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ON THE DEPTH OF THE TANGENT CONE
AND THE GROWTH OF THE HILBERT FUNCTION

JUAN ELIAS

Abstract. For a d−dimensional Cohen-Macaulay local ring (R, m) we study
the depth of the associated graded ring of R with respect to an m-primary
ideal I in terms of the Vallabrega-Valla conditions and the length of It+1/JIt,
where J is a J minimal reduction of I and t ≥ 1. As a corollary we generalize
Sally’s conjecture on the depth of the associated graded ring with respect to a
maximal ideal to m-primary ideals. We also study the growth of the Hilbert
function.

1. Introduction

Let (R,m) be a d−dimensional Cohen-Macaulay local ring with maximal ideal
m. Let I be an m−primary ideal of R, and J a minimal reduction of I. We denote
by G(I) =

⊕
n≥0 In/In+1 the associated graded ring to R with respect I, and call

it the tangent cone for short.
In [Abh67] Abhyankar proved that if e0 = e0(R) is the multiplicity of R and

b = dimk(m/m2) is its embedding dimension, then we have

Abhyankar’s bound. e0 ≥ b− d + 1.

Sally in a long series of papers studied the depth of the tangent cone in terms
of the difference ε = e0 − (b − d + 1) ≥ 0; see [Sal77], [Sal79a], [Sal79c], [Sal80a],
[Sal80b], and [Sal83]. She proved that if ε = 0 then G(m) is Cohen-Macaulay,
[Sal77], and proposed the following conjecture, [Sal83]:

Sally’s Conjecture. If ε = 1, then depth(G(m)) ≥ d− 1.

This conjecture was proved by Rossi and Valla, [RosV96a], and independently
by Wang, [Wan97]. Valla in [Val79] extended Abhyankar’s bound to m-primary
ideals I, and proved that the tangent cone G(I) is Cohen-Macaulay if the bound is
reached. Using the device of Sally’s module and Ratllif-Rush closure, several results
on the depth of the tangent cone of m-primary ideals appeared in [Sal92], [Vas94],
and [Gue95], [Gue94], [Vaz95]. It is worthwhile to recall that Huckaba, [Huc97],
following [RosV96a], proved a generalization of Sally’s conjecture for m-primary
ideals.

Sally studied the case ε = 0, 1 under stronger conditions, proving that if R is a
Gorenstein ring then G(m) is also Gorenstein, [Sal80a], [Sal80b].

The aim of this paper is to generalize and to present an unified approach to some
results on the depth of the tangent cone and the growth of the Hilbert function
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appearing in [Sal77], [Val79], both on Abhyankar’s inequality, and in [RosV96a],
[Wan97], and [Huc97], on Sally’s conjecture. We also cover some more results
appearing in [Sal92], [Vas94], and [Gue95], [Gue94], [Vaz95]. See Corollary 2.8 for
more details.

Let us recall that Vallabrega and Valla discovered the conditions under which
G(I) is Cohen-Macaulay. They proved that, given a minimal reduction J of I,
then G(I) is Cohen-Macaulay if and only if for all n ≥ 0 the n−th Vallabrega-Valla
condition holds, [VV78]:

Vallabrega-Valla condition V2
n . In ∩ J = In−1 J.

The key idea of this paper is to consider ideals I for which the Vallabrega-Valla
conditions V2

n hold up to some integer t ≥ 1. The main result of this paper is:

Theorem 2.7. Let R be a d−dimensional, d ≥ 1, Cohen-Macaulay local ring. Let
I be an m−primary ideal of R, and J = (x1, . . . , xd) a minimal reduction of I. Let
us assume that there exists an integer t ≥ 1 such that

• I, J satisfy the condition V2
n for n = 0, . . . , t, and

• length(It+1/JIt) = δ ≤ Min{d− 1, 1}.
Then

d ≥ depth(G(I)) ≥ d− δ.

If t ≥ e0(I)− 1, then G(I) is Cohen-Macaulay.

We prove this result by generalizing and extending results of [Sal83], [RosV96a],
and [Huc97] mainly, to m−primary ideals and considering higher Vallabrega-Valla
conditions. Notice that the main result of [RosV96a] is the particular case I = m,
t = 1, and [Huc97] is t = 2 and I an m−primary ideal.

We also prove that the conditions of the above result can be fulfilled, Proposi-
tion 2.9. This means that for all d, t ≥ 1, and δ ≤ 1 there exists a d−dimensional
Cohen-Macaulay local ring such that its maximal ideal m admits a d−generated
minimal reduction J satisfying both conditions of the main result and depth(G(m))
= d− δ.

In §3 we compute the Hilbert function of ideals under the conditions above,
Proposition 3.3. Moreover, if length(It+1/JIt) ≤ 2 then the Hilbert function of
I has a non-decreasing (d − 1)-derivative, Proposition 3.2. We end the paper by
applying these results to the one-dimensional case.

Notations. Without loss of generality we may assume that the residue field k =
R/m is infinite. We will denote by HI the Hilbert function of I,

HI(n) = lengthR(In/In+1),

n ≥ 0. It is well known that there exists a polynomial (the Hilbert polynomial)
hI ∈ Q[Z] such that HI(n) = hI(n) for n � 0, and that can be written in the
following form

hI(Z) =
d−1∑
i=0

(−1)iei(I)
(

Z + d− i− 1
d− i− 1

)
.

Let F = {Fn}n≥0 be a Hilbert filtration of R, i.e. there exist an m-primary
ideal K and an integer n0 such that Fn+1 = KFn for all n ≥ n0. We will denote
by r(F , K) the reduction index of F with respect to K: the least integer r such
Fn+1 = KFn for all n ≥ r.
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We will denote by Ĩ the Ratliff-Rush closure of I; see [HLS92] for the main
properties of Ratliff-Rush closure. R(F) =

⊕
n≥0 FnT n will be the Rees algebra

associated to a filtration F = {Fn}n≥0. If F = {In}n≥0 (resp. F = {Ĩn}n≥0) then
we writeR(F) = R(I) (resp. R(F) = R̃(I)). We write r = r(I, J) = r({In}n≥0, J)
for the reduction number of I with respect to J .

2. The depth of the tangent cone

Since our purpose is to prove that the tangent cone has at least depth d − 1,
and the conditions of Theorem 2.7 are preserved modulo a superficial sequence of
I, most of the time we can proceed, using “Sally’s machine”, by considering a two
dimensional local ring R. See [Sal79b], [HM94], Lemma 2.2 for a proof, and see
also [Ito95], Lemma 1(2).

From now on we will denote by D(I) the R(I)-graded module R̃(I)/R(I). Notice
that if we denote by R∗ = R∗(I) the extended Rees algebra associated to I, i.e.
R∗n = R for n < 0, and R∗n = In for n ≥ 0, then we have, [Bla95],

D(I) ∼= H1
R+(R∗).

Let J be a minimal reduction of I. We will denote by νn = νn(I, J) the minimal
number of generators of the R−module( D(I)

JTD(I)

)
n

∼= Ĩn

JĨn−1 + In
,

n ≥ 0. We set ν = ν(I, J) =
∑

n≥1 νn.

We denote by r̃(I, J) the least integer such that Ĩn+1 = JĨn; notice that we
have r̃(I, J) ≤ r({Ĩn}n≥0, J). We will denote by s(I, J) the least integer such that
In+1 ⊂ JĨn. It is easy to see that s(I, J) ≤ r̃(I, J). If x is a superficial element of
I belonging to J , we will denote by r = r(I, J) the integer r(I/(x), J/(x)),

Proposition 2.1. Let R be a d−dimensional Cohen-Macaulay local ring, I an m−
primary ideal, and J a minimal reduction of I. Assume that there exists an integer
t ≥ 1 such that the pair I, J satisfies the condition V2

n for n = 0, . . . , t. Then, for
all n = 0, . . . , t,

νn ≤ length
(
Ĩn/JĨn−1

)
− length

(
In/JIn−1

)
.

Proof. Let us consider the following inequalities:

νn = ν
(

Ĩn

JĨn−1+In

)
≤ length

(
Ĩn

JĨn−1+In

)
= length

(
Ĩn

In

)
− length

(
JĨn−1+In

In

)
.

Since the pair I, J satisfies V2
n for n = 0, . . . , t, we get

JĨn−1 ∩ In ⊂ J ∩ In = JIn−1,

so we have JĨn−1 ∩ In = JIn−1 and

νn ≤ length
(

Ĩn

In

)
− length

(
JĨn−1

JIn−1

)
= length

(
Ĩn

JĨn−1

)
− length

(
In

JIn−1

)
.
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Let us recall the following result of Huckaba, where e1(I) is computed for d = 1, 2,
[HM94], Corollary 4.13, and [Huc96], Theorem 3.1.

Proposition 2.2. Let R be a d−dimensional Cohen-Macaulay local ring, I an m−
primary ideal of R, and J a d−generated reduction of I. Then the following condi-
tions hold:

(1) If d = 1 then e1(I) =
∑

n≥0 length
(

In+1

JIn

)
.

(2) If d = 2 then e1(I) =
∑

n≥0 length
(

Ĩn+1

JĨn

)
, and the following conditions are

equivalent:
(2.1) depth(G(I)) ≥ 1,
(2.2) In = Ĩn for all n ≥ 1,
(2.3) e1(I) =

∑r−1
n=0 length

(
In+1

JIn

)
, with r = r(I, J).

The next result is a generalization to a m−primary ideal and extension to any
power of [Huc97], Lemma 2.1, and [RosV96a], Lemma 1.1. We will use this result
in the proofs of Theorem 2.7 and Proposition 3.2.

Proposition 2.3. Let R be a d−dimensional, d ≥ 1, local ring. Let I be an
m−primary ideal of R, and let K be an ideal of R such that K ⊂ Im and

length

(
Im

K

)
≤ 1.

Then either Im+1 = KI, or there exists g ∈ I such that for all n ≥ m

In = In−mK + (gn).

Proof. Let λ = lengthR(Im/K). If λ = 0, then we get the result. Assume λ = 1,
and let a1, . . . , ar be a system of generators of I. Notice that r ≥ d ≥ 1.

If r = d = 1, then I is principal and the result becomes clear. Let us assume
r ≥ 2. Hence there exists a degree m multi-index β = (β1, . . . , βr) ∈ Nr such that
aβ = aβ1

1 . . . aβr
r and

Im = K + (aβ).

After a change of indices we may assume that β1 > 0. Since λ = 1 we get that
aβ /∈ K, and then we can consider the multi-index γ of degree m such that γ1 is
the biggest integer such that aγ /∈ K. In particular we have Im = K + (aγ). If
γ = (m, 0, . . . , 0), then we get the claim with g = a. If γ1 < m, then we can assume
that γ2 > 0, so aγ+(1,0,...,0) ∈ a2K ⊂ IK and

Im+1 = IK + aγI ⊂ IK + a1I
m

⊂ IK + a1(K + aγ)

= IK + a1K + (aγ+(1,0,...,0))

⊂ IK ⊂ Im+1,

and then Im+1 = IK. If Im = K +(gm), by induction on n it is easy to prove that
In = In−mK + (gn) for all n ≥ m.
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The next result is needed to compute e1(I) under the hypothesis of the main re-
sult of this paper and to establish some conditions to assure depth(G(I)) ≥ 1. This
result is an improvement and generalization of [Sal83], Corollary 5.9, [RosV96a],
Corollary 2.3, and [Huc97], Lemma 2.2.

Proposition 2.4. Assume that (R,m) is a 2−dimensional Cohen-Macaulay local
ring, I an m−primary ideal, and J = (x, y) is a minimal reduction of I. Let
r = r(I, J), s = s(I, J), and r = r(I/(x), J/(x)). Assume that there exists an
integer t ≥ 1 such that

• I, J satisfy the condition V2
n for n = 0, . . . , t, and

• length(It+1/JIt) ≤ 1.
Then the following conditions hold:

(1) e1(I) =
∑r−1

n=0 length
(
In+1/JIn

)
.

(2) r ≤ r, and r = r if and only if depth(G(I)) ≥ 1.
(3) If r ≤ t, then depth(G(I)) = 2.
(4) If t < r ≤ r, then

t ≤ s ≤ r̃ ≤ r ≤ r.

(5) If depth(G(I)) ≥ 1, then s = r̃ = r = r.

Proof. (1) Since x is a superficial element for I, we have e1(I) = e1(I/(x)). From
Proposition 2.2 (1) we obtain

e1(I) =
r−1∑
n=0

length

(
(I/(x))n+1

(J/(x))(I/(x))n

)

=
r−1∑
n=0

length

(
In+1

JIn + x(In+1 : x)

)
.

(F1)

Since the pair I, J satisfies V2
n for n = 1, . . . , t, we deduce that

(In+1 : x) = (In+1 : y) = In

for n = 1, . . . , t− 1. If r ≤ t, then we get

e1(I) =
r−1∑
n=0

length

(
In+1

JIn

)
.

If r > t and r − 1 ≥ n ≥ t, then from Proposition 2.3 we get

0 < length

(
(I/(x))n+1

(J/(x))(I/(x))n

)

= length

(
In+1

JIn + x(In+1 : x)

)

≤ length

(
In+1

JIn

)
≤ 1.

Hence x(In+1 : x) ⊂ JIn for n = t, . . . , r − 1. Since (In+1 : x) = In for n =
1, . . . , t− 1, from (F1) and Proposition 2.2 we get (1).
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(2) From the definitions we get r ≤ r. From (1) and Proposition 2.2 (2) we get
that r = r if and only if depth(G(I)) ≥ 1.

(3) Let us assume that r ≤ t. From (1) and Proposition 2.2 (2) we get

0 =
∑
n≥0

length

(
Ĩn+1

JĨn

)
−

r−1∑
n=0

length

(
In+1

JIn

)

=
r−1∑
n=0

(
length

(
Ĩn+1

JĨn

)
− length

(
In+1

JIn

))
+
∑
n≥r

length

(
Ĩn+1

JĨn

)
.

From Proposition 2.1 we deduce length(In+1/JIn) = length(Ĩn+1/JĨn) for n =
0, . . . , r − 1, and Ĩn+1 = JĨn for n ≥ r. From these equalities and by induction on
n we obtain In = Ĩn for all n ≥ 1. Hence depth(G(I)) ≥ 1, by Proposition 2.2 (2).
From (2) we get that r = r < t, so the pair I, J satisfies V2

n for all n ≥ 0. From the
Vallabrega-Valla result we get that depth(G(I)) = 2.

(4) Let us assume t < r ≤ r. If s < t then we have

It ⊂ JĨt−1 ⊂ J.

Since the pair I, J satisfies the condition V2
t , we get

It = It ∩ J = JIt−1,

and then r ≤ t− 1, which is a contradiction with the assumption t < r. Hence we
get t ≤ s. By definition, s ≤ r̃; therefore t ≤ r̃.

Let us consider the following inequalities:

0 ≥ −
t∑

n=1

νn

≥
t−1∑
n=0

(
length

(
In+1

JIn

)
− length

(
Ĩn+1

JĨn

))

by Proposition 2.1

= −
r−1∑
n=t

length

(
In+1

JIn

)
+

r̃−1∑
n=t

length

(
Ĩn+1

JĨn

)
+
∑
n≥r̃

length

(
Ĩn+1

JĨn

)

by (1) and Proposition 2.2 (2)

≥ −(r − t) +
r̃−1∑
n=t

length

(
Ĩn+1

JĨn

)

by Proposition 2.3.
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From this we get

r − t ≥
r̃−1∑
n=t

length

(
Ĩn+1

JĨn

)
,

so r − t ≥ r̃ − t.
(5) If depth(G(I)) ≥ 1, then from (2) we get r = r. On the other hand In = Ĩn

for all n ≥ 0, and so by the definition of s and r̃ we get s = r̃ = r = r.

Our next result is a generalization of [RosV96a], Proposition 2.4, and [Huc97],
Proposition 2.3, to modules.

Proposition 2.5. Let R be a Noetherian ring, and let K ⊂ I be ideals of R. Let
M be a graded R(I)−module, of finite length as R−module. Let µ be the minimal
number of generators of M/R(K)+M as R−module. Then for all z ∈ I there exist
ei ∈ Ki, i = 1, . . . , µ, such that

zµ − zµ−1e1 + · · ·+ (−1)µeµ ∈ AnnR(M).

Proof. Let p be the biggest integer such that Mp 6= 0. For all i = 0, . . . , p we pick
elements mi,1, . . . , mi,µi ∈ Mi such that their cosets in(

M

R(K)+M

)
i

∼= Mi

KiM0 + Ki−1M1 + · · ·+ KMi−1

form a minimal system of generators as R−module. We have µ =
∑p

i=0 µi.
If z is an element of I, then there exist elements cj,k

i,n ∈ Ki−j+1 such that

z mi,n =
p∑

j=0

µj∑
k=1

cj,k
i,n mj,k

with cj,k
i,n = 0 if j > i+1. Let Λ be the set of pairs α = (i, n) such that i = 0, . . . , p,

n = 1, . . . , µi. We consider Λ endowed with the lex–ordering. We set α1 = i, and
α2 = n.

If we denote by C the µ× µ matrix C = (cα
β )α,β∈Λ, then we can write

(z Idµ×µ − C)A = 0,

where A is the µ× 1 matrix A = (mα)α∈Λ. Hence we have

det(z Idµ×µ − C) ∈ AnnR(M).

On the other hand,

det(z Idµ×µ − C) = zµ − zµ−1e1 + · · ·+ (−1)µeµ,

where er is the sum of all r × r minors of C correponding to sub-r × r-matrices of
C symmetric with respect to the diagonal of C. Notice that e1 is the trace of C
and eµ is the determinant of C. Let us consider E = det((cαi

αj
)i,j=1,...,r), an r × r

minor of C. Since

cα1
ασ(1)

. . . cαr
ασ(r)

∈ Kr

where σ is a permutation of {1, . . . , r}, we get E ∈ Kr. Hence ei ∈ Ki, i = 0, . . . , µ,
and we are done.

In the next result we will apply the last proposition to M = D(I).
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Proposition 2.6. Let R be a d−dimensional, d ≥ 1, Cohen-Macaulay local ring.
Let I be an m−primary ideal of R, and J a minimal reduction of I. Let us assume
that there exists an integer t ≥ 1 such that length(It+1/JIt) ≤ 1. If t ≤ s then

r ≤ ν + s.

Proof. From Proposition 2.3 there exists g ∈ I such that for all n ≥ t

In+1 = JIn + (gn+1).

Notice that r ≤ ν + s if and only if gν+s+1 ∈ JIν+s. From the definition of s we
have

gs+1 ∈ Is+1 ⊂ JĨs.

If we apply the last result to K = J , M = D(I), µ = ν, and z = g, we get that
there exists h ∈ JIν−1 such that

(gν − h)Ĩn ⊂ Iν+n

for all n ≥ 0. Hence we have

gs+1+ν − gs+1h = gs+1(gν − h) ∈ JĨs(gν − h) ⊂ JIν+s,

so we get gν+s+1 ∈ JIν+s .

Theorem 2.7. Let R be a d−dimensional, d ≥ 1, Cohen-Macaulay local ring. Let
I be an m−primary ideal of R, and J = (x1, . . . , xd) a minimal reduction of I. Let
us assume that there exists an integer t ≥ 1 such that

• I, J satisfy the condition V2
n for n = 0, . . . , t, and

• length(It+1/JIt) = δ ≤ Min{d− 1, 1}.
Then

d ≥ depth(G(I)) ≥ d− δ.

If t ≥ e0(I)− 1, then G(I) is Cohen-Macaulay.

Proof. If δ = length(It+1/JIt) = 0, the pair I, J satisfies V2
n for all n ≥ 0. From

the Vallabrega-Valla result we get depth(G(I)) = d. In particular we may assume
d ≥ 2 and length(It+1/JIt) = 1. We need to prove that

depth(G(I)) ≥ d− 1.

An easy computation shows that the conditions of the claim are preserved modulo
superficial elements. Hence we may assume that d = 2 (see the beginnig of this
section).

From Proposition 2.4 (2), (3), (4), and Proposition 2.6 we may assume that

t ≤ s ≤ r̃ ≤ r ≤ r ≤ ν + s.

By Proposition 2.4 (2) we only need to prove that ν + s ≤ r. Let us consider the
following inequalities:

ν =
∑
n≥1

νn

=
t∑

n=1

νn +
s∑

n=t+1

νn +
∑

n≥s+1

νn
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≤
t−1∑
n=0

(
length

(
Ĩn+1

JĨn

)
− length

(
In+1

JIn

))
+

s∑
n=t+1

νn +
∑
n≥s

length

(
Ĩn+1

JĨn

)

by Proposition 2.1 and the definition of s

=
r−1∑
n=t

length

(
In+1

JIn

)
−

s−1∑
n=t

length

(
Ĩn+1

JĨn

)
+

s∑
n=t+1

νn

by Proposition 2.2 and Proposition 2.4 (1)

≤ (r − t)−
s−1∑
n=t

length

(
Ĩn+1

JĨn

)
+

s∑
n=t+1

νn

= (r − t) +
s∑

n=t+1

(
νn − length

(
Ĩn

JĨn−1

))

and by the definition of s we get

≤ (r − t) + (t− s) = r − s.

Hence we have ν + s ≤ r, and so depth(G(I)) ≥ 1.
Let us assume t ≥ e0(I) − 1, and d ≥ 2. Since the conditions of the claim

are preserved modulo superficial elements, we may assume d = 2. Let us consider
R = R/(x2), I = I/(x2), and J = J/(x2). Since R is a one-dimensional Cohen-
Macaulay local ring, we have e0(I)−1 = e0(I)−1 ≥ r, by [SV74], Theorem 2.5, and
[ES76], Corollary 3 to Theorem 2. From Proposition 2.4, (3), we get the claim.

Next, we will collect some results that can be obtained as corollaries of Theo-
rem 2.7.

Corollary 2.8. Under the hypothesis of Theorem 2.7, we denote by δ the integer
δ = lengthR(It+1/JIt), and ρ = depth(G(I)). Then the following results hold:

(1) [Sal77], Theorem 2:
I = m, t = 1, δ = 0 implies ρ = d,

(2) [Val79], Theorem 1:
t = 1, δ = 0 implies ρ = d,

(3) [Vas94], Proposition 2.6(a), and [Gue95], Corollary 2.3(a):
I3 = JI2, t = 1, δ = 1 implies ρ ≥ d− 1,

(4) Sally’s conjecture, [Sal83], proved by Rossi and Valla, [RosV96a], and Wang
[Wan97]:
I = m, t = 1, δ = 1 implies ρ ≥ d− 1,

(5) [Huc97], Theorem 2.4:
t = 2 implies ρ ≥ d− 1.



4036 JUAN ELIAS

Proof. For the first three results we only need to recall that

length(I2/JI) = e0(I)− length(I/I2) + (d− 1)length(R/I)

[Val79], Lemma 1.

Notice that Corollary 2.8 (3) was proved also in [Sal92], Lemma 2.3, [Gue94],
Corollary 3.3, and [Vaz95], Corollary 3.1.4, with the assmption r(I, J) = 2.

In the next result we will prove that the conditions of Theorem 2.7 can be
fulfilled using the techniques developed in [Eli93a]. Let S = k[x, y, z](x,y,z), and
let (k3, 0) = Spec(S) be the k−scheme defined by S. A curve singularity X is a
one-dimensional closed Cohen-Macaulay sub-scheme of (k3, 0), i.e. X = Spec(S/I)
where I = I(X) is a height two perfect ideal of S.

Proposition 2.9. For all d ≥ 1, t ≥ 1, δ ∈ {0, 1}, and ε ∈ {d− δ, d} there exists
a d-dimensional Cohen-Macaulay local ring (R,m) such that m has a d−generated
minimal reduction J , and

• m, J satisfy the condition V2
n for n = 0, . . . , t,

• length(mt+1/Jmt) = δ ≤ 1, and
• depth(G(m)) = ε.

Proof. Case δ = 0. From [Eli93a], Proposition 2.2, we deduce that the union of
( t+2

2 ) generic straight lines through the origin of (k3, 0) is a curve singularity X
with maximal Hilbert function, i.e.

HX(n) =

 ( n+2
2 ), n = 0, . . . , t− 1,

( t+2
2 ), n ≥ t.

We denote by n the maximal ideal of OX . Since X has maximal Hilbert function,
we have that the pair n, (x) satisfies V2

n for n = 0, . . . , t, δ = 0, and G(n) is Cohen-
Macaulay. From this it is easy to see that R = OX [T1, . . . , Td−1](T1,...,Td−1), where
m is a maximal ideal of R, and J = (x, T1, . . . , Td−1) satisfy the conditions of the
claim.

Case δ = 1, ε = d−1. Let us consider the closed subscheme X of (k3, 0) defined
by the maximal minors of 0 z

z ye−2

y xα


with α ≤ e− 2. From the Hilbert-Burch theorem we have that I(X) is a height two
perfect ideal of S, i.e. X is a curve singularity. An easy computation gives us

HX(n) =


n + 2, n = 1, . . . , α,

n + 1, n = α + 1, . . . , e− 1,

e, n ≥ e − 1.

From now on we set e = t + 2 and α = t − 1. Let Y be the curve singularity
obtained by union of X and ( t+1

2 )−(t+1) generic straight lines through the origin.
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From [Eli93a], Proposition 2.2, we get

HY (n) =


( n+2

2 ), n = 0, . . . , t− 1,

( t+1
2 ), n = t,

( t+1
2 ) + 1, n ≥ t + 1.

Notice that I(Y ) ⊂ (x, y, z)t. Hence if n is the maximal ideal of OY , then the
pair n, x satisfies V2

n for n = 0, . . . , t, and

dimk(nt+1/xnt) = dimk(nt+1/xnt+1)− dimk(xnt/xnt+1)

= e0(X)− dimk(nt/nt+1)

= 1

[Lip71], Remark (a) and (b) to Corollary 1.10. Notice that HY (t − 1) = HY (t),
so G(n) is not Cohen-Macaulay. The local ring R = OY [T1, . . . , Td−1](T1,...,Td−1),
where m is a maximal ideal of R, and J = (x) satisfy the conditions of the claim.

Case δ = 1, ε = d. Let X be a curve singularity of (k3, 0) formed by the union
of ( t+1

2 ) generic straight lines throughout the origin. The Hilbert function of X is
maximal:

HX(n) =

 ( n+2
2 ), n = 0, . . . , t− 1,

( t+1
2 ), n ≥ t.

In particular, G(n) is Cohen-Macaulay. The ring R = OX [T1, . . . , Td−1](T1,...,Td−1)

satisfies the conditons of the claim.

Example 2.10. It is worthwhile to recall an example given by Guerrieri, [Gue94]:
let R = k[x, y, z, u](x,y,z,u), k an infinite field. Let I = (x2, y2, z2, u2, xy + zu) and
J = (x2, y2, z2, u2). Then the pair I, J satisfies V2

n for all n but n = 3. This example
shows us that condition V2

n does not imply V2
n+1; in fact, the examples with δ = 1

in the last propostion do not satisfy V2
t+1.

3. The growth of the Hilbert function

This section is devoted to study the growth of the Hilbert function of an m−
primary ideal under the conditions of Theorem 2.7, and we will apply it to the
study of Hilbert functions in the one-dimensional case.

Given a numerical function F : N −→ N, we will denote by ∆rF its r-th deriv-
ative, r ≥ 1, i.e. ∆F (n) = F (n) − F (n − 1) and by induction ∆r+1F = ∆(∆rF ).
We put ∆0F = F .

Lemma 3.1. Let R be a one-dimensional Cohen-Macaulay local ring. Let I be an
m−primary ideal of R, and let x be a superficial element of I. We denote by H
the numerical function defined by H(n) = lengthA(In/xIn−1). Then

HI(n)−HI(n− 1) = H(n)−H(n + 1).

Proof. Let us consider the following exact sequence of R−modules:

0 −→ xIn−1

xIn
−→ In

xIn
−→ In

xIn−1
−→ 0.



4038 JUAN ELIAS

We have

lengthR

(
In

xIn−1

)
= lengthR

(
In

xIn

)
− lengthR

(
xIn−1

xIn

)

= e0(I)− lengthR

(
In−1

In

)

= e0(I)−HI(n− 1)

([Lip71], Remark (a) and (b) to Corollary 1.10). Hence we have

HI(n)−HI(n− 1) = H(n)−H(n + 1),

for all n ≥ 0.

Proposition 3.2. Let R be a d−dimensional, d ≥ 1, Cohen-Macaulay local ring.
Let I be an m−primary ideal of R, and J = (x1, . . . , xd) a minimal reduction of
I, with x1, . . . , xd a superficial sequence of I. Let us assume that there exists an
integer t ≥ 1 such that

• I, J satisfy the condition V2
n for n = 0, . . . , t, and

• length(It+1/JIt) ≤ 2.
Then HI/(x1,...,xd−1) is non-decreasing.

Proof. Since the conditions of the claim are preserved modulo superficial sequences,
we may assume d = 1. We set J = (x).

Let us consider the morphisms

In−2

In−1

.x−→ In−1

In
.

Since the pair I, J satisfies V2
n for n = 0, . . . , t, we get that these morphisms are

mono, so

HI(n− 1) ≤ HI(n)

for n ≤ t− 1.
We need to consider two cases:
Case 1: H(t) ≤ 1. Then by Proposition 2.3 we get

1 ≥ H(n) ≥ H(n + 1) ≥ 0

for all n ≥ t. By Lemma 3.1 we obtain the claim.
Case 2: H(t) ≥ 2. We set ω = lengthR(It+1/xIt + It+2), and consider the

projection

It+1

xIt
−→ It+1

xIt + It+2
.

If ω = 0 then It+1 = xIt, and HI(n) = e0(I) for all n ≥ t, [Lip71], Theorem 1.9.
Hence the Hilbert function is non-decreasing.

If ω = 2, then the projection is an isomorphism and It+2 ⊂ xIt. Hence we have
that for all n ≥ t the natural projection induces isomorphisms

In+1

xIn
−→ In+1

xIn + In+2
.
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Since G(I)/x∗TG(I) is a standard R/I−algebra, and ω ≤ 2, we get that H(n) is
non-increassing for n ≥ t, [Bla95], [BN96]. From Lemma 3.1 we get that HI is
non-decreasing.

Let us assume ω = 1. From Proposition 2.3 there exists g ∈ I such that the
coset of gn+1 in In+1/xIn + In+2 is a generator for n ≥ t. Hence the coset of gn+1

in In+1/xIn is also a generator, and then the morphism

In+1

xIn

.g−→ In+2

xIn+1

is an epimorphism for n ≥ t. From Lemma 3.1 we get that HI is non-decreasing.

We will denote by PI ∈ Z[Z] the Poincaré series of I:

PI(Z) =
∑
n≥0

HI(n) Zn.

It is well known that there exists a polynomial f(Z) ∈ Z[Z] such that

PI(Z) =
f(Z)

(1− Z)d
.

Proposition 3.3. Let R be a d−dimensional, d ≥ 1, Cohen-Macaulay local ring.
Let I be an m−primary ideal of R, and J = (x1, . . . , xd) a minimal reduction of I.
Let us assume that there exists an integer t ≥ 1 such that

• I, J satisfy the condition V2
n for n = 0, . . . , t, and

• δ = length(It+1/JIt) ≤ 1.

We consider the integer δ = length(It+1 + (x2, . . . , xd))/(JIt + (x2, . . . , xd)) ≤ 1.
Then

(1) If δ = 0, then G(I) is Cohen-Macaulay and there exists u ≤ t such that

PI =
a0 + a1 Z + · · ·+ auZu

(1− Z)d

with ai > 0 for all i ≤ u.
(2) If δ = 1, then

PI =
a0 + a1 Z + · · ·+ atZ

t + Zu

(1− Z)d

with u > t, ai > 0 for all i ≤ t− 1, and at ≥ 0. If G(I) is Cohen-Macaulay
then at > 0, and u = t + 1.

In particular, ∆d−1HI is non-decreasing.

Proof. From [Sin74] and Theorem 2.7 we have

∆d−1PI = PI

with R = R/(x2, . . . , xd), I = I/(x2, . . . , xd), J = J/(x2, . . . , xd), and PI =
(a0 + a1Z + · · · + asZ

s)/(1 − Z). Notice that an = HI(n) − HI(n − 1) for all
n ≥ 0.

If δ = 0 then the pair I, J satisfies V2
n for all n ≥ 0. From the Vallabrega-Valla

result we get that G(I) is Cohen-Macaulay, and G(I) as well. From this it is easy
to prove (1).
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Suppose δ = 1. From Lemma 3.1 and Proposition 3.2 we have that for all n ≥ 0

an = HI(n)−HI(n− 1) = HI(n)−HI(n + 1).(F2)

Since the pair I, J satisfies V2
n for n = 0, . . . , t and δ 6= 0, from (F2) we get that

the morphism, n = 0, . . . , t− 1,

I
n−1

I
n

x1−→ I
n

I
n+1

is mono, but not an isomorphism. Hence an > 0 for all n = 0, . . . , t− 1.
On the other hand we have that HI(n) ≤ 1 for all n ≥ t + 1, by Proposition 2.3.

From this and (F2) we get the first part of (2). The second part of (2) is clear.

One-dimensional case. Let R be a one-dimensional equicharacteristic Cohen-
Macaulay local ring. We will denote by b = dimk(m/m2) the embedding dimension
of R. Recall that Abhyankar proved that e0(R) ≥ b.

It is a longstanding problem to find conditions to assure that the Hilbert function
of R is non-decreasing. It is well known that for b ≤ 2 the Hilbert function HR is
non-decreasing. The main open problem was the conjecture of Sally: if b = 3 then
the Hilbert function of R is non-decreasing, [Sal78]. This conjecture was settled in
[Eli93a]. See [GR83] for examples of one-dimensional local rings with decreasing
Hilbert functions with b ≥ 4, and [Eli93a], [Eli94c] for further results. As a corollary
of Proposition 3.2 we obtain that for e0(R) ≤ b + 2 the Hilbert function of R is
non-decreasing.

We can summarize the above results:

Proposition 3.4. Let R be a equicharacteristic one-dimensional Cohen-Macaulay
local ring of multiplicity e0 and embedding dimension b. Then 1 ≤ b ≤ e0, and the
Hilbert function of R is non-decreasing in the following cases:

(1) b ≤ 3, or
(2) b ≤ e0(R) ≤ b + 2.

The first open case for which we don’t know if the Hilbert function is decreasing
is b = 4 and e0 = 7. Recall that the first known example with a decreasing Hilbert
function for b = 4 has multiplicity e0(R) = 32, [GR83].

It is well known that if b = 2 or e, then the tangent cone is Cohen-Macaulay,
[Sal77]. The first case for which the associated graded ring can be non-Cohen-
Macaulay is b = 3, e = 4. In this case e1 = 4 or 5, [Eli90], and the Hilbert function
is determined by this coefficient, [Eli96]:

• e1 = 4, H = {1, 3, 4, ...}, G(R) Cohen-Macaulay,
example: R = k[[t4, t5, t6]],

• e1 = 5, H = {1, 3, 3, 4, ...}, G(R) not Cohen-Macaulay,
example: R = k[[t4, t5, t11]].
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