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VITALI COVERING THEOREM IN HILBERT SPACE

JAROSLAV TIŠER

Abstract. It is shown that the statement of the Vitali Covering Theorem
does not hold for a certain class of measures in a Hilbert space. This class
contains all infinite-dimensional Gaussian measures.

1. Introduction

We start with recalling the statement of the classical covering theorem due to
G. Vitali, [9].

Theorem 1. Let A ⊂ Rn be a set. Assume that for every x ∈ A there is a
sequence (B[x, rk(x)])k of closed balls centred at x and with radii rk(x) such that
limk→∞ rk(x) = 0. Then there is an at most countable family of disjoint balls,
{B[xi, rki (xi)] | i ∈ N}, such that

Ln

(
A \

⋃
i∈N

B[xi, rki(xi)]
)

= 0.

The balls in the original paper were considered with respect to the norm ‖.‖∞.
In fact, the statement of the theorem above holds true for balls in any equivalent
norm in Rn.

Since the time of Vitali there appeared many generalizations of the statement
in various directions. To mention at least one of them, now already classical, we
have to point out the version based on the Besicovitch Covering Theorem. It
extends the statement from Lebesgue measure to any σ-finite measure on Rn; see
e.g. de Guzmán [1].

Our aim is to study what happens if we replace the n-dimensional Euclidean
space Rn by an infinite-dimensional Hilbert space. The first result of this type is
due to D. Preiss, [4]. He gave an example of a Gaussian measure on a separable
Hilbert space for which the covering theorem fails to hold.

One of the most important consequences of the Vitali Covering Theorem is the
so-called Differentiation theorem. The original version goes back to H. Lebesgue.
Employing the above-mentioned generalization of the covering theorem, one has the
following form of the Differentiation theorem. Here, and also in the sequel, B[x, r]
denotes the closed ball with center x and radius r > 0.
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Differentiation Theorem 1. Let µ be a locally finite measure on Rn and let
f ∈ L1

loc(µ). Then

(1) lim
r→0

1
µB[x, r]

∫
B[x,r]

f dµ = f(x) µ− a.e.

The negative result of D. Preiss [4] was later strengthened in [5] by constructing
a bounded function and a Gaussian measure on a Hilbert space such that (1) does
not hold. Moreover, in [6] the same author obtained a Gaussian measure γ together
with the integrable function f ∈ L1(γ) such that the means of f over the balls in (1)
tend to infinity uniformly with respect to x.

On the other hand, J. Tǐser [8] has shown the validity of (1) for some class of
Gaussian measures on a Hilbert space and for all Lp functions, 1 < p < ∞. This
result could indicate that there is a chance for having the Vitali Covering theorem at
least for some infinite-dimensional Gaussian measures. However, Theorem 1 below
makes clear that it is not the case, and that Preiss’ example [4] was not accidental
from this point of view.

Before stating Theorem 1 we recall the concept of a Vitali system.

Definition. Let A ⊂ X be a subset of a metric space X . A family

V ⊂ {B[x, r] | x ∈ A, r > 0}
is called the Vitali system on A if for every x ∈ A and for every ε > 0 the system
V contains a ball B[x, r] with r ≤ ε.
Theorem 1. Let H be a separable Hilbert space and let γ be a Gaussian measure
with dim sptγ = ∞. Then for every ε > 0 there exists a Vitali system V on sptγ
such that any disjoint subfamily S ⊂ V satisfies

γ
(⋃
S
)
≤ ε, i.e., γ

(
sptγ \

⋃
S
)
≥ 1− ε.

Theorem 1 is an easy consequence of the following Proposition 1, which is formu-
lated for more general measures than the Gaussian ones. We make some comments
on the other consequences of Proposition 1 at the end of this section. First, however,
we shall introduce some notions and notation.

The symbol sptµ will denote the support of a measure µ. The projection µU of
the measure µ onto a closed subspace U of the Hilbert space H is defined by the
formula

µUA = µπ−1
U (A),

where πU : H → U denotes the projection and A ⊂ U is any Borel set in U . If U ⊂
H is a finite-dimensional subspace, then we shall denote by LU the corresponding
dimU - dimensional Lebesgue measure.

We shall also mention some basic facts concerning Gaussian measures.

Definition. A probability measure ν on the real line R is called a Gaussian mea-
sure, if either ν is the Dirac measure supported at 0, or it has the Radon-Nikodým
derivative with respect to the Lebesgue measure of the form

dν

dL1
=

1√
2πσ

exp
(
− x2

2σ2

)
for some σ > 0. A Borel probability γ on a separable Hilbert space H is called
a Gaussian measure if every projection of γ onto a one-dimensional subspace is a
Gaussian measure.
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We consider the Dirac measure to be a Gaussian measure only for convenience.
It enables us to include among the Gaussian measures also the measures that are
supported by a proper subspace of the Hilbert space H .

Let γ be a Gaussian measure on H . The covariance operator Sγ : H → H is
defined by

〈Sγx, y〉 =
∫
H

〈x, h〉 〈y, h〉 dγ(h), x, y ∈ H.

The operator Sγ is always nonnegative (〈Sγx, x〉 ≥ 0), selfadjoint and nuclear; see
e.g. [3]. If sptγ = H , the covariance operator is even positive definite. In that case
the eigenvectors of Sγ form an orthonormal basis (en) of H with the following nice
property: If γn is the projection of γ onto the line spanned by en, then

(2) γ =
∏
n

γn.

Such representation of γ as a countable product will be useful.

Definition. Let r > 0. The symbol B(r) denotes the set of all disjoint families of
closed balls in H of radius r > 0,

B(r) = {B | B is a disjoint family of balls of radius r}.

Proposition 1. Let H be a separable Hilbert space and let µ be a finite Borel
measure on H with the following property: For every n ∈ N there is a finite-
dimensional subspace U ⊂ H such that

(i) dimU ≥ n,
(ii) µU is absolutely continuous with respect to the Lebesgue measure LU on U ,
(iii) µ ≤ µU × µU⊥ .

Then

lim
r→0

sup
{
µ
(⋃

B

) ∣∣∣ B ∈ B(r)
}

= 0.

Proof of Theorem 1. Without loss of generality, we may obviously assume that
sptγ = H . If we recall the representation (2) of a Gaussian measure as a countable
product of one-dimensional Gaussian measures, then we see that the conditions (i)
– (iii) of Proposition 1 are satisfied. Indeed, let (en) be the orthonormal basis of H
consisting of the eigenvectors of the covariance operator Sγ . Then for any n ∈ N
we put U = span{e1, . . . , en}. The conditions (i) and (ii) are obviously true and in
the condition (iii) we even obtain equality.

Let ε > 0 be given. By Proposition 1, there is a decreasing sequence of numbers
rk ↘ 0 such that

(3) sup
{
γ
(⋃

B

) ∣∣∣ B ∈ B(rk)
}
≤ ε

2k
.

We define the following Vitali system:

V = {B[x, rk] | x ∈ H, k ∈ N}.

Let S ⊂ V be any disjoint subfamily. Then

S =
⋃
k∈N
Sk, Sk = {B ∈ S | radius (B) = rk}.
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Now, by using (3),

γ
(⋃
S
)

=
∞∑
k=1

γ
(⋃
Sk
)
≤
∞∑
k=1

ε

2k
= ε. �

Remark. Note that the finite-dimensional subspaces U ⊂ H from Proposition 1
need not be nested. Also, if we choose for any n ∈ N the corresponding subspace
Un with the properties (i)–(iii), then the linear span of {Un | n ∈ N} need not be
dense in H . Hence the conclusion of Proposition 1, and consequently non-validity
of the Vitali Covering theorem, can be obtained e.g. for the following type of
measures: Let

H = H0 ⊕H⊥0
be an orthogonal decomposition of H such that dimH0 = ∞. Let (µn) be any
sequence of absolutely continuous probability measures on R. We consider the
measure

µ =
∏
n

µn

on the space RN. Since H0 ≈ `2 ⊂ RN, by the 0 − 1 law there are only two
possibilities: either µH0 = 0 or µH0 = 1. Assume the latter. In that case for
arbitrary finite measure ν on H⊥0 the product µ × ν on H is an example of a
measure satisfying the assumptions of Proposition 1.

2. Lemmata

Let U ⊂ H be a closed subspace of the Hilbert space H , and let B be a family
of disjoint closed balls in H of radius r, B ∈ B(r). We denote by BU the family

BU = {U ∩B | B ∈ B}.

Obviously, BU is a disjoint family of closed balls in U of radii at most r.
The first Lemma establishes one simple geometrical relationship among the balls

in BU .

Lemma 1. Let U ⊂ H be a subspace of a separable Hilbert space H, and let
B ∈ B(1). Let B[u1, r1] and B[u2, r2] be two different balls from BU . If either
2r1 ≤ r2 or 2r2 ≤ r1, then

‖u1 − u2‖ ≥ r1 + r2 + 1
2 (
√

10− 3) max{r1, r2}.

Proof. Since the balls B[u1, r1] and B[u2, r2] belong to BU , there are two unit balls
B[x1, 1] and B[x2, 1] ∈ B such that

B[u1, r1] = U ∩B[x1, 1] and B[u2, r2] = U ∩B[x2, 1].

Also, since H = U ⊕ U⊥, one has

x1 = u1 + v1 and x2 = u2 + v2,

where u1, u2 ∈ U and v1, v2 ∈ U⊥. By the disjointness of the balls in B it is readily
seen that

(4) ‖u1 − u2‖2 + ‖v1 − v2‖2 = ‖x1 − x2‖2 ≥ 4.
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Note that r2
1 = 1 − ‖v1‖2 and r2

2 = 1 − ‖v2‖2. Using this in the estimate (4) we
obtain

‖u1 − u2‖2 ≥ 2 + r2
1 + r2

2 + ‖v1‖2 + ‖v2‖2 − ‖v1 − v2‖2

= 2 + r2
1 + r2

2 + 2〈v1, v2〉 ≥ 2 + r2
1 + r2

2 − 2‖v1‖ ‖v2‖(5)

= 2 + r2
1 + r2

2 − 2
√

(1− r2
1)(1 − r2

2).

Without loss of generality, we may assume that r2 ≤ r1. Then the assumption in
Lemma 1 implies that even 2r2 ≤ r1. Let δ = 1

2 (
√

10− 3). In order to prove that

‖u1 − u2‖ ≥ r1(1 + δ) + r2,

we are going to show that

‖u1 − u2‖2 −
(
r1(1 + δ) + r2

)2 ≥ 0.

To this end, we use the estimate (5):

‖u1 − u2‖2 −
(
r1(1 + δ) + r2

)2
≥ 2 + r2

1 + r2
2 − 2

√
(1− r2

1)(1 − r2
2)−

(
r1(1 + δ) + r2

)2
= 2− 2

√
(1− r2

1)(1 − r2
2)− r2

1

(
(1 + δ)2 − 1

)
− 2r1r2(1 + δ)

= g(r1, r2).

We shall have to find the minimal value of the function g(r1, r2) on the set {(r1, r2) |
0 ≤ 2r2 ≤ r1 ≤ 1}. Some elementary calculation reveals that the function r2 7→
g(r1, r2) is nonincreasing on [0, 1

2r1]. One more calculation gives that the function
r1 7→ g(r1,

1
2r1) is nondecreasing on [0, 1] provided that

(1 + δ)2 + (1 + δ)− 1 ≤ 5
4 .

This condition is guaranteed by our choice of δ. Hence the minimal value of g(r1, r2)
is attained at the point (0, 0) and is equal to 0. This completes the proof. �

The next lemma estimates the Lebesgue measure of the intersection of two balls
in a special position. The symbol α(n) denotes the volume of the unit Euclidean
ball in Rn,

α(n) = LnB[0, 1] =
πn/2

Γ(1 + n/2)
.

Lemma 2. There is a ∆0 > 0 such that for any x ∈ Rn with ‖x‖ = 3 and
0 < δ ≤ ∆0 we have the following estimate:

Ln

(
B[0, 1 + δ] ∩B[x, 2(1 + 3δ)]

)
≤ α(n− 1) 10

n+1
2 (1 + δ)n δ

n+1
2 .

Proof. Let x = (3, 0, . . . , 0) ∈ Rn. If we write a point z ∈ Rn in the form z =
(z1, z2) ∈ R×Rn−1, then the following equations determine the intersection of the
spheres {y | ‖y‖ = 1 + δ} ∩ {y | ‖y − x‖ = 2(1 + 3δ)}:

z2
1 + ‖z2‖2 = (1 + δ)2,

(z1 − 3)2 + ‖z2‖2 = 4(1 + 3δ)2.
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Eliminating ‖z2‖, we get z1 = 1
6 (9+(1+δ)2−4(1+3δ)2). Then a simple geometrical

observation reveals that

Ln

(
B[0, 1 + δ] ∩B[x, 2(1 + 3δ)]

)
≤ 2 α(n− 1)

∫ 1+δ

z1

(
(1 + δ)2 − t2

)n−1
2
dt

= 2 α(n− 1) (1 + δ)n
∫ 1

θ

(1− u2)
n−1

2 du,

where θ = z1
(1+δ) . It is clear that θ > 0 for δ small enough. The explicit condition

for δ is δ ≤
√

330−11
35 . We estimate the function (1 − u2)

n−1
2 by its maximal value

on the interval [θ, 1], and we obtain

≤ 2 α(n− 1) (1 + δ)n(1− θ2)
n−1

2 (1− θ)

≤ 2
n+1

2 α(n− 1) (1 + δ)n(1− θ)n+1
2 .

Since a short calculation gives that 1−θ ≤ 5δ again for small δ (δ ≤ 2/35), we get the
desired estimate. Finally, we finish the proof by putting ∆0 = min{

√
330−11

35 , 2
35} =

2
35 . �

We introduce the following notation. Let B = B[x, r] be a ball. The symbol

(1 + δ)B = B[x, (1 + δ)r]

denotes the enlarged ball with the same center and (1 + δ) times bigger radius. We
shall be using both symbols (1 + δ)B and B[x, (1 + δ)r].

The next lemma contains the key estimate needed in the proof of Proposition 1.

Lemma 3. There is a number δ0 > 0 such that for every r > 0, every family
B ∈ B(r) of disjoint balls of radius r, and every finite-dimensional subspace U ⊂ H,
the following estimate holds :

LU

(
(1 + δ)B0 \

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
≥ 1

2
(1 + δ)dimULUB0

provided that 0 < δ ≤ δ0 and B0 ∈ BU .

Proof. Let B0 ∈ BU be fixed. Without loss of generality, we assume that B0 has
center at the origin, B0 = B[0, r0], say. Let δ > 0 be such that 2δ < 1

2 (
√

10− 3).
Then, by Lemma 1, we see that the ball (1 + δ)B0 is disjoint with⋃

{B[x, (1 + δ)rx] | B[x, rx] ∈ BU , 2rx ≤ r0 or 2r0 ≤ rx}.

Accordingly, the only relevant balls in BU that may interfere with the (1 + δ)B0

are those of radii comparable to r0. We denote the centres of such balls by

C =
{
x ∈ U \ {0} | B[x, rx] ∈ BU , (1 + δ)B0 ∩B[x, (1 + δ)rx] 6= ∅

}
.

Note that for the ball B[x, rx] ∈ BU with x ∈ C we have 1
2r0 ≤ rx ≤ 2r0.

We have to estimate the measure of (1 + δ)B0 ∩
⋃
x∈C B[x, (1 + δ)rx]. Since

LU

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)
≤
∑
x∈C

LU

(
(1 + δ)B0 ∩B[x, (1 + δ)rx]

)
,

we shall look closer at each intersection (1 + δ)B0 ∩B[x, (1 + δ)rx].
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Let x ∈ C. First note that

r0 + rx ≤ ‖x‖ ≤ (1 + δ)(r0 + rx).

Also, rx ≤ 2r0. We show that

(6) B[x, (1 + δ)rx] ⊂ B
[
3r0

x

‖x‖ , 2(1 + 3δ)r0

]
.

To see this, let y ∈ B[x, (1 + δ)rx], i.e., ‖y − x‖ ≤ (1 + δ)rx. Then∥∥∥y − 3r0
x

‖x‖

∥∥∥ =
∥∥∥y − x+ x

(
1− 3r0
‖x‖

)∥∥∥
≤ ‖y − x‖ + ‖x‖

∣∣∣1− 3r0

‖x‖

∣∣∣
≤ (1 + δ)rx +

∣∣‖x‖ − 3r0

∣∣.
If 3r0 ≥ ‖x‖, then the above calculation finishes with

≤ (1 + δ)rx + 3r0 − (r0 + rx) = 2r0 + δrx

≤ 2(1 + δ)r0 < 2(1 + 3δ)r0.

If, on the other hand, 3r0 ≤ ‖x‖, then we proceed as

≤ (1 + δ)rx + (1 + δ)(r0 + rx)− 3r0

≤ 5(1 + δ)r0 − 3r0 < 2(1 + 3δ)r0.

It follows immediately from (6) that

(7) (1 + δ)B0 ∩B[x, (1 + δ)rx] ⊂ (1 + δ)B0 ∩B
[
3r0

x

‖x‖ , 2(1 + 3δ)r0

]
.

Now let n = dimU for short. If, moreover, δ ≤ ∆0 from Lemma 2, then we
obtain the estimate of the intersection on the right-hand side of (7):

Ln

(
(1 + δ)B0 ∩B[x, (1 + δ)rx]

)
≤ Ln

(
B[0, (1 + δ)r0] ∩B

[
3r0

x

‖x‖ , 2(1 + 3δ)r0

])
= rn0 Ln

(
B[0, (1 + δ)] ∩B

[
3
x

‖x‖ , 2(1 + 3δ)
])

≤ rn0 α(n− 1) 10
n+1

2 (1 + δ)nδ
n+1

2

=
α(n− 1)
α(n)

10
n+1

2 (1 + δ)n δ
n+1

2 LnB[0, r0].

Hence

(8) Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≤ α(n− 1)
α(n)

10
n+1

2 (1 + δ)n δ
n+1

2 LnB[0, r0] · cardC.

What is missing now is some control over the cardinality of the set C. Fortunately,
for our purpose we shall not need any hard estimate. The sufficient upper bound
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for cardC follows from the comparison of certain volumes. To this end, recall that
for all x ∈ C,

‖x‖ ≤ (1 + δ)(rx + r0) and 1
2r0 ≤ rx ≤ 2r0.

Hence

(9)
⋃
x∈C

B[x, rx] ⊂ B[0, (5 + 3δ)r0].

Also, B[x, rx] ⊃ B
[
x, 1

2r0

]
for x ∈ C. Combining it with (9) we get

LnB
[
x,

1
2
r0

]
cardC ≤ LnB[0, (5 + 3δ)r0].

Thus

cardC ≤ 10n
(

1 +
3
5
δ
)n
≤ 10n(1 + δ)n.

Using this estimate in (8) we have

Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≤ α(n− 1)
α(n)

10
n+1

2 (1 + δ)n δ
n+1

2 LnB[0, r0] 10n(1 + δ)n

=
α(n− 1)
α(n)

10
3n+1

2 (1 + δ)2n δ
n+1

2 LnB[0, r0].

Since α(n−1)
α(n) ≈

√
n for n→∞, there is δ1 > 0 such that

α(n− 1)
α(n)

10
3n+1

2 (1 + δ)n δ
n+1

2 ≤ 1
2

for all n ∈ N and 0 < δ ≤ δ1. With this choice of δ one has

(10) Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)
≤ 1

2
(1 + δ)nLnB0.

To complete the proof, we put δ0 = min{∆0, δ1,
1
4 (
√

10 − 3)}. If now 0 < δ ≤ δ0,
then by (10),

Ln

(
(1 + δ)B0 \

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
= Ln(1 + δ)B0 −Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≥ (1 + δ)nLnB0 −
1
2

(1 + δ)nLnB0 =
1
2

(1 + δ)nLnB0

and the proof is finished. �

We associate with every B0 ∈ BU the set

DB0 = (1 + δ)B0 \
(
B0 ∪

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
.

Then, obviously, {DB | B ∈ BU} is the disjoint system of subsets in U . One
consequence of Lemma 3 is the following estimate of the measure of DB.
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Corollary 1. Let δ0 > 0 be as in Lemma 3 and let U ⊂ H be a finite-dimensional
subspace. Then

LUDB0 ≥
(1

2
(1 + δ)dimU − 1

)
LUB0

for every 0 < δ ≤ δ0 and every B0 ∈ BU .

Proof. Since

DB0 ∪B0 = (1 + δ)B0 \
⋃
{(1 + δ)B | B ∈ B, B 6= B0},

we obtain by using Lemma 3,

LU (DB0 ∪B0) ≥ 1
2 (1 + δ)dimU LUB0.

The sets DB0 and B0 are disjoint. So LU (DB0 ∪B0) = LUDB0 + LUB0, and the
statement follows by rearrangement. �

Now we shall estimate the so-called packing density of the family BU in U . Since
U is a finite-dimensional subspace of H , we identify it with Rn, n = dimU . We
put

Qk = [−k, k]n,
the n-dimensional cube in U of side 2k. With this notation we can state the
following

Lemma 4. There is δ0 > 0 such that for every finite-dimensional subspace U ∼= Rn
and every r > 0,

lim sup
k→∞

sup
{Ln(Qk ∩

⋃
BU )

LnQk

∣∣∣ B ∈ B(r)
}
≤ 1

1
2 (1 + δ)n − 1

for any 0 < δ ≤ δ0 and n ∈ N with 1
2 (1 + δ)n − 1 > 0.

Proof. Let B ∈ B(r) be arbitrary and let δ0 > 0 be as in Lemma 3. We denote
by R the family of all balls in BU such that the (1 + δ) enlargement of B is still
contained in the cube Qk,

R = {B ∈ BU | (1 + δ)B ⊂ Qk}.
Then

Ln(Qk ∩
⋃

BU ) =
∑
B∈BU

Ln(Qk ∩B)

≤
∑
B∈R

LnB + Ln

(
Qk \Qk−2r(1+δ)

)
(11)

=
∑
B∈R

LnB + LnQk

[
1−

(
1− 2r(1 + δ)

k

)n]
provided that k > 2r(1 + δ). By Corollary 1,

(12) LnB ≤
1

1
2 (1 + δ)n − 1

LnDB

for n with 1
2 (1 + δ)n − 1 > 0. Also, DB ⊂ Qk for any B ∈ R. Since the sets DB

are disjoint for different B’s, we may sum up the estimates in (12) to get

(13)
∑
B∈R

LnB ≤
1

1
2 (1 + δ)n − 1

∑
B∈R

LnDB ≤
1

1
2 (1 + δ)n − 1

LnQk.
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Looking back to (11) one has

Ln(Qk ∩
⋃

BU ) ≤ 1
1
2 (1 + δ)n − 1

LnQk + LnQk

[
1−

(
1− 2r(1 + δ)

k

)n]
.

Since the expression on the right-hand side does not depend on B, the same estimate
holds true also for the supremum over all B ∈ B(r). Hence

lim sup
k→∞

sup
{Ln(Qk ∩

⋃
BU )

LnQk

∣∣∣ B ∈ B(r)
}

≤ 1
1
2 (1 + δ)n − 1

+ lim sup
k→∞

[
1−

(
1− 2r(1 + δ)

k

)n]
=

1
1
2 (1 + δ)n − 1

and the lemma is proved. �

The straightforward reformulation of the statement of Lemma 4 is the following:
For any cube Q ⊂ U ∼= Rn,

(14) lim sup
r→0

sup
{Ln(Q ∩

⋃
BU )

LnQ

∣∣∣ B ∈ B(r)
}
≤ 1

1
2 (1 + δ)n − 1

for any 0 < δ ≤ δ0 and all n ∈ N sufficiently big.

Until now we have used only Lebesgue measure. The next (easy) lemma allows
us to get the estimates for any other measure absolutely continuous with respect
to the Lebesgue measure.

Lemma 5. Let f ∈ L1(Rn) and let (Kr), r > 0, be a system of measurable sets
Kr ⊂ Rn satisfying the following condition:

There is σ > 0 such that for every cube Q ⊂ Rn, lim sup
r→0

Ln(Q ∩Kr)
LnQ

≤ σ.

Then

lim sup
r→0

∫
Kr

f dLn ≤ σ ‖f‖L1.

Proof. Let ε > 0. There is a continuous function g : Rn −→ R with compact
support such that ‖f − g‖L1 ≤ ε. Further, by the uniform continuity of g, there is
δ > 0 such that

|g(x)− g(y)| ≤ ε

for any x, y ∈ Rn satisfying ‖x− y‖ ≤ δ.
Let Q ⊂ Rn be a cube containing the support of g. We partition the cube Q into

a finite family P of subcubes of diameter at most δ, and then we choose in each
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P ∈ P a point xP ∈ P , for example the centre. Now∫
Kr

f dLn ≤ ‖f − g‖L1 +
∫
Kr

g dLn ≤ ε+
∑
P∈P

∫
P∩Kr

g dLn

≤ ε+
∑
P∈P

∫
P∩Kr

(g − g(xP )) dLn +
∑
P∈P

g(xP ) Ln(P ∩Kr)

≤ ε+ ε
∑
P∈P

Ln(P ∩Kr) +
∑
P∈P

g(xP ) Ln(P ∩Kr)

≤ ε+ εLnQ+
∑
P∈P

g(xP ) Ln(P ∩Kr).(15)

By the assumption we can choose r > 0 small enough to guarantee that

Ln(P ∩Kr) ≤ (σ + ε) LnP

for all P ∈ P . Then the last sum in (15) can be estimated by∑
P∈P

g(xP ) Ln(P ∩Kr) ≤ (σ + ε)
∑
P∈P

g(xP ) LnP

≤ (σ + ε)
(∫

Q

g dLn +
∑
P∈P

∫
P

(g(xP )− g) dLn

)
≤ (σ + ε)

(∫
Q

g dLn + εLnQ
)

≤ (σ + ε)
(
‖f − g‖L1 + ‖f‖L1 + εLnQ

)
≤ (σ + ε)

(
ε+ ‖f‖L1 + εLnQ

)
.

Combining this estimate with the estimate in (15), we obtain that

lim sup
r→0

∫
Kr

f dLn ≤ ε + εLnQ+ (σ + ε)
(
ε+ ‖f‖L1 + εLnQ

)
.

Since ε > 0 is arbitrarily small we conclude that

lim sup
r→0

∫
Kr

f dLn ≤ σ‖f‖L1,

which completes the proof. �

Proof of Proposition 1. Let ε > 0 be given. We choose δ ∈ (0, δ0] such that the
conclusion of Lemma 4 holds true. Also, let n ∈ N be large enough to satisfy

(16)
1

1
2 (1 + δ)n − 1

≤ ε

3
.

By assumption, there is a finite-dimensional space U , dimU ≥ n, such that µU is
absolutely continuous with respect to the Lebesgue measure LU . We denote

f =
dµU
dLU

.

For every r > 0 there is a B(r) ∈ B(r) such that

(17) µU

(⋃
B

(r)
U

)
≥ 1

2
sup
{
µU

(⋃
BU

)
| B ∈ B(r)

}
.
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We put Kr =
⋃

B
(r)
U , r > 0. For this choice of Kr the assumption of Lemma 5 is

satisfied: Let Q ⊂ U be a cube. Then by Lemma 4 in the form (14) and by (16)
we have

lim sup
r→0

LU (Q ∩
⋃

B
(r)
U )

LUQ
≤ lim sup

r→0
sup

B∈B(r)

LU (Q ∩
⋃

BU )
LUQ

≤ ε

3
.

So Lemma 5 implies that

lim sup
r→0

µU

(⋃
B

(r)
U

)
= lim sup

r→0

∫
⋃

B
(r)
U

f dLU ≤
ε

3
.

In combination with (17) we get

lim sup
r→0

sup
{
µU

(⋃
BU

)
| B ∈ B(r)

}
≤ 2ε

3
.

It follows that there is r0 > 0 such that for all 0 < r ≤ r0 we have

(18) sup
{
µU

(⋃
BU

)
| B ∈ B(r)

}
≤ ε.

Now we are ready to estimate the measure µ
(⋃

B

)
for any B ∈ B(r) and 0 < r ≤

r0. By condition (iii) in Proposition 1 and (18),

µ
(⋃

B

)
≤ (µU × µU⊥)

(⋃
B

)
=
∫
U⊥

µU

(
U ∩

(
x+

⋃
B
))
dµU⊥(x)

≤
∫
U⊥

sup
{
µU

(⋃
BU

)
| B ∈ B(r)

}
dµU⊥ ≤

∫
U⊥

ε dµU⊥ = ε.

Since this is true for all B ∈ B(r) we may conclude that

sup
{
µ
(⋃

B

)
| B ∈ B(r)

}
≤ ε,

provided that 0 < r ≤ r0 and Proposition 1 is proved. �

It may be of some interest to make the following final remark. Although the
classical version of the Vitali Covering Theorem fails for e.g. all infinite-dimensional
Gaussian measures, there is still a weaker statement of the covering type which holds
true. The validity of the Differentiation theorem is, in fact, equivalent to such a
weak covering theorem. For details see e.g. Hayes and Pauc [2], or the deep paper
of M. Talagrand [7], where this connection is treated in considerable generality.

Based on the already-mentioned positive differentiation result [8] for some class
G of Gaussian measures we have the following:

Given γ ∈ G, 1 < p < ∞, ε > 0, and Vitali system V on a set A
in a separable Hilbert space, there is a countable subsystem S ⊂ V
such that
(i) γ(A \

⋃
S) = 0,

(ii)
∥∥∥∑B∈S χB − χ⋃S

∥∥∥
Lp(γ)

< ε.

Condition (ii) means that instead of disjointness we are only able to make the
overlap of sets in S arbitrarily small in the given Lp norm.
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