Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Invariants and projections of six lines in projective space
HTML articles powered by AMS MathViewer

by Dana R. Vazzana PDF
Trans. Amer. Math. Soc. 353 (2001), 2673-2688 Request permission

Abstract:

Given six lines in $\mathbf {P}^3$, quartics through the six lines define a map from $\mathbf {P}^3$ to $\mathbf {P}^4$, and the image of this map is described in terms of invariants of the six lines. The map can be interpreted as projection of the six lines, and this permits a description of the canonical model of the octic surface which is given by points which project the lines so that they are tangent to a conic. We also define polarity for sets of six lines, and discuss the above map in the case of a self-polar set of lines and in the case of six lines which form a “double-sixer” on a cubic surface.
References
  • H. Baker. Principles of Geometry, Vol. 3. Cambridge Univ. Press, 1927.
  • A. Cayley. On the surfaces each the locus of the vertex of a cone which passes through $m$ given points and touches $6-m$ given lines. Proc. London Math. Soc., 4:11–47, 1872.
  • A. Coble. Algebraic Geometry and Theta Functions. Amer. Math. Soc., 1929.
  • Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, AstĂ©risque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
  • Igor V. Dolgachev, Introduction to geometric invariant theory, Lecture Notes Series, vol. 25, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994. MR 1312159
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
  • F. Grosshans, R. Gleeson, M. Hirsch, R. M. Williams. Object-image equations for x points and 6 - x lines. Preprint, 1998.
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
  • V. Hierhölzer. Ueber Kegelschnitte im Raume. Math. Ann., 2:563 –585, 1870.
  • R. Huang. Combinatorial Methods in Invariant Theory. PhD thesis, Massachusetts Institute of Technology, 1993.
  • Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547, DOI 10.1007/BFb0094399
  • http://www.mathematik.uni-kl.de/Ëśwwwagag/E/Galerie.html
  • M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
  • David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602, DOI 10.1007/978-3-662-00095-3
  • I. Schur. Uber die durch collineare grundgebilde erzeugten curven und flachen. Math. Ann., 18:1–32, 1881.
  • Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
  • R. Sturm. Die Gebilde ersten und zweiten Grades der liniengeometrie in synthetischer Behandlung, Vol. 1. B. G. Teubner, 1892.
  • Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980, DOI 10.1007/978-3-7091-4368-1
  • J. Todd. Configurations defined by six lines. Proc. Cambridge Phil. Soc., 29:52–68, 1932.
  • T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
  • Oscar Zariski, Algebraic surfaces, Classics in Mathematics, Springer-Verlag, Berlin, 1995. With appendices by S. S. Abhyankar, J. Lipman and D. Mumford; Preface to the appendices by Mumford; Reprint of the second (1971) edition. MR 1336146, DOI 10.1007/978-3-642-61991-5
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14L24, 14Q10
  • Retrieve articles in all journals with MSC (2000): 14L24, 14Q10
Additional Information
  • Dana R. Vazzana
  • Affiliation: Department of Mathematics and Computer Science, Truman State University, Kirksville, Missouri 63501
  • Email: dvazzana@truman.edu
  • Received by editor(s): July 25, 1999
  • Published electronically: January 18, 2001
  • Additional Notes: The author would like to thank Igor Dolgachev for his invaluable assistance in producing this research.
  • © Copyright 2001 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 353 (2001), 2673-2688
  • MSC (2000): Primary 14L24; Secondary 14Q10
  • DOI: https://doi.org/10.1090/S0002-9947-01-02742-8
  • MathSciNet review: 1828467