Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Derivatives of Wronskians with applications to families of special Weierstrass points
HTML articles powered by AMS MathViewer

by Letterio Gatto and Fabrizio Ponza PDF
Trans. Amer. Math. Soc. 351 (1999), 2233-2255 Request permission

Abstract:

Let $\pi : \mathcal {X} \longrightarrow S$ be a flat proper family of smooth connected projective curves parametrized by some smooth scheme of finite type over $\mathbb {C}$. On every such a family, suitable derivatives “along the fibers” (in the sense of Lax) of the relative wronskian, as defined by Laksov and Thorup, are constructed. They are sections of suitable jets extensions of the $g(g+1)/2$-th tensor power of the relative canonical bundle of the family itself. The geometrical meaning of such sections is discussed: the zero schemes of the $(k-1)$-th derivative ($k\geq 1$) of a relative wronskian correspond to families of Weierstrass Points (WP’s) having weight at least $k$. The locus in $M_{g}$, the coarse moduli space of smooth projective curves of genus $g$, of curves possessing a WP of weight at least $k$, is denoted by $wt(k)$. The fact that $wt(2)$ has the expected dimension for all $g\geq 2$ was implicitly known in the literature. The main result of this paper hence consists in showing that $wt(3)$ has the expected dimension for all $g\geq 4$. As an application we compute the codimension $2$ Chow ($Q$-)class of $wt(3)$ for all $g\geq 4$, the main ingredient being the definition of the $k$-th derivative of a relative wronskian, which is the crucial tool which the paper is built on. In the concluding remarks we show how this result may be used to get relations among some codimension $2$ Chow ($Q$-)classes in $M_{4}$ ($g\geq 4$), corresponding to varieties of curves having a point $P$ with a suitable prescribed Weierstrass Gap Sequence, relating to previous work of Lax.
References
  • Enrico Arbarello, Weierstrass points and moduli of curves, Compositio Math. 29 (1974), 325–342. MR 360601
  • E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
  • Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461, DOI 10.1007/BFb0060932
  • Marc Coppens, The number of Weierstrass points on some special curves. I, Arch. Math. (Basel) 46 (1986), no. 5, 453–465. MR 847090, DOI 10.1007/BF01210786
  • M. Coppens, Private communication, (1997).
  • Fernando Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), no. 2, 317–346. MR 1016424, DOI 10.1215/S0012-7094-89-05815-8
  • Steven Diaz, Exceptional Weierstrass points and the divisor on moduli space that they define, Mem. Amer. Math. Soc. 56 (1985), no. 327, iv+69. MR 791679, DOI 10.1090/memo/0327
  • Steven Diaz, Tangent spaces in moduli via deformations with applications to Weierstrass points, Duke Math. J. 51 (1984), no. 4, 905–922. MR 771387, DOI 10.1215/S0012-7094-84-05140-8
  • P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
  • David Eisenbud and Joe Harris, When ramification points meet, Invent. Math. 87 (1987), no. 3, 485–493. MR 874033, DOI 10.1007/BF01389239
  • Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\scr M}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
  • C. Faber, A Conjectural Description of the Moduli Space of Curves, “Amsterdam-Utrecht seminar on moduli spaces of curves” (C. Faber, E.Looijenga, eds.), A. & K. Peters Inc., to appear.
  • O. Forster, Lectures on Riemann Surfaces, Springer-Verlag, 1984.
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
  • Letterio Gatto, Weight sequences versus gap sequences at singular points of Gorenstein curves, Geom. Dedicata 54 (1995), no. 3, 267–300. MR 1326732, DOI 10.1007/BF01265343
  • Letterio Gatto, Weierstrass loci and generalizations. I, Projective geometry with applications, Lecture Notes in Pure and Appl. Math., vol. 166, Dekker, New York, 1994, pp. 137–166. MR 1302947
  • L. Gatto, On the closure in $\overline {M}_{g}$ of smooth curves having a special Weierstrass point, Math. Scand., to appear.
  • L. Gatto, F. Ponza, Generalized Wronskian Sections and Families of Weierstrass Points with Prescribed Minimal Weight, Rapporto Interno, Politecnico di Torino, n. 31 (1996), (hard copies available upon request).
  • R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966. MR 0207977
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
  • Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
  • Dan Laksov, Weierstrass points on curves, Young tableaux and Schur functors in algebra and geometry (ToruƄ, 1980), AstĂ©risque, vol. 87, Soc. Math. France, Paris, 1981, pp. 221–247. MR 646822
  • R. F. Lax, Weierstrass points of the universal curve, Math. Ann. 216 (1975), 35–42. MR 384809, DOI 10.1007/BF02547970
  • Robert F. Lax, Gap sequences and moduli in genus $4$, Math. Z. 175 (1980), no. 1, 67–75. MR 595632, DOI 10.1007/BF01161382
  • Dan Laksov and Anders Thorup, The Brill-Segre formula for families of curves, Enumerative algebraic geometry (Copenhagen, 1989) Contemp. Math., vol. 123, Amer. Math. Soc., Providence, RI, 1991, pp. 131–148. MR 1143551, DOI 10.1090/conm/123/1143551
  • Dan Laksov and Anders Thorup, Weierstrass points and gap sequences for families of curves, Ark. Mat. 32 (1994), no. 2, 393–422. MR 1318539, DOI 10.1007/BF02559578
  • David Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), no. 1-2, 39–110. MR 450272
  • David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, BirkhĂ€user Boston, Boston, MA, 1983, pp. 271–328. MR 717614
  • Frans Oort and Joseph Steenbrink, The local Torelli problem for algebraic curves, JournĂ©es de GĂ©ometrie AlgĂ©brique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 157–204. MR 605341
  • Charles Patt, Variations of Teichmueller and Torelli surfaces, J. Analyse Math. 11 (1963), 221–247. MR 160894, DOI 10.1007/BF02789986
  • Deformation of Algebraic Varieties with $G_m$-action, (AstĂ©risque 2a).
  • F. Ponza, Sezioni wronskiane generalizzate e famiglie di punti di Weierstrass, Doctoral Thesis, Consorzio Universitario Torino-Genova, 1997.
  • F. Ponza, Generalized Wronskian Sections and their Zero-Loci, in preparation (1997).
  • H. E. Rauch, Weierstrass points, branch points, and moduli of Riemann surfaces, Comm. Pure Appl. Math. 12 (1959), 543–560. MR 110798, DOI 10.1002/cpa.3160120310
Similar Articles
Additional Information
  • Letterio Gatto
  • Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24-10129 Torino, Italy
  • MR Author ID: 269507
  • ORCID: 0000-0002-3446-2663
  • Email: lgatto@polito.it
  • Fabrizio Ponza
  • Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24-10129 Torino, Italy
  • Email: ponza@dm.unito.it
  • Received by editor(s): February 5, 1997
  • Published electronically: February 4, 1999
  • Additional Notes: Work partially supported by GNSAGA-CNR, MURST and by Dottorato di Ricerca in Matematica, Consorzio Universitario Torino-Genova
  • © Copyright 1999 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 351 (1999), 2233-2255
  • MSC (1991): Primary 14H10, 14H15, 14H55, 14H99
  • DOI: https://doi.org/10.1090/S0002-9947-99-02343-0
  • MathSciNet review: 1615963