Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maximum norms of random sums and transient pattern formation
HTML articles powered by AMS MathViewer

by Thomas Wanner PDF
Trans. Amer. Math. Soc. 356 (2004), 2251-2279 Request permission

Abstract:

Many interesting and complicated patterns in the applied sciences are formed through transient pattern formation processes. In this paper we concentrate on the phenomenon of spinodal decomposition in metal alloys as described by the Cahn-Hilliard equation. This model depends on a small parameter, and one is generally interested in establishing sharp lower bounds on the amplitudes of the patterns as the parameter approaches zero. Recent results on spinodal decomposition have produced such lower bounds. Unfortunately, for higher-dimensional base domains these bounds are orders of magnitude smaller than what one would expect from simulations and experiments. The bounds exhibit a dependence on the dimension of the domain, which from a theoretical point of view seemed unavoidable, but which could not be observed in practice. In this paper we resolve this apparent paradox. By employing probabilistic methods, we can improve the lower bounds for certain domains and remove the dimension dependence. We thereby obtain optimal results which close the gap between analytical methods and numerical observations, and provide more insight into the nature of the decomposition process. We also indicate how our results can be adapted to other situations.
References
  • Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
  • R. Aurich, A. Bäcker, R. Schubert, and M. Taglieber, Maximum norms of chaotic quantum eigenstates and random waves, Phys. D 129 (1999), no. 1-2, 1–14. MR 1690285, DOI 10.1016/S0167-2789(98)00287-5
  • F. Bai, C. M. Elliott, A. Gardiner, A. Spence, and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations, Nonlinearity 8 (1995), no. 2, 131–160. MR 1328591
  • Feng Shan Bai, Alastair Spence, and Andrew M. Stuart, Numerical computations of coarsening in the one-dimensional Cahn-Hilliard model of phase separation, Phys. D 78 (1994), no. 3-4, 155–165. MR 1302406, DOI 10.1016/0167-2789(94)90112-0
  • Heinz Bauer, Probability theory, De Gruyter Studies in Mathematics, vol. 23, Walter de Gruyter & Co., Berlin, 1996. Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author. MR 1385460, DOI 10.1515/9783110814668
  • J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis, European J. Appl. Math. 2 (1991), no. 3, 233–280. MR 1123143, DOI 10.1017/S095679250000053X
  • J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis, European J. Appl. Math. 3 (1992), no. 2, 147–179. MR 1166255, DOI 10.1017/S0956792500000759
  • J. W. Cahn. Free energy of a nonuniform system. II. Thermodynamic basis. Journal of Chemical Physics, 30:1121–1124, 1959.
  • J. W. Cahn. Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics, 42:93–99, 1965.
  • J. W. Cahn. Spinodal decomposition. Transactions of the Metallurgical Society of AIME, 242:166–180, 1968.
  • J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system I. Interfacial free energy. Journal of Chemical Physics, 28:258–267, 1958.
  • Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344
  • M. I. M. Copetti. Numerical analysis of nonlinear equations arising in phase transition and thermoelasticity. Ph.D. thesis, University of Sussex, 1991.
  • M. I. M. Copetti and C. M. Elliott. Kinetics of phase decomposition processes: Numerical solutions to Cahn-Hilliard equation. Materials Science and Technology, 6:273–283, 1990.
  • K. R. Elder and R. C. Desai. Role of nonlinearities in off-critical quenches as described by the Cahn-Hilliard model of phase separation. Physical Review B, 40:243–254, 1989.
  • K. R. Elder, T. M. Rogers, and R. C. Desai. Early stages of spinodal decomposition for the Cahn-Hilliard-Cook model of phase separation. Physical Review B, 38:4725–4739, 1988.
  • C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, Mathematical models for phase change problems (Óbidos, 1988) Internat. Ser. Numer. Math., vol. 88, Birkhäuser, Basel, 1989, pp. 35–73. MR 1038064
  • Charles M. Elliott and Donald A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math. 38 (1987), no. 2, 97–128. MR 983721, DOI 10.1093/imamat/38.2.97
  • I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, Oxford – New York, 1998.
  • Paul C. Fife, Models for phase separation and their mathematics, Electron. J. Differential Equations (2000), No. 48, 26. MR 1772733
  • H. Garcke, S. Maier-Paape, and U. Weikard. Spinodal decomposition in the presence of elastic interactions. In S. Hildebrandt and H. Karcher, editors, Geometric Analysis and Nonlinear Partial Differential Equations, pages 603–635. Springer-Verlag, Berlin, 2002.
  • Christopher P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Comm. Partial Differential Equations 18 (1993), no. 3-4, 453–490. MR 1214868, DOI 10.1080/03605309308820937
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • J. E. Hilliard. Spinodal decomposition. In H. I. Aaronson, editor, Phase Transformations, pages 497–560. American Society for Metals, Metals Park, Ohio, 1970.
  • J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models. Acta metallurgica et materialia, 43:3385–3426, 1995.
  • Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
  • J. S. Langer. Theory of spinodal decomposition in alloys. Annals of Physics, 65:53–86, 1971.
  • Stanislaus Maier-Paape and Thomas Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. I. Probability and wavelength estimate, Comm. Math. Phys. 195 (1998), no. 2, 435–464. MR 1637817, DOI 10.1007/s002200050397
  • Stanislaus Maier-Paape and Thomas Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics, Arch. Ration. Mech. Anal. 151 (2000), no. 3, 187–219. MR 1753703, DOI 10.1007/s002050050196
  • Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932
  • J. D. Murray, Mathematical biology, 2nd ed., Biomathematics, vol. 19, Springer-Verlag, Berlin, 1993. MR 1239892, DOI 10.1007/b98869
  • E.-M. Nash. Finite-Elemente und Spektral-Galerkin Verfahren zur numerischen Lösung der Cahn-Hilliard Gleichung und verwandter nichtlinearer Evolutionsgleichungen. Ph.D. thesis, Universität Augsburg, 2000.
  • E. Sander and T. Wanner. Monte Carlo simulations for spinodal decomposition. Journal of Statistical Physics, 95(5–6):925–948, 1999.
  • Evelyn Sander and Thomas Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math. 60 (2000), no. 6, 2182–2202. MR 1763320, DOI 10.1137/S0036139999352225
  • E. Sander and T. Wanner. Pattern formation in a nonlinear model for animal coats. Journal of Differential Equations, 191(1):143–174, 2003.
  • A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 237B:37–72, 1952.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K35, 35B05, 42A61
  • Retrieve articles in all journals with MSC (2000): 35K35, 35B05, 42A61
Additional Information
  • Thomas Wanner
  • Affiliation: Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030
  • MR Author ID: 262105
  • Email: wanner@math.gmu.edu
  • Received by editor(s): September 3, 2002
  • Published electronically: October 8, 2003
  • © Copyright 2003 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 356 (2004), 2251-2279
  • MSC (2000): Primary 35K35, 35B05, 42A61
  • DOI: https://doi.org/10.1090/S0002-9947-03-03480-9
  • MathSciNet review: 2048517