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ERRATUM TO “SUBGROUP PROPERTIES
OF FULLY RESIDUALLY FREE GROUPS”

ILYA KAPOVICH

Our article [4] contained a number of algorithmic and structural results about
finitely generated subgroups of residually free groups. While all the arguments and
proofs given in [4] are internally consistent, our results in the most general form re-
lied on Proposition 5.1 of [4], which we attributed to the paper [8] (that is currently
in preparation and has an additional author, V. Remeslennikov). Unfortunately, it
turns out that Proposition 5.1 is incorrect as stated by us in [4], as was pointed out
to the author by Zlil Sela, Mladen Bestvina, Olga Kharlampovich, Alexei Myas-
nikov and Inna Bumagina after [4] appeared. This mistake was due to a failure of
communication and misunderstanding on my part of the results of [8], and I take
full responsibility for this event. All the main results of [4], namely Theorems A,
B, C, and D, are thus incomplete and should be regarded as conjectures for the
moment. It is clear to the author that these statements are in fact correct, but
the proofs would require a careful and quite lengthy inductive use of Proposition
5.4 of [4] (that is due to A. Myasnikov and V. Remeslennikov [9]) together with
the results of R. Burns [1], [2] and D. Cohen [3], instead of relying on the incorrect
Proposition 5.1 as a shortcut.

Nevertheless, all of the proofs given in [4] are correct and complete for the case
of word-hyperbolic fully residually free groups, since in that case Proposition 5.1
was not needed. Thus what was actually proved in [4] can be summarized in the
following:

Theorem 0.1. Let G be a finitely generated word-hyperbolic fully residually free
group. Then:

(1) The group G has the Howson property.
(2) The group G is locally quasiconvex.
(3) If H is a finitely generated subgroup of G containing a nontrivial normal

subgroup of G, then H has finite index in G.
(4) If H and K are finitely generated subgroups of G such that [H : H∩K] <∞

and [K : H∩K] <∞, then H∩K has finite index in the subgroup generated
by H ∪K.

(5) The group G has solvable uniform membership problem with respect to
finitely generated subgroups (this follows directly from part (1) and the re-
sults of [5]).
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The author is very grateful to Zlil Sela, Mladen Bestvina, Olga Kharlam-
povich, Alexei Myasnikov and Inna Bumagina for pointing out that Proposition 5.1
is incorrect as stated in [4].
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