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PROJECTIVE NORMALITY OF ABELIAN VARIETIES

JAYA N. IYER

Abstract. We show that ample line bundles L on a g-dimensional simple
abelian variety A, satisfying h0(A,L) > 2g · g!, give projective normal embed-
dings, for all g ≥ 1.

1. Introduction

Let A be an abelian variety of dimension g defined over the field of complex
numbers and let L be an ample line bundle on A. Consider the associated rational
map φL : A −→ Pd−1 = PH0(L), where d = dimH0(A,L). Suppose L = Mn

for some ample line bundle M on A. Then Koizumi has shown that L gives a
projectively normal embedding if n ≥ 3 (see [2]).

When n = 2, Ohbuchi (see [7]) has shown the following.

Theorem 1.1. Suppose M is a symmetric ample line bundle on a g-dimensional
abelian variety A. Then L = M2 gives a projectively normal embedding of A if and
only if the origin 0 of A is not contained in Bs|M ⊗ Pα| for any α ∈ Â2 = {α ∈
Â : 2α = 0}, where Â is the dual abelian variety of A, P is the Poincaré bundle
on A × Â, Pα = P|A×α for α ∈ Â and Bs|M ⊗ Pα| is the set of all base points of
M ⊗ Pα.

Suppose L 6= Mn for any ample line bundle M on A and n > 1. When g = 2,
Lazarsfeld (see [4]) has shown that if φL is birational onto its image, then φL gives
a projectively normal embedding, for d = 7, 9, 11 and for d ≥ 13. We showed that
if the Neron Severi group NS(A) of A is Z, generated by L and d ≥ 7, then φL gives
a projectively normal embedding (see [1]).

In this article, we show

Theorem 1.2. Suppose L is an ample line bundle on a g-dimensional simple
abelian variety A. If d > 2g · g!, then L gives a projectively normal embedding,
for all g ≥ 1. (Here d = dimH0(A,L)).

We outline the proof of Theorem 1.2.
For a polarized abelian variety (A,L), consider the multiplication maps

ρr : SymrH0(A,L) −→ H0(A,Lr).

By definition, L gives a projectively normal embedding if ρr is surjective, for all
r ≥ 1. We first show that it suffices to show ρ2 is surjective. More precisely, we
show that ρ2 surjective implies that the maps ρr are surjective, for r ≥ 3 (see Prop.
2.1).
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To prove the surjectivity of the map ρ2 we consider a finite isogeny A −→ B =
A/H , where H is a maximal isotropic subgroup of the fixed group K(L) of L. Then
L descends down to a principal polarization M on B. Let Ĥ denote the group of
characters on H . By associating to a character χ ∈ Ĥ a degree 0 line bundle Lχ
on B one can identify Ĥ as a subgroup of the dual abelian variety Pic0(B) of B.
The homomorphism ψM : B −→ Pic0(B), b 7→ t∗bM ⊗M−1 is an isomorphism and
we denote H ′ = ψ−1

M (Ĥ).
We then show that the surjectivity of the map ρ2 is equivalent to showing that

the subgroup H ′ of B generates the projective space PH0(B,M2) and its translates
PH0(t∗σM

2), where σ ∈ B is such that ψM (2σ) = Lχ, Lχ ∈ Ĥ , i.e., the images of

points of H ′, under the morphismB
φt∗σM2

−→ PH0(t∗σM
2) ' |t∗σM2|, b 7→ t∗bθ+t∗−b+2σθ

(due to Wirtinger), have their linear span as |t∗σM2|. (Here we assume that M is
symmetric and that θ is the unique symmetric divisor in |M |.)

To see this, we show

Proposition 1.3. Let L be an ample line bundle on a simple abelian variety Z of
dimension g and consider the associated rational map Z

φL−→ PH0(L). Then any
finite subgroup G of Z of order strictly greater than h0(L) · g!, generates the linear
system PH0(L). More precisely, the points φL(h) where h runs over all elements
of G not in the base locus of L span PH0(L) (see Prop. 3.4).

We then apply Proposition 1.3 to L = t∗σM
2 to obtain bounds as asserted for a

polarized abelian variety (A,L) in Theorem 1.2.

Notation. The varieties considered in this article are defined over the complex
numbers.

Let L be an ample line bundle on an abelian variety Z of dimension g.
1. The fixed group of L is the group K(L) = {z ∈ Z : L ' t∗zL}, tz : Z −→

Z, x 7→ z + x.

2. The theta group of L is the group G(L) = {(z, φ) : L φ' t∗zL}.
3. The Weil form eL : K (L) × K (L) −→ C∗ is the commutator map (x, y) 7→

x′y′x′
−1
y′
−1, for any lifts x′, y′ ∈ G(L) of x, y ∈ K(L).

4. h0(L) = dimH0(Z,L).
5. If G is a finite subgroup of Z, then Card(G) = order(G).

2. Surjectivity of the maps ρr, r ≥ 3

Suppose L is an ample line bundle on a g-dimensional abelian varietyA. Consider
the multiplication maps

H0(L)⊗r
ρr−→ H0(Lr), for r ≥ 2.

The main result of this section is the following.

Proposition 2.1. Suppose L is an ample line bundle on an abelian variety A. If
the multiplication map ρ2 is surjective, then ρr is surjective, for all r ≥ 3.

First, we recall

Proposition 2.2. Suppose L and M are ample line bundles on an abelian variety
A.
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1) The multiplication map∑
α∈U

H0(L ⊗ α)⊗H0(M ⊗ α−1) −→ H0(L⊗M)

is surjective, for any nonempty Zariski open subset U of Pic0(A).
2) If the multiplication map H0(L)⊗H0(M) −→ H0(L⊗M) is surjective, then

the multiplication maps

(a)H0(L)⊗H0(M ⊗ α) −→ H0(L⊗M ⊗ α)

and
(b)H0(L⊗ α−1)⊗H0(M ⊗ α) −→ H0(L⊗M)

are also surjective, for α in some nonempty Zariski open subset U of Pic0(A).

Proof. 1) See [3], 7.3.3.
2) The proof is standard. �

Proof of Proposition 2.1. We prove by induction on r. Suppose the multiplication
map ρr : H0(L)⊗r −→ H0(Lr) is surjective, for some r ≥ 2.

Consider the composed multiplication map

H0(L)⊗r+1 Id⊗ρr−→ H0(L)⊗H0(Lr) ρ1,r−→ H0(Lr+1).

To see the surjectivity of the map ρr+1 = ρ1,r ◦ (Id⊗ ρr) we need to show that
the map ρ1,r is surjective.

Using Proposition 2.2 1), we can write

(∗) H0(L).H0(Lr) =
∑
α∈U

H0(L).H0(L ⊗ α−1).H0(Lr−1 ⊗ α)

for any nonempty Zariski open subset U of Pic0(A).
Since ρ2 is surjective, by Proposition 2.2 2) (a), there exists a nonempty Zariski

open subset U ′ of Pic0(A), such that for α−1 ∈ U ′,
(∗∗) H0(L).H0(L ⊗ α−1) = H0(L2 ⊗ α−1)

Now in (∗), using (∗∗) and again applying Proposition 2.2 1), we obtain

H0(L).H0(Lr) =
∑

α−1∈U ′
H0(L2 ⊗ α−1).H0(Lr−1 ⊗ α)

= H0(Lr+1).

�

3. Surjectivity of the map ρ2

Let Z be a g-dimensional abelian variety and let D be an ample divisor on Z .
We denote M = O(D) to be the ample line bundle on Z. Let G be a finite subgroup
of Z. Consider the homomorphism ψM : Z −→ Pic0(Z), z 7→ t∗z(M) ⊗M−1. Let
G′ ⊂ Pic0(Z) be the image of G under this homomorphism. Consider a finite
subgroup J ⊂ Pic0(Z) and containing the subgroup G′. Construct an étale cover
π : X −→ Z corresponding to J , which is of degree equal to CardJ . Let N =
O(π−1D) be the ample line bundle on X .

Notice that if h ∈ G ∩ K(M), then t∗hM ' M , and this implies that D + h is
linearly equivalent to D on Z. If ψN : X −→ Pic0(X) is the map x 7→ t∗xN ⊗
N−1 and π̂ : Pic0(Z) −→ Pic0(X) is the dual of the map π, then since π̂(J) =
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{0}, π−1G ⊂ K(N) = KerψN (since ψN = π̂ ◦ ψM ◦ π). This means that the
divisors π−1(D + h) ∈ |N |, for all h ∈ G.

Choose the subgroup J such that N is base point free. (In fact, if J contains
the subgroup of 3-torsion points of Pic0(Z) and G′, then, by the above discussion,
X[3] ⊂ K(N), where X[3] is the subgroup of 3-torsion points of X . This implies, by
[3] 2.5.6, that N = K3, for some ample line bundle K on X and by a theorem of
Lefschetz (see [3], 4.5.1), N is very ample.)

We will use the following.

Lemma 3.1. Let V be a variety and V ⊂ Div(V ) be an irreducible family of
effective Cartier divisors Dt on V . Suppose W =

⋂
t∈V Dt ⊂ V and is nonempty

and r = codim(W ). Then there exist divisors Dj , j = 1, 2, ..., r, in V that intersect
properly and dimW = dim

⋂r
i=1 Di.

Proof. We use induction on j. Let D1, D2, ..., Dj (j < r) be chosen in V such that
they intersect properly in V . Now write D1 ∩D2 ∩ ... ∩Dj = G1 ∪ G2 ∪ ... ∪ Gs,
where G1, ..., Gs are irreducible components. Consider the closed subset Wi ⊂ V
parametrizing divisors that contain Gi for i = 1, 2, ..., s. (Note that Wi 6= V ,
otherwise Gi ⊂ W , which is not possible since dimGi > dimW.) Let U be the
complement of

⋃s
i=1Wi in V , which is nonempty since V is irreducible. If Dj+1 ∈

U , then D1 ∩ ... ∩ Dj ∩ Dj+1 has codimension j + 1 (communicated to us by A.
Hirschowitz). �

Remark 3.2. Suppose D1, D2, ..., Dr are linearly equivalent effective divisors on a
variety V , W =

⋂r
i=1Di and is nonempty and r = codim(W ). If Pk denotes the

span of the points Di in the linear system |D1|, then W =
⋂
t∈Pk Dt. Hence, by

Lemma 3.1, there are r divisors Dj ∈ Pk that intersect properly.

With notation as above we have the following.

Proposition 3.3. Let D be an ample divisor on a g-dimensional simple abelian
variety Z. Let G be a finite subgroup of Z that is contained in D. Then Card(G) ≤
Dg (which equals h0(O(D)) · g!, by the Riemann-Roch Theorem).

Proof. We prove this in several steps.
Step 1: We reduce to the case when the divisors D and D+h, for all h ∈ G, are

linearly equivalent and O(D) is base point free. Indeed, by the above discussion,
choose a triple (X,N, π), as above, corresponding to a subgroup J ⊂ Pic0(Z) such
that N is base point free and ψM (G) ⊂ J . This shows that the divisors π−1D
and π−1(D + h), for all h ∈ G, are linearly equivalent. Then we have a morphism
φN : X −→ PH0(N). Since π is a finite morphism of degree equal to Card(J),
by the projection formula, one sees that deg(π−1W ) = Card(J).deg(W ), for a
subvariety W of Z. Since (π−1D)g = Card(J).Dg, if Card(π−1G) ≤ (π−1D)g, then
Card(G) ≤ Dg.

Step 2: We can now assume that D is an ample divisor on X and that G ⊂ D
is a finite subgroup such that D is linearly equivalent to D + h for all h ∈ G and
N = O(D) is base point free. Let Y =

⋂
h∈GD + h and s = dim(Y ). By Lemma

3.2, Y ⊂
⋂g−s
j=1 Dj for some g − s divisors Dj ∈ |N | that intersect properly. Now

deg(Y ) = [Y ].[Ds] (here deg(Y ) = deg(S), where S ⊂ Y is of pure dimension s).
Since Y ⊂

⋂g−s
j=1 Dj we see that deg(Y ) ≤ Dg. In particular, when s = 0, since

G ⊂ Y , we get Card(G) ≤ Dg.
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Step 3: Suppose that s > 0. Let Y = Y1 ∪ Y2 ∪ ... ∪ Yr, where Yj , 1 ≤ j ≤ r,
are the irreducible components of Y such that s = dimY1 = dimY . Then degY1 ≤
degY . Since Y is G-invariant,

⋃
h∈G Y1 + h ⊂ Y and

∑
h∈ G

GY1

deg(Y1 + h) ≤ degY ,

where GY1 = {h ∈ G : Y1 + h = Y1} is a subgroup of G. Hence we get the

inequalities Card( G
GY1

).degY1 ≤ degY ≤ Dg, i.e., Card(G) ≤ Card(GY1)

degY1
.Dg. To

complete our proof, we need to show that Card(GY1) ≤ degY1.
Step 4: Now GY1 ⊂ Stab(Y1) = {a ∈ X : Y1 + a = Y1}. Observe that

Stab(Y1) =
⋂
y∈Y1

Y1−y. Now for a point y0 ∈ Y1, Stab(Y1) = (Y1−y0)
⋂
y∈Y1

Y1−
y ⊂ (Y1 − y0)

⋂
h∈G,y∈Y1

D + h − y. Let P = (Y1 − y0)
⋂
h∈G,y∈Y1

D + h − y. We
proceed to show that deg(Stab(Y1)) ≤ deg(P ). This will be true if Stab(Y1) and P
have the same dimension. Now, we have⋂

h∈G,y∈Y1

D + h− y =
⋂
y∈Y1

Y − y

=
⋂
y∈Y1

((Y1 ∪ Y2 ∪ ... ∪ Yr)− y)

= (
⋂
y∈Y1

Y1 − y) ∪ (
⋂
y∈Y1

Y2 − y) ∪ ... ∪ (
⋂
y∈Y1

Yr − y).

(To see the above last equality: if x ∈
⋂
y∈Y1

(Y1∪Y2∪ ...∪Yr)−y, then x+y ∈ Y1∪
Y2∪ ...∪Yr, ∀y ∈ Y1. Via the translation map Y1 −→ Y1∪Y2∪ ...∪Yr, y 7→ y+x and
since Y1 is irreducible, x+y ∈ Yj , for some j and for all y ∈ Y1, i.e., x ∈

⋂
y∈Y1

Yj−y
showing one way inclusion, the other inclusion being obvious.)

We now see that if j 6= 1 and x ∈
⋂
y∈Y1

Yj − y, then Y1 + x ⊂ Yj . If dimYj <
dimY1, then this is absurd and so

⋂
y∈Y1

Yj − y is empty. If dimYj ≥ dimY1, since
Y1 is of maximal dimension in Y , dimYj = dimY1 and Y1 + x = Yj . This implies
that

⋂
y∈Y1

Yj − y =
⋂
y∈Y1

Y1 + x− y = Stab(Y1) + x. Hence
⋂
h∈G,y∈Y1

D+ h− y,
P and Stab(Y1) are of equal dimension, say equal to m and deg(Stab(Y1)) ≤ degP .

Step 5: We proceed to show that deg(P ) ≤ deg(Y1). Consider the Poincaré
line bundle P on X × Pic0(X). Let p1 and p2 denote the projections onto X and
Pic0(X) respectively from X × Pic0(X). Consider the sheaf E = p2∗(p∗1N ⊗ P)
on Pic0(X). Since the vector spaces H0(N ⊗ α) are of constant dimension for all
α ∈ Pic0(X), by Grauert’s theorem, E is a vector bundle on Pic0(X). Let P(E)
denote the associated projective bundle on Pic0(X). Consider the natural morphism
p∗2(E) −→ p∗1N⊗P . This is surjective, since on any fibre X×α, (p∗1N⊗P)α ' N⊗α
which is globally generated (since N is globally generated) and E(α) ' H0(N ⊗α).
Hence this defines a morphism δN : X × Pic0(X) −→ P(E). Let P(E )̌ denote the
dual projective bundle over Pic0(X). In general, the parameter space V ⊂ P(E )̌
of the family {D + h − y}h∈G,y∈Y1 may not form an irreducible variety (unless
GY1 = G), but we construct an irreducible subvariety F ⊂ P(E )̌ such that V ⊂ F
and

⋂
h∈G,y∈Y1

D + h− y =
⋂
t∈F Dt, where Dt denotes the divisor corresponding

to t in P(E)(∗∗).
Step 6: Construction of F :
Consider the subspace T of H0(X,N) spanned by sections sh, h ∈ G such

that the divisor of sh is D + h. Consider the addition map m : X × X −→
X, (x, y) 7→ x + y. Recall the skew-Pontryagin product of the sheaves OX and
N , N ∗̂OX = (p1)∗(m∗N) (see [8], p. 653), where p1(resp. p2) : X × X −→ X
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denotes the first (resp. second) projection. Then, by Grauert’s theorem, N ∗̂OX
forms a vector bundle on X with fibres (N ∗̂OX)x ' H0(t∗xN). By [8], Remark
1.2, N ∗̂OX ' N ∗ OX where N ∗ OX = m∗(p1

∗N) is the Pontryagin product and

by [5], p. 161, there are isomorphisms OX ⊗ H0(X,N)
f' N ∗̂OX ' ψ∗NE ⊗ N

(ψN : X −→ Pic0(X) is the isogeny x 7→ t∗xN ⊗N−1). Consider the image F under
f of the trivial subbundle OX ⊗ T in N ∗̂OX . Then the fibre of F at x ∈ X is the
vector subspace of H0(t∗xN) spanned by the sections t∗xsh whose divisor is D+h−x,
for h ∈ G. Now P(F )̌ is a projective subbundle of P(ψ∗NE ⊗ N )̌ ' P(ψ∗NE )̌ (since
N is a line bundle). Since Y1 is irreducible, the projective bundle P(F )̌ restricted
to Y1 is an irreducible subvariety, and let F be the image of this irreducible variety
in P(E )̌. Hence F is irreducible and, by construction, if R ∈ |Fy |, y ∈ Y1, then⋂
h∈GD + h− y ⊂ R and F satisfies property (∗∗).
Step 7: By Lemma 3.1, there exist divisors D1, D2, ..., Dg−m ∈ F such that⋂
h∈G,y∈Y1

D + h − y ⊂ D1 ∩D2 ∩ ... ∩Dg−m. Hence P ⊂ (Y1 − y0) ∩D1 ∩D2 ∩
... ∩ Dg−m ⊂ D1 ∩ D2 ∩ ... ∩ Dg−m. This implies that deg(P ) ≤ deg(Y1 − y0)),
and by Step 2 and Step 4, deg Stab(Y1) ≤ degY1 ≤ Dg (since by Step 2, deg(Y1) ≤
deg(Y ) ≤ Dg). Since X is simple, Stab(Y1) is zero-dimensional and GY1 ⊂ Stab(Y1)
implies that Card(GY1) ≤ deg(Y1). Hence by Step 3, Card(G) ≤ Dg. This ends
the proof. �

This is equivalent to the following.

Proposition 3.4. Let L be an ample line bundle on a simple abelian variety Z and
consider the associated rational map Z

φL−→ PH0(L). Then any finite subgroup G of
Z, of order strictly greater than h0(L) · g!, generates PH0(L). More precisely, the
points φL(g) where g runs over all elements of G not in the base locus of L span
PH0(L).

We recall the following result, which we will need in the proof of Theorem 1.2.

Proposition 3.5 (Wirtinger). Let (Z,Θ) be a principally polarized abelian vari-
ety and L = O(Θ) (here Θ is assumed to be a symmetric divisor). There is a
nondegenerate inner product R : H0(L2) ⊗H0(L2) −→ C (which is symmetric or
skew-symmetric depending on whether the multiplicity of the zero element 0 on Θ,
mult0Θ, is even or odd) such that if R induces the isomorphism R′,

P(H0(L2)) ' P(H0(L2)∗) = |2Θ|,
then the composed morphism

Z
φL2−→ P(H0(L2)) R′−→ |2Θ|

is the morphism
φ : Z −→ |2Θ|, x 7→ Θx + Θ−x,

where Θx is the translate of Θ by x on Z.

Proof. See [6], Proposition, p. 335. �

Proof of Theorem 1.2. Consider a polarized simple abelian variety (A,L) of dimen-
sion g such that h0(L) > 2g · g!.

Consider the multiplication map

H0(L)⊗H0(L)
ρ2−→ H0(L2).



PROJECTIVE NORMALITY OF ABELIAN VARIETIES 3215

This map factors via
Sym2H0(L)

ρ2−→ H0(L2).
Let H ⊂ K(L) be a maximal isotropic subgroup for the Weil form eL. Consider

the isogeny A
π−→ B = A

H . Then L descends down to a principal polarization
M on B. We may assume that M is symmetric, i.e., M ' i∗M , i(b) = −b, b ∈
B. Using the fact that π∗OA =

⊕
χ∈Ĥ Lχ, where Lχ denotes the degree 0 line

bundle on B corresponding to the character χ on H , by the projection formula,
π∗L =

⊕
χ∈ĤM ⊗Lχ and π∗L2 =

⊕
χ∈ĤM

2⊗Lχ. Hence we obtain the following
decompositions:

H0(L) =
⊕
χ∈Ĥ

H0(M ⊗ Lχ)H0(L2) =
⊕
χ∈Ĥ

H0(M2 ⊗ Lχ).

Write Sym2H0(L) =
∑
χ,χ′∈Ĥ H

0(M ⊗ Lχ′).H0(M ⊗ Lχ.χ′−1). Consider the
multiplication maps∑

χ′∈Ĥ

H0(M ⊗ Lχ′).H0(M ⊗ Lχ.χ′−1)
ρχ−→ H0(M2 ⊗ Lχ).

Since ρ2 =
⊕

χ∈Ĥ ρχ, it will suffice to show the surjectivity of ρχ for each χ ∈ Ĥ.
Since the pair (B,M) is principally polarized, the homomorphism ψM : B −→

Pic0(B) is an isomorphism. Let H ′ = ψ−1
M (Ĥ) and θ ∈ |M | be the unique symmetric

divisor.
Case 1: Suppose χ is trivial.
We see that the surjectivity of the map ρtriv is equivalent to showing that the

reducible divisors θh + θ−h generate the linear system |M2|, for h ∈ H ′. By Propo-
sition 3.5, using the morphism φ : B −→ |M2|, this is the same as saying that the
image of the subgroup H ′ under the morphism φM2 generates the projective space
PH0(M2).

Case 2: Suppose χ is nontrivial.
First, notice that if b ∈ B, then ψM2(b) = ψM (2b). Let σ ∈ B be such that

ψM2(σ) = Lχ, i.e., ψM (2σ) = Lχ. Hence the map ρχ is surjective if the reducible
divisors θh + θ−h+2σ span the linear system |t∗σM2| for h ∈ H ′ = ψ−1

M (Ĥ). Now if
b ∈ B, then θb + θ−b+2σ = (θσ)b−σ + (θσ)−b+σ, which is the image of the divisor
θb−σ + θ−b+σ under the morphism |M2| −→ |t∗σM2| given by the translation map
B

tσ−→ B. Hence the morphism φσ : A −→ |t∗σM2| is given as b 7→ θb + θ−x+2σ.
This implies that ρχ is surjective if and only if the points in φσ(H ′) generate the
linear system |t∗σM2|.

Since the pair (A,L) is a simple polarized abelian variety with h0(L) = Card(H ′)
> 2g · g! = h0(t∗σM2) · g!, by Proposition 3.4, ρχ is surjective for all χ ∈ Ĥ. Hence,
by Proposition 2.1, our proof is now complete. �

Remark 3.6. 1) Suppose g = 1. Then any line bundle of degree strictly greater than
2 on an elliptic curve gives a projectively normal embedding. Hence the bound is
sharp.

2) Suppose g = 2. If L ' N2, where N is an ample symmetric line bundle
with h0(N) = 2 on an abelian surface A, then it follows that h0(L) = 8 (in terms
of “type” of an ample line bundle, N is of type (1, 2) and hence L is of type
(2, 4) and h0(L) = 8). By [3], 10.1.4, N has 4 base points, say x1, x2, x3 and x4,
which are 4-torsion points on A and, moreover, 2xi ∈ K(N) = KerψN where
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ψN : A −→ Pic0(A), a 7→ t∗aN ⊗N−1. Let αi = ψN (xi), for i = 1, 2, 3, 4. Now the
points xi are base points for N , for i = 1, 2, 3, 4, is equivalent to saying that the
origin 0 ∈ A is a base point for N ⊗ αi, for i = 1, 2, 3, 4. Also 2xi ∈ K(N) implies
that the points αi are 2-torsion points in Pic0(A). Hence by Ohbuchi’s Theorem
1.1, L does not give a projectively normal embedding. So the bound is sharp.

3) Suppose g = 3. If L ' N3, where N is a principal polarization on an abelian
threefold A, then h0(L) = 27. But by Koizumi’s Theorem, L gives a projectively
normal embedding. So the bound is not sharp in this case.
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