1 + S−n S

−
1 , S

−
n+1 = S+

n S
−
1 + S−n S

+
1 .

From this it follows that

S+
n =

τn + (−τ)−n

2
, S−n =

τn − (−τ)−n

2
.

In particular, µ1(J) = (τn + (−τ)−n)/2. Since p ≥ 5, τ > 1, and so µ1(J) is
a positive real number. Moreover, the Frobenius endomorphism σ 7→ σp sends
σ to −σ, i = σ(p−1)/2 to i, µ1(J) to µ1(J) = −µ2(J). We have shown that
µ

(p)
k = µk = µk for k = 1, 2.
If p ≡ 3 mod 4, then n is even. Under the above notation, the computation in

the proof of [SchT], Lemma 5.1 shows that µ1(J) = (τn + τ−n)/2. In particular,
µ1(J) is again a positive real number. Moreover, the Frobenius endomorphism
σ 7→ σp sends σ to −σ, i = σ(p−1)/2 to −i, µ1(J) to µ1(J) = −µ2(J). Therefore,
µ

(p)
k = µk = µk for k = 1, 2.
4) Here we consider the case χ = χ+. Since Kerµk = Z(Sn) and H/Z(Sn)

' G+
n , we have ηk = µk, k = 1, 2. Thus ηk can be written over Fp. Furthermore,

since ηk is real-valued and ηk|Sn = η is of quadratic type, ηk itself is of quadratic
type.

5) Next let χ = χ−. Then p ≡ 1 mod 4. Consider a representation Φ :
H → GL(pn+1)/2(Fp) with Brauer character µ1. Put ω = ς(p−1)/2, and set G̃ =
{±Φ(g),±ωΦ(h) | g ∈ Sn, h ∈ H\Sn}. Since ω2 = −1, G̃ is a group. We claim that
G̃ ' Ḡ = Gn/K = G−n , where K = Kerχ ' Z2. For the proof, we first observe that
G̃ is generated by the subgroup G′ = {±Φ(g) | g ∈ Sn} and the element ωΦ(J).
Observe that the representation Φ is not faithful: its kernel is equal to the center
Z(Sn) of Sn. But the factor-group H/Z(Sn) ' PSp2n(p) · C2 has trivial center;
therefore Φ(H) also has trivial center. In particular, G′ ' Sn/Z(Sn) × C2. The
subgroup C2 here is generated by j, the multiplication by −1 (on the representation
space of Φ); hence we can identify j with the central element θE2n in Ḡ. Now one
has:

ϑ2
n = diag(En, θ

2En) = θE2n · diag(θ−1En, θEn) = jJ2,
(ωΦ(J))2 = −Φ(J2) = jΦ(J2).

Modulo Z(Sn) = Ker(Φ|Sn) one can identify the two elements ϑ2
n and (ωΦ(J))2.

Furthermore, the actions of ωΦ(J) and of ϑn on Sn via conjugation are obviously
the same. This means that G̃ ' Ḡ.

The isomorphism Ḡ ' G̃ gives us a representation Ψ : Gn → GL(pn+1)/2(Fp)
with kernel K. One may suppose that this representation affords the Brauer char-
acter η1. Then η1(ϑn) =

√−1µ1(J). The computations in item 3) show that η1(ϑn)
is purely imaginary, and that the Frobenius endomorphism (p) leaves η1(ϑn) fixed.
Consequently, for k = 1, 2 the Brauer character ηk can be realized over Fp but it is
not real.

Proposition 2.3. Let p be any odd prime and n any integer. Let χ be as in Lemma
2.1. Then χ is afforded by a QGn-module (of dimension pn + 1).
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Proof. 1) First we give an argument settling the case where n is odd and χ = χ−.
Let q = pn. Then we can identify W with F2

q, and endow W with the symplectic
form 〈u, v〉 = tr(ad − bc), where u = (a, b), v = (c, d), a, b, c, d ∈ Fq, and tr stands
for the trace form tr : Fq → Fp. Make the group

R = {ϕ ∈ H = GL2(q) | detϕ ∈ F•p} ' SL2(q) · Cp−1

act on W in a natural way. Clearly, this action embeds R in Gn = CSp(W ). Let
T denote the central subgroup {diag(λ, λ) | λ ∈ F•2q } ' C(q−1)/2 of H . Then the
assumption that n is odd implies that T∩R = K, whereK = Kerχ = C(p−1)/2, and
RT = H . Hence, χ|R can be viewed as a faithful character of R/K = R/(T ∩R) '
H/T and so as a character, say ρ, of H (with kernel T ). Beside that, the restriction
of χ to the subgroup R′ = SL2(q) is the sum of two irreducible Weil characters of
degree (q + 1)/2 of R′. Inspecting the character table of H (cf. [DiM]) we see that
ρ = IndH

B (µ), where

B =
{(

a b
0 d

)
| a, d ∈ F•q , c ∈ Fq

}
is a Borel subgroup of H , and the linear character µ sends

(
a b
0 d

)
to δ(a), δ the

quadratic character of Fq. In particular, ρ is rational and absolutely irreducible.
The same is true for χ|R. Now a standard lemma (see for instance [KoT], Lemma
8.3.1) says that χ is also rational.

2) Now we give another argument handling the case pn ≡ 1 mod 4. The equality
Q(χ) = Q implies by the Brauer-Speiser theorem that the Schur index mQ(χ) is
either 1 or 2. If mQ(χ) = 1, we are done. Assuming mQ(χ) = 2, we get an
irreducible QGn-module V with character 2χ. Clearly, the commuting algebra
K = EndGn(V ) is a quaternion algebra over Q. If a prime r is ramified in K, then
there exists a Brauer character µ such that χ mod r = µ + µ(r). By Proposition
2.2, this cannot occur for any prime r. Thus K is unramified at any prime r, and
by Hasse’s principle we get a contradiction.

Having established Proposition 2.3, we are given a QG-module V = Vn with
character χ such that χ|Sn = ψ + ψ, where (G,χ) = (G+

n , χ
+) or (G−n , χ

−). We
shall maintain this notation in what follows.

Proof of Theorem 1.1. Proposition 2.2 shows that the pair (G,χ) = (G−n , χ
−) sat-

isfies the conditions (i), (ii) of Proposition 2.4 from [SchT]. Below (cf. (7) and
Corollary 4.3) we shall see that condition (iii) is also fulfilled: detV = Q•2. Ap-
plying that proposition, we obtain a G−n -invariant unimodular lattice Γ. Standard
arguments show that Γ is odd, and min Γ ≥ 3 if n > 1.

The link between lattices invariant under isoclinic groups is indicated in the
following statement. We make use of the following observation: for any prime
p ≡ 1 mod 4, there exist a, b ∈ N such that a2− pb2 = −1 (cf. [Coh], pp. 105, 106).
Henceforth we fix such a pair a,b.

Proposition 2.4. Let p ≡ 1 mod 4 be a prime. Let G+ ' H · C2 and G− =
(H · C2)− be isoclinic groups, where H is a finite group with center of order 2.
Suppose V is an absolutely irreducible QG+-module with character χ+, and Q(ψ) =
Q(
√
p) where χ+|H = ψ + ψ. Then the following assertions hold.
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(i) V can be viewed as an absolutely irreducible QG−-module. In particular, for
each sign ε ∈ {+,−}, V has a unique (up to scalar) Gε-invariant scalar product
(·, ·)ε.

(ii) V has an endomorphism σ with the following properties: σ centralizes the
group H, σ2 = p · idV , σ is a self-adjoint similarity of norm p w.r.t. both scalar
products (·, ·)±, and

gσg−1 = −σ for g ∈ G± rH .(1)

(iii) V contains σ-stable lattices which are invariant under both groups G+ and
G−.

(iv) Let Λ be a lattice as in (iii), and denote by Λε, ε ∈ {+,−}, its dual lattice
with respect to (·, ·)ε. After suitably rescaling one of (·, ·)ε, we have the equality

Λ− = σ−1(Λ+) .

On this scale, Λ is unimodular w.r.t. (·, ·)+ if and only if it is p-modular w.r.t.
(·, ·)−. Similarly, Λ is p-modular w.r.t. (·, ·)+ if and only if it is unimodular w.r.t.
1
p (·, ·)−.

Proof. The equality χ|H = ψ + ψ implies that the commuting algebra

K = EndH(V ) = {ϕ ∈ EndQ(V ) | ∀h ∈ H,ϕ · h = h · ϕ}
is isomorphic to the field Q(ψ) = Q(

√
p). Denoting by σ the (unique up to sign)

element σ ∈ K with σ2 = p·idV , we have to show that it satisfies all other properties
stated. We begin with (1). Fix an element g ∈ G+ r H . For h ∈ H and λ ∈ K it
is readily checked that h · gλg−1 = gλg−1 · h; in other words, gλg−1 ∈ K. Thus,
conjugation by g induces an automorphism of K. If λ is fixed by this automorphism,
then λ centralizes H and g, and thus G+, that is, λ ∈ Q. Thus, λ 7→ gλg−1 is the
unique nontrivial field automorphism of K. Property (1) is a special case of this (σ
corresponds to

√
p).

If Γ is any G+-invariant lattice, then Γ + σ(Γ) is clearly σ-invariant, and by
(1) still G+-invariant, which proves (iii) in the “+”-case. The scalar product
(σ(x), σ(y)), x, y ∈ V , is also G+-invariant and therefore of the form (σ(x), σ(y)) =
c(x, y) for some c ∈ R. From σ2 = p · idV it follows that c = p. The self-adjointness

(σ(x), y)+ = (x, σ(y))+

now is a formal consequence, and part (i) is proved for (·, ·)+.
Recall that we have fixed positive integers a, b with a2 − pb2 = −1. Denote by

ρ 7→ ρ̄ the non-trivial automorphism of K, that is, gρ = ρ̄g for any g ∈ G+ rH (see
above), and by µ the particular element

µ = a + bσ ∈ K .

Since µ◦µ = µ◦µ = − idV , µ = a−bσ, this element induces in fact an automorphism
of any G+-stable lattice. If g ∈ G+ rH and g′ := gµ, then g′2 = gµgµ = g2µµ =
−g2. Thus 〈H, g′〉 ∼= G−. Observe that the particular representation of G− thus
constructed is obviously absolutely irreducible, and an H-invariant σ-stable lattice
is G+-invariant if and only if it is G−-invariant.

For a given choice of (·, ·), consider the bilinear form

(x, y)− := (x, σµ(y))+

which is clearly H-invariant. Since σµ is self-adjoint w.r.t. (·, ·)+, this bilinear form
is symmetric. From the fact that σµ is a totally positive element in K it easily
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follows that (·, ·)− is also positive definite. The following computation shows that
(·, ·)− is invariant under g′ = gµ and thus under all of G−:

(g′x, g′y)− = (gµ(x), (σµ)gµ(y))+

= (gµ(x), gσµµ(y))+

= (µ(x), σµµ(y))+

= (µ(x), σ(y))+

= (x, µσ(y)) = (x, y)−

(since µµ = − idV ).
For the dual lattices, we clearly have

Λ− = (σµ)−1Λ+ = σ−1µ−1Λ+ = σ−1Λ+ .

If Λ is unimodular w.r.t. (·, ·)+, then Λ+ = Λ; therefore Λ− = σ−1(Λ), i.e. σ
is the desired similarity between Λ and Λ−. Conversely, if Λ is p-modular w.r.t.
(·, ·)−, then

prankΛ/2 = (Λ− : Λ) = (σ−1(Λ+) : Λ)
= (Λ+ : σ(Λ)) = (Λ+ : Λ)(Λ : σ(Λ)) = prankΛ/2(Λ+ : Λ),

yielding Λ+ = Λ. The last assertion follows from the previous one by considering
(x, y)−− := (x, σ(−µ)(y))−.

Clearly, Proposition 2.4 applies to {G+, G−} = {C2 ×G+
n , G

−
n } and the module

V = Vn, if p ≡ 1 mod 4. Also, the endomorphism σ is uniquely determined up to
sign. Therefore, in what follows we can speak about σ-stable lattices in V .

We shall need the following supplement to Proposition 2.4:

Lemma 2.5. Keep all the notation of Proposition 2.4. Suppose that, as FpH-
module, U := Λ/pΛ is the direct sum of two copies M , M ′ of an absolutely irre-
ducible FpH-module. Then the FpG

+-module U is indecomposable if and only if the
FpG

−-module U is indecomposable.

Proof. By our assumption, in a suitably chosen basis of U = M⊕M ′ the commuting

algebra K := EndH(U) consists of matrices of the form
(
aEn bEn

cEn dEn

)
, where

a, b, c, d ∈ Fp and n = dimM . Clearly, the endomorphism σ (cf. Proposition
2.4 (ii)) belongs to K, and without loss of generality one may suppose that σ =(

0 En

0 0

)
, because σ2 = 0 on U . Recall that G+ = 〈H, g〉 and G− = 〈H, g′〉 with

g′ = g(a + bσ). Since gσ = −σg, g has the matrix
(
A B
0 −A

)
, and g′ has the

matrix
(

aA bA+ aB
0 −aA

)
. Denoting L+ = EndG+(U), we see that L+ = CK(g).

In particular, if f =
(
xEn yEn

zEn tEn

)
belongs to L+, then either f = xE2n, or x 6= t

and B = 2y
x−tA. Now observe that: the FpG

+-module U is decomposable if and
only if L+ contains two nonzero idempotents f, g such that fg = gf = 0 if and only
if B ∈ 〈A〉Fp . The same applies to the FpG

−-module U . But

B ∈ 〈A〉Fp ⇐⇒ bA+ aB ∈ 〈aA〉Fp ;

hence our statement follows.
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Corollary 2.6. Let p ≡ 1 mod 4 and n any integer. Then Vn contains σ-stable
G−n -invariant odd unimodular lattices.

Proof. By Proposition 2.4, Vn contains σ-stable G−n -invariant lattices. Choose such
a lattice Γ with minimal possible determinant, and suppose that det Γ > 1. Clearly,
the symmetry of σ implies that the dual lattice Γ# is σ-stable. In particular, taking
the sum Γ + mΓ#, m ∈ Z, produces again a σ-stable lattice. Hence Lemma 2.1
[SchT] holds inside the class of σ-stable lattices. Now the arguments in the proof
of [SchT], Proposition 2.4, show that A = Γ#/Γ = (C2)2. Consider the form
q : A → 1

2Z/Z, q(v + Γ) = (v, v) + Z. Clearly, σ acts on A as an endomorphism
of order 1 or 2, and σ preserves q. If σ = 1 on A, then we are done by Lemma
2.2 [SchT]. If σ 6= 1 on A, then σ has a unique nonzero fixed vector v̄ in A. This
vector is obviously fixed by G−n , and one can check that q(v̄) = 0. Thus 〈Γ, v〉 is a
σ-stable G−n -invariant unimodular lattice, contrary to the choice of Γ.

A σ-stable G−n -invariant odd unimodular lattice will be explicitly constructed in
Theorem 3.9 (for odd n) and Corollary 5.9 (for even n and p ≡ 1 mod 4).

Proof of Theorem 1.2 for the case p ≡ 1 mod 4. By Corollary 2.6, Vn contains a σ-
stable G−n -invariant unimodular lattice ∇. Applying Proposition 2.4, we obtain a
G+

n -invariant scalar product on ∇ that converts it into a p-modular lattice which
is acted on by G+

n .

Remark 2.7. Let n = 1 and p ≡ 1 mod 4. Then Proposition 2.3 and its proof
tell us that the group G−1 = GL2(p)/C(p−1)/2 has a (unique) faithful, absolutely
irreducible, rational representation of degree p + 1, which is monomial. On the
other hand, G+

1 = PGL2(p) has a (unique) faithful, absolutely irreducible, rational
representation of degree p + 1, which is non-monomial. These observations were
mentioned in [NPl], Lemma (V.3) and its proof. Theorem (V.2) of [NPl] exposes a
G+

1 -invariant lattice of rank p+1 and determinant p(p+1)/2, called Mp+1,2. Observe
that Mp+1,2 is obtained from the G−1 -invariant lattice with Gram matrix Ep+1 by
means of the procedure indicated in Proposition 2.4. Hence by this proposition
Mp+1,2 is p-modular.

An explicit construction of G−n -invariant odd unimodular lattices is exposed in
Theorem 3.9 for any odd n. Combined with the procedure indicated in Proposition
2.4, this yields an explicit construction of G+

n -invariant p-modular lattices ∆−(p, n)
for any odd n (cf. Corollary 5.10), which generalizes Theorem (V.2) of [NPl].

The rest of the section is devoted to proving Theorem 1.2 for the case p ≡
3 mod 4. Denote θ =

√−p, π = (1 + θ)/2, K = Q(θ), o = 〈1, π〉Z the maximal
order in K. By Proposition 5.2 [SchT], whose proof does not use the oddness of n,
V = Vn has an endomorphism σ such that

σ2(v) = −pv, (σ(u), v) = −(u, σ(v)), (σ(u), σ(v)) = p(u, v),
sσs−1 = σ, gσg−1 = −σ(2)

for any u, v ∈ V , s ∈ S̄n = PSp2n(p), g ∈ G+
n \ S̄n. Following the proof of that

proposition, it is not difficult to show that V contains a G+
n -invariant lattice Λ,

which is stable under the endomorphism (1 + σ)/2. For u, v ∈ V we set

u ◦ v =
(u, v)

2
+ θ

(u, σ(v))
2p

∈ K.(3)
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Using (2) it is straightforward to check that v ◦ u = u ◦ v, u ◦ σ(v) = −θ(u ◦ v),
su ◦ sv = u ◦ v, gu ◦ gv = v ◦ u, and

(u, v) = Tr(u ◦ v),(4)

where s ∈ S̄n, g ∈ G+
n \ S̄n, and Tr denotes the trace of K over Q. Thus, if we set

θ ·v = σ(v), then V is a K-space of dimension (pn +1)/2, with S̄n-invariant positive
definite Hermitian scalar product u ◦ v. Multiplying (·, ·) by a suitable scalar, for
instance by 2p, we can ensure that Λ ◦ Λ ⊆ o. Thus Λ is a G+

n -invariant integral
o-lattice, that is contained in its Hermitian dual,

Γ⊥ = {u ∈ V | u ◦ Γ ⊆ o}.
The property (4) by the way characterizes the Hermitian form uniquely, that is,
implies (3). Clearly, both Λ⊥ and Λ#, the Euclidean dual, are stable under o and
G+

n . Using (3), one readily checks that

Λ⊥ = θΛ#.

(This is actually well known from (4), since (θ) is the different of o over Z.) We
shall use this formula frequently in what follows. We shall also need the following
two simple statements.

Lemma 2.8. Let p ≡ 3 mod 4 as above, and let G be a finite group. Suppose
that Γ is a G-invariant integral Hermitian o-lattice such that Γ ⊇ 2Γ⊥. Then the
F2G-module Γ⊥/Γ supports a non-degenerate G-invariant alternating form, namely
b(u, v) = Tr(2u◦v) mod 2 for any u, v ∈ Γ⊥. In particular, the index (Γ⊥ : Γ) differs
from 2 for any integral hermitian o-lattice Γ.

Proof. Since Γ ⊇ 2Γ⊥, 2u ∈ Γ and so 2u◦v ∈ o and Tr(2u◦v) ∈ Z for all u, v ∈ Γ⊥.
If v ∈ Γ, then 2u ◦ v ∈ 2o and Tr(2u ◦ v) ∈ 2Z. Thus b is well defined. Clearly, it is
F2-bilinear and G-invariant. If u ∈ Γ⊥, then 2u◦u ∈ R∩o = Z, yielding b(u, u) = 0,
i.e. b is alternating. Finally, assume that v ∈ Γ⊥ such that Tr(u ◦ v) ∈ Z for any
u ∈ Γ⊥. Then v ∈ (Γ⊥)# = θ−1Γ⊥⊥ = θ−1Γ and θ−1Γ ∩ (1/2)Γ = Γ. In other
words, b is non-degenerate.

Lemma 2.9. Let Γ be an S̄n-invariant o-lattice in V . Suppose that the index
(Γ⊥ : Γ) is divisible by p. Then in fact Γ ⊆ pΓ⊥.

Proof. Consider the FpS̄n-module U = Γ/θΓ. Here we are identifying o/θo with
Fp (and π with 1/2). First we show that Γ ⊆ θΓ⊥. We know that U is a simple
FpSn-module with character ψ mod p. Furthermore, U ′ = (Γ ∩ θΓ⊥)/θΓ is an Sn-
submodule of U . Suppose that U ′ = 0. Then Γ∩θΓ⊥ = θΓ. As (Γ⊥ : Γ) is divisible
by p, one can find a vector v ∈ θΓ⊥ \ θΓ such that pv ∈ θΓ. Then

θv ∈ pΓ⊥ ∩ Γ ⊆ θΓ⊥ ∩ Γ = θΓ,

i.e. v ∈ Γ. Hence, v ∈ Γ ∩ θΓ⊥ = θΓ, contradicting the choice of v. Therefore,
U ′ 6= 0, which implies that U ′ = U , Γ ⊆ θΓ⊥.

Now we can define on U an Sn-invariant form:

f(x̄, ȳ) =
1
θ
x ◦ y mod θo,

where x̄ = x + θΓ, ȳ = y + θΓ. Clearly, f is well defined and bilinear. But f is
alternating: f(x̄, x̄) = 0 because x ◦ x ∈ R ∩ θo = θ2Z for any x ∈ Γ. Suppose
the kernel of f is zero. Then U carries a non-degenerate alternating bilinear form
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(namely f) and so ψ mod p is of symplectic type, contrary to Proposition 2.2 (iii).
We have shown that the kernel of f is nonzero. Since U is irreducible, f is zero,
i.e. Γ ⊆ pΓ⊥.

Now we choose a G+
n -invariant o-lattice Λ lying in V such that detΛ = (Λ# : Λ)

is minimal. We also suppose that Λ is not integral for any rescaled Hermitian form
1
λu ◦ v with λ ∈ R and λ > 1. (If such a λ exists, we simply divide the Hermitian
scalar product to λ and get an invariant Hermitian lattice with strictly smaller
determinant.)

First we observe that detΛ cannot be divisible by any odd prime r 6= p. Suppose
the contrary. Then consider the form (x̄, ȳ)r = (x, y) mod r on Λ/rΛ, where x̄ =
x+rΛ, ȳ = y+rΛ. As r divides detΛ, this G+

n -invariant symmetric bilinear form is
degenerate, and so its kernel (Λ ∩ rΛ#)/rΛ is nonzero. By Proposition 2.2 (i) this
means simply that Λ ⊆ rΛ#. Then for any u, v ∈ Λ one has (u, v), (u, πv) ∈ rZ.
Denote u ◦ v = a + πb for some a, b ∈ Z. Then (u, v) = 2a + b and (u, πv) =
a − b(p − 1)/2 belong to rZ. This implies a, b ∈ rZ. In particular, u ◦ v ∈ ro for
any u, v ∈ Λ. Thus, one can divide the form u ◦ v by r, a contradiction.

We have seen that detΛ can be divisible only by the primes 2 and p. Furthermore,
if p divides (Λ⊥ : Λ), then by Lemma 2.9 one can divide the form u ◦ v by p, a
contradiction. Therefore, there exists a non-negative integer k such that (Λ⊥ : Λ) =
2k. In this case,

det Λ = (Λ# : Λ⊥)(Λ⊥ : Λ) = 2kpN ,

where N = (pn + 1)/2.
It is obvious that Λ ⊇ 2kΛ⊥. Suppose that Λ 6⊇ 2Λ⊥. Let l denote the minimal

integer such that Λ ⊇ 2lΛ⊥. Then l ≥ 2. Set Γ = Λ + 2l−1Λ⊥. One readily
checks that Γ is a G+

n -invariant o-lattice with det Γ strictly smaller than detΛ,
contradicting the choice of Λ. Hence, Λ ⊇ 2Λ⊥. This implies that Λ ⊇ 2pΛ#, i.e.
the discriminant group Λ#/Λ has exponent 2p (and order 2kpN ).

The inclusion Λ ⊇ 2pΛ# also implies k ≤ 2N . Setting Γ =
√

2Λ⊥ (which is
equivalent to considering Λ⊥ and multiplying the form u ◦ v by 2), we have

Γ ◦ Γ =
√

2Λ⊥ ◦
√

2Λ⊥ = 2Λ⊥ ◦ Λ⊥ ⊆ Λ ◦ Λ⊥ ⊆ o,

i.e. Γ is an G+
n -invariant integral o-lattice. Furthermore,

2Γ⊥ =
√

2Λ ⊆
√

2Λ⊥ = Γ,

and

(Γ⊥ : Γ) = (
1√
2
Λ :

√
2Λ⊥) = (Λ : 2Λ⊥) =

(Λ⊥ : 2Λ⊥)
(Λ⊥ : Λ)

= 22N−k.

This computation shows that, after replacing Λ by Γ if necessary, one may suppose
that 0 ≤ k ≤ N . Claim that the last condition implies k = 0, 1, 2. For F =
(Λ ∩ 2Λ#)/2Λ is a G+

n -submodule of Λ/2Λ, and |F | = 2k. By Proposition 2.2 (ii),
k = 0, 1, or 2.

We have arrived at the situation where (Λ⊥ : Λ) = 2k, k = 0, 1, 2. By Lemma
2.8, k 6= 1. If k = 0, then Λ = Λ⊥ = θΛ#, and Λ is a p-modular Euclidean
lattice of rank 2N , and we are done. Suppose k = 2. Then the discriminant group
Λ#/Λ is isomorphic to (C2)2 ⊕ (Cp)N , and (Λ⊥ : Λ) = (C2)2. By Lemma 2.2 of
[SchT], there exists a vector v ∈ Λ⊥\Λ with 2v ∈ Λ such that ∆ = 〈Λ, v〉Z is a G+

n -
invariant Euclidean lattice and ∆#/∆ ' (Cp)N . Remark that θ∆ ⊆ ∆. Indeed,
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θv = π · 2v − v ∈ ∆. Furthermore, θ∆ ⊆ p∆#. (For

(θ∆,∆) ⊆ (θΛ,Λ) + (θΛ, v) + (Λ, θv) + (θv, v).

Here, θΛ ⊆ θΛ⊥ = pΛ#, so (θΛ,Λ) ⊆ pZ. As v ∈ Λ⊥, we have Λ ◦ v ⊆ o, and so

(θΛ, v) = (Λ, θv) ⊆ θo ∩ Z = pZ.

Finally, (θv, v) = θv ◦ v − θv ◦ v = 0.) Now we have

(θ∆ : p∆) = pN = (∆# : ∆) = (p∆# : p∆);

therefore in fact θ∆ = p∆#, ∆ = θ∆#. The map f : x 7→ θx, where x ∈ ∆#,
maps ∆# onto ∆ and preserves (·, ·) up to the scalar p: (f(x), f(y)) = p(x, y). This
means the lattice ∆ is p-modular, as desired.

The proof of Theorem 1.2 is finished.

Remark 2.10. Observe that all the lattices ∆ = ∆(p, n), ∆−(p, n), are symplectic
(for the definition of symplectic lattices cf. [BuS]). For suppose first that ∆ is

invariant under G−n . Then det∆ = 1. Taking τ =
(

0 En

θEn 0

)
(in the chosen

symplectic basis of W ), F•p = 〈θ〉, one sees that τ ∈ G−n and τ2 = θE2n acts on ∆
as −1. According to [BuS], this means that ∆ is symplectic. Suppose now that ∆
is invariant under G+

n . If p ≡ 3 mod 4, then we put τ = 1√
pσ. Considered under

the new scalar product (u, v)′ = (u, v)/
√
p, the dual lattice of ∆ equals τ(∆). Also,

τ preserves (·, ·)′ and τ2 = −1. Hence ∆ is symplectic. Finally, let p ≡ 1 mod 4.

Taking g =
(

0 En

θEn 0

)
, one sees that g ∈ G+

n \Sn. Put τ = 1√
pgσ and consider

∆ w.r.t. the new scalar product (·, ·)′ introduced above. Clearly, τ preserves (·, ·)′
and sends ∆ to its dual (w.r.t. the new scalar product). Besides, g ∈ G+

n \ Sn

implies that τ2 = − 1
pg

2σ2 = −1. Consequently, ∆ is symplectic.

Remark 2.11. One could formalize Lemmas 2.8, 2.9 and the above arguments in
order to get an analogue of Proposition 2.4 in [SchT] for the existence of p-modular
lattices. Here is one more well known example. Let G = 2G2(3) = SL2(8) ·C3 and
χ an irreducible complex character of G of degree 7 with Q(χ) = Q(

√−3). Then
for any prime r 6= 2, 3, χ mod r is an irreducible Brauer character, which is not of
quadratic type. Furthermore, χ mod 3 is irreducible and of quadratic type. Finally,
χ mod 2 is a sum of a character of degree 1 and an irreducible Brauer character of
degree 6 which is of symplectic type. From this it follows that G has an irreducible
Q-module V with character χ + χ. The above arguments show that G stabilizes
a 3-modular lattice Λ in V with Aut(Λ) = C2 × G2(3). The lattice Λ occurs in
[Atlas] and was investigated in detail in [KoT], Chapter 8. It is the unique extremal
3-modular lattice in dimension 14, after [SchHem].

3. Explicit construction. I: n odd

We maintain the notation W for the natural FpSn-module F2n
p endowed with a

non-degenerate symplectic form 〈·, ·〉. Throughout this section we suppose that n
is odd. We use the ideas of [SchT], §3 to explicitly construct G−n -invariant lattices
in V = Vn, for any odd prime p.

Consider an arbitrary G−n -invariant (integral) lattice Λ in V . Fix a symplectic
basis (e1, . . . , en, f1, . . . , fn) of W . Recall that Gn is generated by Sn and the
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element ϑn with matrix diag(En, θEn) in this basis. We shall view V as a Gn-
module with kernel Z2 ' C(p−1)/2. A Lagrangian is a maximal totally isotropic
subspace in W . Following [BaV], we consider them oriented, i.e. equipped with
an appropriate equivalence class of bases. Two bases (l1, . . . , ln) and (l′1, . . . , l

′
n)

of a Lagrangian L are equivalent, i.e. define the same orientation, if the element
g ∈ GLn(L) defined by g(li) = l′i, 1 ≤ i ≤ n, has det g ∈ F•2p . We denote by L(W )
the set of all oriented Lagrangians contained in W .

To each Lagrangian L of W we now associate the following two subgroups:

G(L) = {ϕ ∈ Gn | ϕ(L) = L} , S(L) =
{
ϕ ∈ G(L) | det(ϕ|L) ∈ F•2p

}
.(5)

Since the determinant of λE2n (λ ∈ F•2p ) acting on any Lagrangian L is a square in
Fp, the definition (5) of S(L) factors through the kernel Z2 of χ. Let ξL denote the

linear character of G(L) (and S(L)) which sends g ∈ G(L) to
(

det(ϕ|W/L)

p

)
. Here

and hereafter,
(

.
p

)
stands for the Legendre symbol.

Proposition 3.1. Let n be odd. For any Lagrangian L in W , the sets

Λ(L) = {v ∈ Λ | ∀ϕ ∈ S(L), ϕ(v) = v},
Λ−(L) = {v ∈ Λ | ∀ϕ ∈ S(L), ϕ(v) = ξL(g)v}

are 1-dimensional Z-modules.

Proof. 1) Without loss of generality, one can take L = 〈e1, . . . , en〉Fp with the basis
(e1, . . . , en). Denote

P = StS(L) = E ·H, Q = S(L), R = P ∩Q = E ·H•,

where E = (Cp)n(n+1)/2, H = GLn(p), H• = {g ∈ GLn(p) | det g ∈ F•2p }. A model
for the Weil representation of S with character ψ is described in [Gro]. From this
description it follows that ψ|P = δ+ζ, where ζ is a P -character of degree (pn−1)/2
and

δ(ϕ) =
(

det(ϕ|L)
p

)
for ϕ ∈ P . In particular, ψ|R = 1R + ζ|R.

If n = 1, one directly checks that the trivial character of S(L) and the character
ξL each enter into χ|S(L) with multiplicity 1.

2) In this paragraph we suppose n > 1. We claim that ζ|R ∈ Irr(R). Indeed,
one can identify E with the space of symmetric matrices of degree n over Fp.
Furthermore, P/E = H acts on E by the rule:

A ◦X = A ·X · tA

for A ∈ H viewed as an element of GLn(p) and X ∈ E. Obviously E 6⊆ Ker ζ. So
it is sufficient to show that every R/E-orbit on the set Irr(E) \ {1E} has length
≥ (pn − 1)/2, or equivalently, every H•-orbit on the set E∗ \ {0} has length ≥
(pn − 1)/2. Here E is viewed as a Fp-space, and E∗ stands for the dual space.
Actually, one can identify the GLn(p)-module E∗ with E itself, but endowed with
the action A • X = tA−1 · X · A−1, where A ∈ GLn(p), X ∈ E. (Indeed, each
element f ∈ E∗ can be realized as the map f = fM : X 7→ Tr(X ·M) for a uniquely
determined M ∈ E. Now we can write down the action of A ∈ GLn(p) on E∗:

(A • f)(X) = fM (A−1 ◦X) = Tr(A−1 ·X · tA−1 ·M)
= Tr(X · tA−1 ·M · A−1) = fA•M (X).)
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Consider a GLn(p)-orbit O on E\{0} and X ∈ O. Then the stabilizer H(X) of X
in GLn(p) is nothing else but the isometry group of the symmetric bilinear form
on Fn

p with the matrix X . It is not difficult to show that the cardinality of O is
(pn − 1)/2 if rankX = 1, and strictly greater than (pn − 1)/2 if rankX > 1 (and
greater than pn− 1 if rankX = n > 1). On the other hand, if rankX ≤ n− 1, then
H(X) contains an element A not contained in H•, whence O is also an H•-orbit.
Therefore, an H•-orbit in E \ {0} can have length less than (pn− 1)/2 only in case
n = 1. (When n = 1, any H•-orbit in E \ {0} has length (pn − 1)/4.) Now n > 1
by our assumption, so our claim has been proved.

Decompose V ⊗QC into a sum U⊕U1⊕U2 of three R-submodules, with character
2 · 1R, ζ and ζ, respectively. Remark that R contains a regular unipotent element
x and ζ(x) = (−1± pn−1√εp)/2. Furthermore, Q = 〈R, ϑn〉, and ϑn normalizes R.
Therefore ϑn fixes U , and either leaves both U1, U2 invariant or interchanges them.
But ϑn interchanges the S-conjugacy classes of x and x... (some power of x), and
ζ(x...) = ζ(x) 6= ζ(x). This means ϑn interchanges U1 and U2. The construction
of χ (see the proof of Lemma 2.1) ensures that χ(ϑn) = 0. As a consequence, ϑn

acting on U has trace 0. Observe that ϑ2
n leaves U pointwise fixed. (Indeed, ϑ2

n is
the product of α = diag(θ−1En, θEn) and β = θE2n. Clearly, α belongs to P and
acts on U as multiplication by δ(α) =

(
θ−n

p

)
= −1, because n is odd. Furthermore,

β acts as multiplication by −1 on the whole of V .) We have shown that both of
the subspaces

F̃ = {v ∈ V ⊗Q C | ∀ϕ ∈ Q, ϕ(v) = v} = U ∩Ker(ϑn − 1),

F̃− = {v ∈ V ⊗Q C | ∀ϕ ∈ Q, ϕ(v) = ξL(g)v} = U ∩Ker(ϑn + 1)

have dimension 1.
3) For any odd n, Lemma 3 of [CoT] now implies that both of the subspaces

F = {v ∈ V | ∀ϕ ∈ Q, ϕ(v) = v},
F− = {v ∈ V | ∀ϕ ∈ Q, ϕ(v) = ξL(g)v}

also have dimension 1 (over Q). Since V = Λ ⊗Z Q, we arrive at the conclusion
that Λ(L) and Λ−(L) are 1-dimensional Z-modules.

Keeping Proposition 3.1 in mind, we denote by v(L) (resp. u(L)) a generating
element of the Z-module Λ(L) (resp. Λ−(L)) for Lagrangian L. Then v(L) (resp.
u(L)) is determined uniquely up to sign. It is clear that Λ(L) and Λ−(L) are
stabilized by G(L). Namely,

ϕ(v(L)) =
(

det(ϕ|L)
p

)
· v(L), ϕ(u(L)) =

(
det(ϕ|W/L)

p

)
· u(L)(6)

for ϕ ∈ G(L). Since we consider Lagrangians oriented, we can set v(−L) = −v(L),
u(−L) = −u(L) for the opposite Lagrangian −L corresponding to a given oriented
Lagrangian L. We fix an oriented Lagrangian L0 with a basis (e1, . . . , en), and
fix a generating vector v(L0) of Λ(L0) (resp. u(L0) of Λ−(L0)). For an arbitrary
oriented Lagrangian M with a basis (f1, . . . , fn), we find an element νM ∈ G
such that νM (ei) = fi for all i, and set v(M) = νM (v(L0)), u(M) = νM (u(L0)).
This definition is independent of the choice of νM . Moreover, for any h ∈ G with
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h(L0) = M , we have

h(v(L0)) =
(

det((ν−1
M h)|L0)
p

)
· v(M), h(u(L0)) =

(
det((ν−1

M h)|W/L0)
p

)
· u(M).

Lemma 3.2. Let L and M be arbitrary Lagrangians. Then |(v(L), v(M))| (resp.
|(u(L), u(M))|, |(u(L), v(M))|) depends only on the dimension of L∩M (and on the
choice of the norm (v(L), v(L))). In other words, there exist non-negative constants
ak, bk, ck, k = 0, 1, . . . , n, such that |(v(L), v(M))| = ak, |(u(L), u(M))| = bk,
|(u(L), v(M))| = ck whenever dim(L ∩M) = k.

Proof. Consider Lagrangians L′, M ′ with dim(L ∩M) = dim(L′ ∩M ′). It is clear
that there exists an element ϕ ∈ S mapping L into L′ and M into M ′. One readily
verifies that ϕS(L)ϕ−1 = S(L′). Taking g ∈ S(L) and applying (6) we have

gϕ−1(v(L′)) = ϕ−1 · ϕgϕ−1(v(L′)) = ϕ−1(v(L′))

for each g ∈ S(L). By Proposition 3.1 this implies that ϕ−1(v(L′)) = ±v(L), i.e.
ϕ(v(L)) = ±v(L′). Similarly, ϕ(v(M)) = ±v(M ′). In particular, (v(L′), v(M ′)) =
±(v(L), v(M)). Next we have ξL(g) = ξL′(ϕgϕ−1), and

gϕ−1(u(L′)) = ϕ−1 · ϕgϕ−1(u(L′)) = ϕ−1(ξL′(ϕgϕ−1)u(L′)) = ξL(g)ϕ−1(u(L′)).

By Proposition 3.1 this implies that ϕ−1(u(L′)) = ±u(L), i.e. ϕ(u(L)) = ±u(L′).
Similarly, ϕ(u(M)) = ±u(M ′). Hence,

(u(L′), u(M ′)) = ±(u(L), u(M)), (u(L′), v(M ′)) = ±(u(L), v(M)).

Lemma 3.3. If k is even, then ak = 0. If k is odd, then ck = 0.

Proof. Again consider the symplectic basis (e1, . . . , en, f1, . . . , fn). If the intersec-
tion of given Lagrangians L, L′ has dimension k, k a non-negative integer, then
without loss of generality one can suppose that

L = 〈e1, . . . , en〉Fp , L
′ = 〈e1, . . . , ek, fk+1, . . . , fn〉Fp .

Clearly that ϑn is contained in both of G(L), G(L′). Furthermore, det(ϑn|L) = 1,
det(ϑn|W/L) = θn, and det(ϑn|L′) = θn−k.

First suppose that k is even. Due to (6) one then has ϑn(v(L)) = v(L),
ϑn(v(L′)) = −v(L′). Therefore,

(v(L), v(L′)) = (ϑn(v(L)), ϑn(v(L′))) = −(v(L), v(L′)),

i.e. (v(L), v(L′)) = 0.
Next suppose that k is odd. Then due to (6) one has ϑn(u(L)) = −u(L),

ϑn(v(L′)) = v(L′). Now we get

(u(L), v(L′)) = (ϑn(u(L)), ϑn(v(L′))) = −(u(L), v(L′)),

i.e. (u(L), v(L′)) = 0.

Our next goal is to determine ak for k odd, and ck for k even. Recall that a
symplectic spread of W is a collection π = {Wi | 1 ≤ i ≤ pn + 1} consisting of
pn + 1 maximal totally isotropic subspaces such that

⋃pn+1
i=1 Wi = W . The so-

called standard, or desarguesian, symplectic spread of W can be constructed in
the following way. Identify W with F2

q, q = pn, and endow W with the symplectic



SYMPLECTIC GROUP LATTICES 2117

form 〈u, v〉 = tr(αδ − βγ), where u = (α, β), v = (γ, δ), α, β, γ, δ ∈ Fq, and tr
stands for the trace form tr : Fq → Fp. Then

πD =
{
Wλ | λ ∈ Fq ∪ {∞}

}
,

where W∞ = {(0, α) | α ∈ Fq}, Wλ = {(α, λα) | α ∈ Fq} for λ ∈ Fq is the desired
spread. One may suppose that

W 0 = 〈e1, . . . , en〉Fp , W
∞ = 〈f1, . . . , fn〉Fp .

For a given symplectic spread π = {Wi}, its automorphism group Aut (π) is defined
as the group {ϕ ∈ CSp2n(p) | ∀i ∃j s.t. ϕ(Wi) = Wj}. For example (see [KoT],
Lemma 1.2.6),

Aut (πD) = SL2(q) · Cn · Cp−1,

the extension of SL2(q) first by the Galois group of the extension Fq/Fp and then
by the element ϑn. Set

Λ(π) = 〈v(L) | L ∈ π〉Z.
Then, by Lemma 3.3, Λ(π) is a sublattice of Λ of determinant (an)pn+1, where
an = (v(L), v(L)) as in Lemma 3.2. In particular,

detV = Q•2,(7)

the fact we used in the proof of Theorem 1.1. Also, it shows that V contains no
p-modular lattices (if pn ≡ 1 mod 4).

Now we consider the standard symplectic spread πD, and project v(M) and
u(M), M a fixed Lagrangian, to the orthogonal basis (v(Wλ)):

v(M) =
∑

λ∈Fq∪{∞}
zλv(Wλ), u(M) =

∑
λ∈Fq∪{∞}

yλv(Wλ).

It is obvious that zλ = a−1
n (v(M), v(Wλ)), yλ = a−1

n (u(M), v(Wλ)), and so∑
λ∈Fq∪{∞}

(v(M), v(Wλ))2 = a2
n,

∑
λ∈Fq∪{∞}

(u(M), v(Wλ))2 = anbn.(8)

Proposition 3.4. In the notation of Lemma 3.2 one has
(i) ak = p−(n−k)/2 · an for odd k, 1 ≤ k ≤ n;
(ii) (ck)2 = pk−n · anbn for even k, 0 ≤ k < n.

Proof. We shall proceed by induction on n = 1, 3, . . . .
1) Applying (8) to M = W∞ we get anbn = pn(c0)2. Next we take M =

〈e1, f2, . . . , fn〉Fp and write e1 = (e, 0) for e ∈ F•q. Then M ∩W∞ = 〈f2, . . . , fn〉
has dimension n− 1. Furthermore, for an arbitrary λ ∈ Fq one has

M ∩Wλ = {(xe, λxe) | x ∈ Fp, 〈(0, λe), e1〉 = 0}
=
{
(xe, λxe) | x ∈ Fp, tr(λe2) = 0

}
.

Therefore, dim(M ∩Wλ) is equal to 1 for just pn−1 values of λ ∈ Fq, and 0 for the
other λ’s. Applying (8), one has pn−1a2

1 = a2
n, i.e. a1 = p−(n−1)/2an. Thus we have

proved Proposition 3.4 for a1 and c0 with n ≥ 1. In particular, the induction base
n = 1 has been established.

2) For the induction step we suppose n ≥ 3. We already proved the desired
relations for a1 and c0. Put

W ′ = 〈e1, . . . , en−2, f1, . . . , fn−2〉Fp , W
′′ = 〈en−1, en, fn−1, fn〉Fp ,
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U = 〈en−1, en〉Fp , and introduce the following subgroups in S: B = StS(W ′),
S′ = {ϕ ∈ B | ϕ|W ′′ = 1W ′′}, S′′ = {ϕ ∈ B | ϕ|W ′ = 1W ′}, C = S′′ ∩ StS(U),
K = S′ × C. Then S′ ' Sp(W ′) = Sp2n−4(p), S′′ ' Sp(W ′′) = Sp4(p), C '
(Cp)3 · GL2(p), B = S′ × S′′. We also set G′ = 〈S′, ϑn〉, H = 〈K,ϑn〉 = G′ · C. It
is well known that ψ|B = ψ′ ⊗ ψ′′ + τ ′ ⊗ τ ′′, where ψ′ (resp. τ ′) is an irreducible
Weil character of S′ of degree (pn−2 + 1)/2 (resp. (pn−2 − 1)/2). Furthermore,
ψ′′ (resp. τ ′′) is an irreducible Weil character of S′′ of degree (p2 + 1)/2 (resp.
(p2 − 1)/2). Arguing as in the proof of Proposition 3.1, we are convinced that
α := τ ′′|C ∈ Irr(C), and ψ′′|C = δ+ β, where β ∈ Irr(C) and δ(ϕ) =

(
det(ϕ|U )

p

)
for

ϕ ∈ C. (In particular, δ(1) = 1.) Thus

ψ|K = ψ′ ⊗ δ + ψ′ ⊗ β + τ ′ ⊗ α

is a sum of three (pairwise distinct) irreducible constituents. From this it follows
that

χ|K = (ψ′ + ψ′)⊗ δ + (ψ′ ⊗ β + ψ′ ⊗ β) + (τ ′ ⊗ α+ τ ′ ⊗ α).

Observe that ϑn acts on S′ as an outer automorphism, and ϑn interchanges the
characters ψ′ and ψ′. Furthermore, C � H . Consequently, χ|H has a unique
irreducible constituent in which C acts by scalars. This constituent affords K-
character (ψ′ + ψ′)⊗ δ. Also,

(χ|C , δ)C = pn−2 + 1.(9)

3) Next we consider the following Z-submodule:

Λ′ = 〈v(L) | L = L′ ⊕ U,L′ Lagrangian in W ′〉Z
in Λ. (The symplectic form on W ′ is inherited from the one on W .) Clearly, H
leaves Λ′ fixed. Moreover, let L = L′ ⊕ U , L′ a Lagrangian in W ′ and ϕ ∈ C.
Then ϕ(L) = L. Hence, due to (6) the subgroup C acts on Λ′ as scalars (and the
corresponding character is dimZ Λ′ · δ). By the result of 2), dimZ Λ′ = pn−2 + 1.
Recall that we chose G′ to be generated by S′ = Sp(W ′) and ϑn. Considering the
natural action of G′ on W ′, we conclude that G′ ' CSp(W ′). We want to find the
kernel of G′ acting on Λ′. To this end, consider a generating element z = θE2n−4

of the center Cp−1 of CSp(W ′). Then z acting on W has the following matrix:
diag(θE2n−4, E2, θ

2E2) in the basis (e1, . . . , en−2, f1, . . . , fn−2, en−1, en, fn−1, fn).
If L = L′ ⊕ U (L′ any Lagrangian in W ′), then due to (6) z(v(L)) = −v(L), as n
is odd. Thus z acts on Λ′ as multiplication by −1. We have shown that the lattice
Λ′ is in fact acted on by CSp2n−4(p)/C(p−1)/2 = G−n−2, and this action affords
S′-character ψ′+ψ′. If we denote G′(L′) = StG′(L′), and define S′(L′) similarly to
(5), then of course G′(L′) = G(L)∩G′, S′(L′) = S(L)∩G′ for L = L′⊕U . In other
words, W ′, Λ′, L′, v′(L′) and u′(L′) (generating vectors of Λ′(L′) and Λ′−(L′), cf.
Proposition 3.1) play the same roles for G′ as W , Λ, L, v(L) and u(L) do for G.

Observe that there are nonzero rational scalars s and t such that v′(L′) =
±sv(L), u′(L′) = ±tu(L). Indeed, v(L) ∈ Λ′ by the definition of Λ′, and v(L)
is obviously fixed by S′(L′); hence v(L) ∈ Λ′(L′), and v′(L′) = ±sv(L) for some
s ∈ Q•. Next, 〈u(L)〉Z is a C-module with character δ (cf. (6)). On the other hand,
Λ′ affords C-character (pn−2 + 1)δ. Hence by (9) we have u(L) ∈ Λ′ ⊗Z C. From
this it follows that u(L) ∈ Λ′−(L′)⊗Z C, i.e. u′(L′) = ±tu(L) for a certain t ∈ C•.
Observe that

st = ±(u′(L′), v′(M ′))/(u(L), v(M))
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is a rational number, where L′, M ′ are Lagrangians inside W ′ with dim(L′∩M ′) =
n− 3. Hence t is rational. We may suppose that s, t > 0.

Now we can apply the induction hypothesis to G′ and Λ′. In doing so we con-
sider two arbitrary Lagrangians L′, M ′ of W ′ with dim(L′ ∩M ′) = k. Then for
L = L′ ⊕ U , M = M ′ ⊕ U one has dim(L ∩ M) = k + 2, which implies that
a′k = |(v′(L′), v′(M ′))| = s2|(v(L), v(M))| = s2ak+2, b′k = |(u′(L′), u′(M ′))| =
t2|(u(L), u(M))| = t2bk+2, c′k = |(u′(L′), v′(M ′))| = st|(u(L), u(M))| = stck+2. By
the induction hypothesis, for k odd we have

s2ak+2 = a′k = p(n−2−k)/2a′n−2 = s2p(n−(k+2))/2an,

i.e. ak+2 = p(n−(k+2))/2an. Thus we have proved the desired relation for al with
l = 3, 5, . . . , n. Similarly, if k is even, then

s2t2(ck+2)2 = (c′k)2 = pk−n+2a′n−2b
′
n−2 = s2t2pk−n+2anbn,

i.e. (ck+2)2 = pk+2−nanbn. Thus we have proved the desired relation for cl with
l = 2, 4, . . . , n− 1. The induction step is over.

Corollary 3.5. Rescale the v(L)’s such that (v(L), v(L)) = p(n−1)/2. Then

(v(L), v(M)) =
{ ±p(k−1)/2, dim(L ∩M) = k ≡ 1 mod 2,

0, dim(L ∩M) ≡ 0 mod 2.
2

The signs ± involved in this corollary will be determined in §5, cf. Corollary 5.4.
Now we consider the endomorphism σ of V (constructed in Proposition 2.4 for

p ≡ 1 mod 4 and in [SchT], §5 for p ≡ 3 mod 4. Recall that Λ is a G-invariant
lattice in V . Let Γ be the sublattice of Λ generated by v(L) with L running
over all Lagrangians in W . Clearly, one can rescale the scalar product on V such
that ∇ = Γ + σ(Γ) is an integral G-invariant σ-stable lattice lying in V . Also,
Γ(L) = Λ(L) for any Lagrangian L. We can now apply Propositions 3.1, 3.4 and
Lemmas 3.2, 3.3 to the lattice ∇. Let ṽ(L), ũ(L) be generating vectors of ∇(L),
∇−(L).

Lemma 3.6. For the lattice ∇ = Γ + σ(Γ) we have ṽ(L) = ±v(L) and ũ(L) =
±σ(v(L)). In particular, the parameters ak, bk, ck of ∇ satisfy the following rela-
tions:

(i) bk = pak for any k;
(ii) ck = p(k+1−n)/2 · an for any even k.

Proof. Since Γ ⊆ ∇, v(L) = mṽ(L) for some integer m. As Γ is generated by the
v(L)’s, Γ ⊆ m∇, and so ∇ = Γ + σ(Γ) ⊆ m(∇ + σ(∇)) = m∇, yielding m = ±1,
i.e. ṽ(L) = ±v(L).

Recall that gσ =
(

det(g|W )
p

)
σg for any g ∈ G. If g ∈ G(L), then det(g|W ) =

det(g|L) · det(g|W/L), and so
(

det(g|W )
p

)
=
(

det(g|L)
p

)
· ξL(g). Therefore, by (6) one

has
gσ(v(L)) =

(
det(g|W )

p

)
σg(v(L))

=
(

det(g|W )
p

)
·
(

det(g|L)
p

)
σ(v(L)) = ξL(g)σ(v(L)).

This means: σ(v(L)) ∈ ∇−(L); hence σ(v(L)) = k · ũ(L) for some k ∈ Z. Similarly,

gσ(ũ(L)) =
(

det(g|W )
p

)
σg(ũ(L))

=
(

det(g|W )
p

)
· ξL(g)σ(ũ(L)) =

(
det(g|L)

p

)
σ(ũ(L)),
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which implies that σ(ũ(L)) ∈ ∇(L). From this it follows that σ(ũ(L)) = l · v(L) for
some l ∈ Z. In this case we have

εp · v(L) = σ2(v(L)) = σ(k · ũ(L)) = kσ(ũ(L)) = kl · v(L),

i.e. kl = ±p. Assume k 6= ±1. Then k = ±p, l = ±1, and v(L) = ±σ(ũ(L)) belongs
to σ(∇). Since ∇ is generated by the vectors v(L) and the sublattice σ(Γ) which is
contained in σ(∇), we conclude that ∇ ⊆ σ(∇). Applying σ once more again, we
get ∇ ⊆ σ2(∇) = p∇, a contradiction. Hence k = ±1, i.e. ũ(L) = ±σ(v(L)).

Next we take L, M such that dim(L ∩M) = k. Then

bk = |(ũ(L), ũ(M))| = |(σ(v(L)), σ(v(M)))| = p|(v(L), v(M))| = pak.

Furthermore, by Proposition 3.4 for even k one has

(ck)2 = pk−nanbn = pk+1−n(an)2,

i.e. ck = p(k+1−n)/2 · an.

Remark 3.7. The assumption Γ = 〈v(L) | L any Lagrangian〉 is essential for the
conclusions of Lemma 3.6. For example, the parameters ak, bk of the lattice σ(∇)
satisfy ak = pbk.

A key ingredient in our further arguments is the following observation:

Proposition 3.8. Let (e1, . . . , en, f1, . . . , fn) be any arbitrary symplectic basis of
W , and let M , Lλ, λ ∈ Fp, be Lagrangians with bases (f1, . . . , fn), (e1+λf1, f2, . . . ,
fn), respectively. Then in the notation of Lemma 3.6 one has

ũ(M) =
∑
λ∈Fp

dλv(Lλ), pv(M) =
∑
λ∈Fp

d′λũ(L
λ)

with dλ, d
′
λ = ±1.

Proof. Observe that dim(M ∩ Lλ) = n − 1. Hence in accordance with Lemma
3.6 we have (ũ(M), v(Lλ)) = dλan with dλ = ±1. Besides, (ũ(M), ũ(M)) = pan

and (v(Lλ), v(Lλ′)) = anδλ,λ′ . Hence, for v = ũ(M) −∑λ∈Fp
dλv(Lλ) we have

(v, v) = 2pan − 2pan = 0, yielding ũ(M) =
∑

λ∈Fp
dλv(Lλ). Applying σ to this

identity, we obtain pv(M) =
∑

λ∈Fp
d′λũ(L

λ).

Now we are in a position to explicitly exhibit a G-invariant odd unimodular
lattice in V .

Theorem 3.9. Let p be any odd prime and n any odd integer. For every La-
grangian L in W , choose a vector v(L) in V ⊗Q R fixed by S(L) and such that
(v(L), v(L)) = p(n−1)/2. Then the lattice ∆ = ∆(p, n) generated by all v(L)’s

∆ = 〈v(L) | L ∈ L(W )〉Z
is a σ-stable G−n -invariant odd unimodular lattice.

Proof. We start with some G-invariant integral lattice Λ and choose v′(L) to be
a generating vector of the Z-module Λ(L), L any Lagrangian. Then according to
Lemma 3.3 and Proposition 3.4, (v′(L), v′(M)) = 0 if k = dim(L ∩M) is even,
and (v′(L), v′(M)) = ±p(k−1)/2a1 if k is odd. Here a1 is some natural integer.
Now we set v(L) = a

−1/2
1 v′(L) for all Lagrangians L. Clearly, v(L) ∈ V ⊗Q R,

(v(L), v(L)) = p(n−1)/2 and v(L) is S(L)-stable. (We could assume v(L) ∈ V
by means of rescaling the scalar product on V by the scalar a−1

1 .) Furthermore,
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(v(L), v(M)) ∈ Z for any L,M . We see that ∆ as defined in the theorem is a G-
invariant integral lattice. Moreover, if πD denotes the standard symplectic spread,
then ∆ contains the sublattice

∆(πD) = 〈v(L) | L ∈ πD〉Z
of determinant p(n−1)(pn+1)/2. In particular, det∆ is a power of p: det∆ = pm for
some non-negative integer m.

If m = 0, we are done. Suppose that m ≥ 1. Then consider the form (x̄, ȳ)p =
(x, y) mod p on ∆/p∆, where x̄ = x + p∆, ȳ = y + p∆. As p divides det∆, (·, ·)p

is degenerate on ∆/p∆. This means that p∆ is a proper sublattice of ∆ ∩ p∆#. If
∆ ∩ p∆# = ∆, then ∆ ⊆ p∆#; in particular, (v(L), v(M)) ∈ pZ for all L,M ,
contrary to the equality (v(L), v(M)) = ±1 for dim(L ∩ M) = 1. Therefore,
∆ ⊃ ∆ ∩ p∆# ⊃ p∆. One may then suppose that ∆/(∆ ∩ p∆#) affords the
G-character η1 mentioned in Proposition 2.2 (iii). Since ∆/(∆∩p∆#) supports the
G-invariant non-degenerate symmetric bilinear form (·, ·)p, η1 is of quadratic type,
contrary to Proposition 2.2 (iii).

2) By Lemma 3.6 and Proposition 3.8, σ(v(L)) belongs to ∆ for any L. Hence
∆ is σ-stable.

Corollary 3.10. For the lattice ∆ = ∆(p, n) and generating vectors v(L), u(L) of
∆(L), ∆−(L), we have u(L) = ±σ(v(L)). In particular, the parameters ak, bk, ck
of ∆ satisfy the following relations:

(i) bk = pak for any k;
(ii) ck = p(k+1−n)/2 · an for any even k.

4. Explicit construction. II: n is even

Let p be an odd prime and n any even integer. In this section we exploit
the results of §3 to describe an explicit construction of G+

n -invariant p-modular
lattices in V = Vn. Setting S′ = Sn+1 = Sp2n+2(p), we consider a natural
FpS

′-module W ′ = Wn+1 = F2n+2
p endowed with a non-degenerate symplectic

form 〈·, ·〉. Fix some symplectic basis (e1, . . . , en+1, f1, . . . , fn+1) of W ′. Con-
sider the endomorphism ϑn+1 of W ′ with the matrix diag(En+1, θEn+1), and set
G′ = Gn+1 = 〈S′, ϑ′n〉 ' CSp2n+2(p). Now we can embed W into W ′, S = Sn

into S′, G = Gn into G′ by means of setting W = 〈e1, . . . , en, f1, . . . , fn〉Fp ,
S = StS′(en+1, fn+1), G = 〈S, ϑn+1〉. Clearly, G ' CSp2n(p), and one can identify
ϑn+1 with ϑn. Choose an irreducible Weil character ψ′ of S′ of degree (pn+1 +1)/2
such that (ψ′|S , ψ)S > 0. Let χ′ be the rational irreducible character of G′ of degree
pn+1+1 and with kernel C(p−1)/2, and let V ′ = Vn+1 be an irreducible QG′-module
with character χ′ (cf. Proposition 2.3). Thus V ′ is a faithful G−n+1-module.

We collect several facts from [SchT] and §3. For any Lagrangian L′ in W ′ set

G′(L′) = {ϕ ∈ G′ | ϕ(L′) = L′} , S′(L′) =
{
ϕ ∈ G′(L′) | det(ϕ|L′) ∈ F•2p

}
.

The subspace {v ∈ V ′ | ∀ϕ ∈ S′(L′), ϕ(v) = v} has dimension 1. Therefore, one
can choose an S′(L′)-stable vector v(L′) such that (v(L′), v(L′)) = pn/2. Then the
lattice

∆′ = ∆(p, n+ 1) = 〈v(L′) | L′ ∈ L(W ′)〉Z
is an odd unimodular G′-invariant lattice in V ′. Moreover, ∆′ has a Z-linear endo-
morphism σ with the following properties:

(a) σ commutes with S′, and σϑn+1 = −ϑn+1σ;
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(b) σ2(v) = εpv, (σ(u), v) = ε(u, σ(v)), (σ(u), σ(v)) = p(u, v) for any u, v ∈ V ′,
where ε = (−1)(p−1)/2.

Let L′, M ′ are any Lagrangians in W ′, and set u(L′) = σ(v(L′)). If k =
dimFp(L′ ∩M ′) is odd, then ak = |(v(L′), v(M ′))| = p(k−1)/2, bk = |(u(L′), u(M ′))|
= p(k+1)/2, ck = |(u(L′), v(M ′))| = 0. If k is even, then ak = bk = 0, and ck = pk/2.

The descent from G−n+1 to G+
n is provided by the following statement. Denote

U = 〈en+1〉Fp , W ′′ = 〈en+1, fn+1〉Fp .

Proposition 4.1. The subspace V = 〈v(L′) | L′ = L ⊕ U,L ∈ L(W )〉Q of V ′ is
a faithful absolutely irreducible QG+

n -module of dimension pn + 1. Moreover, V is
σ-stable.

Proof. 1) We introduce the following subgroups in S′: B = StS′(W ), S′′ =
{ϕ ∈ B | ϕW = 1W }, C = S′′∩StS′(U), K = S×C. Then S′′ ' Sp(W ′′) = Sp2(p),
C ' Cp · GL1(p), B = S × S′′. By our definition, G = 〈S, ϑn+1〉. We also set
H = 〈K,ϑn+1〉 = G · C. It is well known that ψ′|B = ψ ⊗ ψ′′ + τ ⊗ τ ′′, where ψ′′

(resp. τ ′′) is an irreducible Weil character of S′′ of degree (p+1)/2 (resp. (p−1)/2).
Furthermore, τ is an irreducible Weil character of S of degree (pn− 1)/2 (ψ1 in the
notation of §1). It is easy to check that α := τ ′′|C ∈ Irr(C), and ψ′′|C = δ + β,
where β ∈ Irr(C) and δ(ϕ) =

(
det(ϕ|U )

p

)
for ϕ ∈ C. (In particular, δ(1) = 1.)

Observe that β 6= δ. It is so if p > 3, since in this case β(1) = (p − 1)/2 > 1. If
p = 3, then Q(β) = Q(

√−3) 6= Q = Q(δ). Thus

ψ′|K = ψ ⊗ δ + ψ ⊗ β + τ ⊗ α

is a sum of three (pairwise distinct) irreducible constituents. From this it follows
that

χ|K = (ψ + ψ)⊗ δ + (ψ ⊗ β + ψ ⊗ β) + (τ ⊗ α+ τ ⊗ α).
Observe that ϑn+1 acts on S as an outer automorphism, and ϑn+1 interchanges
the characters ψ and ψ. Furthermore, C � H . Consequently, χ|H has a unique
irreducible constituent, say γ, in which C acts via a multiple of the character δ.
This constituent γ affords K-character (ψ + ψ)⊗ δ.

2) Next we observe thatH leaves V fixed. Moreover, let L′ = L⊕U , let L be a La-
grangian in W and ϕ ∈ C. Then ϕ(L) = L. Hence, due to (6) the subgroup C acts
on V as scalars (and the corresponding character is dimQ V ·δ). By the result of 1),
dimQ V = pn+1. Recall that we choseG ' CSp(W ) to be generated by S = Sp(W )
and ϑn+1. We want to find the kernel of G acting on V . For consider a generating
element z = θE2n of the center Cp−1 of CSp(W ). Then z acting on W ′ has the
following matrix: diag(θE2n, 1, θ2) in the basis (e1, . . . , en, f1, . . . , fn, en+1, fn+1).
If L′ = L ⊕ U (L any Lagrangian in W ), then due to (6) z(v(L′)) = v(L′), as n
is even. Thus z acts trivially on V . We have shown that V is in fact acted on by
CSp2n(p)/Cp−1 = G+

n , and this action affords G+
n -character χ+ (cf. Proposition

2.3).
3) Finally, we show that σ(V ) = V . Recall that the endomorphism σ centralizes

S′. In particular, σ centralizes K. Hence, the subspace σ(V ) affords the same K-
character as of V . Since ϑn+1(V ) = V and ϑn+1σ = −σϑn+1, σ(V ) is ϑn+1-stable,
that is, σ(V ) is anH-module. By the results of 1), σ(V ) also affords theH-character
γ. As γ is irreducible and it enters χ′|H with multiplicity 1, σ(V ) = V .

Now we are in a position to give some more explicit lattice constructions. We
start with (pn + 1)/2-dimensional lattices. Let R = Sp2m(q), where q = p2f . Then
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R has two irreducible Weil characters %, %∗ of degree (qm + 1)/2. These characters
are conjugate under some outer automorphism of R. Both of them are rational,
as shown in [Gro]. We want to expose an explicit construction for ZR-lattices
of dimension (qm + 1)/2. To this end, put n = mf . Consider the natural FqR-
module W (f) = F2m

q endowed with a non-degenerate Fq-valued symplectic form
〈·, ·〉(f). Then we can identify W with W (f) viewed as Fp-space and assume that
〈u, v〉 = TrFq/Fp

〈u, v〉(f). This identification embeds R = Sp(W (f)) canonically
in Sn = Sp(W ). One may also suppose that % = ψ|R. Clearly, any Lagrangian
in W (f) (that is, an m-dimensional Fq-subspace in W (f) which is totally isotropic
w.r.t. 〈·, ·〉(f)) is also a Lagrangian in W . We call these special Lagrangians Fq-
Lagrangians in W .

Theorem 4.2. Keep the above notation. Set

∆(q,m) = 〈v(L′) | L′ = L⊕ U, L any Fq-Lagrangian in W 〉Z.
Then ∆(q,m) is an R-invariant integral lattice affording the Weil character %.

Proof. In addition to Γ := ∆(q,m) we consider

Γ′ = 〈u(L′) | L′ = L⊕ U, L an Fq-Lagrangian in W 〉Z.
Clearly, Γ and Γ′ are invariant under R. We have mentioned that the restriction
ψ|R is equal to % and so it is irreducible. Hence χ|R = 2%. From this it follows
that dimZ Γ and dimZ Γ′ are at least %(1) = (pn + 1)/2. Observe that Γ⊥Γ′. For,
if L,M are Fq-Lagrangians in W , then dimFp(L ∩ M) = 2f · dimFp(L ∩ M) is
always even. This implies that dimFp(L′ ∩M ′) is odd, and so (v(L′), u(M ′)) = 0
by Lemma 3.3. By Proposition 4.1, Γ and Γ′ are contained in the Q-space V of
dimension pn + 1, and the scalar product on V is positive definite. Hence we must
have dimZ Γ = %(1), and Γ = ∆(q,m) is an R-invariant integral lattice affording
the Weil character %.

Corollary 4.3. In the notation of Proposition 4.1, detV = pQ•2. On the other
hand, if p ≡ 1 mod 4 and V is considered as a G−n -module by means of Proposition
2.4, then detV = Q•2.

Proof. The proof of Theorem 4.2 shows that V contains the lattice Γ ⊕ σ(Γ) of
determinant det Γ · detσ(Γ) = p(pn+1)/2(det Γ)2 ∈ pQ•2. The other claim follows
from the oddness of (pn + 1)/2.

Theorem 4.4. Keep the above notation. Set

∆ = ∆(p, n) = 〈v(L′) | L′ = L⊕ U, L ∈ L(W )〉Z.
Then ∆ is a G+

n -invariant p-modular lattice.

Proof. Recall that the scalar product on V is inherited from the one on V ′, and
the dual ∆# to ∆ is taken under this scalar product. Clearly, ∆ is fixed by G+

n .
Applying Proposition 3.8, we see that u(L′) = σ(v(L′)) is contained in ∆ for any
L, and ∆ is σ-stable.

1) First assume that det ∆ is divisible by some prime r 6= 2, p. Consider the
form (x̄, ȳ)r = (x, y) mod r on ∆/r∆, where x̄ = x+ r∆, ȳ = y+ r∆. As r divides
det∆, this G-invariant symmetric bilinear form is degenerate, and so its kernel
(∆ ∩ r∆#)/r∆ is nonzero, i.e. ∆ ⊇ ∆ ∩ r∆# ⊃ r∆. By Proposition 2.2 (i), this
means ∆ = ∆ ∩ r∆#. Hence (u, v) ∈ rZ for any u, v ∈ ∆. In the meantime,
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(v(L′), v(M ′)) = ±1 for L′ = L ⊕ U , M ′ = M ⊕ U with dim(L ∩ M) = 0, a
contradiction.

2) At this point we show that det∆ is odd. Suppose the contrary: 2 divides
det∆. Consider the form (x̄, ȳ)2 = (x, y) mod 2 on ∆/2∆, where x̄ = x + 2∆,
ȳ = y + 2∆. As 2| det∆, ∆′ =: ∆ ∩ 2∆# contains properly 2∆. Since ∆ is an odd
lattice, its even part ∆0 = {v ∈ ∆ | (v, v) ∈ 2Z} is a sublattice of index 2 in ∆.
Moreover, ∆0 ⊃ ∆′. (For ∆′ is clearly contained in ∆0. On the other hand,

(v(L′) + u(L′), v(L′) + u(L′)) ∈ 2Z, (v(L′) + u(L′), v(L′)) = pn/2 /∈ 2Z,

i.e. v(L′) + u(L′) ∈ ∆0 \∆′.) Applying Proposition 2.2 (ii), we see that A ⊃ B ⊃
C ⊃ 0 is a composition series for the F2G-module A = ∆/2∆, where B = ∆0/2∆,
C = ∆′/2∆.

We exhibit one more nonzero proper submodule inside B. Set Γ = 〈v + σ(v) |
v ∈ ∆〉Z + 2∆. Since gσ = ±σg for all g ∈ G, Γ is G-stable. Furthermore,

(u+ σ(u), v + σ(v)) = (p+ 1)(u, v) + (1 + ε)(u, σ(v)) ∈ 2Z

due to the properties of the endomorphism σ. Thus D = Γ/2∆ is a G-submodule of
B and D is totally isotropic w.r.t. (·, ·)2. Since (v(L′)+u(L′), v(L′)) = pn/2, we see
that v(L′)+u(L′) ∈ Γ \∆′. From this it follows that 0 6= D 6= C. Since B ⊃ C ⊃ 0
is a composition series for B, we must have B = C +D. But C = Ker(·, ·)2; hence
we come to the conclusion that B is totally isotropic w.r.t. (·, ·)2. On the other
hand, choosing

L1 = 〈e1, . . . , en, en+1〉Fp , L2 = 〈f1, . . . , fn, en+1〉Fp ,

L3 = 〈e1, . . . , en−2, en−1 + fn−1, fn, en+1〉Fp ,

we get v(L1) + v(L2), v(L1) + v(L3) ∈ ∆0 with

(v(L1) + v(L2), v(L1) + v(L3)) ≡ pn/2 + p(n−2)/2 + 1 + 0 ≡ 1 mod 2,

a contradiction.
3) Observe that p∆# ⊇ σ(∆). (Indeed, ∆ is generated by the vectors v(L′),

and σ(∆) is generated by the vectors u(M ′), with L′ = L ⊕ U , M ′ = M ⊕ U ,
L,M arbitrary Lagrangians in W . It is obvious that k = dim(L′ ∩M ′) ≥ 1. But
|(v(L′), u(M ′))| = ck is 0 if k is odd, and pk/2 if k is even. Hence ck is divisible by
p.) In fact we have

∆ ∩ p∆# = σ(∆).(10)

For, assume the contrary. Then ∆ ⊇ ∆ ∩ p∆# ⊃ σ(∆) ⊃ p∆. By Proposition 2.2
(iii) ∆/σ(∆) is an irreducible FpG-module. Hence ∆ ∩ p∆# = ∆, ∆ ⊆ p∆#. The
last inclusion contradicts the equality (v(L′), v(M ′)) = ±1 for dim(L′ ∩M ′) = 1.

In addition to (10) we show that

∆ ∩ p2∆# ⊆ p∆.(11)

To this end we denote Λ = ∆ ∩ p∆#. Then Λ ∩ p2Λ# is a proper sublattice of Λ,
because u(L′), u(M ′) ∈ Λ and (u(L′), u(M ′)) = ±p provided that dim(L′∩M ′) = 1.
Furthermore, (∆ ∩ p∆#, p∆) ⊆ p2Z. Thus we have

p∆ ⊆ Λ ∩ p2Λ# ⊂ Λ = σ(∆).
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Now the irreducibility of the FpG-module σ(∆)/p∆ implies that p∆ = Λ ∩ p2Λ#.
Keeping in mind that

Λ ∩ p2Λ# = (∆ ∩ p∆#) ∩ (p∆ + p2∆#) ⊇ ∆ ∩ p2∆#,

one obtains (11).
4) By the results of 1) and 2), det∆ is not divisible by any prime r other than

p. Hence det∆ = pm and so ∆ ⊇ pm∆# for some non-negative integer m. Choose
the minimal non-negative integer ` such that ∆ ⊇ p`∆#. If ` = 0, then by (10) one
has σ(∆) = p∆, a contradiction. Assume that ` ≥ 2. Then applying (11) we have

p`∆# ⊆ ∆ ∩ p2∆# ⊆ p∆,

i.e. p`−1∆# ⊆ ∆, contrary to the choice of `. Hence ` = 1. In this case (10) yields
p∆# = σ(∆), ∆ = σ(∆#). In other words, ∆ is p-modular.

From now on, when considering ∆(p, n) with n even, we denote v(L ⊕ U) by
v(L) (L a Lagrangian in W ) and then forget the initial descent n + 1 ; n. In
particular, (v(L), v(M)) = ±pk/2 if k = dim(L ∩M) is even, and 0 otherwise. The
signs involved in this formula will be determined in the next section.

5. Maslov index and Gram matrix

Let k be any field of characteristic other than 2 and S(k) = Sp2n(k). If k = C
or k is a finite field (and (n, |k|) 6= (1, 9)), then it is well known that S(k) is
simply connected. However, if k is R or any local field, then S(k) is not simply
connected, and S(k) has a double covering group called the metasymplectic group.
An important role in physics is played by a faithful complex representation of the
metasymplectic group called the Shale-Weil representation. A key ingredient of
constructing this representation is Maslov index (or Maslov-Kashiwara index ),
which is defined on triples of Lagrangians inside the symplectic space k2n. For
more detail the reader is referred to [LiV].

Remarkably, we can define a discrete analogue of Maslov index for Sp2n(p), which
enables one to completely determine the Gram matrices of the lattices ∆(p, n), n
any integer and p any odd prime (cf. Theorems 3.9, 4.4), and the lattices ∆−(p, n)
(in the case p ≡ 1 mod 4). Here, ∆−(p, n) is obtained from ∆(p, n) by means of
Proposition 2.4 (with G+ = G−n if n is odd and G+ = C2 × G+

n if n is even).
Throughout this section, Lagrangians are considered oriented.

First we deal with the lattices ∆(p, n). Fix an oriented Lagrangian L0 with an
ordered basis (u1, . . . , un) (for short: L0 = (u1, . . . , un)), and a generating vector
v(L0) of ∆(L0). For an arbitrary oriented Lagrangian M = (v1, . . . , vn) we find an
element νM ∈ Sp2n(p) such that νM (ui) = vi for all i, and set v(M) = νM (v(L0)).
It is easy to see that this definition does not depend on the choice of νM . Finally,
we put u(L) = σ(v(L)) (cf. Lemma 3.6).

Definition 5.1. Let p be any odd prime and n any integer. Let L,M be arbitrary
oriented Lagrangians in W = F2n

p . Then the index [L,M ] of the ordered pair

(L,M) is defined to be
(

det F
p

)
, where the matrix F is defined as follows. Let

dim(L ∩M) = k, choose ordered bases

(u1, . . . , uk, v1, . . . , vn−k), (u1, . . . , uk, w1, . . . , wn−k)

of L, M , respectively; set F := F (L,M) := (〈vi, wj〉)1≤i,j≤n−k.
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Proposition 5.2. The index is well defined. It is symmetric and Gn-invariant on
pairs (L,M) with n − dim(L ∩M) even. Moreover, if L,M,L′,M ′ are oriented
Lagrangians and dim(L ∩M) = dim(L′ ∩M ′), then

[L,M ](v(L), v(M)) = [L′,M ′](v(L′), v(M ′)),
[L,M ](u(L), v(M)) = [L′,M ′](u(L′), v(M ′)),
[L,M ](u(L), u(M)) = [L′,M ′](u(L′), u(M ′)).

Proof. First we show that
(

detF
p

)
is independent of the bases chosen. For, suppose

(u′1, . . . , u
′
k, v

′
1, . . . , v

′
n−k), (u′1, . . . , u

′
k, w

′
1, . . . , w

′
n−k)

are other ordered bases of

L = (u1, . . . , uk, v1, . . . , vn−k), M = (u1, . . . , uk, w1, . . . , wn−k).

Then the transition matrices (from the old bases to the new bases) are
(
A X
0 B

)
and

(
A Y
0 C

)
, where A ∈ GLk(p), X,Y ∈Mk,n−k(Fp), B,C ∈ GLn−k(p). Since

L, M are oriented, detA · detB and detA · detC belong to F•2p . Clearly, F is

changed to tBFC and
(

detF
p

)
=
(

det tBFC
p

)
.

If g ∈ Gn and 〈gu, gv〉 = λ · 〈u, v〉 for all u, v ∈ V , then [g(L), g(M)] =(
λ
p

)n−k

[L,M ]. Furthermore, [M,L] = εn−k[L,M ]. In particular, [L,M ] is sym-
metric and Gn-invariant on pairs (L,M) with n− dim(L ∩M) even.

Finally, assume

L = (u1, . . . , uk, v1, . . . , vn−k), M = (u1, . . . , uk, w1, . . . , wn−k),
L′ = (u′1, . . . , u

′
k, v

′
1, . . . , v

′
n−k), M ′ = (u′1, . . . , u

′
k, w

′
1, . . . , w

′
n−k)

are oriented Lagrangians in W . Then there exists g ∈ Sp2n(p) such that

g(L) = ±L′, g(M) = ±M ′. Let
(
A X
0 B

)
(resp.

(
A Y
0 C

)
) be the transition

matrix from the basis (g(u1), . . . , g(uk), g(v1), . . . , g(vn−k)) of g(L) to the basis
(u′1, . . . , u′k, v

′
1, . . . , v

′
n−k) of L′ (resp. from the basis (g(u1), . . . , g(uk), g(w1), . . . ,

g(wn−k)) to (u′1, . . . , u
′
k, w

′
1, . . . , w

′
n−k)). Then

v(L′) =
(

detA · detB
p

)
g(v(L)), v(M ′) =

(
detA · detC

p

)
g(v(M))

and so (v(L′), v(M ′)) =
(

detB·det C
p

)
(v(L), v(M)). On the other hand, one can

show that F (L′,M ′) = tB · F (L,M) · C, yielding [L′,M ′] =
(

det B·detC
p

)
[L,M ].

Hence [L,M ](v(L), v(M)) = [L′,M ′](v(L′), v(M ′)). The identities

[L,M ](u(L), v(M)) = [L′,M ′](u(L′), v(M ′)),
[L,M ](u(L), u(M)) = [L′,M ′](u(L′), u(M ′))

are proved in the same way.

Theorem 5.3. Let p be any odd prime and n any integer, and let ε = (−1)(p−1)/2.
Under the above notation one has

(v(L), v(M)) = (ε/p)(n−k)/2p[n/2][L,M ]

for any oriented Lagrangians L,M with k = dim(L ∩M) and n− k even.
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Proof. By Corollary 3.5, Theorem 4.4 and Proposition 5.2, there are constants Ck =
±1 such that [L,M ](v(L), v(M)) = p[n/2]−(n−k)/2Ck for any oriented Lagrangians
L,M with k = dim(L ∩M) and n− k even. We want to show that

Ck = ε(n−k)/2.(12)

Clearly, (12) holds for k = n.
1) At this point we prove (12) for k = n − 2 (and n ≥ 2). Because of the

descent n ; n − 1 used in Theorem 4.4, we can restrict ourselves to the case n
is odd (and so n ≥ 3). In order to determine Cn−2, we use the standard spread
{W∞,Wλ | λ ∈ Fq} of W = F2n

p (see the discussion before (7)). As usual, we
assume that 〈ei, fj〉 = δi,j , where W 0 = (e1, . . . , en), W∞ = (f1, . . . , fn). Due to
our identification of W with F2

q, q = pn, we have ei = (αi, 0), fi = (0, βi) for any i
and some αi, βi ∈ Fq. Observe that there is a map from Sp2n(p) which sends the
oriented Lagrangian L0 := W 0 to W∞ (resp. to Wλ = ((α1, λα1), . . . , (αn, λαn)),
λ ∈ Fq). Now take

L = (e1, f2, f3, . . . , fn), M = (f1, e2, f3, . . . , fn).

Then dim(L∩M) = n−2, [L,M ] = ε. Since dim(L∩W∞) = dim(M∩W∞) = n−1,
we have

v(L) =
∑
λ∈Fq

aλv(Wλ), v(M) =
∑
λ∈Fq

bλv(Wλ)

and so

εp(n−3)/2Cn−2 = (v(L), v(M)) = p(n−1)/2
∑
λ∈Fq

aλbλ.(13)

One easily sees that aλ 6= 0 if and only if tr(λ(α1)2) = 0. Similarly, bλ 6= 0 if
and only if tr(λ(α2)2) = 0. Observe that (α1)2 and (α2)2 are linearly independent
over Fp; otherwise Fq would contain Fp(α1/α2) = Fp2 , contrary to the assumption
that n is odd. Hence aλbλ 6= 0 for exactly pn−2 values of λ ∈ Fq. Moreover, if
aλbλ 6= 0, then aλbλ = p1−n, since in this case dim(L ∩Wλ) = dim(M ∩Wλ) = 1
and [Wλ, L] = [Wλ,M ] = 1. Bearing (13) in mind, we obtain Cn−2 = ε, as stated.

2) Here we show that

Cn−2[n/2] = Cn+2−2[n/2]Cn−2(14)

for any n ≥ 2.
2a) Because of the descent n ; n − 1 used in Theorem 4.4, we can restrict

ourselves to the case n is even. In order to prove (14): C0 = C2Cn−2, we consider
the standard spread {W∞,Wλ | λ ∈ Fq} of W = F2n

p . As above, we assume that
〈ei, fj〉 = δi,j , where W 0 = (e1, . . . , en), W∞ = (f1, . . . , fn). Due to our identifi-
cation of W with F2

q, q = pn, we have ei = (αi, 0), fi = (0, βi) for any i and some
αi, βi ∈ Fq. Since n is even, without loss of generality we may suppose that α1 = 1
and α2 = e ∈ Fp2 \ Fp. Observe that there is a map from Sp2n(p) which sends the
oriented Lagrangian L0 := W 0 to W∞ (resp. to Wλ = ((α1, λα1), . . . , (αn, λαn)),
λ ∈ Fq). Our identification of W with F2

q embeds R = SL2(q) naturally in Sp2n(p).
Consider the following elements

ra =
(
a−1 0
0 a

)
, sb =

(
1 0
b 1

)
, t =

(
0 −1
1 0

)
, a ∈ F•q , b ∈ Fq
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of R. Then they act on the vectors v(Wλ) as follows:

ra : v(W∞) 7→ (a
q )v(W∞), v(Wλ) 7→ (a

q )v(W a2λ),
sb : v(W∞) 7→ v(W∞), v(Wλ) 7→ v(Wλ+b),
t : v(W∞) ↔ µv(W 0), v(Wλ) 7→ (λ

q )v(W−1/λ).
(15)

Here, (λ
q ) = λ(q−1)/2 and µ =

(
det T

q

)
, where T = (tr(αiβj))1≤i,j≤n and tr :=

trFq/Fp
. (For instance, µ = −1 if n = 2.) Indeed, the relation (15) is evident for

sb. Furthermore, the factor (a
q ) appears in (15) for ra, since the map sending each

fi to afi has determinant NFq/Fp
(a). Similarly, for any λ ∈ Fq, the map sending

each (a−1αi, aλαi) to (αi, a
2λαi) has determinant NFq/Fp

(a). By the same reason
the factor (λ

q ) appears in the formula for t. Finally, t(ei) = (0, αi), and the map
sending each (0, αi) to fi = (0, βi) has matrix T−1.

2b) Using the action of sb, we see that there is γ = ±1 such that (v(W∞), v(Wλ))
= γ for all λ ∈ Fq. Next, t acting on this relation yields (v(W 0), v(Wλ)) = µγ if
λ ∈ Fq is a square, and −µγ otherwise. Finally, using the action of sb once more,
we see that for λ 6= λ′ ∈ Fq, (v(Wλ), v(Wλ′ )) = µγ if λ − λ′ is a square, and −µγ
otherwise. Since [W∞,W 0] = 1, γ = C0.

2c) The proof of Theorem 4.2 shows that v(W∞) and v(Wλ), λ ∈ Fq, are linearly
independent: v(W∞) =

∑
λ∈Fq

aλv(Wλ) for aλ ∈ C. Averaging this relation by
means of sb, b ∈ Fq, we get v(W∞) = a

∑
λ∈Fq

v(Wλ) for a ∈ C. Hence

γ = (v(W∞), v(W 0))
= a

√
q + a

∑
λ∈F•2q

(v(W 0), v(Wλ)) + a
∑

λ∈F•q\F•2q
(v(W 0), v(Wλ))

= a
√
q + q−1

2 aµγ − q−1
2 aµγ = a

√
q,

i.e. a = γp−n/2. We have shown that

v(W∞) = C0p
−n/2

∑
λ∈Fq

v(Wλ).(16)

2d) Now we consider the oriented Lagrangian M = (e1, e2, f3, . . . , fn). Since
dim(M ∩ W∞) = n − 2 and [M,W∞] = 1, (v(M), v(W∞)) = pn/2−1Cn−2. We
compute this scalar product in another way using (16). For λ ∈ Fq, it is clear that
dim(M ∩Wλ) ≤ 2. Moreover, dim(M ∩Wλ) = 2 if and only if

tr(λ) = tr(λe) = tr(λe2) = 0.(17)

(Recall that we have chosen α1 = 1 and α2 = e ∈ Fp2 \Fp.) Since Fp(e) = Fp2 , (17)
holds for exactly pn−2 values of λ ∈ Fq. Denote X = {λ ∈ Fq | dim(M ∩Wλ) = 2},
Y = Fq \ X . By the choice of α1 and α2, M ∩Wλ = 0 for any λ ∈ Y.

2e) It is easy to check that [M,Wλ] = 1 for any λ ∈ X . In particular,∑
λ∈X

(v(M), v(Wλ)) = pn−1C2.

Similarly, [M,Wλ] =
(

detA(λ)
p

)
for any λ ∈ Y, where

A(λ) :=
(

tr(λ) tr(λe)
tr(λe) tr(λe2)

)
.
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Now we fix a non-square element σ in Fp2 . Then λ satisfies (17) if and only if λσ
does. This means that the multiplication by σ leaves Y fixed. On the other hand,
observe that [M,Wλ] = −[M,Wλσ] for any λ ∈ Y. (Indeed,

detA(λ) =
n−1∑
i,j=0

λpi+pj
(
e2pj − epi+pj

)
.

Clearly, if i − j is even, then e2pj

= epi+pj

. If i − j is odd, then σpi+pj

= σp+1.
This argument shows that detA(λσ) = σp+1 detA(λ). Now σp+1 is a non-square
in Fp; hence the claim follows.) Consequently,∑

λ∈Y
(v(M), v(Wλ)) =

1
2

∑
λ∈Y

(
(v(M), v(Wλ)) + (v(M), v(Wλσ))

)
=
C0

2

∑
λ∈Y

(
[M,Wλ] + [M,Wλσ]

)
= 0.

2f) As a result of the computations in pp. 2c), 2d) and 2e), we obtain

pn/2−1Cn−2 = (v(M), v(W∞))

=

(∑
λ∈X

(v(M), v(Wλ)) +
∑
λ∈Y

(v(M), v(Wλ))

)
= pn/2−1C0C2,

i.e. C0 = C2Cn−2, as stated.
3) Finally, we prove (12) by induction on n. Because of the descent n ; n − 1

used in Theorem 4.4, we can restrict ourselves to the case n is odd. The induction
base n = 1, 3 has already been established, since we have proved (12) for k = n, n−2.
For the induction step, observe that the descent n ; n − 2 used in the proof of
Proposition 3.4 allows us to state that Ck = ε(n−k)/2 for any odd k ≥ 3. According
to (14),

C1 = C3 · Cn−2 = ε(n−3)/2 · ε = ε(n−1)/2,

and the induction step is over.

Recall that (v(L), v(M)) is 0 if n− dim(L ∩M) is odd. Therefore, Theorem 5.3
completely determines the Gram matrix of the lattice ∆(p, n).

Corollary 5.4. Let p be any odd prime and n any odd integer. Relative to the gen-
erating system {v(L) | L ∈ L(W )} the unimodular lattice ∆(p, n) has the following
Gram matrix:

(v(L), v(M)) =
{
ε(n−k)/2p(k−1)/2[L,M ], dim(L ∩M) = k ≡ 1 mod 2,

0, dim(L ∩M) ≡ 0 mod 2.
2

Example 5.5. Let p = n = 3. Then the Gram matrix for ∆(3, 3) produced by
Corollary 5.4 is the same as given in [BaV].

Corollary 5.6. Let p be any odd prime and n any even integer. Relative to the
generating system {v(L) | L ∈ L(W )} the p-modular lattice ∆(p, n) has the follow-
ing Gram matrix:

(v(L), v(M)) =
{
ε(n−k)/2pk/2[L,M ], dim(L ∩M) = k ≡ 0 mod 2,

0, dim(L ∩M) ≡ 1 mod 2.
2
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Example 5.7. Let p be any odd integer. Then the p-modular (p2 +1)-dimensional
lattice ∆(p, 2) is generated by 2(p + 1)(p2 + 1) vectors v(L), L any oriented La-
grangian in F4

p. Here, v(−L) = −v(L), (v(L), v(L)) = p, and (v(L), v(M)) equals
ε[L,M ] if L ∩M = 0 and 0 if dim(L ∩M) = 1. Taking p = 5, we get the 26-
dimensional 5-modular lattice with minimum 5 constructed by Nebe.

Clearly, (u(L), u(M)) = p(v(L), v(M)). Now we want to compute the scalar
products (u(L), v(M)). Since σ is determined up to sign, the scalar products
(u(L), v(M)) are determined also up to sign. Recall that (u(L), v(M)) = ±p[n/2] if
dim(L ∩M) = n− 1 (cf. Lemma 3.6). For definiteness, we choose σ such that

(u(L), v(M)) = p[n/2][L,M ](18)

for oriented Lagrangians L,M with dim(L ∩M) = n− 1.

Theorem 5.8. Let p be any odd prime and n any integer. Under the convention
(18) one has

(u(L), v(M)) = (ε/p)(n−1−k)/2p[n/2][L,M ]
for any oriented Lagrangians L,M with k = dim(L ∩M) and n− k odd.

Proof. 1) By Lemma 3.6, Theorem 4.4 and Proposition 5.2, there are constants
Dk = ±1 such that [L,M ](u(L), v(M)) = p[n/2]−(n−1−k)/2Dk for any oriented
Lagrangians L,M with k = dim(L ∩M) and n− k odd. We want to show that

Dk = ε(n−1−k)/2.(19)

Clearly, (19) holds for k = n − 1, due to (18). Because of the descent n ; n − 1
used in Theorem 4.4, it suffices to prove (19) for odd n.

2) Consider the standard spread of W = F2n
p (recall n is odd). In the notation

of p. 1) of the proof of Theorem 5.3 we set L = W∞, M = (e1, f2, . . . , fn). Since
L ∩W∞ has odd dimension, (u(L), v(W∞)) = 0. Furthermore, for any λ ∈ Fq,
L ∩Wλ = 0 and [L,Wλ] = εn. Therefore, (u(L), v(Wλ)) = εnD0, yielding

u(L) = εnD0p
(1−n)/2

∑
λ∈Fq

v(Wλ).

On the other hand, by Theorem 5.3 we have

v(M) = ε(n−1)/2p(1−n)/2
∑

λ∈Fq,tr(λ(α1)2)=0

v(Wλ).

Hence (u(L), v(M)) = ε(n+1)/2p(n−1)/2D0. But dim(L∩M) = n−1 and [L,M ] = ε;
therefore we get D0 = ε(n−1)/2. This establishes (19) for k = 0.

Now we can prove (19) by induction on odd n. The induction base n = 1, 3
has already been established, since we have proved (19) for k = n − 1, 0. For the
induction step, observe that the descent n ; n−2 used in the proof of Proposition
3.4 allows us to state that Dk = ε(n−1−k)/2 for any even k ≥ 2, and so the induction
step is over.

Next, let p ≡ 1 mod 4. We determine the Gram matrices for the lattices
∆−(p, n). Recall (cf. §2) that ∆−(p, n) has the same generating system as of
∆(p, n). But if (·, ·) is the scalar product on ∆(p, n), then ∆−(p, n) is endowed
with the scalar product (·, ·)−, where (u, v)− = pb(u, v) + a(σu, v). Here a,b are
integers such that a2 − pb2 = −1. Also, here we have ε = 1. Bearing this in mind,
from the above results we immediately obtain:
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Corollary 5.9. Let p ≡ 1 mod 4 be a prime and n any even integer. Relative to
the generating system {v(L) | L ∈ L(W )} the unimodular lattice ∆−(p, n) has the
following Gram matrix:

(v(L), v(M)) =
{

bpk/2[L,M ], dim(L ∩M) = k ≡ 0 mod 2,
ap(k−1)/2[L,M ], dim(L ∩M) = k ≡ 1 mod 2.

2

Corollary 5.10. Let p ≡ 1 mod 4 be a prime and n any odd integer. Relative to
the generating system {v(L) | L ∈ L(W )} the p-modular lattice ∆−(p, n) has the
following Gram matrix:

(v(L), v(M)) =
{

bp(k+1)/2[L,M ], dim(L ∩M) = k ≡ 1 mod 2,
apk/2[L,M ], dim(L ∩M) = k ≡ 0 mod 2.

2

Example 5.11. Let p ≡ 1 mod 4. Then the p-modular (p+ 1)-dimensional lattice
∆−(p, 1) has a basis consisting of the vectors eλ, λ ∈ Fp ∪ {∞}. These vectors are
of norm pb; furthermore, (eλ, e∞) = a for any λ ∈ Fp. Finally, for λ 6= µ ∈ Fp we
have (eλ, eµ) = a if λ− µ is a square, and −a otherwise. Thus ∆−(p, 1) is just the
lattice Mp+1,2 constructed in Theorem (V.2) of [NPl].

Example 5.12. Let p ≡ 1 mod 4. Then the unimodular (p2 + 1)-dimensional lat-
tice ∆−(p, 2) is generated by 2(p+1)(p2+1) vectors v(L), L any oriented Lagrangian
in F4

p, with the following Gram matrix:

(v(L), v(M)) =


bp[L,M ], dim(L ∩M) = 2,
a[L,M ], dim(L ∩M) = 1,
b[L,M ], dim(L ∩M) = 0.

Taking p = 5 (and a = 2, b = 1), we get the 26-dimensional unimodular lattice
with minimum 3 constructed by Nebe.

As we have mentioned above, the lattices ∆ = ∆(p, n) (n even), ∆−(p, n)
(p ≡ 1 mod 4 and n even) are p-modular. But they are not (self-dual) o-lattices
(where o = 〈1, (1 + θ)/2〉Z and θ =

√
εp) by the following reason. The multipli-

cation by θ should be given as θ(v) = σ(v), v ∈ ∆. If ∆ is an o-lattice, then
∆ contains 1+θ

2 v(L) = (v(L) + u(L))/2, L a Lagrangian. On the other hand,
((v(L) + u(L))/2, v(L)) = p[n/2]/2 is not integral, a contradiction.

However, if we restrict ourselves to the Sn-stable lattices, then in some cases we
can get self-dual o-lattices. Recall that an integral lattice Γ is called a 2-neighbour
of a given integral lattice Λ if the intersection Γ ∩ Λ has index 2 in both of Λ and
Γ.

Proposition 5.13. Let ∆ denote any of the lattices ∆(p, n), ∆−(p, n). Then the
following assertions hold.

(i) If p ≡ 1 mod 4, then ∆ has no 2-neighbours.
(ii) Let p ≡ 3 mod 4. Then ∆ has exactly two 2-neighbours, namely ∆δ =

〈∆0, 1
2 (v(L) + δu(L))〉Z, where δ = ±1, ∆0 the even part of ∆ and L a fixed La-

grangian. These neighbours are Sn-stable. If p ≡ 7 mod 8, then they are self-dual
o-lattices (w.r.t. the Hermitian form u ◦ v defined in (3)) if n is even, and even
unimodular (Euclidean) o-stable lattices if n is odd.

Proof. It is easy to see (cf. Lemma 6.5) that ∆0 is the unique sublattice of index 2
in ∆. Hence, if Γ is an arbitrary 2-neighbour of ∆, then Γ = 〈∆0, w〉Z with 2w ∈ ∆.
By definition, 2w ∈ ∆ ∩ 2(∆0)# = ∆1 (see also the discussion before Lemma 6.5).
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Now ∆1/2∆0 contains exactly 3 nontrivial cosets, namely those with representatives
v(L), and wδ(L) := v(L)+ δu(L), δ = ±1 and L a fixed Lagrangian. The first coset
is contained in ∆; hence we can avoid it. Thus we can take w = 1

2w
δ(L) and then

Γ = ∆δ. Observe that this w has (squared) norm p[n/2](p + 1)/4 if ∆ = ∆(p, n),
(b(p + 1) + 2a)p(n+1)/2 if ∆ = ∆−(p, n) and n is odd, and (b(p + 1) + 2a)pn/2 if
∆ = ∆−(p, n) and n is even (cf. Theorems 5.3 and 5.8). Therefore, Γ is integral
(w.r.t. (·, ·)) if and only if p ≡ 3 mod 4, and even if and only if p ≡ 7 mod 8.

Clearly, Gn permutes the two cosets with representatives wδ(L) in ∆1/2∆0. But
Sn has no subgroups of index 2; hence Sn stabilizes each of ∆δ. On the other hand,
Gn permutes the lattices ∆δ transitively. (For recall that u(L) = σ(v(L)). Choose
g ∈ Gn \ Sn such that g(L) = L. Then g(wδ(L)) = g(v(L)) − δσ(g(v(L))) =
±w−δ(L).)

Observe that ∆0, ∆1 are always o-stable. Indeed, put wδ(M) = v(M) + δu(M)
for any oriented LagrangianM . For any s ∈ Sn with s(L) = M one has s(wδ(L)) =
±wδ(M). But we already know that s fixes the coset wδ(L)+ 2∆0. Hence wδ(L)+
wδ(M) ∈ 2∆0. In other words, (1 + σ)(v(L) + v(M)) ∈ 2∆0. This means ∆0

is o-stable, since we have θv = σ(v) by definition and ∆0 is generated by the
v(L) + v(M)’s. Next, 1−δσ

2 (wδ(L)) = 1−εp
2 v(L) ∈ ∆1, as εp ≡ 1 mod 4. This

implies that ∆1 is o-stable. This computation also convinces us that ∆δ is o-stable
if and only if p ≡ ±1 mod 8.

Finally, assume p ≡ 3 mod 4. If n is odd, then ∆ is unimodular; hence ∆δ is
unimodular, and even if p ≡ 7 mod 8. Suppose n is even and p ≡ 7 mod 8. Then
direct computation shows that ∆δ ◦∆δ ⊆ o. On the other hand, ∆ = θ∆# = ∆⊥

and ∆, ∆δ are neighbours. Consequently, ∆δ is a self-dual o-lattice.

6. Classification of invariant lattices

The aim of this section is to prove Theorem 1.3. The case pn = 3 is trivial (see
[SchT], §5), so throughout this section we suppose that pn > 3.

Let H , Γ, ∆ be as in Theorem 1.3. Let ρ denote the H-character afforded by
Γ and θ any irreducible constituent of ρ restricted to S := Sp2n(p). If n ≥ 2,
then the condition 1 < θ(1) ≤ pn + 1 implies by Theorem 5.2 [TZa 1] that θ ∈
{ψ, ψ}; hence ρ is absolutely irreducible. The same is true if n = 1, except for
the cases p = 3 or p ≡ 1 mod 6, where ρ|S can be irreducible. Thus, under the
assumptions of Theorem 1.3, ρ satisfies the assumptions of Lemma 2.1. Hence,
G := H/K is as defined in Theorem 1.3, and ρ is afforded by ∆, i.e. ρ = χ,
Γ ⊗ C = ∆ ⊗ C. By the Deuring-Noether Theorem, the QH-modules Γ ⊗ Q and
∆⊗ Q are equivalent. Therefore, without loss of generality one may suppose that
Γ is a G-invariant sublattice in ∆. Thus the proof of Theorem 1.3 reduces to the
classification of G-invariant sublattices Γ in ∆.

For any Lagrangian L, let S(L) be as defined in (5) and R(L) = S ∩ S(L). We
start with the following observation.

Lemma 6.1. Let n ≥ 2. Then the restriction of χ mod p to R(L) contains the
trivial character with multiplicity ≤ 4.

Proof. Consider the standard embedding T := SLn(p) ↪→ R(L) ⊆ Sp2n(p). It
suffices to show that 1T enters (χ mod p)|T with multiplicity at most 4. Let θ
denote the S-character of the Weil representation W (then θ is the sum of ψ and
another character of degree (pn − 1)/2). If n ≥ 3, then Zalesskii’s formula for



SYMPLECTIC GROUP LATTICES 2133

(θ mod p)|T [Zal] tells us that this character contains 1T with multiplicity 2. Since
χ|S = ψ + ψ, we are done. Now let n = 2. Then due to [Tiep 4], §3,

θ|T = 2 · 1T + ξ1 + ξ2 + St+ 2(χ1 + . . .+ χ(p−3)/2),

where ξs, St, χs are irreducible characters of T of degree (p + 1)/2, p, and p + 1,
respectively. All the nontrivial characters occurring in this formula remain abso-
lutely irreducible, being reduced modulo p. Hence (θ mod p)|H contains 1T with
multiplicity 2, and so we are done.

Lemma 6.2. The module Vp = ∆/p∆ has a unique nonzero proper G-submodule,
and this submodule coincides with φ(∆)/p∆.

Proof. 1) Let A be any nonzero proper submodule in Vp. By Proposition 2.2,
the Brauer character afforded by A is ηi for some i = 1, 2. In particular, A is
absolutely irreducible. An example of such a submodule A is φ(∆)/p∆. Therefore,
the lemma is equivalent to saying that Vp is indecomposable. Assume the contrary:
Vp is decomposable: Vp = A⊕ B. Clearly, A and B are isomorphic as S-modules.
Hence, due to Lemma 2.5, in the case p ≡ 1 mod 4, it suffices to prove the lemma
for one of the isoclinic groups C2 ×G+

n and G−n . In what follows, we take G = G−n
if n is odd, and G = G+

n if n is even; furthermore, ∆ = ∆(p, n).
If n = 1, then due to [Ward 2], A is a unique nonzero submodule of Vp (and A is

called the modular quadratic residue code). This forces Vp to be indecomposable,
a contradiction. Therefore from now on we suppose that n ≥ 2.

2) Let L be any Lagrangian. By Proposition 3.1, the subgroup S(L) fixes the
vector v(L). Observe that v(L) 6∈ p∆; hence one can view v(L) as a nonzero vector
in Vp. Set

W (L) = {v ∈ Vp | ∀ϕ ∈ S(L), ϕ(v) = v}.
Without loss of generality one may suppose that ϑn ∈ S(L), and so S(L) =
〈R(L), ϑn〉. For brevity, we denote by χS the restriction of χ mod p = η1 + η2
to S(L), by χR the restriction of χ mod p to R(L), by α the trivial character of
S(L), by β the nontrivial character of degree 1 of S(L) with Kerβ = 〈R(L), ϑ2

n〉.
Write v(L) = a+ b for a ∈ A, b ∈ B. Remark that a, b 6= 0. (Assume the contrary:
a = 0. Then v(L) ∈ B for any Lagrangian L. As ∆ is generated by the vectors
v(M), which are acted on transitively by S, B must be equal to the whole of Vp,
a contradiction.) Now S(L) fixes each of the subspaces A, B; therefore in fact
a, b ∈W (L).

3) First consider the case n is odd. Then ηi is not self-dual by Proposition 2.2;
hence A and B are totally singular relative to (·, ·)p, the reduction modulo p of the
scalar product. In particular, (a, a)p = (b, b)p = 0. As n ≥ 3, we have:

0 = (v(L), v(L))p = (a+ b, a+ b)p = (a, a)p + (b, b)p + 2(a, b)p = 2(a, b)p,

which implies that (a, b)p = 0. We have just shown that C := 〈a, b〉Fp ⊆ W (L) is
totally singular with respect to (·, ·)p: C ⊆ C⊥. Besides, the S(L)-modules Vp/C

⊥

and C∗ are isomorphic. (Recall that det∆ = 1 in the case n is odd.) From this
it follows that Vp/C

⊥ affords the S(L)-character 2α. Thus χS contains α with
multiplicity at least 4. In the proof of Proposition 3.1 we have singled out some
subspace U of V , which is acted on by S(L) with character α + β. From this it
follows that χS contains 4α+β, and so χR contains 1R(L) with multiplicity at least
5, contrary to Lemma 6.1.
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4) Finally, let n be even. Then both η1, η2 are of type +. Namely, the form (·, ·)p

is non-degenerate on B, since A = p∆#/p∆ is the radical of the form (·, ·)p. Also,
A carries the non-degenerate symmetric form (x + p∆, y + p∆)′p = 1

p (x, y) mod p.
Now (b, b)p = (v(L), v(L))p = 0. Thus C := 〈b〉Fp ⊆ W (L) is totally singular
with respect to (·, ·)p|B: C ⊆ C⊥. Besides, the S(L)-modules B/C⊥ and C∗ are
isomorphic. From this it follows that B/C⊥ and of course 〈a〉Fp afford the S(L)-
character α. Thus χS contains α with multiplicity at least 3.

On the other hand, χS contains β with multiplicity at least 2. (For set D =
〈u(L)〉Fp . Since (u(L), u(L)) = pn/2+1, D is totally singular with respect to (·, ·)′p:
D ⊆ D⊥. Besides, the S(L)-modules A/D⊥ and D∗ are isomorphic. From this it
follows that A/D⊥ affords the S(L)-character β.)

As a consequence, χR contains 1R(L) with multiplicity at least 5, contradicting
Lemma 6.1.

Lemma 6.3. Let r be a prime, G a finite group, and Λ an integral G-invariant
lattice with the following properties:

(i) The FrG-module module U = Λ/rΛ is uniserial, that is, it has a unique
composition series U = U0 ⊃ U1 ⊃ . . . ⊃ Um = 0;

(ii) Let Λi be the inverse image of Ui in Λ, 0 ≤ i ≤ m−1. Then the FrG-module
Λi/rΛi is also uniserial for any i > 0.
Suppose that Γ is any G-invariant sublattice in Λ whose index is an r-power. Then
Γ is similar to one of the lattices Λi, 0 ≤ i ≤ m− 1.

Proof. Denote Λm = rΛ0, Λm+1 = rΛ1 and, more generally, Λk+m = rΛk, k =
2, 3, . . . . Our assumptions imply that

Λk/rΛk ⊃ Λk+1/rΛk ⊃ . . . ⊃ Λk−1+m/rΛk ⊃ 0

is the unique composition series of the FrG-module Λk/rΛk. In particular, if Γ lies
between Λk and rΛk, then Γ = Λk+j for some j, 0 ≤ j ≤ m, and our claim follows.

Since (Λ : Γ) is an r-power,

Λ0 = Λ ⊇ Γ ⊇ rnΛ = Λnm

for some non-negative integer n. Let ` be the minimal non-negative integer such
that Λi ⊇ Γ ⊇ Λi+` for some i. We prove by induction on ` that Γ is equal to some
Λk. If ` ≤ m, we are done due to the above observation. Assume ` > m. Without
loss of generality we may suppose that i = 0. Since Λ0 ⊇ Γ + Λ`−m ⊇ Λ`−m, by
the induction hypothesis we get Γ + Λ`−m = Λk for some k, 0 ≤ k ≤ ` −m. Now
it is clear that Λk ⊇ Γ ⊇ Λ`. By the minimality of ` we must have k = 0, i.e.,
Γ + Λ`−m = Λ0. This implies

Λ0 ⊇ Γ ⊇ p(Γ + Λ`−m) = pΛ0 = Λm,

contrary to the choice of `. The induction step is over.

Corollary 6.4. If Γ is any Gn-invariant sublattice of ∆ with the index (∆ : Γ)
being a power of p, then there exists an integer k ≥ 0 such that Γ = φk(∆).

Proof. By Lemma 6.2, φ(∆)/p∆ is the unique nonzero proper submodule of Vp;
hence Vp is uniserial. Suppose that φ(∆) ⊃ Λ ⊃ pφ(∆) for some Gn-invariant
sublattice Λ. Since gφg−1 = ±φ for all g ∈ Gn, φ−1(Λ) is a Gn-stable sublattice
lying between ∆ and p∆, which implies that φ−1(Λ) = φ(∆), Λ = p∆. Thus the
module φ(∆)/pφ(∆) is also uniserial. Now we can apply Lemma 6.3.
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Since ∆ is an odd lattice, the even part ∆0 is a G-invariant sublattice of index 2
containing 2∆. Also, ∆1 = ∆∩2(∆0)# is another G-invariant sublattice containing
2∆.

Lemma 6.5. The F2G-module V2 = ∆/2∆ has precisely two nontrivial proper sub-
modules, namely, ∆i/2∆ with i = 0, 1. Moreover, if Γ is any G-invariant sublattice
of ∆ with the index (∆ : Γ) being a power of two, then there exists an integer k ≥ 0
such that

Γ ∈ {2k∆, 2k∆0, 2k∆1}.
Proof. Observe that a is even and b is odd. Hence the lattices ∆(p, n) and ∆−(p, n)
have the same Gram matrix modulo 2. In particular, in calculating scalar products
modulo 2 we can restrict ourselves to ∆(p, n).

1) At this point we show that S := Sp2n(p) fixes a unique nonzero vector w
in V2, and w = v(L) + u(L) for any Lagrangian L. To this end, we first observe
that det∆ is odd; hence the reduction (·, ·)2 of the scalar product is non-degenerate
on V2. Next, putting w(L) = v(L) + u(L), by Theorems 5.3 and 5.8 we see that
(w(L), v(M))2 = 1 for any arbitrary Lagrangian M . If ϕ ∈ G and ϕ(L) = L′, then
ϕ(w(L)) = w(L′) (in V2). Hence (ϕ(w(L))−w(L), v(M))2 = 0. But V2 is generated
by the vectors v(M) and (·, ·)2 is non-degenerate. Therefore, ϕ(w(L)) = w(L).
Thus w := w(L) is G-stable. Conversely, let w′ ∈ V2 be a nonzero vector which
is fixed by S. Since S acts transitively on the vectors v(M), M any Lagrangian,
there exists λ ∈ F2 such that (w′, v(M))2 = λ for all M . If λ = 0, then the non-
degeneracy of (·, ·)2 implies that w′ = 0, contrary to the choice of w′. If λ = 1, then
(w − w′, v(M))2 = 0, yielding w′ = w.

2) Set U0 = ∆0/2∆, U1 = 〈w〉F2 . Clearly, ∆0 and so U0 are generated
by the vectors of the form v(L) + v(M), L,M any Lagrangians. Since
(w, v(L) + v(M))2 = 0, we see that U1 = ∆1/2∆. Also, w ∈ U0. By Proposi-
tion 2.2 (ii), 0 ⊂ U1 ⊂ U0 ⊂ V2 is a composition series of the F2G-module V2, with
two trivial composition factors and one (absolutely) irreducible factor of dimension
pn − 1. Clearly, U0 and U1 are dual to each other w.r.t. (·, ·)2.

Now let U be any nonzero proper G-submodule in V2. Then dimU ∈ {1, 2, pn−
1, pn}. If dimU = 1, then U must be generated by a nonzero G-stable vector;
hence U = U1 due to 1). If dimU = pn, then the dual module U⊥ has dimension
1; therefore U⊥ = U1, which implies that U = U0. Assume dimU = 2. Then the
action of S on U induces a homomorphism from S to GL(U) = GL2(2) ' S3. But
S = Sp2n(p) is perfect (as pn > 3); therefore this homomorphism is trivial, i.e. S
acts trivially on U . In this case, V2 has at least three (distinct) S-stable vectors,
contrary to 1). If dimU = pn−1, then the dual module U⊥ has dimension 2, again
a contradiction.

We have shown that V2 has just two nontrivial proper submodules: U0 and U1.
3) Next we consider any nontrivial proper submodule U in V4 = ∆/4∆, and

suppose that U 6⊆ 2V4. Then (U+2V4)/2V4 is a nonzero submodule in V4/2V4 ' V2.
By the results of 2), (U+2V4)/2V4 contains U1. From this it follows that U contains
a vector w′ = w + 2x for a certain x ∈ V4. Pick an element ϕ ∈ G(L) such that
ϕ : v(L) 7→ v(L), u(L) 7→ −u(L). Then w′+ϕ(w′) = 2y, where y = v(L)+x+ϕ(x).
Since x + ϕ(x) ∈ U0 = 〈w〉⊥, we get (w, y)2 = (w, v(L))2 = 1, which means that
y 6∈ U0. We have seen that U ′ = (U ∩2V4)/4V4 is a G-submodule in 2V4/4V4 ' 2V2,
which contains a vector 2y 6∈ 2U0. By the results of 2), U ′ = 2V4/4V4, i.e. U ⊇ 2V4.
This means: if U is any G-submodule of V4, then either U ⊇ 2V4, or U ⊆ 2V4.
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4) Finally, let Γ be any G-invariant sublattice of ∆ with (∆ : Γ) = 2m. Then
∆ ⊇ Γ ⊇ 2m∆. We prove by induction on m ≥ 0 that there exists an integer k ≥ 0
such that Γ ∈ {2k∆, 2k∆0, 2k∆1}. This claim is obvious if m = 0 or 1 (see item
2)). Now assume m ≥ 2. Then ∆ ⊇ Γ + 4∆ ⊇ 4∆. Due to 3), either Γ + 4∆ ⊆ 2∆,
or Γ + 4∆ ⊇ 2∆. In the former case, 2∆ ⊇ Γ ⊇ 2m∆; therefore ∆ ⊇ 1

2Γ ⊇ 2m−1∆,
and one can now use the induction hypothesis. In the latter case,

2m−1∆ ⊆ 2m−2(Γ + 4∆) = 2m−2Γ + 2m∆ ⊆ Γ,

and one can again use the induction hypothesis.

Proof of Theorem 1.3. Consider any G-invariant lattice Γ lying in ∆. We may
suppose that Γ 6⊆ k∆ for any integer k > 1. Clearly, Γ ⊇ l∆ for some natural l.
Choose minimal natural ` with the property Γ ⊇ `∆. If ` = 1, then Γ = ∆. Assume
that ` > 1. Claim that ` = 2apb for some non-negative integers a, b. (For assume
the contrary: ` is divisible by an odd prime r, r 6= p. Observe that (Γ + r∆)/r∆
is a nonzero G-module in Vr = ∆/r∆. By Proposition 2.2 (i), (Γ + r∆)/r∆ = Vr,
Γ + r∆ = ∆. Hence,

`

r
∆ =

`

r
(Γ + r∆) =

`

r
Γ + `∆ ⊆ Γ,

contradicting the minimality of `.)
Setting Γ̃ = Γ + pb∆, one has

∆ ⊃ Γ̃ ⊇ pb∆, Γ̃ ⊇ Γ ⊇ 2aΓ + `∆ = 2aΓ̃.

By Corollary 6.4, Γ̃ = φk(∆). Replacing Γ by φ−k(Γ), which is isometrically similar
to Γ, we can suppose that k = 0, i.e. Γ̃ = ∆. In this case, ∆ ⊃ Γ ⊇ 2a∆. By
Lemma 6.5, Γ is similar to one of the lattices ∆, ∆0, ∆1.

7. Properties of ∆(p, n)

This section is very sketchy, because a detailed exposition has been given in
[SchT], §§4, 6. It turns out that the arguments, given there for the case pn ≡
3 mod 4, are also applicable to the case pn ≡ 1 mod 4. Hence we restrict ourselves
to exposing the results, which hold for any odd prime p, but omitting the proofs.

For short we denote G = G−n if n is odd, and G = G+
n if n is even. Furthermore,

p is any odd prime and ∆ = ∆(p, n).
First we consider the G-invariant odd unimodular lattice ∆ = ∆(p, 3) obtained

in Theorem 3.9. The generating vectors v(L) now have norm (v(L), v(L)) = p,
and ∆ contains a p-scaled unit lattice Γ, spanned by N := p3 + 1 pairwise or-
thogonal vectors of norm p (for instance, the v(L), where L runs over a sym-
plectic spread). Therefore, ∆ can be described (non-canonically) by a subspace
C := ∆/Γ ⊂ Γ#/Γ = 1

pΓ/Γ ' FN
p , that is, by a linear code over Fp. In this way

we obtain an injective mapping π 7→ C = C(π) from the set S of all isomorphism
classes of symplectic spreads π of W = F6

p to the set C of all equivalence classes of
self-dual codes C of length p3+1 over Fp. Moreover, Aut(C(π)) = Aut(π)/C(p−1)/2.
Observe that the definition of Aut(π) used in this paper differs from the one given
in [SchT]. In particular, the central subgroup C(p−1)/2 of Aut(π) acts trivially on
every vector v(L), hence on C(π).

Now we turn to the case n ≥ 5 and n is odd. Let

π = {Wi | 1 ≤ i ≤ pn + 1}
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be a symplectic spread of W = F2n
p . Set

vi = v(Wi), Γ = ∆(π) = 〈vi | 1 ≤ i ≤ pn + 1〉Z.
For brevity we denote ` = (n− 1)/2. Then

Γ ⊂ ∆ = ∆# ⊂ Γ# = p−`Γ.

For each j, 1 ≤ j ≤ `+1, one can view Hj = pj−1Γ#/pjΓ# as standard orthogonal
space over Fp, with the basis (pj−1−`vi | 1 ≤ i ≤ pn + 1) and with the form
(x, y)(j) = p`+2−2j(x, y) mod p. (Here and below, we identify the coset x + pjΓ#

with x.) Clearly, the Hj ’s are isometric to each other, and so one can identify them
canonically with H = H`+1. Keeping this identification in mind, we can view every
factor-group

Cj = ((∆ ∩ pj−1Γ#) + pjΓ#)/pjΓ#

as a linear code of length pn + 1 over Fp, with the ambient space H . It is obvious
that C1 ⊆ C2 ⊆ . . . ⊆ C`. One shows that C⊥j = C`+1−j for 1 ≤ j ≤ `. In
particular, Cj is self-orthogonal if 1 ≤ j ≤ (` + 1)/2; and C(n+1)/4 is self-dual if
n ≡ 3 mod 4.

Now we take π to be the standard symplectic spread πD. Then the same ar-
guments as in the proof of Proposition 4.6 [SchT] assure that all the codes Cj,
1 ≤ j ≤ `, are among the GL2(q)-codes having a Fp-form, which have been intro-
duced by Ward in [Ward 2]. (Actually, Ward uses an irreducible representation of
H = GL2(q) with kernel T = C(q−1)/2, where q = pn. But H/T ' R/K, where
R = SL2(q) ·Cp−1 and K = R∩T ' C(p−1)/2, cf. page 1 of the proof of Proposition
2.3. Now Ward’s representation coincides with the action of R/K on ∆.) He has
shown that the lattice of his GL2(q)-codes is inversely isomorphic to the lattice of
the so-called closed subsets of Fn

2 . He has also distinguished the following analogues
of Reed-Muller codes. View elements of Fn

2 as binary words of length n and take
Bw to be the set of all binary words of length n and weight ≤ w. Then Bw is
closed and cyclic (in the sense of [Ward 2]), and Ward’s correspondence gives us a
GL2(q)-code Cn,w over Fp, 0 ≤ w ≤ n−1. The middle code is just Cn,(n−1)/2; more
generally, C⊥n,w = Cn,n−1−w. We conjecture that the above codes Cj are equal to
Cn,n−2j for j, 1 ≤ j ≤ ` = (n− 1)/2. Without this conjecture, we can only give the
following lower bound for the minimum of ∆ which is unfortunately independent
of n. A proof of the conjecture would lead to a lower bound (p[n/2] + 1)/2 instead
of (p+ 1)/2.

Proposition 7.1. Let p be any odd prime and n ≥ 2 arbitrary. Then

max
{

3,
p+ 1

2

}
≤ min ∆(p, n) ≤ p[n/2].

For the proof, observe that ∆(p, n) with even n is a sublattice of ∆(p, n + 1);
hence it suffices to prove Theorem 7.1 for odd n. The inequality min ∆(p, n) ≥ 3
has been mentioned in Theorem 1.1. Now one repeats the proof of Proposition 6.4
[SchT].

Remark 7.2. Observe that the lattices ∆(p, n), n > 1 odd, are unimodular lattices
with relatively short shadow. More precisely, recall that a characteristic vector of
a unimodular lattice Λ is any vector w ∈ Λ such that (v, w) ≡ (v, v) mod 2 for all
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v ∈ Λ, and the coset 1
2w+Λ is called the shadow of Λ in [CoS 2]. It is known that

(w,w) ≡ rankΛ mod 8 for any characteristic vector w. Define

e(Λ) =
1
8
(rankΛ−min{w | w any characteristic vector of Λ}).

Clearly, e(Λ) = 1
8 rankΛ if and only if Λ is an even (unimodular) lattice. Elkies

[Elk] has shown that Λ = Zm is the unique unimodular lattice with e(Λ) = 0; all
other lattices have e ≥ 1. Moreover, he has described all the unimodular lattices Λ
with e(Λ) = 1.

Clearly, e(∆(p, 1)) = 0. We observe that e(∆) = 2, if ∆ = ∆(3, 3) or ∆−(5, 2).
More generally, we claim that

1
8
(pk − 1)(pk+1 − 1) ≤ e(∆) ≤ 1

8
pk+1(pk − 1)

if ∆ := ∆(p, 2k+1), which means in particular that ∆ has a relatively short shadow.
(For, from Theorems 5.3 and 5.8, it follows that v(L)+u(L) is a characteristic vector
of norm pk(p+ 1), L any Lagrangian. On the other hand, if w is any characteristic
vector, then (w, v(M)) ≡ 1 mod 2 for any LagrangianM . Hence, if π is a symplectic
spread in F2k+1

p and w =
∑

M∈π aMv(M), then aM 6= 0. But pkaM = (v(M), w) ∈
Z; hence aM ≥ p−k. As a consequence, (w,w) ≥ p−2k

∑
M∈π(v(M), v(M)), and so

(w,w) ≥ pk+1 + 1.) Specializing p = 3 and k = 1, one gets e(∆(3, 3)) = 2. Next,
let p = 5 and k = 2. Then again v(L)− u(L) is a characteristic vector, of norm 10,
yielding e(∆) ≥ 2 for ∆ = ∆−(5, 2). On the other hand, if e(∆) > 2, then e(∆) = 3
and ∆ would have a (characteristic) vector of norm 26− 3 · 8 = 2, contrary to the
fact that min ∆ = 3.
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