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AUTOMORPHISM SCHEME OF A FINITE FIELD EXTENSION

PEDRO J. SANCHO DE SALAS

Abstract. Let k → K be a finite field extension and let us consider the auto-
morphism scheme AutkK. We prove that AutkK is a complete k-group, i.e., it
has trivial centre and any automorphism is inner, except for separable exten-
sions of degree 2 or 6. As a consequence, we obtain for finite field extensions
K1, K2 of k, not being separable of degree 2 or 6, the following equivalence:

K1 ' K2 ⇔ AutkK1 ' AutkK2.

1. Introduction

The aim of this paper is to study the automorphism scheme of any finite field
extension k → K. In the separable case, the k-group AutkK is quite simple; in fact,
after a base change, the k-group AutkK becomes isomorphic to the symmetric group
Sn, where n denotes the degree of K over k. Hence, for finite separable extensions,
the k-group AutkK is finite and étale. Surprisingly, the facts are quite different for
non-separable extensions. In such a case AutkK is a large group (it has positive
dimension) and it is not smooth.

In any case, it is not difficult to prove that Spec K is a homogeneous k-scheme
under the natural action of the k-group AutkK. This is a standard property of
any classical transformation group. Hence, it seems natural to consider AutkK as
a new example of such groups (even if AutkK is not smooth and has few rational
points). Traditionally, the great interest of transformation groups is due to the
fact that a transformation group encloses the essential structure of the geometric
space in which it acts. The same holds for the group AutkK and its geometric
space Spec K; in fact, it is possible to recover the extension k → K from the group
AutkK.

The main result of this paper states that AutkK is a complete group, i.e., it has
trivial centre and any automorphism is inner. Specifically:

Theorem 1.1. Let k → K be a finite field extension. Then we have:
1. Z(AutkK) = Id, except for a separable extension of degree 2.
2. The natural morphism defined by conjugation

AutkK → Autk−gr(AutkK)

is an isomorphism of k-groups, except for separable extensions of degree 2 or
6.
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For separable extensions, the above theorem is a reformulation of the classical
Hölder’s theorem on the completeness of symmetric groups Sn. Hence, our re-
sult may be regarded as a broad extension of Hölder’s theorem for non-separable
extensions.

An interesting consequence of the above theorem is the following result, stating
that the automorphism scheme fully determines the field extension.

Theorem 1.2. Let K1 and K2 be finite extensions of a field k. Let us further
assume that K1 and K2 are not separable extensions of degree 2 or 6 over k. Then
we have

K1 ' K2 ⇔ AutkK1 ' AutkK2.

In a forthcoming paper we shall provide an explicit construction of the given
field extension k → K from the k-group AutkK.

Finally, let us remark that the group AutkK, as well as its subgroups, have been
studied by several authors (Begueri [1], Shatz [15], Chase [2],[3], etc.) in order to
extend Galois Theory to non-separable extensions.

2. Preliminary section

Let k̄ be the algebraic closure of a field k of characteristic p > 0. Our starting
point is the following theorem stating the local structure of finite field extensions
(the term “local” refers to the f.p.p.f. topology).

Theorem 2.1. Let k → K be a finite field extension. There exists an isomorphism
of k̄-algebras

K ⊗k k̄ =
m∏

k̄[x1, . . . , xn]/(xpe1

1 , . . . , xpen

n )

where e1 ≥ e2 ≥ · · · ≥ en.

In the purely inseparable extensions case, the above theorem is a direct conse-
quence of a result of Pickert [11]. The general case is stated in Rasala [12], Chapter
II, Theorem 6 and Lemma 4 (see also Pauer [10]). A more general result for finite
generated algebras is obtained in Sancho [14].

The integer m is clearly the separability degree of K. The sequence ε = {e1 ≥
e2 ≥ · · · ≥ en} may be easily determined from the ranks of the Kpr

-modules
Ω1

Kpr/k
; in fact, we have ei = Min {r ∈ N : rank Ω1

Kpr/k
< i}. Hence, the

sequence ε = {e1 ≥ e2 ≥ · · · ≥ en} is an invariant of K.
In this paper we study the automorphism scheme of finite field extensions and,

in general, of finite algebras satisfying Theorem 2.1. Specifically, we consider the
following class of finite k-algebras.

Definition 2.2. Let k be a ring of prime characteristic p > 0. A finite k-algebra
A is said to be of type (m, ε) if there exists a faithfully flat morphism k → k̄ and
an isomorphism of k̄-algebras

A⊗k k̄ =
m∏

k̄[x1, . . . , xn]/(xpe1

1 , . . . , xpen

n )

where ε = {e1 ≥ e2 ≥ · · · ≥ en}.
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Note that finite field extensions of type (m, 0) are separable ones, while those of
type (1, ε) are purely inseparable.

Finite k-algebras with the splitting property stated in 2.1 may be characterized
as finite k-algebras whose modules of r-jets Jr

A/k are projective for r ≥ 0 (see Sancho
[14]). This characterization will not used here.

Now we shall recall some concepts about the functor of points of a scheme that
we shall use systematically in this paper.

Given a k-scheme X , we denote by X · the corresponding functor of points defined
on the category of k-schemes:

X ·(S) = Homk−sch(S, X).

Any element of X ·(S), i.e., any morphism x : S → X , will be said to be a point
of X (parametrized by S). We shall not use the set theoretic concept of point,
denoted by the notation x ∈ X . The statement “point x of X”will be always used
in the sense of the functor of points, i.e., it will denote a morphism x : S → X for
some k-scheme S.

Notation. The composition of a point x : S → X , with a morphism S̄ → S is a
new point S̄ → S

x−→ X which will also be denoted by x.
Given two points x1 : S1 → X and x2 : S2 → X we may always assume that

both points have the same parameter space, since we may consider the compositions
S1 ×k S2

π1−→ S1
x1−→ X and S1 ×k S2

π2−→ S1
x2−→ X where π1, π2 are the natural

projections.
The identity morphism Id : X → X is said to be the general point of X .
The following elementary formula is essential:

Homk−sch(X, Y ) = Homfunctor(X ·, Y ·).

According to this equality, to define a morphism of schemes is equivalent to
defining a morphism between the corresponding functors of points (which is often
easier).

Finally, recall that the functor of points of a k-scheme X is a sheaf in the f.p.p.f.
topology (S.G.A. 3, IV 6.3.1. iii).

Let k be a Noetherian ring and let A be a flat finite k-algebra. The automorphism
scheme of A is defined to be the k-group scheme AutkA representing the functor of
automorphisms of A, i.e., the functor of points of AutkA is

Homk−sch(S, AutkA) = AutOS−alg(A⊗k OS)

for any k-scheme S.
The existence of the scheme AutkA is a particular elementary case of the exis-

tence of the automorphism scheme for any flat projective morphism [7]. The scheme
AutkA may also be constructed as a closed subscheme of the general linear group
Gl(n, k) = Autk−lineal(A) where n = rankkA. Moreover, this construction shows
that AutkA is an affine scheme. In this paper we shall only consider affine schemes
of finite type over a Noetherian ring k.1

1The Noetherian hypothesis has been introduced for the sake of simplicity.
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3. The separable case: Reformulation of Hölder’s theorem

Let k be a ring and let A be a flat étale finite k-algebra of constant degree n. It
is well known that there exists a faithfully flat base change k → k̄ such that

A⊗k k̄ = k̄ × n· · · × k̄.

Since the automorphism scheme commutes with base changes, we have

(AutkA)×k k̄ = Autk̄(A⊗k k̄) = Autk̄(
n∏

k̄) = Sn.

Hence, the scheme AutkA is locally isomorphic to the symmetric group Sn.
A classical result of Hölder [8] states that the symmetric group Sn has trivial

centre (when n 6= 2) and that any automorphism of Sn is inner (when n 6= 6). As
a direct consequence we obtain the following:

Theorem 3.1. Let A be an étale finite k-algebra of degree n. Then
(a) The k-group scheme AutkA has trivial centre: Z(AutkA) = {Id} (when n 6=

2).
(b) The k-group scheme AutkA is complete, i.e., the conjugation morphism

AutkA −→ Autk−group(AutkA)

is an isomorphism (when n 6= 2, 6).

In the case n = 2 it is obvious that AutkK = Z/2Z. When n = 6, the corre-
sponding result of Hölder gives us an exact sequence:

0 → AutkK −→ Autk−gr(AutkK) −→ Z/2Z → 0.

4. The purely inseparable case: The group Sε is complete

Now k will be a Noetherian ring of prime characteristic p > 0.
Given a sequence ε = {e1 ≥ · · · ≥ en}, we shall denote by Sε the automorphism

scheme of the “trivial” k-algebra of type (1, ε)

A = k[x1, . . . , xn]/(xpe1

1 , . . . , xpen

n ).

By 2.1, any purely inseparable finite extension of fields k → K is locally iso-
morphic to A for a certain sequence ε. Therefore, the scheme AutkK is a k-group
locally isomorphic to Sε.

In this section we shall determine the maximal tori of the k-group Sε. This
study will be necessary to prove that Sε is complete and, hence, that automorphism
schemes of purely inseparable field extensions are complete.

First let us determine Sε. A basis for A as a free k-module is provided by the
monomials xα = xα1

1 · · ·xαn
n where α = (α1, . . . , αn) and 0 ≤ αi < pei . Any

automorphism τ of A is fully determined by τ(xi),

τ(xi) =
∑
α

λi,αxα.

The fact that τ is a morphism of k-algebras is expressed by the conditions τ(xi)pei= 0
or, equivalently,

λpei

i,α = 0 for any α < pe−ei

(the notation α < pe−ei means that αj < pej−ei for every 1 ≤ j ≤ n). The fact
that τ is bijective is expressed by the condition of its determinant being invertible.
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Such determinant is a polynomial in the coefficients λi,α that we shall denote by
det. Hence we have:

Proposition 4.1. The ring of coordinates of Sε is

OSε = (k[λi,α]/I)det

where I is the ideal generated by the monomials λpei

i,α , with α < pe−ei .

Remark 4.2. It follows directly from the above proposition that Sε is a non-smooth
k-group with geometrically connected fibres. The same holds for the automorphism
scheme of any purely inseparable finite extension of a field.

The subgroup T = Gm ×k
n· · · ×k Gm of Sε defined by the equations {λi,α =

0, α 6= (0, .., 1i, .., 0)} is said to be the standard torus of Sε. The action T ×k

Spec A
∗−→ Spec A transforms any two points (t1, . . . , tn) : S → T = (Gm)n,

(x1, . . . , xn) : S → Spec A ⊂ An into the point

(t1, . . . , tn) ∗ (x1, . . . , xn) = (t1x1, . . . , tnxn).

Proposition 4.3. The centralizer of the standard torus T in Sε coincides with T ,
i.e.,

C(T ) = T.

Proof. Let t = (t1, . . . , tn) be the general point of T and let g be any point of C(T ).
Write

g(xi) =
∑

α

µi,αxα.

By definition of C(T ) we have g ◦ t = t ◦ g. Applying this equality to xi we have∑
α

µi,αtix
α =

∑
α

µi,αtαxα

so that µi,α(ti−tα) = 0. Since t1, . . . , tn are algebraically independent, we conclude
that µi,α = 0 for any α 6= (0, .., 1i, .., 0). Hence g is a point of T .

Theorem 4.4. The centre of the k-group Sε is trivial: Z(Sε) = {Id}.

Proof. It is clear that Z(Sε) ⊆ C(T ) 4.3= T , so that it is enough to prove that if a
point t = (t1, . . . , tn) of T belongs to the centre, then it is the identity. Let g be
the general point of Sε, defined by

g(xi) =
∑
α

λi,αxα

where λpei

i,α = 0 for any α < pe−ei .
Applying the equality g ◦ t = t ◦ g to xi, we obtain∑

α

λi,αtix
α =

∑
α

λi,αtαxα

so that λi,α(ti − tα) = 0. Since λpei

i,α = 0 (with α < pe−ei) are the only relations
between the variables λi,α, it follows that ti = tα for any α < pe. In particular,
taking α = (0, . . . , 0), we obtain that ti = 1.
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Let us recall the concept of homogeneous scheme. Consider the action of a k-
group G on a k-scheme X . We say that X is homogeneous under the G-action if
for any two points x1, x2 ∈ X ·(S) there exists a faithfully flat morphism S̄ → S
and a point g ∈ G·(S̄) such that g ∗ x1 = x2.

Proposition 4.5. Consider the trivial k-algebra A = k[x1, . . . , xn]/(xpe1

1 , . . . , xpen

n )
of type (1, ε). Then Spec A is a homogeneous scheme under the natural action of
the k-group Sε = AutkA.

Proof. Let us consider two (affine) points φ, φ̄ : Spec B → Spec A that will be
defined by two k-algebra morphisms φ, φ̄ : A → B. Then we have φ(xi) = bi,
φ̄(xi) = b̄i, where bpei

i = b̄pei

i = 0. It is easy to check that the automorphism g of
AB = A⊗k B defined by g(xi) = xi − bi + b̄i satisfies g ∗ φ = φ̄.

Now, let us consider the action of a k-group G on a k-scheme X . Given a point
x : S → X , the isotropy subgroup of x is defined to be the subgroup Hx of
GS = G×k S whose functor of points is

H ·
x(S̄) = {g ∈ G·(S̄) : g ∗ x = x}

for any S-scheme S̄.
This subgroup is the fibre over x of the S-morphism GS

∗−→ XS , g 7→ g ∗x. This
fact proves the existence of Hx.

Let x : Spec k → Spec A be a point.

Corollary 4.6. The quotient Sε/Hx exists (in the f.f.p.f. topology) and is isomor-
phic to Spec A. Moreover, the natural morphism Sε → Sε/Hx = Spec A has a
section.

Proof. Since Spec A is homogeneous, we may assume that x is the “origin”, i.e.,
the point defined by the ideal m = (x1, . . . , xn) of A. The morphism S·ε → Spec A·,
g 7→ g ∗ x is an epimorphism of sheaves by 4.5. It is clear that the quotient sheaf
S·ε/H ·

x (associated to the presheaf quotient) is isomorphic to Spec A·. Hence, S·ε/H ·
x

is representable and Sε/Hx = Spec A.
A section s of the morphism Sε → Spec A, g 7→ g ∗ x may be defined as follows:

Given a point a = (a1, . . . , an) of Spec A (i.e., (a1, . . . , an) is the point defined by
the ideal (x1 − a1, . . . , xn − an) of A), s(a) = τa is the point of Sε defined by
τa(xi) = xi + ai.

Let G ×k X
∗→ X be an action of a k-group G on a k-scheme X . A point

x ∈ X ·(S) is said fixed by G when for any base change S̄ → S and any point
g ∈ G·(S̄) we have g ∗ x = x.

We shall denote by XG the subscheme of X representing the functor of fixed
points, i.e.,

(XG)·(S) = {points x ∈ X ·(S) fixed by G}.
For the existence of the scheme of fixed points we refer to (S.G.A. 3; VIII 6.5d)

Corollary 4.7. For any point x : S → Spec A, we have

S
x= (Spec AS)Hx .
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Proof. Since Spec A is homogeneous, we may assume that x is the “origin”, i.e., the
point defined by the ideal m = (x1, . . . , xn) of AS = k̄[x1, . . . , xn]/(xpe1

1 , . . . , xpen

n )
(where k̄ denotes the affine ring of S). In this case the standard torus T , which
acts on Spec AS by the formula

(t1, . . . , tn) ∗ (x1, . . . , xn) = (t1x1, . . . , tnxn),

is contained in Hx. It is clear that the unique fixed point of T is the “origin”.
Therefore

S
x⊆ (Spec AS)Hx ⊆ (Spec AS)T =S

and the corollary follows.

Remark 4.8. Let us consider the functor of isotropy subgroups

F (S) = {Isotropy groups Hx of points x : S → Spec A}.
The above corollary shows that this functor is isomorphic to the functor of points
of Spec A: any point x of Spec A defines an isotropy subgroup Hx and, conversely,
any subgroup Hx determines a unique point (Spec A)Hx → Spec A.

The action of Sε on itself by conjugation, defines a natural action of Sε on TIdSε

(where Id is the unity section of Sε). Let us denote the action of Sε on TIdSε by ∗.
Corollary 4.9. Hx is the subgroup of Sε which stabilizes the k-sub-bundle TIdHx ⊂
TIdSε.

Proof. Since Spec A is homogeneous, we may assume that x is the “origin”. Recall
([4] II §4 2.4) that TIdSε = TIdAutkA is identified to Derk(A, A) and with this
identification TIdHx is equal to the set of derivations of A leaving m = (x1, . . . , xn)
stable, i.e., it is equal to the set of derivations of A vanishing at x. Then, given
a point τ of Sε, τ ∗ (TIdHx) is the set of derivations of A vanishing at τ ∗ x. The
derivations of A vanishing at x, do not vanish at any other point (for example, take
{xi∂x1}1≤i≤n). Therefore, τ ∗ (TIdHx) = TIdHx ⇔ τ ∗ x = x ⇔ τ is a point of
Hx.

Let OSε be the affine ring of Sε and let m̃ be the ideal corresponding to the unity
section of Sε. Let Gm̃OSε =

⊕∞
n=0 m̃n/m̃n+1. It is clear from 4.1 that we have an

isomorphism of graduate algebras

Gm̃OSε = k[λi,α]/I2

where I is the ideal generated by the monomials λpei

i,α with α < pe−ei . Given

f̄ ∈ m̃/m̃2 ⊂ Gm̃OSε , we say that the exponent of 〈f̄〉 is n if f̄
n−1 6= 0 and f̄

n = 0.

Lemma 4.10. Assume that k is a field and write e1 = · · · = er > er+1 ≥ · · · ≥ en.
Then 〈λi,0〉, 0 < i ≤ r, are the unique T -line k-sub-bundles of m̃/m̃2 of exponent
pe1 .

Proof. Let t = (t1, . . . , tn) be a general point of T . Remark that t∗λi,α = t1i−αλi,α.
Then λi,0 is the unique T -line sub-bundle of m̃/m̃2 where T acts by the character
ti, i.e., t∗λi,0 = tiλi,0. If L is a sub-bundle in the conditions of the lemma, we have
to prove that T acts over L by the character ti, for some i such that 0 < i ≤ r.

2Instead of the term λi,(0,..,1i,..,0), we should write λi,(0,..,1i,..,0) − 1, but we shall maintain

the formula as we write it for the sake of simplicity .



602 PEDRO J. SANCHO DE SALAS

It is clear that the exponent of λi,α ∈ m̃/m̃2 is pei if α < pe−ei , and it does not
have a finite exponent if α 6< pe−ei . Note that λi,α has exponent finite pe1 if and
only if 0 < i ≤ r and α = 0. Let Ei = {elements of m̃/m̃2 of exponent ≤ ei}.
Obviously, Ei is a T -sub-bundle of m̃/m̃2 and we have that E1/Er+1 = 〈λi,0〉0<i≤r.
The natural morphism L → E1/Er+1 is injective, therefore T acts over L by the
character ti, 0 < i ≤ r.

Lemma 4.11. Let x be the “origin” of Spec A, and Hx the associated isotropy
subgroup in AutkA of x. Then the incident TIdH◦

x ⊂ m̃/m̃2 of TIdHx verifies

TIdH◦
x = 〈λ1,0, . . . , λn,0〉.

Proof. A point g, g(xi) =
∑
α

λi,αxα of AutkA is a point of Hx if and only if g

stabilizes the ideal (x1, . . . , xn) of A; that is, if and only if λ1,0 = · · · = λn,0 = 0.
Hence, Hx is the subgroup of AutkA defined by the ideal (λ1,0, . . . , λn,0). The
conclusion follows easily.

Theorem 4.12. Hx is the unique flat and closed k-subgroup of Sε, up to conjuga-
tion, such that

(1) the quotient Sε/Hx exists (in the f.f.p.f. topology) and is isomorphic to Spec A;
(2) the natural morphism Sε → Sε/Hx has a section.

Proof. Hx verifies these conditions by 4.6.
Now, let H ′ be a flat and closed subgroup of Sε satisfying conditions (1) and (2).
a) Let us assume that k is a field. Remark that H ′ contains (Sε)red: The rational

point Id ·H ′ of Sε/H ′ ' Spec A is defined by a nilpotent ideal, then H ′, which is
the fibre of Id ·H ′ by the morphism Sε → Sε/H ′, is defined by a nilpotent ideal of
OSε . The conclusion follows.

If s is a section of the morphism Sε → Sε/H ′ = Spec A, then we have an
isomorphism Spec A × H ′ ' Sε ((x, h′) 7→ s(x) · h, where x is a point of Spec A
and h′ is a point of H ′).

Thus, via this isomorphism, the function x1 ∈ A = k[x1, .., xn]/(xpe1

1 , ..., xpen

n )
defines a function f ∈ OSε vanishing at H ′, so that its class f̄ ∈ m̃/m̃2 is an element
of exponent pe1 and belongs to the incident TIdH ′◦ of TIdH ′. Then, there exist
elements of exponent pe1 in TIdH ′◦. Note that the standard torus T ⊂ (Sε)red ⊂ H ′

acts on TIdH ′◦. Since T transforms elements of exponent m to elements of exponent
m and any T -module is a direct sum of submodules where T acts by means of
characters ([4], II 2, 2.5), there exists a T -line sub-bundle in TIdH ′◦ of exponent
pe1 . By 4.10, we may assume that λ1,0 ∈ TIdH ′◦.

Now, let g be a point of (Sε)red ⊂ H ′ defined by g(x1) = x1 +xi and g(xj) = xj ,
for any j 6= 1. Then

g ∗ λ1,0 = λ1,0 + λi,0 ∈ TIdH ′◦

Hence, we have λi,0 ∈ TIdH ′◦. Then TIdH ′◦ = 〈λ1,0, ..., λn,0〉 because dimk TIdH ′◦

= dimk T ∗Id Spec A = n. By Lemma 4.11 TIdHx
◦ = 〈λ1,0, . . . , λn,0〉. In conclusion,

TIdH ′◦ = TIdH◦
x and TIdH ′ = TIdHx . By 4.9, H ′ ⊆ Hx and, since both of them

are subgroups of Sε of the same index, we have H ′ = Hx.
b) Let assume that k is a ring. Let us see that T ⊂ H ′, after conjugation if

necessary.
Consider the action of T on Sε/H ′ by translations. There exists a decomposition

OSε/H′ = k⊕ I, where I is the direct sum of the T -modules where T acts by means
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of some non-trivial character, so that the product of two of these characters is
non-trivial (in particular, I is an ideal): It suffices to prove these statements on
fibres over k, then we may assume that k is a field. By a) Sε/H ′ coincides with
Sε/Hx = Spec A and we have that A = k ⊕m = k ⊕ (

⊕
k · xα), 0 < α < pe, where

the general point t = (t1, . . . , tn) of T verifies that t(xα) = tαxα.
Then, T fixes the point Spec k ↪→ Sε/H ′ defined by I, and T is included in a

conjugated group of H ′.
Let us now see that H ′ = Hx. Note that 〈λi,0〉 is the unique line sub-bundle of

m̃/m̃2 such that t∗λi,0 = tiλi,0, then TIdH◦
x ⊂ mId/m2

Id is the unique T -sub-bundle
of m̃/m̃2 such that on fibres over k is equal to 〈λ1,0, ..., λn,0〉 ⊂ m̃/m̃2. Therefore
TIdH ′◦ = TIdH◦

x . Again as in a) we have that H ′ ⊆ Hx. Since Sε/H ′ and Sε/Hx

are finite and flat schemes over k and the natural morphism Sε/H ′ → Sε/Hx is an
isomorphism on fibres over k we have that Sε/H ′ = Sε/Hx and H ′ = Hx.

Theorem 4.13. The k-group Sε is complete, i.e., the natural morphism defined by
conjugation

Sε −→ Autk−gr(Sε)

is an isomorphism of k-groups.

Proof. We have to prove that the natural morphism

S·ε −→ Autk−gr(Sε)·
is an isomorphism of sheaves for the f.p.p.f. topology.

The considered morphism is injective because Z(Sε) = {Id} (see 4.4).
Let us see that it is surjective.
Let τ be a point of Autk−gr(Sε). By 4.12, τ defines an automorphism of the

functor of isotropy subgroups of Sε. Now, this functor is isomorphic to the func-
tor of points of Spec A (see Remark after 4.7). We conclude that τ defines an
automorphism σ of Spec A. By definition, we have

τ(Hx) = Hσ(x),(∗)
and we have to prove that τ is the inner automorphism of Sε defined by σ.

Let g be a point of Sε = AutkA. For any point x of Spec A we clearly have

g ·Hx · g−1 = Hg(x).(∗∗)
Applying τ to this equality and using (∗) we obtain

τ(g) ·Hσ(x) · τ(g)−1 = Hσ(g(x))

and, by (∗∗), it follows that τ(g)(σ(x)) = σ(g(x)); that is, τ(g) ◦ σ = σ ◦ g and we
obtain that τ(g) = σ ◦ g ◦ σ−1.

5. The General Case

Let k be a Noetherian ring of prime characteristic p > 0 and let A be the trivial
k-algebra of type (m, ε)

A =
m∏

k[x1, . . . , xn]/(xpe1
, . . . , xpen

).

We denote by Sm,ε the automorphism scheme of A.
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5.1. Structure of the group Sm,ε. Let e = e1 be the greatest exponent of A. It
is obvious that Ape

=
∏m k is the maximal étale subalgebra of A.

Since p-th powers commute with base changes (because the morphisms Apn → A
are faithfully flat), there exists a restriction morphism

S·m,ε = (AutkA)· −→ (AutkApe

)· = S·m.

This morphism has an obvious section S·m ↪→ S·m,ε. On the other hand, the
kernel of the restriction morphism is just the sheaf

F (S) = {τ ∈ (AutkA)·(S) : τ(a⊗ 1) = a⊗ 1 for any a⊗ 1 ∈ Ape ⊗k OS}.
It is easy to verify that F =

∏m
S·ε, so that we obtain:

Proposition 5.1. There exists an isomorphism of k-groups

Sm,ε =

(
m∏

Sε

)
o Sm

where Sm acts on
∏m

Sε in the obvious way, permuting factors.

Corollary 5.2. When (m, ε) 6= (2, 0), we have

Z(Sm,ε) = {Id}.
Proof. Let us consider an abstract group G with more than one element. It is an
elementary exercise in group theory to verify that

Z

((
m∏

G

)
o Sm

)
= Z(G).

Therefore, if ε 6= 0, we have

Z(Sm,ε)
5.1= = Z

((
m∏

Sε

)
o Sm

)
= Z(Sε)

4.4={Id}.

If ε = 0, then Sm,ε = Sm and the conclusion follows because Z(Sm) = {Id}
when m 6= 2 (see Rotman [13], 7.4).

5.2. The group Sm,ε is complete. In this section we shall assume that Spec k is
connected.

Proposition 5.3. The group Sε is not a direct product of non-trivial subgroups.

Proof. (1) First we assume that k is a field.
Let us consider a decomposition Sε = G1 ×k G2 and let τ be the general point

of the standard torus T of Sε, so that

τ(xi) = tixi.

Then τ = g1 · g2 where g1, g2 are points of G1, G2 respectively. Since g1 and g2

commute, it follows that g1 and g2 commute with τ . It then follows that g1,g2 are
points of C(T ) 4.3= T and we have

g1(xi) = αixi, g2(xi) = βixi

where αi, βi are elements of the ring OT = k[t1, t−1
1 , . . . , tn, t−1

n ] such that αiβi = ti.
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For any index j, we consider the conjugate ḡ1 of g1 defined after a suitable base
change by

ḡ1(yi) = αiyi

where yi = xi when i 6= j and yj = xj + a, where a is a new variable that is
independent of ti satisfying apej = 0. The point ḡ1 belongs to G1 because it is a
conjugate of g1, hence it commutes with g2, so that

(ḡ1 · g2)(xj) = (g2 · ḡ1)(xj)

and we obtain

(αj − 1)(βj − 1) = 0.

Since OT is a domain, we conclude that αj = 1 (and βj = tj) or βj = 1 (and
αj = tj).

Assume that α1 = t1 (so that β1 = 1). For any index j 6= 1 we consider the
conjugate g′1 of g1 defined by

g′1(zi) = αizi

where z1 = x1 + xj , and zi = xi when i 6= 1. By the above argument, g′1 commutes
with g2, so that

(g′1 · g2)(x1) = (g2 · g′1)(x1)

and we obtain

t1 − αj = t1βj − tj .

Of the two possible cases (αj = tj , βj = 1) and (αj = 1, βj = tj), only the first one
satisfies the above condition. Therefore we obtain that g1 = τ . Since the general
point of T is a point of G1, it follows that T ⊂ G1. Now, G2 commutes with G1

and, in particular, it commutes with T . Hence G2 ⊂ C(T ) = T ⊂ G1 so that
G2 = {Id}.

(2) Now let k be a ring with connected spectrum.
If Sε = G1 ×k G2, then we denote by IGi the ideal defining the subgroup Gi in

Sε and we denote by mId the ideal defining the identity element Spec k ↪→ Sε. Let
us consider the finitely generated OSε-module mId/IGi . Note that mId/IGi = 0 ⇔
Gi = {Id}.

Considering the fibres of Sε → Spec k, the case (1) shows that

Sε = Sup(mId/IG1) ∪ Sup(mId/IG2),

∅ = Sup(mId/IG1) ∩ Sup(mId/IG2),

and we obtain that G1 = {Id} or G2 = {Id} because Sε is connected.

Corollary 5.4. Let ϕ :
∏m

Sε → Sε be a morphism of k-groups. If ϕ is surjective
(as a morphism of sheaves for the f.p.p.f. topology), then ϕ factors through the
natural projection onto some factor.

Proof. Let φ : G1 × · · · × Gm → G be a surjective morphism between abstract
groups and let φi denote the restriction of φ to the subgroup Gi. If G has a trivial
centre, it is easy to verify that

ker φ = ker φ1 × · · · × ker φm
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and this result may be readily generalized to the k-groups. Hence we have

ker ϕ = ker ϕ1 ×k · · · ×k ker ϕm

so that

Sε = (
m∏

Sε)/ker ϕ =
m∏

(Sε/ker ϕi).

According to 5.3 only one factor Sε/ker ϕi is 6= 0 and we may assume that
Sε/ker ϕ1 6= 0. Then ker ϕi = Sε for 2 ≤ i ≤ m, i.e.,

{Id} × Sε × · · · × Sε ⊂ ker ϕ

and ϕ :
∏

Sε → Sε factors through the projection onto the first factor.
This argument uses the existence of quotient groups Sε/ker ϕi, which follows

from this well-known result: If the product of a finite number of sheaves is repre-
sentable, then every factor is representable. Applying this result to the product∏

(Sε
·/ker ϕi

·) =
(∏

Sε
·) /ker ϕ· = Sε

·

we obtain the existence of a k-group Sε/ker ϕi representing the quotient sheaf
Sε
·/ker ϕi

·.
Corollary 5.5. We have

Autk−gr

(
m∏

Sε

)
=

(
m∏

Sε

)
o Sm.

Proof. Let τ be a point of Autk−gr (
∏m

Sε). Applying the above corollary, it is
easy to prove that τ permutes the factors of

∏m Sε. Therefore, composing τ with
a convenient permutation, we may assume that τ takes each factor of

∏m
Sε into

itself. The corollary follows, because Sε is complete (4.13).

Theorem 5.6. The k-group Sm,ε is complete, i.e., the natural morphism induced
by conjugation

Sm,ε −→ Autk−gr(Sm,ε)

is an isomorphism, except for the types (m = 2, ε = 0) and (m = 6, ε = 0).

Proof. If ε = 0, then Sm,ε = Sm and Hölder’s theorem proves this case.
Let us assume that ε 6= 0.
Let τ be an automorphism of Sm,ε

5.1= (
∏m

Sε)oSm. This automorphism induces
an automorphism of the connected component of the identity (Sm,ε)0 =

∏m Sε. By
5.5, composing τ with an inner automorphism we may assume that τ induces the
identity on

∏m
Sε. Let us verify that τ is the identity on Sm,ε, then the theorem

will follow.
It is enough to prove that τ is the identity on the subgroup Sm. First, it is

easy to characterize points of Sm as the only points of Sm,ε which coincide with a
permutation of the factors

∏m
Sε when acting by conjugation. Now, we consider

a point σ of Sm and (g1, . . . , gn) of
∏m

Sε. We have

σ · (g1, . . . , gn) · σ−1 = (gσ(1), . . . , gσ(n)).(∗)
Applying τ to this equality, we obtain

τ(σ) · (g1, . . . , gn) · τ(σ)−1 = (gσ(1), . . . , gσ(n))(∗∗)
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because τ acts on
∏m

Sε by the identity. From the above mentioned characterization
of Sm, it follows that τ(σ) is a point of Sm. Finally, comparing (∗) and (∗∗) we
obtain that τ(σ) = σ.

6. Final results

Theorem 6.1. Let k → K be a finite field extension. Then
(a) Z(AutkK) = {Id}, except for separable extensions of degree 2.
(b) AutkK is a complete k-group, i.e., the action by conjugation defines an iso-

morphism

AutkK −→ Autk−gr(AutkK)

except for separable extensions of degree 2 or 6.

Proof. After a base change, we may assume by 2.1 that K is the trivial k-algebra
of a certain type (m, ε). In that case, AutkK = Sm,ε and the conclusion follows
from 5.2 and 5.6.

Remark 6.2. The proof of the above theorem holds for any finite ring morphism
k → K of type (2, 0) in case (a) and of a type different from (2, 0) and (6, 0) in case
(b).

Lemma 6.3. Let K1 and K2 be two finite k-algebras of type (m, ε) and (m′, ε′)
respectively. If AutkK1 ' AutkK2, then (m, ε) = (m′, ε′).

Proof. We have to show that the type of any k-algebra K may be determined
from the group AutkK. After a base change we may assume that K is the trivial
k-algebra of a certain type (m, ε), so that AutkK = Sm,ε.

The integer m! (and therefore m) is determined by the degree of the quotient
Sm,ε/S0

m,ε (where S0
m,ε denotes the connected component of the identity in Sm,ε)

since, by 5.1,

Sm,ε/S0
m,ε = Sm,ε/(

m∏
Sε) = Sm.

To determine the sequence ε, first we note that (S0
m,ε)

Sm = (
∏m Sε)Sm = Sε.

Then we must prove that the sequence ε is determined by Sε. We denote by G(pr)

the pr-th power of G = Sε, i.e., G(pr) = SpecOpr

Sε
. A straightforward calculation

from the equations in 4.1 for Sε gives us the following formula:

rank Ω1
G(pr−1)/k

= rank Ω1
G(pr)/k ⇔ r 6= e1, . . . , en.

This formula shows that the sequence ε = (e1, . . . , en) is fully determined by the
group Sε.

Theorem 6.4. Let K1 and K2 be two finite k-algebras of a type different from
(2, 0) and (6, 0). Then

K1 ' K2 ⇔ AutkK1 ' AutkK2.

Proof. If AutkK1 ' AutkK2, by 6.3, both algebras have the same type, say (m, ε).
By definition, k-algebras of type (m, ε) are locally (in the sense of f.p.p.f. topology)
isomorphic to the k-algebra

A = k[x1, . . . .xn]/(xpe1

1 , . . . , xpen

n ).
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These k-algebras are classified by the first cohomology “group” of automorphisms
of A, i.e., by H1(k, S·m,ε) (see [6], 4, or [9], II 8.1).

On the other hand, both groups AutkK1 and AutkK2 are locally isomorphic
to Sm,ε. Moreover, k-groups locally isomorphic to Sm,ε are classified by the first
cohomology “group” H1(k, Autk−gr(Sm,ε)·).

By 5.6 we have S·m,ε = Autk−gr(Sm,ε)· and the conclusion follows.

Corollary 6.5. Let K1 and K2 be finite extensions of a field k, not being separable
extensions of degree 2 or 6. Then

K1 ' K2 ⇔ AutkK1 ' AutkK2.
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