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DECOMPOSITION THEOREMS FOR GROUPS OF
DIFFEOMORPHISMS IN THE SPHERE

R. DE LA LLAVE AND R. OBAYA

Abstract. We study the algebraic structure of several groups of differentiable
diffeomorphisms in Sn. We show that any given sufficiently smooth diffeomor-
phism can be written as the composition of a finite number of diffeomorphisms
which are symmetric under reflection, essentially one-dimensional and about
as differentiable as the given one.

1. Introduction

The goal of this paper is to prove several decomposition theorems for diffeomor-
phism groups.

These theorems, roughly, state that any element of the group can be written
as a finite product of elements lying in a smaller subgroup endowed with special
properties, such as symmetry.

In our case, the groups considered will be groups of differentiable diffeomor-
phisms of the sphere, and the subgroups into which we factor them will be groups
of diffeomorphisms that commute with reflections across a plane and which are
essentially one dimensional. The factors into which we can decompose a given map
will be slightly less differentiable than the original one. When we consider groups
of C∞ diffeomorphisms, the factors are also C∞.

There are several motivations for the study of theorems of this type. For example,
in [5] it is shown that a theorem of this type for the circle can be used to solve
the inverse problem for scattering of geodesic fields in surfaces of genus one. This
problem admits the following physical interpretation: The given diffeomorphism
of a circle can be thought of as the transformation to be effected by a lens to be
constructed; then, find the distribution of the refractive index that produces the
desired effect. The problem is such that if it is solved for two diffeomorphisms,
it is solved for their composition. Moreover, for symmetric mappings a simple
construction works. Hence, the decomposition theorem shows that it can be solved
for all mappings. For this application the loss of differentiability incurred in the
factorization does not essentially affect the conclusions.

We also note that these theorems are analogues of the usual factorization theo-
rems in Lie algebras, and they could be useful in the problem of computing repre-
sentations of diffeomorphism groups [1].

If we consider these theorems as infinite dimensional versions of factorization
theorems for Lie groups, one first difficulty is that for diffeomorphism groups, the
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corresponding Lie algebra – the Lie algebra of vector fields – is considerably worse
behaved than those of finite dimensional Lie groups. For example, the exponential
is not surjective in any neighborhood of the identity. Hence, it is not possible to
apply the usual implicit function theorem in Banach spaces to obtain results in a
small enough neighborhood of the origin using the “infinitesimal results” obtained
from the Lie algebra. Nevertheless, we will show that it is possible to obtain results
similar to those in the finite dimensional case by using appropriate “hard” implicit
function theorems of the Nash–Moser type. However, one needs to reformulate
the problem so that it has some group structure (in the sense of Zehnder [10]).
This requires some assumptions on the structure of the manifold. (Of course, the
existence of the reflections is included in the assumptions.) Manifolds that satisfy
this assumptions are tori [6], and in this paper we we will show that it also works
for spheres. Presumably other manifolds could be included (certainly products of
spheres and tori), but we have not pursued this matter.

In our proof we prove the theorem by induction on the dimension. The construc-
tion is somewhat delicate, since we want to obtain a loss of differentiability that
is independent of the dimension, in spite of the fact that the number of inductive
steps has to grow with the dimension.
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Langer and F. Bien discussing the implications of these theorems were very useful
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3. Decomposition theorem for spheres.

3.1. Notation and statement of results. We start this section by recalling some
known results which show how to endow certain function spaces on compact sets
with a differentiable manifold structure, necessarily of infinite dimension.

If l is an integer and Ω is a compact set in Rd, we will say that f : Ω → R is
Cl if it has continuous derivatives of order l. We will denote by Cl(Ω) the space of
Cl functions in Ω endowed with the norm ‖ ‖Cl(Ω) defined as the supremum of the
derivatives of order up to l. It is well known that Cl(Ω) is a Banach space.

If l is not an integer, we define, as usual,

‖f‖Cl(Ω) = max(sup
x 6=y

‖Dlf(x)−Dlf(y)‖/|x− y|l−[l], ‖f‖C[l](Ω)).(1)

To cover Lipschitz conditions as well, we introduce the notation l− = (l− 1) + 1−.
In this notation, 1− will be bigger than any number in [0, 1) but smaller than 1.

These notions of regularity can be lifted to geometric objects that can be ex-
pressed in coordinates by saying that an object is Cl if we can find coordinate
patches that cover the manifold on which the expression is Cl.

Furthermore, if we fix a set of coordinate patches that cover the manifold, we can
talk about the Cl distance between two objects by declaring it to be the maximum of
the Cl distance between the coordinate expressions. A moment’s reflection will show
that the statement that a geometric object is Cl is independent of the coordinate
patches chosen (that is, if the coordinate expressions in one patch are Cl, then they
are Cl in all others).
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Unfortunately, the Cl distances do depend on the patch. Even if it is easy to
show that the distances obtained using two patches are equivalent, they do differ,
and some statements (such as that certain operators acting on Cl functions are
contractions) require specific choices of coordinate patches. When l is an integer,
there is a geometrically natural notion of Cl distance in Riemannian geometry based
on the notion of jets. (See e.g. [3], Ch. 2.) For non-integer l, since the definition of
Hölder distance (1) requires comparing the values at different points, there are no
geometrically natural notions of Cl distance. For our purposes, the dependence on
a coordinate patch is not a shortcoming, since many analytical operations that we
will need to perform require taking coordinates anyway, and we will always take a
fixed coordinate system.

We will denote by Diff l(M,N), the set of diffeomorphisms ofM intoN , and when
M = N we will simply write Diff l(N). When l ≥ 1 is finite, these sets can be given
the structure of Banach manifolds as follows. Using charts, we can define a norm on
the space of Cl vector fields on N that makes it a Banach space. Given a diffeomor-
phism f ∈ Diff l(M,N) and a Cl vector field v, the map Exp(f, v) : M → N defined
by Exp(f, v)(x) = expf(x) v(f(x)) – where exp denotes the Riemannian geometry
exponential associated to a C∞ metric – is a Cl mapping. The implicit function
theorem shows that for sufficiently small v, this mapping is also a diffeomorphism
and, moreover, any diffeomorphism in a Cl neighborhood of f can be written in
this way. If l < 1, we cannot apply the implicit function theorem to conclude that
Exp(f, v) is a diffeomorphism; nevertheless, it is possible to show that Exp covers
a neighborhood of f in the space of Cl mappings. (A similar argument shows that
Diff∞(M) is a Fréchet manifold.)

In Diff l(M) it is natural to define the group operation of composition. This set
is a topological group for integer exponents; this is the reason we formulate the
statements in this paper only for this case. Unfortunately, when l is not an inte-
ger, this operation will be discontinuous. Moreover, when l is an integer, even if
composition is continuous, it will not be differentiable. For properties of the com-
position operator on Hölder spaces we refer to [7], where there is a very systematic
treatment of these properties.

We will also consider families of diffeomorphisms depending of a parameter. We
will denote the parameters by subindices. We will say that fλ is a Cl family of
diffeomorphisms when for every fixed λ ∈ Λ, where Λ ⊂ Rm is an open set or
a compact manifold, the map x → fλ(x) is a Cl diffeomorphism and, moreover,
(λ, x) → fλ(x) is also Cl.

The composition of diffeomorphisms can be extended in a natural way to families.
We denote by gλ ◦ fλ the family (λ, x) → g(λ, fλ(x)). The notation fλ is somewhat
ambiguous, since it denotes at the same time the family and the mapping for a
concrete value of λ. The notation is, however, standard, and does not lead to
confusion.

Remark. It is also possible to think of families as mappings from Λ×M to Λ×N
such that the first variable remains unaltered. This point of view makes it clear that
many results about composition proved for Cl mappings are true for Cl families.

Notice that the map Λ → Cl(M,N) defined by λ → fλ is only C0. There are
many C0 mappings Λ → Cl(M,N) which are not Cl families.

From now on, the manifold under consideration will be the n-dimensional sphere
Sn. We take its standard embedding in Euclidean space:
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Sn =

{
x = (x1, · · · , xn+1) ∈ Rn+1

∣∣ n+1∑
i=1

x2
i = 1

}
.

If x is a point in Sn, we will denote by Πx the hyperplane passing through the
origin and consisting of vectors orthogonal to x, and by Mx,y the one-dimensional
maximum circle going from x to −x and passing through the point y ∈ Sn−{x,−x}.
We will refer to those sets as meridians . We will also represent by Px,γ , −1 ≤ γ ≤ 1,
the subsets of Sn whose points have a constant projection γ along the line joining
the origin and the point x. The sets of these form will be referred to as parallels.
Finally, we denote by δx the reflection across the plane Πx.

We call attention to the fact that, with our notation, meridians are always one-
dimensional, but parallels in Sn are copies of Sn−1. Outside a neighborhood of
the poles {x,−x}, meridians Mx,y and parallels Px,γ constitute two transversal
foliations.

We will denote by Diff l
0(S

n) the connected component of the identity of Diff l(Sn)
and by Syml

x the subset of Diffl(Sn) commuting with δx. The symbol Syml
x,0 will

stand for the connected component of Syml
x containing the identity.

Next we study the algebraic structure of the group of diffeomorphisms in Sn.
The main theorem in this paper is

Theorem 3.1. Let n ∈ N, n ≥ 2. For any l ∈ N ∪ {∞}, l ≥ 7, we can find points
y1, . . . , y(n+1)2 such that any f ∈ Diff l

0(Sn) can be written as f = f1 ◦ · · · ◦ fN ,
where each fi ∈ Syml−2

yj ,0 for some j = 1, . . . , (n+1)2. (The number N may depend
on f .)

For n = 1, there exist points y1, y2 such that any f ∈ Diff l
0(S

1) can be written
as f = f1 ◦ · · · ◦ fN with each fi ∈ Syml−2

yj ,0 for some j = 1, 2. This theorem was
proved in [5] for l = ∞. A different proof, valid in classes of finitely differentiable
functions, was given in [6], where an analogue result for Tn was also proved.

We also remark that, as a corollary of the proof of Theorem 3.1, we will obtain
that the diffeomorphisms appearing as factors can be identified with families of
diffeomorphisms of the circle.

3.2. Proof of Theorem 3.1. The idea of the proof can be understood visually
in the case of S2 imbedded in R3, and we will describe it informally in the next
paragraphs. A more formal description in any number of dimensions will follow.

Since the two dimensional sphere is a familiar object, we will use geographical
terms to describe it.

First, we note that, since all the diffeomorphisms in the connected component
of the identity can be expressed as a finite product of diffeomorphisms in a neigh-
borhood, it suffices to prove the result in any neighborhood of the identity. We will
assume that it is sufficiently small that we can apply the implicit function theorem
at certain places of the proof that we will detail below.

Second, we observe that the diffeomorphisms in such neighborhood can be ex-
pressed as the composition of a diffeomorphism that agrees with the identity in
a neighborhood of the north-south poles and another one that agrees with the
identity in neighborhoods around antipodal points of the equator (this is called a
fragmentation lemma). Since these two situations are equivalent under a rotation,
it suffices to consider the situation where a neighborhood of the poles is kept fixed.
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Third, we note that, by the implicit function theorem, a diffeomorphism like the
above can be decomposed into a diffeomorphism that preserves the meridians and
another one that preserves the parallels.

We will show that, indeed, the diffeomorphism that moves along the meridians
can be factored in the desired way. (This will require the hard implicit function
theorem.)

For the diffeomorphism that preserves the parallels and agrees with the identity
in neighborhoods of the poles, we note that we can think of it as a family of
diffeomorphisms of the circle parametrized by the latitude, and that, provided we
can prove a decomposition theorem for diffeomorphisms of the circle with fixed
planes and with smooth dependence on parameters, the factors can again be thought
of as diffeomorphisms of the sphere. This result of factorization with dependence
on parameters of families of maps of the circle will follow from our results, but was
also stated and proved in [6].

For higher dimensions the argument is very similar. The fragmentation will
require more pairs of antipodal points, and the step described above reduces the
problem to a problem of families of diffeomorphisms on the spheres of one dimension
less. (The parallels are spheres of one dimension less than the original sphere.) The
case of one dimension is already done. Lemmas 3.2, 3.3 and 3.4 will implement the
fragmentation, decomposition of diffeomorphisms into diffeomorphisms preserving
parallels and meridians and the decomposition of those preserving meridians. The
latter one, Lemma 3.4, will require the use of hard implicit function theorems.

Now, we turn to a precise implementation of the above sketch.
As noted, it suffices to prove the result in an arbitrary small neighborhood of

the identity in the Cl-topology. In effect, given any open neighborhood U of the
identity, any diffeomorphism in the connected component of the identity can be
written as the composition of a finite number of diffeomorphisms in U .

We will establish the local theorem for families of diffeomorphisms by induction
on the dimension. We introduce in the inductive argument that the map F , con-
structed in the proof, which assigns to each family of diffeomorphisms fλ ∈ U the
factors fλ,i, i = 1, . . . , N , in a neighborhood of the identity in the Cl−2 topology,
is continuous, and that for each value of the parameter λ ∈ Λ with fλ = Id, one
obtains factors fλ,i = Id for every i = 1, . . . , N . This result for the one dimensional
case is stated explicitly in [6]

In the statement of the theorem the points y1, . . . , y(n+1)2 are left to our choice.
We fix a real number ρ and take those y = (yk) of Sn whose components are defined
by one of the following conditions:

• there is 1 ≤ i ≤ n+ 1 such that yi = 1 and yk = 0 for k 6= i, or
• there are 1 ≤ i, j ≤ n+ 1 such that yi = cos ρ, yj = sin ρ and yk = 0 for
k 6= i, j.

(However, it will be clear that an more careful selection of these points would allow
us to reduce their number. We have not bothered with this issue.)

The choices of the angle of separation ρ that are convenient for the method of
proof are those satisfying the so-called Diophantine conditions,∣∣∣ρ− p

q

∣∣∣−1

≤ Cq2+δ(2)

for all pairs of integers p, q with q > 0.
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It is well known that for δ > 0, the numbers satisfying such inequalities have
full Lebesgue measure. For δ = 0, the set of numbers satisfying these inequalities
is called the set of constant type numbers. Moreover, relation (2) with δ = 0
is equivalent to ρ having a bounded continued fraction expansion. All irrational
numbers that satisfy a quadratic equation with integer coefficients are of constant
type; in particular, constant type numbers are dense.

Even if all Diophantine ρ’s would lead to a theorem of the type we want and, for
δ small, with the conditions of differentiability required in the statement, constant
type numbers will lead to the sharpest differentiability conclusions. From now on
we will assume we have chosen a constant type number. The actual choice of a
constant type number will affect the sizes of the neighborhoods where the local
theorem holds, but not the differentiability conclusions.

In order to apply the induction process, we will decompose diffeomorphisms of
Sn in a neighborhood of Id into factors with the same order of differentiability
that preserve lower dimensional spheres. We will start by proving a parametrized
version of the well known fragmentation lemma.

Lemma 3.2. Let M be a compact manifold, and {Ki}n
i=1 be a collection of compact

subsets of M such that
n⋂

i=1

Ki = ∅ .

Then, for each l ∈ N ∪ {∞} we can find a neighborhood U of the identity in the
space of Cl families of diffeomorphisms, and a map F0 that, to each family fλ in
U , associates Cl families f1

λ, · · · , fn
λ , satisfying

i) fλ = f1
λ ◦ · · · ◦ fn

λ ,
ii) f i

λ|Ki = Id ,
iii) if for some x ∈ M and λ ∈ Λ one has fλ(x) = x, then f i

λ(x) = x for every
i = 1, . . . , n.

The mapping F0 is continuous when we give its domain and its range the topology
of Cl families.

Proof. We will assume that U is small enough so that fλ(x) is within the injectivity
radius of the exponential. We will also need to know that some intermediate steps
in our construction lie in this domain. Since these are a finite number of conditions,
it will be easy to check that they are satisfied for a non-trivial neighborhood.

Suppose first n = 2; then we can find a C∞-function φ such that

φ|K1 ≡ 1 , φ|K2 ≡ 0 .

If fλ can be represented as the exponential of the vector field Fλ = Exp−1(fλ),
then gλ = Exp(φFλ) restricted to K2 is the identity. Moreover, since fλ(x) = x ⇔
Exp−1(fλ)(x) = 0, the set of fixed points of gλ is bigger than that of fλ. Provided
that fλ is sufficiently close to the identity – which depends only on the K’s and φ
– we have gλ|K1 = fλ and f2

λ|K2 = Id .
Hence, setting f1

λ = fλ ◦ (gλ)−1, the claims of the lemma are satisfied. Since
the choice of φ depends only on the compacts K1 and K2, the continuity follows.
Notice that the previous argument works even when one of the compacts is the
empty set.
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To prove the general case, we will proceed by induction in n, the number of
compact sets, starting from the already verified case n = 2. We will assume that
the conclusion is true for n ≤ n0, n0 ≥ 2, and will check it for n = n0 + 1 .

If K1, . . . , Kn0+1 are compact sets with empty intersection, we can find open sets
V1, . . . , Vn0+1 such that Ki ⊂ Vi and

⋂n0+1
i=1 V i = ∅ .

Set L0 =
⋂n0

i=1 V i and Ln0+1 = Kn0+1. Since L0 ∩ Ln0+1 = ∅, we apply the
previous result with n0 = 2 to obtain families f0

λ, fn0+1
λ which are the identity

on L0, Ln0+1 respectively, and with not fewer fixed points than fλ, such that
fλ = f0

λ ◦ fn0+1
λ .

We can now consider the compact sets Li = Ki −
⋂n0

i=1 Vi . They have empty
intersection because

⋂n0
i=1Ki ⊂

⋂n0
i=1 Vi , so we can apply the induction hypothesis

to f0
λ to write f0

λ = f1
λ ◦ · · · ◦ fn0

λ . Each one of the f i
λ will be the identity on

a neighborhood of Kn0+1. This gives us the representation fλ = f1
λ ◦ · · · ◦ fn0+1

λ

satisfying all the conditions of the statement.
The continuity of F0 is also a consequence of the induction process.
We emphasize that, since, properties i)-iii) do not determine F0 uniquely, the

claim of continuity refers only to the one constructed above.

In the next lemma, we show how diffeomorphisms can be factored into simpler
maps that conserve the parallels and the meridians, which are in essence diffeomor-
phisms of Sn−1 and S1 respectively. We will henceforth refer to diffeomorphisms
and families that preserve the parallels as horizontal and those that preserve the
meridians as vertical.

Lemma 3.3. Let x0 be a point in Sn, −x0 the antipodal point, and U , U ′ two open
neighborhoods around x0, −x0 respectively. Then, for every l ∈ N ∪ {∞}, we can
find a neighborhood U of the identity in the space of Cl families of diffeomorphisms
in such a way that, for any family fλ in U with fλ|U = Id, fλ|U ′ = Id, there exist
Cl families fh

λ , fv
λ satisfying:

i) fλ = fh
λ ◦ fv

λ ,
ii) fv

λ Mx0,x = Mx0,x for all x ∈ Sn − {x0,−x0},
iii) fh

λPx,γ = Px,γ for all γ ∈ [−1, 1] ,
iv) if for some x ∈ Sn and λ ∈ Λ one has fλ(x) = x, then fh

λ (x) = fv
λ(x) = x.

In particular, fh
λ |U∪U ′ = fv

λ |U∪U ′ = Id.
Moreover, if we restrict fh

λ , fv
λ to be in a neighborhood of the identity, they are

unique, and the mapping F1 that assigns to each fλ the pair fh
λ , fv

λ is continuous
when we give its domain and its range the topology of Cl families.

Proof. For any x ∈ Sn − {x0,−x0}, we represent by γ(x) the projection of x along
the line joining the origin and the point x0. Obviously, we should set fv

λ(x) to be
the point in the meridian of x and on the parallel of fλ(x). Then, fh

λ would move
along the parallels so as to get to fλ(x).

More formally, using the notation for parallels and meridians introduced in the
previous section, we have

fv
λ(x) = Mx0,x ∩ Px0,γ(fλ(x)),

fh
λ (x) = Mx0,fλ((fv

λ)−1(x)) ∩ Px0,γ(x).

Thanks to the uniform transversality of the meridian and parallel foliations outside
a neighborhood of the poles, the usual implicit function theorem establishes that
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fv
λ(x) and fh

λ (x) depend jointly Cl on x and on the parameter λ, and consequently,
they are Cl families of diffeomorphisms.

The induction on the dimension to prove Theorem 3.1 will proceed as follows.
For 0 < ε < 1, we will consider the sets Kε

i = {x ∈ Sn | |xi| ≤ ε}. It is obvious that⋂n
i=1K

ε
i = ∅ when ε is sufficiently small.

Lemma 3.2 will allow us to write any diffeomorphism f as a composition of
diffeomorphisms fi, 1 ≤ i ≤ n+ 1, each of which is the identity restricted to Kε

i .
From now on we consider the case i = 1; it is clear that the same arguments could
be applied to the rest of diffeomorphisms fi, i = 2, · · · , n+ 1.

Furthermore, for f1 we will pick a polar axis going through the points x± =
(0, . . . ,±1), and using Lemma 3.3 we will write f1 = fh ◦ fv, as a composition of
a horizontal and a vertical diffeomorphism. If f1 is sufficiently close to the identity
then fh, fv would be the identity in Kε

1 . We will apply the induction hypothesis
to fh and will show how to factor fv.

To apply the induction hypothesis, we will think of f = fh as a family of maps
sending Sn−1 into Sn−1, the parameter being the latitude of the parallel. That is,
the map will be fh(p, γ) = (f̃γ(p), γ), where f̃γ is a diffeomorphism of Sn−1 for
every γ ∈ [−1, 1]. Moreover, we have f̃γ = Id on Sn−1 when γ is close enough to
−1 or 1. Notice how we are led to consider families of diffeomorphisms even if we
start with a single one. With hindsight, this is the reason why we have formulated
the inductive hypothesis and the statements of the paper in terms of families.

We obtain f̃γ = f̃γ,1 ◦ · · · ◦ f̃γ,N ′ as a composition of Cl−2 families of diffeomor-
phisms of Sn−1. For each i = 1, . . . , N ′ there exists j ∈ {1, . . . , n2} (or j ∈ {1, 2}
when n = 2) such that f̃γ,i ◦ δyj = δyj ◦ f̃γ,i on Sn−1 for all the values of γ. Since
the induction includes in its conclusions that the factors f̃γ,i depend smoothly on
the latitude and preserve the identity in a neighborhood of the poles, we conclude
that these factors are really diffeomorphisms in Sn commuting with reflections.
Clearly, the above arguments apply without any change to families of horizontal
diffeomorphisms.

We now proceed to establish the factorization of fv into symmetric diffeomor-
phisms. In keeping with the above remarks, we also can take the latitude as a
periodic variable and consider the parameters in a set Λ. Since, as we have argued
before, on the boundaries of the set the diffeomorphisms become the identity, we
can easily extend and consider Λ = Tm−2. Note that, as we need to apply the in-
ductive procedure more times, the number of parameters will keep changing. (The
reason we denote our parameter space by Tm−2 is that, later, we will combine it
with variables in T2; hence, the combined space will be Tm.

Lemma 3.4. For an l ∈ N∪{∞}, l ≥ 7, we can find two points y1, y2 in the sphere
and a neighborhood U of the identity in the space of Cl families of diffeomorphisms
such that, for every family fv

λ ∈ U with
(h.1) fv

λ Mx+,x = Mx+,x ∀ x ∈ Sn − {x±},
(h.2) fv

λ |Kε
1

= Id,

there exist two Cl−2 families fv,1
λ , fv,2

λ in a neighborhood of the identity, satisfying

i) fv,1
λ Mx+,x = fv,2

λ Mx+,x = Mx+,x ∀ x ∈ Sn − {x±},
ii) fv,1

λ ◦ δy1 = δy1 ◦ fv,1
λ and fv,2

λ ◦ δy2 = δy2 ◦ fv,2
λ ,

iii) fv
λ = fv,1

λ ◦ fv,2
λ ,
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iv) If fv
λ = Id for some λ, then fv,1

λ = fv,2
λ = Id.

Besides, the map F2 which assigns to fv
λ the factors fv,1

λ and fv,2
λ is continuous for

the Cl-topology in its domain and the Cl−2-topology in its range.

We remark again that, since the pair fv,1
λ , fv,2

λ is not uniquely determined (even
when y1, y2 are fixed), the conclusions of continuity in the statement are valid only
for the map F2 constructed below.

Proof. We will take polar coordinates in Sn −Kε
1 defined by

xn+1 = cosπϕ,
xn = sinπϕ cosπω1,

xn−1 = sinπϕ sinπω1 cosπω2,
...

...
x3 = sinπϕ sinπω1 · · · cosπωn−2,
x2 = sinπϕ sinπω1 · · · sinπωn−2 cos 2πθ,
x1 = sinπϕ sinπω1 · · · sinπωn−2 sin 2πθ,

for ϕ, ω1 , . . . , ωn−2, θ ∈ (0, 1).
Notice that if |x1| ≥ ε, then |xn+1|2 ≤ 1−ε2, so that ϕ is defined univocally, and,

since |xn|2 + |xn+1|2 ≤ 1 − ε2, ω1 is outside of the critical values of sin; this same
argument is applicable to ω2 . . . ωn−2. In others words, this polar coordinate system
defines a smooth transformation Ψ which identifies Sn−Kε

1 with an open subset V
of Tn. Let δ be a small positive real number and Vδ = (δ, 1− δ)n−1 × [0, 1] ⊂ Tn.
Then Uδ = Ψ−1(Vδ) is an open subset of Sn which contains Sn − Kε, where the
above coordinate system still works. In particular, the images by the map Ψ−1 of
the points of the plane θ = 0 lie in Kε

1 . It is clear that every diffeomorphism f of
Sn with f |Kε

1
= Id can be extended by the identity to a diffeomorphism of Tn.

We observe that, when we express the family fv
λ of vertical diffeomorphisms of

Sn in these coordinates, the value of ϕ changes but the others coordinates remain
unaltered. Therefore, a reflection across the plane Πy1 with y1 = (1, . . . , 0) is
expressed as a change in sign for the θ coordinate while all the others remain
fixed. More generally, a reflection across Πy2 with y2 = (cos ρ, sin ρ, . . . , 0) can be
expressed in the coordinates (3.2) by sending θ into 2ρ− θ and leaving all the other
variables unchanged.

If we take coordinates (ϕ, ω, θ), the family fv
λ will be written as

(ϕ, ω, θ) → (ϕ+ vλ(ϕ, ω, θ), ω, θ),

and we will look for fv,1
λ fv,2

λ that can be written as

(ϕ, ω, θ) → (ϕ+ vi
λ(ϕ, ω, θ), ω, θ)

with
lv1

λ(ϕ, ω, θ) = v1
λ(ϕ, ω,−θ),

v2
λ(ϕ, ω, θ) = v2

λ(ϕ, ω,−θ + 2ρ).
(3)

The equation that v1
λ and v2

λ have to solve is, as a straightforward calculation shows,

vλ(ϕ, ω, θ) = v1
λ(ϕ+ v2

λ(ϕ, ω, θ), ω, θ) + v2
λ(ϕ, ω, θ).(4)

Notice that there is an open set of values of ω for which all the points correspond-
ing to (ϕ, ω, θ) are in Kε

1 ; hence vλ(ϕ, ω, θ) = 0. For these values of w, equation
(4) admits the trivial solution v1

λ(ϕ, ω, θ) = v2
λ(ϕ, ω, θ) = 0. Once Lemma 3.4 is
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established, its assertion iv) would imply that fv,1
λ = Id, fv,2

λ = Id for the points
in the sphere satisfying this condition. (We will show a similar behavior in the
variable ϕ).

Clearly, the solutions of (4) can be extended by the identity to all the points of
the sphere in Kε

1 , even those for which our coordinate system does not work. Under
conditions of proximity to the identity of fv

λ , fv,1
λ , fv,2

λ , these will be solutions of
our original problem.

Since, except for these considerations, ω does not enter either in (4) or in (3),
we can think of ω as parameters, and we will henceforth use only the symbol λ to
denote all the parameters, both the external ones and the ones that correspond to
the latitude.

We will carry out the proof of the proposition considering the family (fv
λ) as

a vertical diffeomorphism in Tm, where we will solve the functional equation (4).
Finally, we will show that the factors obtained are in fact diffeomorphism of Sn.

Proceeding heuristically for the moment, the importance of the Diophantine
condition already imposed on ρ becomes apparent if we consider the linearized
equations obtained by expanding (4) formally in the unknowns and keeping only
the linear terms. We obtain

vλ(ϕ, θ) = v1
λ(ϕ, θ) + v2

λ(ϕ, θ).(5)

By expanding vλ, v
1
λ, and v2

λ in Fourier coefficients in the variable θ, vλ(ϕ, θ) =∑
k v̂λ,k(ϕ)e2πikθ and vj

λ(ϕ, θ) =
∑

k v̂
j
λ,k(ϕ)e2πikθ for j = 1, 2, we see that (5) is

equivalent to

v̂λ,k(ϕ) = v̂1
λ,k(ϕ) + v̂2

λ,k(ϕ).(6)

Similarly, the symmetry conditions for v1
λ, v2

λ can be expressed as

v̂1
λ,−k(ϕ) = v̂1

λ,k(ϕ), v̂2
λ,−k(ϕ)e4πiρ = v̂2

λ,k(ϕ).(7)

When k 6= 0, we can group the equations for k, −k in (6), and, using (7), we obtain

v̂λ,k(ϕ) = v̂1
λ,k(ϕ) + v̂2

λ,k(ϕ), v̂λ,−k(ϕ) = v̂1
λ,k(ϕ) + v̂2

λ,k(ϕ)e−4πiρ.

These equations admit the solutions

v̂1
λ,k(ϕ) = (v̂λ,k(ϕ)e−4πiρk − v̂λ,−k(ϕ))/(e−4πiρk − 1),
v̂2

λ,k(ϕ) = (v̂λ,−k(ϕ) − v̂λ,k(ϕ))/(e−4πiρk − 1).(8)

When k = 0, there are many solutions. Since vλ(ϕ, 0) = 0 for every λ, ϕ ∈ Tm−1,
we choose

v̂1
λ,0(ϕ) = −

∑
k 6=0

v̂1
λ,k(ϕ), v̂2

λ,0(ϕ) = −
∑
k 6=0

v̂2
λ,k(ϕ),(9)

which yields v1(ϕ, 0) = v2(ϕ, 0) = 0 for every ϕ ∈ Tm.
In addition, if ϕ ∈ T with | sin(πϕ)| < ε, then vλ(ϕ, θ) = 0 for every θ ∈ T;

hence their Fourier coefficients are v̂λ,k(ϕ) = 0 for every k. From (8) and (9) we
deduce that v1

λ(ϕ, θ) = v2
λ(ϕ, θ) = 0 for all θ.

Notice that, if ρ were rational, the denominators in (8) would become zero;
that is, there would be no solution for the equation. Even if ρ is irrational, the
denominators would become arbitrarily close to zero. Nevertheless, if ρ is a number
of constant type, we have the bounds

|(e−2πikρ − 1)−1| ≤ C′|k|(10)



DECOMPOSITION THEOREMS FOR DIFFEOMORPHISM GROUPS 1015

which allow us to control the new Fourier expansions.
If we think of (4) as an equation in spaces of functions, expression (5) would

be the derivative – in some sense that will have to be specified – at zero. The
calculation shows that the derivative, even if invertible, is not bounded; hence, the
usual implicit function theorem in Banach spaces does not apply.

We also emphasize that the above calculation shows only the existence of the
inverse of the derivative at zero. If we had started making perturbations around
non-zero v1

λ and v2
λ, we would have been lead to an equation that cannot be readily

analyzed in terms of Fourier components.
The above heuristic discussion suggests that, among the several hard implicit

function theorems which can cope with unbounded inverses, the one that will be
useful for this problem is that of Zehnder [10], which requires existence of an inverse
only at one point, but which also requires a group structure for the equation. We
continue the proof by recalling Zehnder’s theorem, which we have taken from [10]
in the version we are going to apply.

Definition 3.5. We say that (Xα)α≥0 is a family of regular spaces when Xα are
real Banach spaces with norm ‖ ‖α and, whenever for α′ ≤ α we have

X0 ⊃ Xα′ ⊃ Xα ⊇ X∞ =
⋂
α≥0

Xα,

then

‖x‖α′ ≤ ‖x‖α ∀x ∈ Xα.

Furthermore, it is possible to define on them a C∞-regularization, that is, a family
(St)t>0 of linear mappings St : X0 → X∞ and constants C(α, α′) satisfying:

i) lim
t→∞‖Stx− x‖0 = 0 ∀x ∈ X0,

ii) ‖Stx‖α ≤ tα−α′C(α, α′)‖x‖α′ ∀x ∈ Xα′ , 0 ≤ α′ ≤ α,

iii) ‖Stx− x‖α′ ≤ tα
′−αC(α, α′)‖x‖α ∀x ∈ Xα, 0 ≤ α′ ≤ α.

Notice that X∞ is dense in X0 but not necessarily in Xα for 0 < α; besides,
the closure of X∞ in Xα contains Xα′ for every α < α′. We now consider several
families of regular spaces and denote by the same symbol their norms, which are
probably different. However, this notation is standard and clear.

Theorem 3.6. Let (Xα)α≥0, (Yα)α≥0, (Zα)α≥0 be families of regular spaces, and
let (x0, y0) ∈ X∞ × Y∞.

Take F : X0 × Y0 → Z0 with F (x0, y0) = 0 and continuous restriction on
the set B0. (For any α, we will write Bα = {(x, y) ∈ Xα × Yα

∣∣ ‖x − x0‖α <
1/2 , ‖y − y0‖α < 1/2}.)

Assume that the following conditions are satisfied
(h.1) F (x, ·) : Y0 → Z0 is twice differentiable and

‖d2F (x, y)‖ ≤M0 , ‖d2
2F (x, y)‖ ≤M0 ∀ x, y ∈ B0 .

(h.2) F is uniformly Lipschitz in X0. That is, for all (x, y) ∈ B0, (x′, y) ∈ B0,

‖F (x, y)− F (x′, y)‖0 ≤M0‖x− x′‖0 .
(h.3) The triple (F, x0, y0) is of order ∞. That is,

(h.3.1) F (B0 ∩Xα × Yα) ⊂ Zα, 0 ≤ α,
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(h.3.2) there exist constants Mα, 1 ≤ α, such that if (x, y) ∈ Xα × Yα ∩ B1

satisfies ‖x− x0‖α ≤ K, ‖y − y0‖α ≤ K, then ‖F (x, y)‖α ≤ KMα.
(h.4) There exists an approximate right-inverse of loss σ, 1 ≤ σ. That is, for

every α ≥ σ and (x, y) ∈ Bσ ∩ (Xα × Yα) there exist a linear mapping
η(x, y) ∈ L(Zα, Yα−σ) such that:
(h.4.1) ‖η(x, y)z‖0 ≤M0‖z‖σ for all z ∈ Zσ,
(h.4.2) ‖d2F (x, y) ◦ η(x, y)− 1)z‖0 ≤M0‖F (x, y)‖σ ‖z‖σ for all z ∈ Zσ,
(h.4.3) if ‖x − x0‖α ≤ K, ‖y − y0‖α ≤ K, then ‖η(x, y)(F (x, y))‖α−σ ≤

KMα.
Then, if ε is a small positive number and λ = 2σ + ε, we can find an open

neighborhood Dλ = {x ∈ Xλ

∣∣ ‖x− x0‖λ < Cλ} and a mapping ψ : Dλ → Yσ such
that

i) F (x, ψ(x)) = 0,
ii) ‖ψ(x)− y0‖σ ≤ C−1

λ ‖x− x0‖λ,
iii) there exist 0 < β < 1 and constants Cτ for λ < τ , such that for every

x ∈ Dλ ∩Xτ one has ψ(x) ∈ Yβ(τ−1) and ‖ψ(x)− y0‖β(τ−1) ≤ Cτ‖x− x0‖β
τ .

In particular, ψ(Dλ ∩X∞) ⊂ Y∞. Moreover, if η(x, y) depends continuously on
(x, y), then the mapping ψ : Dλ → Yσ is continuous.

We next specify the spaces and functional to which the implicit function theorem
will be applied to yield the main result. For each µ ∈ T, we denote by Cr

µ(Tm) the
set of functions v of Cr(Tm) satisfying

vλ(ϕ, θ) = vλ(ϕ,−θ + 2µ), ∀ (λ, ϕ, θ) ∈ Tm .

Let us fix l ∈ N, l ≥ 7, and take

Xα = Zα =
{
v ∈ Cl−7+α(Tm)

∣∣ vλ(ϕ, 0) = 0 ∀ (λ, ϕ) ∈ Tm−1
}

and

Yα =
{
(v1, v2) ∈ Cl−5+α

0 (Tm)× Cl−5+α
ρ (Tm)

∣∣
vi

λ(ϕ, 0)) = 0, ∀ (λ, ϕ) ∈ Tm−1, i = 1, 2
}

for any α ≥ 0, with the corresponding Hölder norms, and define the operators

F : Xα × Yα −→ Zα,
(v, v1, v2) −→ v1

λ(ϕ+ v2
λ(ϕ, θ), θ) + v2

λ(ϕ, θ)− vλ(ϕ, θ).

From Lemma 2.5 of [10] we can immediately show that (Xα)α≥0, (Yα)α≥0 and
(Zα)α≥0 are families of regular spaces. Observe that we only use those diffeomor-
phisms in Tm which are the identity on the plane θ = 0, in order to guarantee the
uniqueness of the decomposition into symmetric factors.

Remark. Consider a Cr vertical diffeomorphism of Tm in a small neighborhood
of the identity, fλ(ϕ, θ) = (ϕ + vλ(ϕ, θ), θ) with r ≥ 1. Then f−1

λ is also a Cr

vertical diffeomorphism f−1
λ (ϕ, θ) = (ϕ + uλ(ϕ, θ), θ). Besides, taking Br = {v ∈

Cr
∣∣||v||Cr < 1/2}, the map Br ⊂ Cr(Tm) → Cr′(Tm), v → u is continuous for

every r′ < r. In the case that v ∈ Cr
µ(Tm) and vλ(ϕ, 0) = 0 for every (λ, ϕ) ∈ Tm−1,

it is obvious that u ∈ Cr
µ(Tm) and uλ(ϕ, 0) = 0 for every (λ, ϕ) ∈ Tm−1.

We will show that the above F satisfy all the conditions of the previous statement
around (0, 0, 0). Hence, we will obtain the result by applying Zehnder’s theorem.
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Note that the application of Zehnder’s theorem also provides the proof of Lemma
3.4 for C∞ families of diffeomorphisms in the sphere.

The conditions (h.1) (h.2) (h.3) are differentiability properties of the composi-
tion. They follow from Theorems 4.3 and 6.11 in [7]. The most crucial hypothesis is
that about the existence of an approximate right inverse of the linearized operator,
which we now discuss.

We will start the construction of the exact inverse at (0, 0, 0). To study its
differentiability properties, we will use the following result of Rüssmann [9].

Lemma 3.7. Let ρ be a constant type number and

v(z) =
∑
k∈Z

v̂ke
ikz

an analytic complex function in the strip Uτ = {z ∈ C
∣∣ | Im z| < τ} with |v(z)| ≤M

∀ z ∈ Uτ . The function with mean value zero

h(z) =
∑

k∈Z−{0}

v̂k

e2πikρ − 1
eikz

is analytic in Uτ ′ for every τ ′ < τ , and there is a constant κ > 0, depending only
on ρ, such that

|h(z)| ≤ κM

τ − τ ′
for | Im z| < τ ′.(11)

We take a periodic real analytic function vλ(ϕ, θ) defined in the strip Um
τ with

vλ(ϕ, 0) = 0 for every (λ, ϕ) ∈ Tm−1, and consider the pair h1
λ, h

2
λ whose Fourier

coefficients in the variable θ, (ĥλ,k(ϕ))k∈Z , are given by the relations (8) when
k 6= 0 and by ĥλ,0(ϕ) = 0 for every λ, ϕ. Define

v1
λ(ϕ, θ) = h1

λ(ϕ, θ) − h1
λ(ϕ, 0),

v2
λ(ϕ, θ) = h2

λ(ϕ, θ) − h2
λ(ϕ, 0).

Observe that the Fourier coefficients in the variable θ of v1
λ, v

2
λ are given by the

equations (8) and (9). The functions h1
λ, h

2
λ, v

1
λ, v

2
λ are analytic in the strip Um

τ ′

for every τ ′ < τ , and satisfy a inequality similar to (11) with maybe some other
constants. Notice that if ρ is a constant type number, so is −2ρ, that

e−4πiρk/(e−4πiρk − 1) = 1 + 1/(e−4πiρk − 1),

and that

sup
=z≤τ

|
∑

k

v̂ke
2πikz | = sup

=z≤τ
|
∑

k

v̂−ke
2πikz |).

Also, vλ(ϕ, θ) = v1
λ(ϕ, θ) + v2

λ(ϕ, θ).
From Lemma 3.7 it is also possible to deduce regularity properties of the above

decomposition in the classes of finitely differentiable functions. The key is that
the differentiability properties of functions can be read of from the size of analytic
approximations on thin strips – see [8] –. The natural spaces on which to consider
such characterizations are the Λr spaces endowed with the Zygmund norms. We
just remark that Λr = Cr when r /∈ N, whereas for r ∈ N we have Cr ⊂ Λr, and
the inclusion is strict. Notice, however, that the definition of Cr functions makes
sense on Banach spaces (for 0 ≤ r ≤ 1− it makes sense in metric spaces), whereas
the characterization by analytic approximations is useful only for functions on Rn.
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A detailed argument along these lines can be found in [8] p. 528, [10], [4]. This
allows us to state the following:

Lemma 3.8. Let v ∈ Cr(Tm), r /∈ N, r > 1, with vλ(ϕ, 0) = 0 for every (λ, ϕ) ∈
Tm−1. There are functions v1 ∈ Cr−1

0 (Tm), v2 ∈ Cr−1
ρ (Tm) and a constant κ

depending only on ρ and r such that
i) v = v1 + v2,
ii) v1

λ(ϕ, 0) = v2
λ(ϕ, 0) = 0 for all (λ, ϕ) ∈ Tm−1,

iii) ||v1||Cr−1 , ||v2||Cr−1 ≤ κ||v||Cr .

Notice that F : Xα × Yα → Zα is differentiable with respect to Y ’s components,
and d2F (0, 0, 0)(v1, v2) = v1 + v2 in all the cases. Consequently, the conclusion of
Lemma 3.8 provides a direct estimation of the exact inverse at (0, 0, 0) of d2F . We
obtain

Lemma 3.9. Let ε > 0 be a small parameter and σ = 3 + ε. For every α ≥ σ and
v ∈ Zα, there is a unique element (v1, v2) ∈ Yα−σ such that v = v1 + v2. Moreover,
the map

η : Zα −→ Yα−σ,
v −→ (v1, v2)

is continuous.

(More precisely, the map η : Zα−ε/2 → Yα−σ is also continuous). Now an
approximate right inverse in a complete neighborhood of (0, 0, 0) is required. An
important observation is that one exact right inverse can be obtained thanks to the
group action. See Hamilton [2], pg. 198, and Zehnder [10], pg. 133.

Let us consider F2 : Yα → Zα, (v1, v2) → F (0, v1, v2). It is obvious that
d2F (v′, v1, v2) = dF2(v1, v2). We write B2

α = {(v1, v2) ∈ Yα | ||v1||α < 1/2, ||v2||α
< 1/2}.
Lemma 3.10. For each α ≥ σ, there exists a continuous map η : B2

σ ∩ Yα →
L(Zα, Yα−σ) such that

dF2(v1, v2) ◦ η(v1, v2)(v) = v

for every (v1, v2) ∈ B2
σ ∩ Yα and v ∈ Zα.

Proof. First we solve this question in the spaces of infinitely differentiable functions.
The sets X∞, Y∞, Z∞ can be understood as tangent spaces at the identity of groups
of C∞ diffeomorphisms in Tm.

Let us fix (v1, v2) ∈ B2
0 ∩ Y∞ (that is, ||vi||Cl−5 < 1/2, i = 1, 2), with which we

associate the following differentiable functions:

Φ(v1,v2) : Z∞ −→ Z∞,
w −→ v1

λ(ϕ+ wλ(ϕ+ v2
λ(ϕ, θ), θ) + v2

λ(ϕ, θ), θ)
+wλ(ϕ+ v2

λ(ϕ, θ), θ) + v2
λ(ϕ, θ),

and
C(v1,v2) : Y∞ −→ Y∞,

(ω1, ω2) −→ (v1
λ(ϕ + ω1

λ(ϕ, θ), θ) + ω1
λ(ϕ, θ),

ω2
λ(ϕ+ v2

λ(ϕ, θ), θ) + v2
λ(ϕ, θ)).

Take the vertical diffeomorphisms f i
λ(ϕ, θ) = (ϕ + vi

λ(ϕ, θ)), θ) with inverses

(f i
λ)−1(ϕ, θ) = (ϕ+ ui

λ(ϕ, θ)), θ), i = 1, 2.
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Notice that F2(v1, v2) = Φ(v1,v2)(0); also, we find the following relations :

Φ(v1,v2) ◦ Φ((u1),(u2)) = Id,(12)

Φ(v1,v2) ◦ F2 = F2 ◦ C(v1,v2).(13)

By differentiating (13) we obtain

dΦ(v1,v2)(0) ◦ dF2(0, 0) = dF2(v1, v2) ◦ dC(v1,v2)(0, 0);

therefore, from (12) and Lemma 3.9, we can deduce that

η(v1, v2) = dC(v1,v2)(0, 0) ◦ η ◦ dΦ(u1,u2)(F2(v1, v2))

is a linear continuous map from Z∞ to Y∞ with

dF2(v1, v2) ◦ η(v1, v2)(v) = v(14)

for every v ∈ Z∞.
We now focus our attention on the classes of finitely differentiable functions

where we assume Φ(v1,v2) and C(v1,v2) are defined. It follows from Propositions 6.1,
6.2 and Theorem 6.10 in [7] that if (v1, v2) ∈ B2

σ∩Yα then η(v1, v2) ∈ L(Zα, Yα−σ),
and, besides, η : B2

σ ∩ Yα → L(Zα, Yα−σ), (v1, v2) → η(v1, v2) is continuous.
Actually, a more precise analysis of the continuity of η allows us to state that,

if (v1, v2) ∈ B2
0 ∩ Yα−ε/2, then η(v1, v2) ∈ L(Zα−ε/2, Yα−σ) and the map η : B2

0 ∩
Yα−ε/2 → L(Zα−ε/2, Yα−σ) still remains continuous.

Taking into account that the closures of B2
0∩Y∞ and Z∞ in the natural topologies

of Yα−ε/2 and Zα−ε/2 contain B2
σ ∩ Yα and Zα respectively, we deduce from (14)

that
dF2(v1, v2) ◦ η(v1, v2)(v) = v

for every (v1, v2) ∈ B2
σ∩Yα and v ∈ Zα. This proves that η is an exact right-inverse

of loss σ of d2F .

We have verified all the hypotheses of Theorem 3.6. Its conclusions provide the
factorization of every Cl vertical diffeomorphism of Tm in a neighborhood of Id
into Cl−2 factors commuting with reflections across the planes θ = 0 and θ = ρ
respectively. Under these conditions we can return to our original problem in the
sphere.

Let us assume that one of the above diffeomorphisms on the torus comes from
fv

λ , a Cl family of vertical diffeomorphisms of Sn with fv
λ |K1

ε
= Id, and consider its

decomposition fv
λ = fv,1

λ ◦ fv,2
λ according to the thesis of Theorem 3.6. We denote,

as usual, fv
λ(ϕ, θ) = (ϕ + vλ(ϕ, θ), θ), the factors fv,i

λ (ϕ, θ) = (ϕ + vi
λ(ϕ, θ), θ)

and their inverses (fv,i
λ )−1(ϕ, θ) = (ϕ + ui

λ(ϕ, θ), θ), i = 1, 2. Let us fix λ ∈
Tm−2 and take ϕ ∈ T with | sin(πϕ)| ≤ ε. Then vλ(ϕ, θ) = 0, which implies that
(fv,1

λ )−1(ϕ, θ) = (fv,2
λ )(ϕ, θ) and hence u1

λ(ϕ, θ) = v2
λ(ϕ, θ) for every θ ∈ T. An

analysis of this equality, based on the Fourier coefficients, given in (7) and (9),
shows that u1

λ(ϕ, θ) = v2
λ(ϕ, θ) = 0 and hence fv,1

λ (ϕ, θ) = fv,2
λ (ϕ, θ) = (ϕ, θ) for

every θ ∈ T. This same argument proves that if for some λ one has fv
λ = Id, then

also fv,1
λ = fv,2

λ = Id.
Thus, it is clear that fv,1

λ , fv,2
λ can be extended by the identity on the open

subset of Sn where our coordinate system does not work, and defines Cl−2 families
of vertical diffeomorphisms of Sn satisfying all the conditions (i)–(iv) of Lemma 3.4.
This finishes the induction process and completes the proof of Theorem 3.1.
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