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OPERATORS ON C(K) SPACES
PRESERVING COPIES OF SCHREIER SPACES

IOANNIS GASPARIS

Abstract. It is proved that an operator T : C(K) → X, K compact metriz-
able, X a separable Banach space, for which the ε-Szlenk index of T ∗(BX∗ )

is greater than or equal to ωξ, ξ < ω1, is an isomorphism on a subspace of
C(K) isomorphic to Xξ, the Schreier space of order ξ. As a corollary, one
obtains that a complemented subspace of C(K) with Szlenk index equal to
ωξ+1 contains a subspace isomorphic to Xξ.

1. Introduction

It is an open question whether every infinite-dimensional complemented subspace
of C(K), K compact metrizable, is isomorphic to C(L) for some compact metrizable
space L ([36], [43]). Of course, C(K) stands for the Banach space of scalar-valued
functions continuous on K, under the supremum norm. A closed linear subspace of
C(K) is complemented if it is the range of a bounded linear idempotent operator
on C(K). The following list consists of papers closely connected to this conjecture:
[1], [2], [3], [4], [5], [7], [8], [9], [15], [17], [18], [19], [20], [32], [33], [34], [36], [43],
[44], [45], [47], [48], [55], [56].

It follows, by combining the results of [45], [15], [8] and [18], that in order to
settle this conjecture in the affirmative, one needs to show that if E is complemented
in C(K) and E∗ is separable, then E is isomorphic to C(ωω

ξ

) for some countable
ordinal ξ (in the sequel, for a given ordinal α, C(α) will denote the Banach space
C(K), where K = [1, α] is the interval of ordinals not exceeding α, endowed with
the order topology). Note that E∗ is isomorphic to `1 by the results of [32]. Also,
the ordinal ξ in question can be computed in terms of the Szlenk index η(E) of
E, [52]. It is shown in [8], [16], [48] that η(E) = ωξ+1. We shall next recall the
definition of the Szlenk index of a Banach space, since it will play an important
role in our considerations.

Given a w∗-compact subset B of X∗, the dual of a Banach space X , and a
scalar ε > 0, we define a transfinite sequence (Pα(ε, B))α<ω1 (ω1 stands for the
first uncountable ordinal) of subsets of B by transfinite induction: P0(ε, B) = B.
Suppose that α < ω1 and that Pβ(ε, B) has been defined for all β < α. Assume
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first that α is a successor ordinal, say α = β + 1. Set

Pα(ε, B) = {x∗ ∈ B : ∃ (x∗n) ⊂ Pβ(ε, B), lim
n
x∗n = x∗, (w∗), ∃ (xn) ⊂ BX

lim
n
xn = 0, (w), inf

n
|x∗n(xn)| ≥ ε}

(BX is the closed unit ball of X). If α is a limit ordinal, set

Pα(ε, B) =
⋂
β<α

Pβ(ε, B).

Define the ε-Szlenk index of B as η(ε, B) = sup{α < ω1 : Pα(ε, B) 6= ∅}. Then
define the Szlenk index of B to be η(B) = sup{η(ε, B) : ε > 0}. Finally, the Szlenk
index η(X) of X equals η(BX∗). We shall discuss this index in detail in Section 3.
We mention that η(X) is a measurement for the norm-separability of the dual X∗.
Szlenk [52] shows that if X∗ is separable, then η(X) < ω1. It is also noted in [20]
that the results of [51] imply that for a w∗-compact subset B of C(K)∗, η(B) < ω1

if, and only if, B is norm-separable.
Going back to E, a complemented subspace of C(K) with η(E) = ωξ+1, we

remark that it is still unknown if C(ωω
ξ

) is isomorphic to a subspace of E. A
related problem that has been extensively studied is:

(P) : Suppose that X is a separable Banach space and T : C(K) → X is
a bounded linear operator. Assume there exist ε > 0 and ξ < ω1 such that
η(ε, T ∗(BX∗)) ≥ ωξ. Does there exist a subspace Y of X isomorphic to C(ωω

ξ

)
and such that the restriction of T to Y is an isomorphism?

Note that an affirmative answer to (P) yields that a complemented subspace X
of C(K) with Szlenk index equal to ωξ+1 must contain a subspace isomorphic (and
also complemented in X , by the result of [44]) to C(ωω

ξ

).
Pelczynski [43] showed (P) has an affirmative answer when ξ = 0. Rosenthal [45]

proved that if T ∗(BX∗) is not norm-separable (which is equivalent to saying that,
for some ε > 0, the ε-Szlenk index of T ∗(BX∗) is ω1), then T is an isomorphism
on a subspace of C(K) isometric to C[0, 1] (necessarily K is uncountable and then
C(K) is isomorphic to C[0, 1] by Miljutin’s theorem [38]).

Alspach [1] settled (P) in the affirmative when ξ = 1. This result was crucial in
Zippin’s solution of the “separable extension” problem [56], as well as in Benyamini’s
characterization of the complemented subspaces of C(ωω) [15]. Alspach also showed
(P) has a negative answer when ξ 6= ωγ for all γ < ω1 [3], [5].

Finally, Bourgain [20] established an affirmative answer for (P) when ωξ = ξ.
The Banach spaces C(ωω

ξ

), ξ < ω1, form a complete list of representatives for
the isomorphic classes of the C(K) spaces with K countable compact metrizable
[18]. When ξ = 0, we obtain the familiar space c0. Hence, C(ωω

ξ

), 1 ≤ ξ, can be
thought as the higher ordinal analogs of c0. There is however one major difference
between c0 and its transfinite counterparts: Although c0 possesses an unconditional
basis, actually a symmetric one, C(ωω

ξ

), ξ ≥ 1, does not. In fact, it does not even
embed in a quotient of a subspace of a space with an unconditional basis [46]. The
purpose of the present paper is to show that this lack of unconditionality of C(ωω

ξ

),
ξ ≥ 1, is a reason why (P) has, in general, a negative answer.

To explain our result we first note that there exist transfinite analogs of c0
which do possess unconditional bases. These are the generalized Schreier spaces
{Xξ}ξ<ω1 , [6], [11]. The construction of these spaces, which has its origins in an
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example due to Schreier [50], is based on a method initiated by Tsirelson [54] and
has many applications in modern Banach space theory [41]. It is shown in [11]
that, given a family F of finite subsets of N containing the singletons and closed
under restrictions to initial segments of N (we assume that ∅ ∈ F), one can define
a norm ‖ · ‖F on c00 (the linear space of ultimately vanishing scalar sequences) in
the following manner:

‖x‖F = sup{
∑
n∈F
|x(n)| : F ∈ F}.

Let XF denote the completion of c00 under the norm ‖·‖F . It is not hard to see that
the natural unit vector basis (en) of c00 becomes a normalized monotone Schauder
basis for the Banach space XF , and that ‖

∑
n anen‖F = sup{

∑
n∈F |x(n)| : F ∈

F}, for every finitely supported scalar sequence (an). In case F is assumed to be
hereditary (this means G ∈ F whenever G ⊂ F and F ∈ F), then (en) is an uncon-
ditional basis for XF . If F is compact in the topology of pointwise convergence on
the power set of N (by identifying sets with their indicator functions), then (en) is
a normalized shrinking basis for XF . For example, taking F = {F ⊂ N : |F | ≤ 1},
we obtain XF = c0. If we take F = Sξ, the generalized ξ-th Schreier family,
ξ < ω1, [6], [11], then XF is the Schreier space Xξ of order ξ. It is known that the
Szlenk index of Xξ is ωξ+1 (the proof of this fact is implicit in the arguments of
[10]; see also Corollary 3.4) and thus equals the Szlenk index of C(ωω

ξ

). Therefore,
in terms of the Szlenk index, Xξ is comparable to C(ωω

ξ

) and has an unconditional
basis. This justifies our preceding remark that the Schreier spaces Xξ stand as the
transfinite unconditional analogs of c0.

The Schreier families have played a key role in the recent developments in the
geometry of Banach spaces [41]. We shall not describe Sξ explicitly, because we
would rather focus on certain properties these families satisfy which are also shared
by other families of finite subsets of N. This will allow us to extend the results
stated in the abstract to a more general setting.

A family F of finite subsets of N is spreading, if for every choice {m1 <, . . . , <
mk} and {n1 <, . . . , < nk} of subsets of N such that {m1, . . . ,mk} ∈ F andmi ≤ ni,
for all i ≤ k, we have that {n1, . . . , nk} ∈ F . We call F regular [41] if it is hereditary,
compact in the topology of pointwise convergence and spreading. It is shown in [6]
that the Schreier families {Sξ}ξ<ω1 are regular and that they exhaust the complexity
of countable compact metric spaces. It turns out, [42], that for a regular family
F there is a ξ < ω1 such that F (ξ) = {∅} (see Proposition 2.11 for a proof of this
known fact) and hence F is homeomorphic to the ordinal interval [1, ωξ], by the
Mazurkiewicz-Sierpinski theorem [37]. We shall then say that F is of order ξ. Sξ
is of order ωξ, as shown in [6]. We recall here that for a compact metrizable space
K and α < ω1, K(α) denotes the α-th Cantor-Bendixson derivative of K.

A hereditary family F is stable, provided that F ∈ F is a maximal, under
inclusion, member of F if, and only if, there exists an n > maxF such that F∪{n} /∈
F . It is easy to see that a stable family F with more than one element must contain
all singletons. We also observe that for a non-maximal F ∈ F , F ∪ {n} ∈ F for all
n > maxF . It is shown in [24] that Sξ is stable. We are now ready to state our
results.

Theorem 1.1. Let K be a compact metrizable space, X a separable Banach space
and T : C(K) → X a bounded linear operator. Suppose that η(λ, T ∗(BX∗)) ≥ ξ,
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for some λ > 0 and ξ < ω1. Let F be a regular and stable family of order ξ. Then
there exists a subspace Y of C(K) isomorphic to XF and such that the restriction
of T to Y is an isomorphism.

We prove Theorem 1.1 in Section 5. Let us remark here that when ξ = 1,
the conclusion of Theorem 1.1 is Pelczynski’s aforementioned result [43], that a
non-weakly compact operator on C(K) is an isomorphism on a subspace of C(K)
isomorphic to c0. Indeed, it is shown in [1] that T : C(K) → X is non-weakly
compact if, and only if, η(λ, T ∗(BX∗)) ≥ 1, for some λ > 0 (recall that XF is
isometric to c0 when F is regular of order 1). We have already mentioned that the
Schreier families Sξ are regular and stable of order ωξ, and that the corresponding
Schreier spaces Xξ are the natural transfinite unconditional analogs of c0. From
this point of view, Theorem 1.1 can be thought as a natural generalization of
Pelczynski’s result.

An immediate corollary to Theorem 1.1 is

Corollary 1.2. Let X be a complemented subspace of C(K) with η(X) = ωξ+1 for
some ξ < ω1. Given any regular and stable family F of order ωξ, the space XF is
isomorphic to a subspace of X.

Theorem 1.1 is a consequence of our next two results. The first is, roughly
speaking, a representation result for measures belonging to the ξ-th Szlenk set of a
w∗-compact subset of BC(K)∗ , using regular families of order ξ. More precisely, in
Section 3 we show

Theorem 1.3. Let K be a totally disconnected, compact, metrizable space. Let
M ⊂ BC(K)∗ be w∗-compact and such that η(λ,M) ≥ ξ for some λ > 0 and
ξ < ω1. Let F be a regular family of order ξ and set F∗ = F \ {∅}. Then given
0 < ε < λ/4 there exist a family (Gα)α∈F∗ of clopen subsets of K, and a w∗-compact
subset (µα)α∈F of M so that the following properties are satisfied:

(1) The map α → µα is a homeomorphic embedding of F , equipped with the
topology of pointwise convergence, into M, equipped with the w∗-topology.

(2) |µβ(Gα)| ≥ λ/4− ε, for all α and β in F∗ with α 6 β (the latter meaning
that α is an initial segment of β).

(3) The set N = Clw∗ {|µα| : α ∈ F is terminal } is countable (α is terminal
if α = β for every β ∈ F such that α 6 β).

(4) limn ν(Gα∪{n}) = 0, for every non-terminal α ∈ F and all ν ∈ N .

To prove Theorem 1.1 we shall need Theorem 1.4 which is a refinement of The-
orem 1.3.

Theorem 1.4. Let K be a totally disconnected, compact, metrizable space. Let
M ⊂ BC(K)∗ be w∗-compact and such that η(λ,M) ≥ ξ for some λ > 0 and
ξ < ω1. Let F be a regular family of order ξ. Then given 0 < ε < λ/4 and
δ > 0, there exists a family (Gα)α∈F∗ of clopen subsets of K fulfilling the following
property: For every α ∈ F∗ there exists a µ ∈ M such that |µ(Gβ)| ≥ λ/4 − ε, for
all β ∈ F∗, β 6 α, yet

∑
β∈F∗, β
α |µ|(Gβ) < δ.

Theorem 1.4 is proved in Section 4. We shall actually prove a stronger result,
Theorem 4.3. The latter is a combinatorial result based on the infinite Ramsey the-
orem [21] and it might be of independent interest. The precise statement, which is
too technical to appear in this introductory section, is given in Section 4. Roughly
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speaking, Theorems 1.4, 4.3 are “tree” versions of results in [12], [14], [22], [39],
concerning the detection of a subsequence of a weakly null sequence, such that all
further subsequences satisfy a certain property, for instance being nearly uncondi-
tional [22], [39], or convexly unconditional [14].

We shall use standard Banach space facts and terminology as may be found in
[35].

2. Trees

In this section we shall discuss some basic facts about trees and families of finite
subsets of N which are going to be very useful to our considerations. A tree is a
partially ordered set (T ,6) such that for every α ∈ T the subset {β ∈ T : β 6 α}
of T is well ordered. The elements of the tree are called nodes. We now fix a tree
(T ,6). For a node α ∈ T we let DTα denote the set of its immediate successors in T .
Thus, if β ∈ DTα and α < γ 6 β (α < γ means that α 6 γ and α 6= γ), then γ = β.
A node α ∈ T is terminal if DTα = ∅. It is called a root if it has no predecessors
in T . The tree is rooted if it has a unique root. It is infinitely branching if DTα is
infinite for every non-terminal node α ∈ T . A branch of T is a maximal, under
inclusion, well-ordered subset. The tree is well-founded if it contains no infinite
branches.

Any subset of the tree is itself a tree, under the partial ordering inherited by T .
A subset S ⊂ T is a subtree of T if for every α ∈ S and β ∈ T such that β 6 α, we
have β ∈ S. If S is a subtree of T , then, clearly, DSα ⊂ DTα for all α ∈ S. In case
|DSα | = |DTα | for all α ∈ S, we call S a full subtree of T (a similar terminology was
introduced in [26]).

Given trees (T1,61) and (T2,62), then a map θ : T1 → T2 is said to be an order
preserving injection provided α 61 β in T1 if, and only if, θ(α) 62 θ(β) in T2. If,
additionally, θ is surjective, then T1 and T2 are called order isomorphic.

Tree topology. Let (T ,6) be a tree. We shall discuss a natural topology on T
introduced by H. Rosenthal (unpublished). Consider the family

UT = {Uα,F : α ∈ T , F ⊂ DTα is finite},
where Uα,F = {β ∈ T : α 6 β, γ 
 β ∀ γ ∈ F}, F ⊂ DTα . It is not hard to see
that UT is a basis for a Hausdorff topology TT on T . In fact, for every α ∈ T
the set {β ∈ T : α 6 β} is clopen with respect to TT , and, moreover, the family
{Uα,F : F ⊂ DTα is finite } forms a basis (consisting of clopen sets) for the open
neighborhoods of α in TT . We call TT the tree topology on T . This topology
is separable and metrizable if, and only if, T is countable. If S ⊂ T , then we
can consider two topologies on it. The first is TS , the tree topology induced by
the partial ordering S inherits from T . The second one is TT | S, the relative TT
topology. One checks that TS ⊂ TT | S. It follows that the two topologies coincide
if S is a compact subset of T with respect to TT . We also observe that TT | S = TS
whenever S is a subtree of T . The next lemma is well known.

Lemma 2.1. Assume T is a countable, well-founded and rooted tree. Then the
tree topology is compact.

Proof. As we have already observed, the tree topology is metrizable. Let (αn) be
a sequence in T . We show (αn) has a convergent subsequence. Define D = {β ∈
T : β 6 αn for infinitely many n’s}. Note that ρ ∈ D where ρ denotes the root of
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T . Since T is well-founded there exists an α0 ∈ D, maximal with respect to the
ordering of T . Choose an infinite subset N of N such that α0 6 αn for all n ∈ N .
We show (αn)n∈N converges to α0. To this end, let F ⊂ DTα0

be finite. Given
β ∈ DTα0

, we know β /∈ D. It follows that
⋃
β∈F {n ∈ N : β 6 αn} is finite. Hence

αn ∈ Uα0,F for all but finitely many n ∈ N and thus limn∈N αn = α0. �

An ordinal index for well-founded trees. We shall next deal with an ordinal
index known as the order of a well-founded tree [28]. Given a rooted, well-founded
tree T , we let max T denote the set of its terminal nodes. We shall define a
decreasing transfinite family {T (α)}α<ω1 of subtrees of T as follows: Set T (0) = T .
Suppose T (β) has been defined for all β < α. If α is a successor, say α = β + 1, set
T (α) = T (β) \max T (β). In case α is a limit ordinal, put T (α) =

⋂
β<α T (β). It is

easy to verify that T (α) is a subtree of T for all α < ω1. We let o(T ) = sup{α <
ω1 : T (α) 6= ∅} be the order of T . Because T is rooted the sup above is actually a
max and if o(T ) = ξ, then T (ξ) = {ρ}, where ρ stands for the root of T . Note also
that if T is countable, then o(T ) < ω1.

Remark 2.2. We must note here that the derivation T (α) introduced above should
not be confused with the Cantor-Bendixson derivation on T , with respect to the
tree topology, although the same notation is used for both derivations. However,
we shall see later that those derivations coincide on a class of special trees (see
Definition 2.5 and parts (3), (4) of Lemma 2.6).

Notation. Given t ∈ T we set Tt = {x ∈ T : t 6 x}. We also define o(t) = o(Tt),
the order of t. Clearly, o(ρ) = o(T ) if ρ is the root of T , while o(t) = 0 for every
terminal node t ∈ T .

The next two lemmas describe elementary properties of o(T ).

Lemma 2.3. Let T be rooted and well-founded. Then for every t ∈ T and all
ξ < ω1, T (ξ)

t = Tt ∩ T (ξ).

Proof. We prove the lemma by transfinite induction on ξ, the case ξ = 0 being
trivial. Suppose the assertion holds for all rooted and well-founded trees and all
ordinals smaller than ξ. Let T be rooted and well-founded. Suppose first ξ is a
limit ordinal. Then

T (ξ)
t =

⋂
α<ξ

T (α)
t =

⋂
α<ξ

(Tt ∩ T (α)), by the induction hypothesis,

= Tt ∩ (
⋂
α<ξ

T (α)) = Tt ∩ T (ξ)

which proves the assertion for the limit ordinal case. If ξ = ζ + 1, let x be an
arbitrary node in T (ζ+1)

t . Then x ∈ T (ζ)
t \max(T (ζ)

t ), and thus x ∈ (Tt ∩ T (ζ)) \
max(Tt∩T (ζ)), by the induction hypothesis. But now, x cannot be a terminal node
in T (ζ), or else x would be terminal in Tt ∩ T (ζ) as well, which is a contradiction.
Therefore x /∈ max(T (ζ)) and subsequently x ∈ (Tt ∩ T (ζ)) \max(T (ζ)). It follows
that x ∈ Tt ∩ T (ζ+1), showing that T (ζ+1)

t ⊂ Tt ∩ T (ζ+1).
Conversely, suppose x ∈ Tt ∩ T (ζ+1). It follows that x ∈ (Tt ∩ T (ζ)) \max(T (ζ))

and so x ∈ T (ζ)
t \ max(T (ζ)), by the induction hypothesis. We now claim that

x /∈ max(T (ζ)
t ). Indeed, otherwise, x would be terminal in Tt ∩ T (ζ) and thus also
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terminal in T (ζ). However, x /∈ max(T (ζ)). Concluding, Tt ∩ T (ζ+1) ⊂ T (ζ+1)
t ,

completing the inductive step and the proof of the lemma. �
Lemma 2.4. Let T be rooted and well-founded. Let t ∈ T . Then o(t) = 0 if t is
terminal, while o(t) = sup{o(s) + 1 : s ∈ DTt } otherwise.

Proof. The first assertion is trivial. To prove the second one we make a few pre-
liminary observations. Suppose that T is of order ξ and let ρ denote its root. Then
T (ξ) = {ρ}. Indeed, T (ξ) is a non-empty subtree of T . This is immediate if ξ is
a limit ordinal, as ρ ∈ T (α) for all α < ξ. In case ξ is a successor, say ξ = ζ + 1,
then T (ζ) 6= ∅ and if T (ζ+1) = ∅ we would have o(T ) = ζ, a contradiction. Hence,
ρ ∈ T (ξ). Finally, if t ∈ T (ξ), t 6= ρ, then we must have ρ < t and subsequently
max T (ξ) 6= T (ξ). Therefore T (ξ+1) 6= ∅, a contradiction.

A second observation is that if S ⊂ T is itself rooted, then S(α) ⊂ T (α), for all
α < ω1. It follows that o(S) ≤ o(T ).

In order to complete the proof of the lemma we show that o(t2) < o(t1) whenever
t1 < t2 in T . Indeed, since Tt2 ⊂ Tt1 , our preceding observation yields o(t2) ≤ o(t1).
Put o(t2) = ξ2. Then

T (ξ2)
t2 = {t2} = Tt2 ∩ T (ξ2), by Lemma 2.3,

= Tt2 ∩ Tt1 ∩ T (ξ2) = Tt2 ∩ T
(ξ2)
t1 , by Lemma 2.3.

Hence t1 < t2 and both belong to T (ξ2)
t1 . It follows that T (ξ2+1)

t1 6= ∅. Therefore,
o(t2) + 1 ≤ o(t1). Next suppose that there exists a t ∈ T such that α < o(t), where
we have set α = sup{o(s) + 1 : s ∈ DTt }. Then α + 1 ≤ o(t) and so T (α+1)

t 6= ∅.
Choose s ∈ T (α)

t , t < s. Then choose s0 ∈ DTt with s0 6 s. It follows that

s0 ∈ T (α)
t ∩ Ts0 = Tt ∩ T (α) ∩ Ts0 , by Lemma 2.3,

= T (α) ∩ Ts0 = T (α)
s0 , by Lemma 2.3.

Hence, o(s0) + 1 ≤ α ≤ o(s0), a contradiction. �
Subtrees of [N]<∞. If X is any set, [X ]<∞ denotes the set of its finite subsets.
[N]<∞ can be naturally viewed as a tree under the following partial ordering: {m1 <
, . . . , < mk} 6 {n1 <, . . . , < nl} if, and only if, k ≤ l and mi = ni for all i ≤ k.
We agree that ∅ is the root of [N]<∞. Of course [N]<∞ is infinitely branching and
it is easy to see that the tree topology coincides with the topology of pointwise
convergence on [N]<∞ (for the latter topology, we identify sets with their indicator
functions). It is not hard to see, by transfinite induction on the order of the tree,
that every countable, well-founded rooted tree is order isomorphic to a subtree of
[N]<∞.

Definition 2.5. A countable tree T is blossomed if it is rooted, infinitely branching,
well-founded and for every non-terminal node t ∈ T there exists an enumeration
(tn)∞n=1 of DTt such that the sequence (o(tn))∞n=1 is non-decreasing. We make the
convention that trees with only one node are blossomed.

Blossomed trees are variants of the so-called replacement trees introduced by
Judd and Odell [27]. We refer to [10], [27] for an in-depth treatment of trees in
Banach space theory.

Blossomed trees will be very useful to our considerations. The next lemmas
contain a few permanence properties of such trees.
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Lemma 2.6. (1) Let T be blossomed and t ∈ T . Then Tt is blossomed.
(2) Suppose T is an infinitely branching, countable, well-founded, rooted tree.

Let ρ be the root of T and assume that there exists an enumeration (tn) of
DTρ , with (o(tn)) non-decreasing, such that Ttn is blossomed for all n ∈ N.
Then T is blossomed.

(3) If T is blossomed and o(T ) = ξ, then T , equipped with the tree topology, is
homeomorphic to [1, ωξ]. Moreover, the ξ-th Cantor-Bendixson derived set
of T is {ρ}, where ρ is the root of T .

(4) Let T be a countable, rooted, infinitely branching, well-founded tree satisfy-
ing the following property: For every t ∈ T there exists ξt < ω1 such that
the ξt-th Cantor-Bendixson derived set (with respect to the tree topology)
of Tt is {t}. Assume that for every non-terminal node t of T there exists
an enumeration (tn) of DTt , such that (ξtn) is non-decreasing. Then T is
blossomed and o(t) = ξt, for all t ∈ T .

Proof. The first two assertions are easily established. We first prove (3). This is
done by transfinite induction on ξ. If ξ = 0 the assertion is trivial. Assume the
assertion holds for blossomed trees of order less than ξ. Let (tn) be an enumeration
of DTρ , with (o(tn)) non-decreasing. Put ξn = o(tn), n ∈ N. We know that
ξ = supn(ξn + 1), thanks to Lemma 2.4. The induction hypothesis now yields
that Ttn is homeomorphic to [1, ωξn ] with tn being the only element in the ξn-th
Cantor-Bendixson derived set of Ttn . Since Ttn is clopen in T the assertion follows
from Lemma 2.10.

We now show that (4) holds. Let ρ be the root of T and set ξT = ξρ. We
prove the assertion of the lemma by transfinite induction on ξT . The case ξT = 0
is trivial. Let ξ < ω1 and suppose the assertion holds for all trees T such that
ξT < ξ. Now let T be a tree such that ξT = ξ. Let (tn) be an enumeration of
the immediate successors of the root of T , with (ξtn) non-decreasing and such that
the ξtn -th Cantor-Bendixson derived set of Ttn is {tn}, for all n ∈ N. It follows by
Lemma 2.10 that supn(ξtn + 1) = ξ. The induction hypothesis now implies that
Ttn is blossomed. Moreover, o(t) = ξt, for every node t such that tn 6 t, and for
all n ∈ N. We deduce from part (2), above, combined with Lemma 2.4, that T is
blossomed with o(T ) = ξ. �

Lemma 2.7. Let T and S be blossomed trees such that o(S) ≤ o(T ). Then S is
order isomorphic to a subtree of T .

Proof. We prove the lemma by transfinite induction on o(T ) = ξ. If ξ = 0, the
assertion is trivial. Assume ξ ≥ 1 and that the assertion holds for blossomed trees
of order smaller than ξ. Let T be blossomed of order ξ. Let S be a blossomed
tree such that o(S) = ζ ≤ ξ. Assume ζ ≥ 1 as well, for otherwise the assertion
is again trivial. Let s0 and t0 denote the roots of S and T , respectively. We may
choose enumerations (sn) of DSs0 and (tn) of DTt0 such that the ordinal sequences
(o(sn)) and (o(tn)) are both non-decreasing. Put ζn = o(sn) and ξn = o(tn), for
all n ∈ N. Since ζn < ζ ≤ ξ, for all n ∈ N, and ξ = supn(ξn + 1), we may choose
positive integers m1 < m2 < . . . such that ζn < ξmn + 1, for all n ∈ N. Hence
ζn ≤ ξmn and o(Ttmn ) = ξmn < ξ, for all n ∈ N. Because o(Ssn) = ζn, Lemma 2.6
and the induction hypothesis yield a subtree Sn of Ttmn which is order isomorphic
to Ssn , for all n ∈ N. It is easy to check that

⋃
n Sn ∪ {t0} is a subtree of T order

isomorphic to S. �



OPERATORS ON C(K) SPACES 9

Lemma 2.8. Let T be blossomed of order ξ and S a full subtree of T . Then S is
also blossomed of order ξ.

Proof. We prove the lemma by transfinite induction on o(T ) = ξ, the case ξ = 0
being trivial. Suppose the assertion holds for blossomed trees of order less than
ξ and let T be blossomed of order ξ. Let ρ be the root of T , and let (tn) be an
enumeration of DTρ such that o(tn) = ξn with (ξn) non-decreasing. We can write
T =

⋃
n Ttn ∪ {ρ}. Next let S be a full subtree of T and define N = {n ∈ N :

S ∩ Ttn 6= ∅}. It is clear that N is infinite and that S ∩ Ttn is a full subtree of Ttn ,
for all n ∈ N . Part (1) of Lemma 2.6 now implies that Ttn is blossomed of order
ξn, for all n ∈ N. We infer from the induction hypothesis that S ∩Ttn is blossomed
of order ξn, for all n ∈ N . Since S =

⋃
n∈N (S ∩ Ttn) ∪ {ρ} (actually, Stn = S ∩ Ttn

for all n ∈ N) and N is infinite, part (2) of Lemma 2.6 yields S is blossomed of
order ξ. �

Families of finite subsets of N. Let F ⊂ [N]<∞. For such a family, the terms
hereditary, spreading, compact, regular and stable have already been given in Sec-
tion 1. Every hereditary family F can be viewed as a subtree of [N]<∞ (it suffices
that F be closed under restrictions to initial segments). If F is hereditary and com-
pact in the topology of pointwise convergence, then it is a well-founded subtree of
[N]<∞. In case F is additionally assumed to be spreading, then F is a well-founded,
infinitely branching subtree of [N]<∞. We remark that in this case the tree topol-
ogy on F coincides with the topology of pointwise convergence. We are going to
show that every hereditary, compact and spreading family is a blossomed subtree
of [N]<∞. This will be a consequence of the Mazurkiewicz-Sierpinski theorem [37].
We shall need two preparatory lemmas.

Lemma 2.9. Let K be a countable compact metric space. Suppose there exist
a sequence (Kn) of pairwise disjoint non-empty clopen subsets of K and x0 ∈
K\
⋃
nKn, so that K =

⋃
nKn∪{x0}. Assume further that Kn is homeomorphic to

a subset of Kn+1, for all n ∈ N. Then there exists a ξ < ω1 such that K(ξ) = {x0}.

Proof. The Mazurkiewicz-Sierpinski theorem [37] implies the existence of a ξ < ω1

such that K(ξ) is finite non-empty. Assume there exists some x ∈ K(ξ) \ {x0}.
Then choose n0 ∈ N such that x ∈ Kn0 . Since Kn0 is clopen in K, we infer that
x ∈ K(ξ)

n0 . Since Kn0 is homeomorphic to a subset of Kn, for all n ≥ n0, we conclude
that there exists xn ∈ K(ξ)

n , for all n ≥ n0. It follows that (xn)n≥n0 is an infinite
sequence in K(ξ), contrary to our assumption. �

Lemma 2.10. Let K be a countable compact metric space. Suppose there exist
a sequence (Kn) of pairwise disjoint non-empty clopen subsets of K and x0 ∈
K\
⋃
nKn, so that K =

⋃
nKn∪{x0}. Assume further there exists a non-decreasing

sequence (ξn) of countable ordinals, such that K(ξn)
n is a singleton, for all n ∈ N.

Then K(ξ) = {x0}, where ξ = supn(ξn + 1).

Proof. The Mazurkiewicz-Sierpinski theorem [37] implies that Kn is homeomor-
phic to [1, ωξn ], for all n ∈ N. Since (ξn) is non-decreasing, we infer that Kn is
homeomorphic to a subset of Kn+1, for all n ∈ N. Lemma 2.9 yields a ζ < ω1

such that K(ζ) = {x0}. We show ζ = supn(ξn + 1). Indeed, first observe that
ξn < ζ, for all n ∈ N. Otherwise, ζ ≤ ξn0 for some n0 ∈ N and so K(ζ)

n0 6= ∅. Since
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K
(ζ)
n0 ⊂ K(ζ), we deduce that x0 ∈ Kn0 , contrary to our assumptions. It follows

that ξ = supn(ξn + 1) ≤ ζ.
Finally, suppose ξ < ζ. Then K(ξ) is infinite and we may choose x ∈ K(ξ) \{x0}.

Next choose m ∈ N with x ∈ Km. Because Km is clopen we infer that x ∈ K(ξ)
m .

However, K(ξ)
m is empty as K(ξm)

m is a singleton and ξm < ξ. �

Proposition 2.11. Let F be a regular family of finite subsets of N. Then F is a
blossomed tree.

Proof. To avoid trivialities assume F 6= {∅}. From a previous discussion we have
F is a well-founded, infinitely branching subtree of [N]<∞. Given α ∈ F we recall
that Fα = {β ∈ F : α 6 β}, which is a clopen subset of F (relatively to the tree
topology of F which of course coincides with the topology of pointwise convergence
on F). If α is non-terminal in F , set Mα = {n ∈ N : max α < n, α ∪ {n} ∈ F}.
This is an infinite subset of N by the spreading property of F . We certainly have
that Fα =

⋃
n∈Mα

Fα∪{n} ∪ {α}. We also have that the sequence (Fα∪{n})n∈Mα

consists of pairwise disjoint, non-empty clopen subsets of F . We are going to show
that Fα∪{n1} is homeomorphic to a subset of Fα∪{n2}, for all n1 < n2 in Mα. To see
this define a map φ : Fα∪{n1} → Fα∪{n2} by the rule φ(α∪F ) = α∪ [(n2−n1)+F ],
for every F ∈ F such that minF = n1 and α ∪ F ∈ F . In the above, for an
integer k we let k + F denote the set {k + i : i ∈ F}. φ is well defined because
F is spreading. It is easy to see that φ is injective and continuous and thus a
homeomorphic embedding. Lemma 2.9 yields an ordinal ξα such that F (ξα)

α = {α}.
Since ξα∪{n1} ≤ ξα∪{n2} whenever n1 < n2 in Mα, we deduce, using part (4) of
Lemma 2.6, that F is blossomed. �

Remark 2.12. We must mention here that for every ξ < ω1 there exists a regular
and stable family of order ξ. Indeed, when ξ is of power-type, say, ωα, then the
Schreier family Sα is regular of order ξ [6] and stable [24]. If ξ is any countable
ordinal, then regular and stable families of order ξ were first considered in [53],
and later in [13], [23], [49]. Such families are constructed by transfinite induction
on ξ. We shall briefly sketch the construction. If F is a regular and stable family
of order ξ, then the family {F ∈ [N]<∞ : F \ {minF} ∈ F} ∪ {∅} is regular and
stable of order ξ + 1. Next suppose ξ is a limit ordinal and let (ξn) be a sequence
of ordinals strictly increasing to ξ. Assume Fn is regular and stable of order ξn, for
all n ∈ N. Then {F ∈ [N]<∞ : ∃n ≤ minF, F ∈ Fn} ∪ {∅} is a regular and stable
family of order ξ. It is easy to see that those families are hereditary and spreading,
containing the singletons. Compactness follows by applying Lemma 2.10. Stability
is proven using the argument in Lemma 3.1 of [24].

The final result in this section discusses the construction of some special universal
subtrees of [N]<∞. In the sequel, if X is any set, we let [X ] denote the set of all
infinite subsets of X .

Lemma 2.13. Let M ∈ [N]. There exists a family (Mα)α∈[N]<∞ of pairwise disjoint
infinite subsets of M (i.e., Mα ∩Mβ = ∅ whenever α 6= β in [N]<∞) so that letting
(mα

i )∞i=1 be the increasing enumeration of Mα, we have that mα−

i < mα
i , for all

i ∈ N and α ∈ [N]<∞, α 6= ∅ (α− stands for the predecessor of α in [N]<∞).

Proof. Choose M∅ ∈ [M ] so that M \ M∅ ∈ [M ]. Let (m∅i ) be the increasing
enumeration of M∅ and choose an infinite sequence (Ni) of pairwise disjoint, infinite
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subsets of M \M∅ such that M \M∅ \
⋃
iNi ∈ [M ]. We can now choose M{k} ∈

[Nk] such that, if we let (m{k}i )∞i=1 be the increasing enumeration of M{k}, then
m∅i < m

{k}
i for all integers i and k.

Suppose that n ∈ N and that we have constructed a family {Mα : α ∈ [N]<∞,
|α| ≤ n} of pairwise disjoint infinite subsets of M such that

(1) M \
⋃
α: |α|≤nMα is infinite.

(2) If (mα
i )∞i=1 is the increasing enumeration of Mα, then mα−

i < mα
i , for all

i ∈ N and α ∈ [N]<∞, α 6= ∅, with |α| ≤ n.

Let (αk) be an enumeration of {α ∈ [N]<∞, |α| = n + 1} and choose an infinite
sequence (Nαk) of pairwise disjoint infinite subsets of M \

⋃
α: |α|≤nMα so that

M \
⋃
α: |α|≤nMα \

⋃
kNαk is infinite. Given α ∈ [N]<∞ with |α| = n + 1, choose

Mα ∈ [Nα] so that if we let (mα
i )∞i=1 be the increasing enumeration of Mα, then

mα−

i < mα
i , for all i ∈ N (recall that |α−| = n and so Mα− has been constructed).

It follows that (1) and (2) hold for n + 1 and therefore the construction of the
required family (Mα)α∈[N]<∞ is carried over by induction. �

Proposition 2.14. Let M ∈ [N]. There exists a subtree T M∞ of [M ]<∞ with the
following properties:

(1) If α, β are nodes of T M∞ \ {∅} and max β ∈ α, then β 6 α.
(2) There exists an order preserving injection σ : [N]<∞ → T M∞ such that σ(F)

is a subtree of T M∞ ∩ F , for every hereditary and spreading family F .

Proof. Let (Mα)α∈[N]<∞ be the family of infinite subsets of M constructed in
Lemma 2.13. Put D0 = {∅}. Suppose that n ∈ N ∪ {0} and that Dn ⊂ {α ∈
[N]<∞, |α| = n} has been defined. Set

Dn+1 = {α ∈ [N]<∞ : |α| = n+ 1, α− ∈ Dn, max α ∈Mα−}.

We set T M∞ =
⋃∞
n=0Dn. It follows immediately from the inductive construction

that T M∞ is a subtree of [M ]<∞.
We first show that (1) holds. We shall prove by induction on n ∈ N∪{0} that if

α ∈ Dn and β ∈ T M∞ \ {∅} satisfy max β ∈ α, then β 6 α. This assertion is trivial
if n = 0. Assuming the assertion is true for n, let α ∈ Dn+1 and β ∈ T M∞ \ {∅} with
max β ∈ α. In case max β ∈ α−, since α− ∈ Dn, the induction hypothesis yields
β 6 α− and so β 6 α as well. If max β /∈ α−, then max β = max α. Note that
by the inductive construction of T M∞ , we have max γ ∈Mγ− , for all γ ∈ T M∞ \ {∅}.
Hence Mα− ∩Mβ− 6= ∅. We deduce from this that α− = β− and so α = β in this
case, completing the inductive step.

To show (2), define a map σ : [N]<∞ → T M∞ in the following manner: σ(∅) = ∅.
If i1 < · · · < ik are in N, then σ({i1, . . . , ik}) = {d1 <, . . . , < dk}, where d1 is the
i1-st element of M∅, while dj is the ij-th element of M{d1,...,dj−1} for 2 ≤ j ≤ k. It
is easy to verify that σ is a well-defined, order preserving injection, mapping [N]<∞

onto a subtree of T M∞ . This is a consequence of the fact that mα
i < mβ

i for all i ∈ N
and α < β in [N]<∞ (recall that (mα

i )∞i=1 is the increasing enumeration of Mα). We
also obtain that ij ≤ dj for all j ≤ k. It follows from this that if F is spreading
and {i1 <, . . . , < ik} ∈ F , then σ({i1, . . . , ik}) ∈ F . �
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3. Trees and the Szlenk index

The present section is devoted to the proof of Theorem 1.3. We shall also sketch a
proof for the calculation of the Szlenk index of the Schreier spaces Xξ in Corollary
3.4 (cf. also [10]). To achieve these goals, we shall use trees in order to find
suitable representations for elements in the ξ-th Szlenk set of a w∗-compact subset
of BX∗ (X a separable Banach space). The recent papers [10], [26], [27], [30],
[31] make systematic use of trees in the study of the Szlenk index as well as other
related ordinal indices. The main ideas contained in [10], [26], [27] about tree
representations of Szlenk sets are also employed in the results of this section.

The Szlenk sets Pα(ε, B), α < ω1, B a w∗-compact subset of X∗, ε > 0, were
described in Section 1. It is easy to verify that Pβ(ε, B) ⊂ Pα(ε, B), for all α ≤
β < ω1. Szlenk [52] shows that Pα(ε, B) is w∗-compact when X∗ is separable. In
the first part of this section we show that η(Xξ) = ωξ+1, for all ξ < ω1.

Notation. Given a Banach space X , α < ω1, and λ > 0, we shall write Pα(λ)
instead of Pα(λ,BX∗).

The next lemma is implicitly contained in [10], [26].

Lemma 3.1. Let X be a Banach space, λ > 0 and ζ, ξ countable ordinals. Suppose
that x∗ ∈ Pξ(λ) and y∗ ∈ Pζ(λ). Then (x∗ + y∗)/2 ∈ Pξ+ζ(λ/2 − δ), for all
0 < δ < λ/2.

Proof. We first show by transfinite induction on ξ that (x∗ + y∗)/2 ∈ Pξ(λ/2 − δ)
for all x∗ ∈ Pξ(λ), y∗ ∈ BX∗ and 0 < δ < λ/2. This is trivial if ξ = 0. Assume
the assertion true for ordinals smaller than ξ. Let x∗ ∈ Pξ(λ), y∗ ∈ BX∗ and
0 < δ < λ/2.

We first consider the case of a successor ordinal ξ = α + 1. Choose sequences
(x∗n) in Pα(λ) w∗-converging to x∗, and (xn) in BX weakly converging to 0, so
that |x∗n(xn)| ≥ λ for all n ∈ N. The induction hypothesis implies (x∗n + y∗)/2 ∈
Pα(λ/2−δ) for all n ∈ N. We can assume without loss of generality that |y∗(xn)| <
δ, for all n ∈ N. It is now clear that (x∗ + y∗)/2 ∈ Pξ(λ/2 − δ).

Next suppose that ξ is a limit ordinal. The induction hypothesis yields
(x∗ + y∗)/2 ∈ Pα(λ/2 − δ) for all α < ξ and so (x∗ + y∗)/2 ∈ Pξ(λ/2 − δ) as
required.

The proof of the lemma will be completed once we show that for fixed ξ < ω1

and x∗ ∈ Pξ(λ) we have (x∗ + y∗)/2 ∈ Pξ+ζ(λ/2− δ), for all ζ < ω1, all y∗ ∈ Pζ(λ)
and all 0 < δ < λ/2. This is accomplished by transfinite induction on ζ. The
case ζ = 0 was settled in the preceding paragraphs. Assume the assertion holds for
ordinals smaller than ζ and let y∗ ∈ Pζ(λ), 0 < δ < λ/2.

Suppose first that ζ is a successor, say ζ = α+1. Choose sequences (y∗n) in Pα(λ)
w∗-converging to y∗, and (yn) in BX weakly converging to 0, so that |y∗n(yn)| ≥ λ
for all n ∈ N. The induction hypothesis implies (x∗+ y∗n)/2 ∈ Pξ+α(λ/2− δ) for all
n ∈ N. We can assume without loss of generality that |x∗(yn)| < δ, for all n ∈ N.
It is now clear that (x∗ + y∗)/2 ∈ Pξ+ζ(λ/2− δ).

Finally, assume ζ is a limit ordinal. Then ξ + ζ is also a limit ordinal. In fact,
ξ+ζ = sup{ξ+α : α < ζ}. Since y∗ ∈ Pα(λ), for all α < ζ, the induction hypothesis
implies (x∗+y∗)/2 ∈ Pξ+α(λ/2−δ) for all α < ζ and so (x∗+y∗)/2 ∈ Pξ+ζ(λ/2−δ).
The proof of the lemma is now complete. �
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Corollary 3.2. Let X be a Banach space such that Pξ(λ) 6= ∅ for some ξ < ω1

and λ > 0. Then η(X) ≥ ξ · ω.

Proof. We can inductively select a sequence of positive scalars (δn), such that∑n
i=1(δi/2n−i) < λ/2n, for all n ∈ N. Set εn = λ/2n −

∑n
i=1(δi/2n−i), n ∈ N.

Let x∗ ∈ Pξ(λ). Successive applications of Lemma 3.1 yield x∗ ∈ Pξ·2n(εn), for all
n ∈ N. It follows now that η(εn, BX∗) ≥ ξ ·2n for all n ∈ N, whence η(X) ≥ ξ ·ω. �

Notation. Given a weakly null sequence (xn) in some Banach space X , F ∈ [N]<∞,
F 6= ∅, and λ > 0, we set KF,λ = {x∗ ∈ BX∗ : |x∗(xn)| ≥ λ, ∀n ∈ F}.

Proposition 3.3. Let X be a separable Banach space, (xn) a normalized weakly
null sequence in X and λ > 0. Suppose T is a blossomed subtree of [N]<∞ for which
there exists a collection (Lt)t∈T of non-empty w∗-closed subsets of BX∗, such that
Lt ⊂ Kt,λ, for all t ∈ T \ {∅}, while Lt2 ⊂ Lt1 , whenever t1 6 t2 in T . Then
Lt ∩ Po(t)(λ) 6= ∅, for all t ∈ T .

Proof. We prove the assertion of the proposition by transfinite induction on the
order of T . The assertion is trivial for subtrees of order 0. Let 1 ≤ ξ < ω1 and
assume the assertion is true for blossomed subtrees of [N]<∞, of order smaller than
ξ. Consider now a blossomed subtree T of [N]<∞, of order ξ. Let (tn) be an
enumeration of DT∅ such that (o(tn)) is non-decreasing.

Fix n ∈ N and let jn : Ttn → [N]<∞ be the order preserving injection given
by jn(t) = t \ {min tn}. Put Tn = jnTtn which is a blossomed subtree of [N]<∞,
of order o(tn) < ξ (see Lemma 2.6). Set Hr = Lj−1

n r, for all r ∈ Tn. Note in
particular that H∅ = Ltn . We can now apply the induction hypothesis for Tn and
the collection (Hr)r∈Tn , to conclude that Hr∩Po(r)(λ) 6= ∅, for all r ∈ Tn. It follows
that Lt ∩ Po(t)(λ) 6= ∅, for all t ∈ Ttn .

The proof will be completed once we show L∅ ∩ Pξ(λ) 6= ∅. To this end, choose
x∗n ∈ Ltn ∩ Po(tn)(λ) for all n ∈ N. Set mn = min tn and note that the mn’s are
pairwise distinct. Put yn = xmn , n ∈ N. It is clear that (yn) is a normalized, weakly
null sequence inX satisfying |x∗n(yn)| ≥ λ, for all n ∈ N, since x∗n ∈ Ltn ⊂ Ktn,λ and
mn ∈ tn. Finally, let x∗ be a w∗-cluster point of (x∗n). Clearly, x∗ ∈ Po(tn)+1(λ),
for all n ∈ N, whence x∗ ∈ Pξ(λ), as ξ = supn

(
o(tn) + 1

)
, by Lemma 2.4. We are

done since our hypotheses yield x∗ ∈ L∅. �

Corollary 3.4. Let F be a regular family of order ξ, containing all singletons.
Then η(XF ) = ξ · ω.

Proof. Let (en) be the natural Schauder basis of XF . Then (en) is normalized
weakly null. Denote by (e∗n) the sequence of functionals biorthogonal to (en). It is
clear that

∑
i∈F e

∗
i ∈ KF,1, for every non-empty F ∈ F . Proposition 2.11 tells us

that F is a blossomed tree of order ξ. We can therefore apply Proposition 3.3, with
Lt = Kt,1 for t 6= ∅ and L∅ = BX∗F , to conclude that Pξ(1) 6= ∅. Corollary 3.2 now
implies that η(XF ) ≥ ξ · ω. To obtain equality, we note that XF is isometric to a
subspace of C(F) (see [11]), and thus η(XF ) ≤ η(C(ωξ)) = ξ · ω, by [8], [48]. �

A variation of the Szlenk index. It will be more convenient for us to work with
a variant of Pα(ε, B), which we term Qα(ε, B). The definition is done by transfinite
induction. Given a separable Banach space X , a w∗-compact subset B of BX∗ and
ε > 0, set Q0(ε, B) = B. Suppose that α < ω1 and that Qβ(ε, B) has been defined
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for all β < α. Assume first that α is a successor ordinal, say α = β + 1. Set

Qα(ε, B) = {x∗ ∈ B : ∃ (x∗n) ⊂ Qβ(ε, B), lim
n
x∗n = x∗, (w∗), ∃ (xn) ⊂ BX

lim
n
xn = 0, (w), inf

n
|x∗n(xn)| ≥ ε}.

If α is a limit ordinal, set

Qα(ε, B) = {x∗ ∈ B : ∃ (αn) strictly increasing to α,

∃x∗n ∈ Qαn+1(ε, B), (n ∈ N), lim
n
x∗n = x∗, (w∗)}.

It is easy to see that Pα(ε, B) ⊂ Qα(ε, B), for all α < ω1. We also observe that
if η(ε, B) ≥ ξ, then Qξ(ε, B) 6= ∅. To see this first note that Pβ(ε, B) ⊂ Pα(ε, B),
for all α ≤ β < ω1. It follows from this that if ξ < η(ε, B), then Pξ(ε, B) 6= ∅
and thus Qξ(ε, B) 6= ∅ as well. When ξ = η(ε, B), we distinguish two cases. The
first case is that of a successor ordinal ξ. Necessarily, Pξ(ε, B) 6= ∅ in this case and
so, again, Qξ(ε, B) 6= ∅. If ξ is a limit ordinal, then Pα(ε, B) 6= ∅, for all α < ξ.
Let (ξn) be a strictly increasing sequence of ordinals tending to ξ. We can choose
x∗n ∈ Pξn+1(ε, B), for all n ∈ N. It follows that x∗n ∈ Qξn+1(ε, B), for all n ∈ N.
Finally, let x∗ be a w∗-cluster point of (x∗n). Of course, x∗ ∈ Qξ(ε, B).

Lemma 3.5. Let X be a separable Banach space, B a w∗-compact subset of X∗

and ε > 0. Let ξ < ω1 be a limit ordinal and (ξn) a non-decreasing sequence of
ordinals smaller than ξ such that ξ = limn ξn. Assume that x∗n ∈ Qξn(ε, B), for all
n ∈ N, and that limn x

∗
n = x∗, (w∗). Then x∗ ∈ Qξ(ε, B).

Proof. Assume without loss of generality that (ξn) is strictly increasing. If ξn is
a successor for infinitely many n’s, then the assertion of the lemma is trivial. We
can thus assume, without loss of generality, that ξn is a limit ordinal for all n ∈ N.
We next choose, for all n ∈ N, a strictly increasing sequence of ordinals (ξnk)∞k=1

tending to ξn, and a sequence (x∗nk)∞k=1 with x∗nk ∈ Qξnk+1(ε, B), for all k, such that
limk x

∗
nk = x∗n (w∗). Let d be a metric compatible to the relative w∗-topology on B.

We can certainly assume without loss of generality that d(x∗nk, x
∗
n) < 1/n, for all

integers n, k. Moreover, we can assume without loss of generality that ξn < ξn+1,k,
for all integers n, k. It follows now that limn x

∗
nn = x∗, (w∗), and that (ξnn) is a

strictly increasing sequence of ordinals tending to ξ. Of course x∗nn ∈ Qξnn+1(ε, B)
for all n ∈ N, whence x∗ ∈ Qξ(ε, B). �

In what follows, K is a totally disconnected, compact metrizable space. Subsets
of BC(K)∗ will be endowed with the w∗-topology, while trees will be given the tree
topology.

Definition 3.6. Suppose thatM⊂ BC(K)∗ , µ ∈ M and ξ < ω1. A ξ-condensation
of µ in M is a pair (T , φ), consisting of a blossomed tree T of order ξ and a
homeomorphic embedding φ : T → M (T and M are endowed with the tree and
w∗ topologies, respectively), so that φ(ρ) = µ, where ρ is the root of T . The ξ-
condensation (T , φ) of µ in M is λ-Szlenk, for some λ > 0, if µ ∈ Qξ(λ, φ(S)), for
every full subtree S of T .

To prove Theorem 1.3 we shall need a few technical lemmas. The next lemma
gives conditions that enable us to glue together Szlenk-type condensations to obtain
a Szlenk condensation of higher order.
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Notation. Let (Tn) be a sequence of blossomed trees such that the sequence (o(Tn))
is non-decreasing. We denote by

⊗
n Tn the blossomed tree

⋃
n({n} × Tn) ∪ {∅}

having ∅ as its root under the ordering (n1, α1) 6 (n2, α2) if, and only if, n1 = n2

and α1 6 α2 in Tn1 . It is clear that the order of this tree is equal to supn(o(Tn)+1)
(see Lemmas 2.4, 2.6). Assume further that we had mappings φn : Tn → E, for
some set E, for all n ∈ N. Then given e ∈ E,

⊗e
n φn is the unique mapping

φ :
⊗

n Tn → E extending each φn and such that φ(∅) = e.

Lemma 3.7. Let (ξn) be a non-decreasing sequence of countable ordinals and set
ξ = supn(ξn + 1). Let (µn) be a sequence in BC(K)∗, w∗-converging to µ. Suppose
there exists a sequence (Un) of pairwise disjoint relatively w∗-open subsets of BC(K)∗

so that
(1) µn ∈ Un, µ /∈ Un for all n ∈ N.
(2) µn admits a λ-Szlenk, ξn-condensation (Tn, φn) in Un for all n ∈ N.
(3) If n1 < n2 < . . . and τi ∈ Uni , i ∈ N, then limi τi = µ, (w∗).
(4) If ξ is a successor, there exists a weakly null sequence (fn) in BC(K) such

that |µn(fn)| ≥ λ, for all n ∈ N.
Then (

⊗
n Tn,

⊗µ
n φn) is a λ-Szlenk, ξ-condensation of µ in

⋃
n φn(Tn) ∪ {µ}.

Proof. It follows immediately from the definitions and conditions (1), (2), (3) that
(
⊗

n Tn,
⊗µ

n φn) is a ξ-condensation of µ in
⋃
n φn(Tn) ∪ {µ}. We need only show

it is λ-Szlenk. To see this, let S be a full subtree of
⊗

n Tn. Let ρn be the root of
Tn and choose an increasing sequence (kn) in N so that {(kn, ρkn) : n ∈ N} = DS∅ .
Put Sn = {α ∈ Tkn : (kn, α) ∈ S}. This is a full subtree of Tkn . Condition
(2) yields that µkn ∈ Qξkn

(
λ, φkn(Sn)

)
. Since φkn(Sn) =

⊗µ
m φm({kn} × Sn),

we infer that µkn ∈ Qξkn
(
λ,
⊗µ

m φm(S)
)
, for all n ∈ N. It follows now that µ ∈

Qξ
(
λ,
⊗µ

m φm(S)
)
. Indeed, this is immediate when ξ is a successor, because of

condition (4) in the hypothesis. When ξ is a limit ordinal, it follows from Lemma
3.5. �
Lemma 3.8. Let M be a w∗-compact subset of BC(K)∗. Suppose µ ∈ Qξ(λ,M)
for some λ > 0 and 1 ≤ ξ < ω1. Let M0 ⊂ M be w∗-dense in M, and let U be a
relatively w∗-open neighborhood of µ in BC(K)∗. Given 0 < ε < λ and a countable
subset B of BC(K)∗, there exist a (λ − ε)-Szlenk, ξ-condensation (T , φ) of µ in
M∩U and a collection (fα)α∈T ∗ in BC(K) (T ∗ = T ∗ \ {ρ}, ρ being the root of T )
so that the following properties are satisfied:

(1) φ(α) ∈M0, for every terminal node α ∈ T .
(2) |φ(α)

(
fα
)
| > λ− ε, for all α ∈ T ∗.

(3) limβ∈DTα ν(|fβ |) = 0, for all non-terminal α ∈ T and all ν ∈ B.

Proof. We prove the lemma by transfinite induction on ξ. When ξ = 1, choose
a sequence (µn) ⊂ M ∩ U , w∗-convergent to µ, and a weakly null sequence (fn)
in BC(K) so that |µn(fn)| ≥ λ, for all n ∈ N. There is no loss of generality in
assuming that |µ|(|fn|) < λ − ε for all n ∈ N. Let d be a metric compatible with
the relative w∗-topology in BC(K)∗ . Fix n and define Wn = {ν ∈ U : d(ν, µn) <
1/n, |ν(fn)| > λ− ε}, which is a relatively w∗-open neighborhood of µn in BC(K)∗ .
Since µ /∈ Wn, for all n ∈ N, there exist a subsequence (µkn) of (µn) and pairwise
disjoint relatively w∗-open subsets Un of BC(K)∗ , such that µkn ∈ Un ⊂ Wkn , for
all n ∈ N. We can now choose νn ∈ M0 ∩ Un, and set T =

{
{n} : n ∈ N

}
∪ {∅}.

Define φ : T → M∩ U by the rule φ({n}) = νn, for all n ∈ N and φ(∅) = µ. Also
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put f{n} = fkn , n ∈ N, and it is easy to verify that (T , φ) and (fα)α∈T \{∅} satisfy
the requirements of the lemma for ξ = 1.

Assume the assertion of the lemma holds for all ordinals smaller than ξ and let
µ ∈ Qξ(λ,M). It follows that there exist a non-decreasing sequence of ordinals
(ξn) with supn(ξn + 1) = ξ, and a sequence (µn), w∗-converging to µ and such
that µn ∈ Qξn+1(λ,M) for all n ∈ N. We can now choose sequences (µni)∞i=1 in
Qξn(λ,M), w∗-convergent to µn, and weakly null sequences (fni)∞i=1 in BC(K) such
that |µni(fni)| ≥ λ, for all integers n, i. We can clearly assume that limk µnk,ik = µ,
(w∗), for all n1 < n2 < . . . and all choices ik ∈ N. Now let B be a countable subset
of BC(K)∗ . Since (fni)∞i=1 is weakly null, we can select indices i1 < i2 < . . . so that
limn ν(|fn,in |) = 0, for all ν ∈ B ∪ {|µ|}. Set µn = µn,in and fn = fn,in , for all
n ∈ N. We can assume that |µ|(|fn|) < λ− ε, for all n ∈ N. Note also that in case
ξ is a successor, (fn) can be chosen to be weakly null (this is so since we simply
take µn = µ for all n).

Arguing as in case ξ = 1, we can assume without loss of generality, by passing to
subsequences, that there exist pairwise disjoint relatively w∗-open subsets Un of U
such that µn ∈ Un ⊂ Wn, where Wn = {ν ∈ U : d(ν, µn) < 1/n, |ν(fn)| > λ − ε},
and µ /∈ Un, for all n ∈ N. Since µn ∈ Qξn(λ,M), the induction hypothesis applied
on µn, Un and B yields a (λ− ε)-Szlenk, ξn-condensation (Tn, φn) of µn inM∩Un,
and a subset (fnα )α∈T ∗n of BC(K), satisfying all three requirements of the lemma for
the ordinal ξn. Let T =

⊗
n Tn and φ =

⊗µ
n φn. Lemma 3.7 yields that (T , φ) is a

(λ− ε)-Szlenk, ξ-condensation of µ in M∩U , satisfying (1). Let ρn be the root of
Tn. Define f(n,ρn) = fn and f(n,α) = fnα when α ∈ T ∗n , for all n ∈ N. It is easy to
check that (fα)α∈T ∗ satisfies (2) and (3) for ξ. �

Lemma 3.9. Let M be a w∗-compact subset of BC(K)∗. Suppose µ ∈ Qξ(λ,M)
for some λ > 0 and 1 ≤ ξ < ω1. Let U be a relatively w∗-open neighborhood of µ
in BC(K)∗. Then there exist a non-negative measure ν ∈ BC(K)∗, ξ-condensations
(T , φ) for µ in M∩ U and (T , θ) for ν in BC(K)∗, so that

(1) θ(α) = |φ(α)|, for every terminal node α ∈ T .
(2) (T , φ) is λ-Szlenk.

Proof. Note (1) implies that τ ≥ 0, for all τ ∈ θ(T ). We prove the assertion of the
lemma by transfinite induction on ξ. When ξ = 1 choose a sequence (µn) inM∩U ,
w∗-converging to µ, and a weakly null sequence (fn) in BC(K) so that |µn(fn)| ≥ λ,
for all n ∈ N. We can assume without loss of generality that limn |µn| = ν, (w∗),
for some non-negative measure ν ∈ BC(K)∗ . Since |µn|(|fn|) ≥ λ, arguing as in case
ξ = 1 of Lemma 3.7, we can assume that µn 6= µ, |µn| 6= ν for all n ∈ N, and that
the µn’s as well as the |µn|’s are pairwise different. Set T =

{
{n} : n ∈ N

}
∪ {∅}.

Define mappings φ : T → M ∩ U and θ : T → BC(K)∗ , by the rules φ({n}) = µn,
θ({n}) = |µn|, for all n ∈ N, φ(∅) = µ, θ(∅) = ν. It is easily seen that (T , φ), ν and
(T , θ) satisfy (1), (2) for ξ = 1.

Assume the assertion of the lemma is true for ordinals smaller than ξ and let
µ ∈ Qξ(λ,M). It follows that there exist a non-decreasing sequence of ordinals
(ξn) with supn(ξn + 1) = ξ, and a sequence (µn), w∗-converging to µ and such
that µn ∈ Qξn+1(λ,M) for all n ∈ N. We can now choose sequences (µni)∞i=1 in
Qξn(λ,M), w∗-convergent to µn, and weakly null sequences (fni)∞i=1 in BC(K) such
that |µni(fni)| ≥ λ, for all integers n, i. We can clearly assume that limk µnk,ik = µ,
(w∗), for all n1 < n2 < . . . and all choices ik ∈ N. Let d be a metric compatible
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to the w∗-topology in BC(K)∗ . Choose some 0 < ε < λ/2 and set Oni = {τ ∈ U :
d(τ, µni) < 1/n, |τ(fni)| > λ− ε}, for all integers i, n.

The induction hypothesis applied on µni and the neighborhood Oni, yields non-
negative measures νni in BC(K)∗ , ξn-condensations (Tni, φni) for µni inM∩Oni and
(Tni, θni) for νni in BC(K)∗ , fulfilling conditions (1), (2) of the induction hypothesis
for ξn.

By passing to subsequences and relabeling, we can assume that the w∗-closure
of {νni : n, i ∈ N} is countable, and that there exists a non-negative measure ν
in BC(K)∗ such that limk νnk,ik = ν, (w∗), for all n1 < n2 < . . . and all choices
ik ∈ N. Since (fni)∞i=1 is weakly null, we can choose indices i1 < i2 < . . . so that
|µ|(|fn,in |) < λ − 2ε and ν(|fn,in |) < λ − 2ε, for all n ∈ N. Now set fn = fn,in ,
νn = νn,in , µn = µn,in , Tn = Tn,in , φn = φn,in , θn = θn,in , and On = On,in , for
all n ∈ N. Note that in case ξ is a successor, (fn) can be chosen to be weakly null
(same comment as in the proof of Lemma 3.8).

It is crucial to observe here that condition (1) of the induction hypothesis implies
that νn(|fn|) ≥ λ − ε, for all n ∈ N. Indeed, fixing n, we have |τ(fn)| > λ − ε for
every τ ∈ φn(Tn) ⊂ On. It follows now by (1) of the induction hypothesis for
(Tn, φn) and (Tn, θn) that θn(α)

(
|fn|

)
> λ − ε, for every terminal node α ∈ Tn.

Hence νn(|fn|) ≥ λ− ε.
Next put Rn = {τ ∈ BC(K)∗ : d(τ, νn) < 1/n, τ(|fn|) > λ − 2ε}, for all n ∈ N.

Since limn µn = µ, limn νn = ν, (w∗), and µ /∈ On, ν /∈ Rn for all n ∈ N, we
can assume without loss of generality after passing to subsequences that there exist
relatively w∗-open subsets Un and Vn of BC(K)∗ with µn ∈ Un ⊂ On, νn ∈ Vn ⊂ Rn,
and so that each one of the sequences (Un) and (Vn) consists of pairwise disjoint
sets.

Observe now that φ−1
n [φn(Tn)∩Un] and θ−1

n [θn(Tn)∩Vn] are open neighborhoods
of the root of Tn, and therefore their intersection must contain a full subtree of Tn.
Since the desired properties (1), (2) are preserved by restrictions to full subtrees,
there will be no loss of generality in assuming that φn(Tn) ⊂ Un and θn(Tn) ⊂ Vn,
for all n ∈ N. Let T =

⊗
n Tn, φ =

⊗µ
n φn and θ =

⊗ν
n θn. Lemma 3.7, combined

with the induction hypothesis, readily imply that ν and the ξ-condensations (T , φ),
(T , θ) satisfy (1), (2) for ξ. �

An immediate consequence of Lemma 3.9 is the next

Corollary 3.10. Let P ⊂ BC(K)∗ be w∗-compact such that η(λ,P) ≥ ξ for some
λ > 0 and ξ < ω1. Then for every µ ∈ Qξ(λ,P) there exist a countable, w∗-compact
subset M of P with µ ∈ Qξ(λ,M), and a subset M0 of M w∗-dense in M and
such that the w∗-closure of {|ν| : ν ∈M0} is countable.

Corollary 3.11. Let M⊂ BC(K)∗ be w∗-compact such that η(λ,M) ≥ ξ for some
λ > 0 and ξ < ω1. Given 0 < ε < λ, there exist a blossomed tree T of order ξ, a
subset (µt)t∈T of M and a collection (ft)t∈T ∗ (T ∗ = T \ {ρ} with ρ denoting the
root of T ) in BC(K) so that the following are satisfied:

(1) The map φ : T →M given by φ(t) = µt is a homeomorphic embedding.
(2) µρ ∈ Qξ(λ − ε, {µt : t ∈ S}), for every full subtree S of T .
(3) |µt(ft)| > λ− ε, for all t ∈ T ∗.
(4) B = Clw∗ {|µt| : t ∈ T is terminal} is countable.
(5) lims∈DTt ν(|fs|) = 0, for every non-terminal node t ∈ T and all ν ∈ B.
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Proof. Apply Corollary 3.10 to obtain subsets M1, M0 of M such that M1 is
countable w∗-compact with Qξ(λ,M1) 6= ∅, while M0 ⊂ M1 is w∗-dense in M1

and such that B1 = Clw∗{|ν| : ν ∈ M0} is countable. Next apply Lemma 3.8
for M1, the given ε, the w∗-dense subset M0 of M1 and the countable subset B1

of BC(K)∗ , to obtain a blossomed tree T of order ξ, a homeomorphic embedding
φ : T →M1 and a collection (ft)t∈T ∗ , satisfying the conclusion of Lemma 3.8. Set
φ(t) = µt for all t ∈ T to obtain the desired conclusion. �

Lemma 3.12. Let M ⊂ BC(K)∗ be w∗-compact. Let T , (µt)t∈T , (ft)t∈T ∗ and B
satisfy conditions (1), (3), (4) and (5) of Corollary 3.11 for some 0 < ε < λ/4.
Then there exists a family (Gt)t∈T ∗ of clopen subsets of K such that

(1) |µt(Gt)| > λ/4− ε, for all t ∈ T ∗.
(2) lims∈DTt ν(Gs) = 0, for every non-terminal node t ∈ T and all ν ∈ B.

Proof. Fix some t ∈ T ∗ and put Wt = {x ∈ K : |ft(x)| > ε}. Then |µt|(Wt) >
λ−2ε. Choose a Borel subset Bt of Wt such that |µt(Bt)| > λ/4−ε/2. Next choose
a closed subset Ft of Bt such that |µt(Ft)| > λ/4 − ε/2. Finally, choose a clopen
set Gt with Ft ⊂ Gt ⊂Wt and such that |µt(Gt)| > λ/4− ε/2. Let ν ∈ B. Because
Gt ⊂Wt we deduce that εν(Gt) ≤

∫
Gt
|ft| dν ≤ ν(|ft|). It is clear that (Gt)t∈T ∗ is

the required family. �

Lemma 3.13. Let T , (µt)t∈T , (Gt)t∈T ∗ be as in the conclusion of Lemma 3.12.
Then there exists a full subtree S of T such that |µt(Gs)| > λ/4 − ε, for all s 6 t
in S∗.

Proof. We prove the lemma by transfinite induction on o(T ) = ξ. When ξ = 1, the
assertion is trivial. Assume the assertion holds for trees of order less than ξ and
consider a blossomed tree T of order ξ > 1. Let (tn) be an enumeration of DTρ so
that (o(tn)) is non-decreasing. Fix n and note that the set {t ∈ Ttn : |µt(Gtn)| >
λ/4 − ε} is an open neighborhood of tn in Ttn ; therefore it contains a full subtree
Rn of Ttn . Since o(tn) < ξ, the induction hypothesis applied on Rn, (µt)t∈Rn and
(Gt)t∈R∗n yields a full subtree Sn of Rn such that |µt(Gs)| > λ/4− ε, for all s 6 t
in Sn \ {tn}. Set S =

⋃
n Sn ∪ {ρ}. This is the required full subtree of T . �

The next corollary follows directly from Corollary 3.11 combined with Lemmas
3.12 and 3.13.

Corollary 3.14. Let M⊂ BC(K)∗ be w∗-compact such that η(λ,M) ≥ ξ for some
λ > 0 and ξ < ω1. Given 0 < ε < λ/4, there exist a blossomed tree T of order ξ, a
subset (µt)t∈T of M and a collection (Gt)t∈T ∗ (T ∗ = T \ {ρ} with ρ denoting the
root of T ) of clopen subsets of K so that the following are satisfied:

(1) The map φ : T →M given by φ(t) = µt is a homeomorphic embedding such
that µρ ∈ Qξ(λ− ε, {µt : t ∈ S}), for every full subtree S of T .

(2) |µt(Gs)| > λ/4− ε, for all s 6 t in T ∗.
(3) B = Clw∗ {|µt| : t ∈ T is terminal} is countable.
(4) lims∈DTt ν(Gs) = 0, for every non-terminal node t ∈ T and all ν ∈ B.

We are now ready for the

Proof of Theorem 1.3. We apply Corollary 3.14 to obtain a blossomed tree T of
order ξ, a subset (νt)t∈T ofM, and a collection of clopen subsets (Gt)t∈T ∗ of K so
that
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(1.1) The map θ : T →M given by θ(t) = νt is a homeomorphic embedding.
(1.2) |νt(Gs)| > λ/4− ε, for all s 6 t in T ∗.
(1.3) B = Clw∗ {|νt| : t ∈ T is terminal} is countable.
(1.4) lims∈DTt τ(Gs) = 0, for every non-terminal node t ∈ T and all τ ∈ B.
Now let F be a regular family of order ξ. Proposition 2.11 yields that F is a

blossomed tree of order ξ. We infer from Lemma 2.7 that F is order isomorphic
to a subtree R of T . Let (rn) be an enumeration of the terminal nodes of R. For
each n ∈ N, choose a terminal node tn of T such that rn 6 tn. Define a map

ψ : R → T as follows: ψ(r) =

{
r, if r /∈ {rn : n ∈ N};
tn, if r = rn, for some n ∈ N.

It is easy to see

that ψ is a homeomorphic embedding with respect to the tree topology. We remark
that r 6 ψ(r), for all r ∈ R. Moreover, r is terminal in R if, and only if, ψ(r) is
terminal in T .

Let j : F → R be an order isomorphism and define Gα = Gj(α) for all α ∈ F∗.
Finally define φ : F →M with φ = θ ◦ ψ ◦ j. φ is a homeomorphic embedding and
thus, setting µα = φ(α), for α ∈ F , we infer that (1) holds.

Since the terminal nodes of ψ(R) are contained among the terminal nodes of T ,
(1.3) implies that N ⊂ B and thus (3) holds. On the other hand, if α 6 β in F∗,
then

|µβ(Gα)| = |θ(ψ ◦ j(β))
(
Gj(α)

)
|

= |νψ◦j(β)(Gj(α))| > λ/4− ε

by (1.2), since j(α) 6 j(β) 6 ψ ◦ j(β) in T . Hence (2) holds. Because N ⊂ B and
Gα = Gj(α) for α ∈ F∗, we deduce from (1.4) that (4) holds. �

Remark 3.15. Note that for a spreading family F and a non-terminal α ∈ F , there
exists n0 ∈ N such that α ∪ {n} ∈ F , for every n ≥ n0. Hence the limit appearing
in (4) of Theorem 1.3 makes sense.

4. An application of Ramsey’s theorem

This section is devoted to the proof of Theorem 1.4. We shall actually prove
a stronger result, Theorem 4.3, which is of a combinatorial nature and its proof
requires the infinite Ramsey theorem [21] that we now recall.

Theorem 4.1. Let A ⊂ [N] be analytic in the topology of pointwise convergence.
Then for every N ∈ [N] there exists M ∈ [N ] such that either [M ] ⊂ A or [M ]∩A =
∅.

For applications of Ramsey’s theorem in Banach space theory, we refer to [39].
We shall next introduce some definitions and terminology that are necessary in the
statement of Theorem 4.3. In what follows, K is a compact metrizable space.

Definition 4.2. Let T be a rooted tree and (ψα)α∈T ∗ a collection of mappings
with ψα : BC(K)∗ → c00 (recall that T ∗ = T \ {ρ}, where ρ is the root of T ). Let
B ⊂ c00. A subsetM of BC(K)∗ is said to satisfy a B-lattice property with respect
to (ψα)α∈T ∗ provided the following condition is fulfilled: Let A be a finite, well-
ordered subset of T ∗ such that for every α ∈ A there exists a µα ∈ M ∩ ψ−1

α (B).
Then there exists α0 ∈ A such that µα0 ∈ ψ−1

α (B), for all α ∈ A.
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Terminology 1. A triple
(
F , (fα)α∈F∗ ,M

)
on K consists of a hereditary and

spreading family F , a collection (fα)α∈F∗ of functions in BC(K) and a subset M
of BC(K)∗ so that limn ν(|fα∪{n}|) = 0, for every non-terminal α ∈ F and all
ν ∈ Clw∗{|µ| : µ ∈M} (see Remark 3.15).

Theorem 4.3. Let
(
F , (fα)α∈F∗ ,M

)
be a triple on K. Let B ⊂ c00 with ‖b‖∞ ≤ 1,

for all b ∈ B. Let (ψα)α∈F∗ be a collection of mappings with ψα : BC(K)∗ → c00,
such that ψ−1

α (B) is w∗-closed for all α ∈ F∗. Assume M satisfies a B-lattice
property with respect to (ψα)α∈F∗. Then for every ε > 0 there exists M ∈ [N] with
the following property: Suppose α ∈ F∗[M ] is such that M∩ ψ−1

α (B) 6= ∅. Then
there exists µ ∈ ψ−1

α (B) ∩Clw∗M such that
∑

β∈F∗[M ],maxβ/∈α |µ|(|fβ |) < ε.

In the above, F [M ] = F ∩ [M ]<∞ and F∗[M ] = F [M ] \ {∅}. To prove this
result we need to introduce some more terminology. In the sequel, F , (fα)α∈F∗ ,
(ψα)α∈F∗ , B andM are as in the statement of Theorem 4.3. Choose first a sequence
of positive scalars (εi)∞i=0 such that

∑∞
i=0 εi < ε.

Notation 4.4. Given G1, G2 finite subsets of N, we set

[G1, G2]F = {α ∈ F∗, α ⊂ G2, maxα /∈ G1}.

Terminology 2. Let F1 ⊂ F2 be finite subsets of N and L ∈ [N] with maxF2 <
minL (max ∅ = 0). We say that L is (F1, F2)-admissible if for every α ∈ F∗ which
is an initial segment of F1 ∪ (L \ {minL}) with M ∩ ψ−1

α (B) 6= ∅, there exists
µ ∈M∩ ψ−1

α (B) such that ∑
β∈[F1,F2∪{minL}]F

|µ|(|fβ |) <
|F2|∑
i=0

εi.

Given F0 ∈ [N]<∞ and L ∈ [N] with maxF0 < minL, we say that L is F0-admissible
if it is (F, F0)-admissible for every F ⊂ F0.

Remark 4.5. Saying L is not (F1, F2)-admissible means that there is an initial
segment α ∈ F∗ of F1 ∪ (L \ {minL}) with M∩ ψ−1

α (B) 6= ∅, and such that∑
β∈[F1,F2∪{minL}]F

|µ|(|fβ |) ≥
|F2|∑
i=0

εi,

for all µ ∈M∩ ψ−1
α (B).

Lemma 4.6. There exists M0 ∈ [N] such that L is ∅-admissible for every L ∈ [M0].

Proof. Let D = {L ∈ [N] : L is ∅-admissible}. Clearly, D is closed in the topology
of pointwise convergence in [N]. The infinite Ramsey theorem yields M0 ∈ [N] such
that either [M0] ⊂ D, or [M0]∩D = ∅. If the former, we are done. If the latter, we
shall derive a contradiction as follows:

First observe that if L ∈ [M0], then L /∈ D. Therefore (see Remark 4.5), there
exists an initial segment αL ∈ F∗ of L \ {minL} such that ψ−1

αL (B) ∩M 6= ∅ and
|µ|(|f{minL}|) ≥ ε0, for all µ ∈ ψ−1

αL (B) ∩M.
Next choose l1 < l2 < . . . in M0 and fix a k ∈ N. Set Li = {li}∪{lj : j > k}, for

all i ≤ k. Our preceding comment yields, for all i ≤ k, an initial segment αLi ∈ F∗
of {lj : j > k} with ψ−1

αLi
(B) ∩ M 6= ∅ and such that |µ|(|f{li}|) ≥ ε0, for all

µ ∈ ψ−1
αLi

(B) ∩M.
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Since {αLi : i ≤ k} is a finite, well-ordered subset of F∗ (its elements are
initial segments of {lj : j > k}) and M satisfies a B-lattice property with respect
to (ψα)α∈F∗ (see Definition 4.2), we infer that there exists µk ∈ M such that
µk ∈ ψ−1

αLi
(B), for all i ≤ k.

It follows now that |µk|(|f{li}|) ≥ ε0, for all i ≤ k. But if ν is a w∗-cluster point
of the sequence (|µk|), we must have that ν(|f{li}|) ≥ ε0, for all i ∈ N. This is a
contradiction because limi ν(|f{li}|) = 0 as (F , (fα)α∈F∗ ,M) is a triple on K (see
Terminology 1). �

Lemma 4.7. Suppose F0 ∈ [N]<∞ and P ∈ [N] are so that L is F0-admissible for
every L ∈ [P ]. Let p0 ∈ P \ {minP}. Then for every Q ∈ [P ] there exists R ∈ [Q]
such that L is F0 ∪ {p0}-admissible, for every L ∈ [R].

Proof. Choose Q0 ∈ [Q] with p0 < minQ0. Given F ⊂ F0 ∪ {p0} define

DF = {L ∈ [Q0] : L is (F, F0 ∪ {p0})-admissible}.

We are going to show that there exists QF ∈ [Q0] such that [QF ] ⊂ DF . Once this
is accomplished, letting (Fi)ki=1 be an enumeration of the subsets of F0 ∪ {p0}, we
may choose infinite subsets QF1 ⊃ · · · ⊃ QFk of Q0 such that [QFi ] ⊂ DFi for all
i ≤ k. Setting R = QFk , we see that [R] ⊂ DF , for all F ⊂ F0 ∪ {p0}. Hence R is
desired.

We now fix some F ⊂ F0 ∪ {p0} and show there exists QF ∈ [Q0] such that
[QF ] ⊂ DF . Since DF is closed in the topology of pointwise convergence of [N],
the infinite Ramsey theorem implies the existence of QF ∈ [Q0] such that either
[QF ] ⊂ DF or [QF ] ∩DF = ∅. We show the second alternative cannot occur and
thus complete the proof of the lemma.

Suppose instead that [QF ] ∩ DF = ∅, for some QF ∈ [Q0]. By the spreading
property of F , there exists n0 ∈ N such that α ∪ {n} ∈ F for every non-terminal
α ∈ F with α ⊂ F0∪{p0}, and all n ≥ n0. We then choose q1 < q2 < . . . in QF with
n0 < q1. Fix a k ∈ N and define Lk ∈ [P ] as follows: Set Lk = {minP, p0} ∪ {qj :
j > k}, if p0 ∈ F ; otherwise, that is, when p0 /∈ F , set Lk = {p0} ∪ {qj : j > k}.

We observe that [F, F0 ∪ {p0}]F ⊂ [F \ {p0}, F0 ∪ {minLk}]F . This is so since
β ⊂ F0 ∪ {p0} implies that either β ⊂ F0 or p0 ∈ β. If the former then, clearly,
β ⊂ F0∪{minLk} and if maxβ /∈ F , then also maxβ /∈ F \{p0}. If the latter, that
is, p0 ∈ β, then p0 = maxβ. Hence, if maxβ /∈ F , then p0 /∈ F and so minLk = p0.
Again, β ⊂ F0 ∪ {minLk} and max β /∈ F \ {p0}. This observation leads us to

(4.1)
∑

β∈[F,F0∪{p0}]F

|µ|(|fβ |) ≤
∑

β∈[F\{p0},F0∪{minLk}]F

|µ|(|fβ |), ∀µ ∈ BC(K)∗ .

We next define sets Ri ∈ [QF ] with Ri = {qi} ∪ {qj : j > k}, i ≤ k. Since each
Ri /∈ DF and F ∪ (Ri \ {minRi}) = F ∪{qj : j > k}, there exists an initial segment
αRi ∈ F∗ of F ∪ {qj : j > k} with ψ−1

αRi
(B) ∩M 6= ∅ and such that

(4.2)
∑

β∈[F,F0∪{p0,qi}]F

|µ|(|fβ |) ≥
|F0|+1∑
j=0

εj , ∀µ ∈ ψ−1
αRi

(B) ∩M, ∀ i ≤ k.

By assumption, Lk is F0-admissible and thus also (F \ {p0}, F0)-admissible. Note
also that (F \ {p0}) ∪ (Lk \ {minLk}) = F ∪ {qj : j > k}, by the definition of Lk.
Therefore, for all i ≤ k, αRi ∈ F∗ is an initial segment of (F \{p0})∪(Lk\{minLk})
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satisfying ψ−1
αRi

(B) ∩ M 6= ∅. It follows now that there exists, for all i ≤ k,
µRi ∈ ψ−1

αRi
(B) ∩M such that

∑
β∈[F\{p0},F0∪{minLk}]F

|µRi |(|fβ |) <
|F0|∑
j=0

εj.

(4.1) now implies

(4.3)
∑

β∈[F,F0∪{p0}]F

|µRi |(|fβ |) <
|F0|∑
j=0

εj, ∀ i ≤ k.

We next observe that {αRi : i ≤ k} is well ordered in F∗ (its elements are initial
segments of F ∪ {qj : j > k}). Moreover, µRi ∈ ψ−1

αRi
(B) ∩M, for all i ≤ k. Since

M satisfies a B-lattice property with respect to (ψα)α∈F∗ , there exists µk ∈ {µRi :
i ≤ k} so that µk ∈ ψ−1

αRi
(B) ∩M for all i ≤ k. We deduce from (4.2) that

(4.4)
∑

β∈[F,F0∪{p0,qi}]F

|µk|(|fβ |) ≥
|F0|+1∑
j=0

εj , ∀ i ≤ k.

Taking in account (4.3) we obtain

∑
β∈[F,F0∪{p0}]F

|µk|(|fβ |) <
|F0|∑
j=0

εj,

and thus (4.4) implies ∑
β∈[F,F0∪{p0,qi}]F ,maxβ=qi

|µk|(|fβ |) ≥ ε|F0|+1, ∀ i ≤ k.

Equivalently, ∑
β⊂F0∪{p0}, β∈F , non-terminal

|µk|(|fβ∪{qi}|) ≥ ε|F0|+1, ∀ i ≤ k.

Finally let ν be a w∗-cluster point of the sequence (|µk|). It follows that∑
β⊂F0∪{p0}, β∈F , non-terminal

ν(|fβ∪{qi}|) ≥ ε|F0|+1, ∀ i ∈ N.

This contradicts our assumption that (F , (fα)α∈F∗ ,M) is a triple on K. �

Proof of Theorem 4.3. Choose M0 ∈ [N] according to Lemma 4.6. Then choose
m1 ∈ M0, minM0 < m1 and apply Lemma 4.7 to obtain M1 ∈ [M0] such that
every L ∈ [M1] is {m1}-admissible. Choose m2 ∈ M1, minM1 < m2. Successive
applications of Lemma 4.7 yield a sequence M1 ⊃M2 ⊃ . . . of infinite subsets of M0

and integers m1 < m2 < . . . such that for all i ∈ N we have mi ∈Mi−1, minMi−1 <
mi and every L ∈ [Mi] is {m1, . . . ,mi}-admissible. We show M = {mi : i ∈ N}
satisfies the assertion of the theorem. Indeed, let α ∈ F [M ]∗ such that ψ−1

α (B) ∩
M 6= ∅. Put An = [α, {m1, . . . ,mn}]F , for every n ∈ N, maxα < mn (see Notation
4.4). Since Mn is {m1, . . . ,mn}-admissible, it is also (α, {m1, . . . ,mn})-admissible.
It follows that there exists µn ∈ ψ−1

α (B)∩M such that
∑

β∈An |µn|(|fβ |) <
∑n
i=0 εi.

Let µ ∈ Clw∗M be a w∗-cluster point of (µn). Our hypotheses yield µ ∈ ψ−1
α (B)
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and, of course,
∑
β∈An |µ|(|fβ |) ≤

∑∞
i=0 εi, for every n ∈ N with maxα < mn. We

conclude that
∑
β∈F∗[M ],maxβ/∈α |µ|(|fβ |) < ε. �

Corollary 4.8. Let M ⊂ BC(K)∗ (K a totally disconnected, compact, metriz-
able space) be w∗-compact. Suppose λ > 0 and ξ < ω1 are such that η(λ,M) ≥
ξ. Let 0 < ε < λ/4, and let F be a regular family of order ξ. Assume that
(µα)α∈F , (Gα)α∈F∗, N satisfy the conclusion of Theorem 1.3. Then for every
δ > 0 there exists M ∈ [N] with the following property: For every α ∈ F∗[M ]
there exists µ ∈ M such that |µ(Gβ)| ≥ λ/4 − ε for all β 6 α in F∗[M ], yet∑
β∈F∗[M ],maxβ/∈α |µ|(Gβ) < δ.

Proof. Put M0 = {µα : α ∈ F is terminal}. We know that Clw∗{|µ| : µ ∈ M0} =
N and thus limn ν(Gβ∪{n}) = 0, for every non-terminal β ∈ F and all ν ∈ Clw∗{|µ| :
µ ∈ M0}, because of (4) of Theorem 1.3. It follows that (F , (χGα)α∈F∗ ,M0) is a
triple on K.

We now set B = {x ∈ c00 \ {0} : 1 ≥ |x(n)| ≥ λ/4 − ε, ∀n ∈ suppx}. Define
mappings ψα : BC(K)∗ → c00, α ∈ F∗, by

ψα(τ) =

{∑
β∈F∗, β6α τ(Gβ)χ{max β}, if τ(Gβ) 6= 0, ∀β 6 α;

0, otherwise.

It is easily verified that ψ−1
α (B) is w∗-closed for all α ∈ F∗. We check that BC(K)∗

(and thus alsoM0) satisfies a B-lattice property with respect to (ψα)α∈F∗ . Indeed,
suppose that α1 < · · · < αk in F∗ and that µαi ∈ ψ−1

αi (B), for all i ≤ k. It follows
from the definitions that µαk ∈ ψ−1

αi (B), for all i ≤ k.
We now apply Theorem 4.3 for the triple (F , (χGα)α∈F∗ ,M0), the subset B of

c00, the mappings (ψα)α∈F∗ defined above, and the given δ > 0 to obtain M ∈ [N]
satisfying the conclusion of Theorem 4.3.

Finally, let α ∈ F∗[M ]. Choose α0 terminal in F so that α 6 α0. We infer
from (2) of Theorem 1.3 that |µα0(Gβ)| ≥ λ/4− ε, for all β 6 α0 in F∗. It follows
that µα0 ∈ ψ−1

α (B) ∩M0. Theorem 4.3 now yields µ ∈ ψ−1
α (B) ∩M (and hence

|µ(Gβ)| ≥ λ/4−ε for all β 6 α in F∗[M ]) such that
∑

β∈F∗[M ],maxβ/∈α |µ|(Gβ) < δ,
completing the proof of the corollary. �

The next corollary is also obtained in [14], [12].

Corollary 4.9. Let K be a compact metrizable space and (fn) a weakly null se-
quence in BC(K). Let M ⊂ BC(K)∗ be w∗-compact and λ ∈ (0, 1]. Given ε > 0,
there exists M ∈ [N] with the following property: Suppose that F ∈ [M ]<∞ and
µ ∈ M are so that |µ(fi)| ≥ λ, for all i ∈ F , and the scalars µ(fi), i ∈ F , are all
of the same sign. Then there exists ν ∈ M so that |ν(fi)| ≥ λ, for all i ∈ F , the
scalars ν(fi), i ∈ F , are all of the same sign and

∑
i∈M\F |ν|(|fi|) < ε.

Proof. Put F = [N]<∞ and fα = fmaxα, for α ∈ F∗. Because (fn) is weakly null,
it is clear that (F , (fα)α∈F∗ ,M) is a triple on K. Set B+ = {x ∈ c00 \ {0} : 1 ≥
x(n) ≥ λ, ∀n ∈ suppx} and B− = {x ∈ c00 \ {0} : −1 ≤ x(n) ≤ −λ, ∀n ∈ suppx}.
Define mappings ψα : BC(K)∗ → c00, α ∈ F∗, by

ψα(τ) =

{∑
β∈F∗, β6α τ(fβ)χ{max β}, if τ(fβ) 6= 0, ∀β 6 α;

0, otherwise.
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Arguing as in Corollary 4.8, we see that ψ−1
α (B+) and ψ−1

α (B−) are w∗-closed for
all α ∈ F∗, and that M satisfies a B+ (resp. B−)-lattice property with respect to
(ψα)α∈F∗ .

Note that we can replace N in the statement of Theorem 4.3 by any of its infinite
subsets, say N , and derive the same conclusion, with the resulting set M ∈ [N ]
(observe that in Lemma 4.6 we can take M0 ∈ [N ]). We can therefore apply
Theorem 4.3, consecutively, for the triple (F , (fα)α∈F∗ ,M), the subsets B+ and
B− of c00, the mappings (ψα)α∈F∗ defined above, and the given ε > 0 to obtain
M ∈ [N] satisfying the conclusion of Theorem 4.3 simultaneously for B+ and B−.

It follows now that if F ∈ [M ]<∞, µ ∈ M are so that |µ(fi)| ≥ λ for all
i ∈ F , and the scalars µ(fi), i ∈ F , are all of the same sign, say they are all
positive, then µ ∈ ψ−1

F (B+) ∩ M. Therefore there exists ν ∈ ψ−1
F (B+) ∩ M

such that
∑

β∈F∗[M ],maxβ/∈F |ν|(|fβ |) < ε. Because fβ = fmaxβ , we deduce that∑
i∈M\F |ν|(|fi|) < ε. Since ν ∈ ψ−1

F (B+), we infer that ν(fi) ≥ λ, for all i ∈ F .
If the scalars µ(fi), i ∈ F , were all negative, then we would have a similar

argument using B−. The proof is now complete. �

We conclude this section with the

Proof of Theorem 1.4. Apply Corollary 4.8 to obtain a family (Hα)α∈F∗ of clopen
subsets of K and M ∈ [N] with the following property: For every α ∈ F∗[M ]
there exists µ ∈ M such that |µ(Hβ)| ≥ λ/4 − ε for all β 6 α in F∗[M ], yet∑
β∈F∗[M ],maxβ/∈α |µ|(Hβ) < δ.
Let σ : [N]<∞ → T M∞ be the order preserving injection given in (2) of Proposition

2.14. Then σ(F) is a subtree of F [M ] ∩ T M∞ . Set Gα = Hσ(α), for all α ∈ F∗. Fix
some α ∈ F∗ and choose µ ∈ M so that |µ(Hγ)| ≥ λ/4− ε for all γ 6 σ(α) in F∗,
yet ∑

γ∈F∗[M ],max γ/∈σ(α)

|µ|(Hγ) < δ.

It follows now, since σ is an order preserving injection, that |µ(Gβ)| ≥ λ/4− ε, for
all β 6 α in F∗.

On the other hand, if β ∈ F∗ satisfies β 
 α, then σ(β) 
 σ(α) in T M∞ , again
because σ is an order preserving injection. Hence, maxσ(β) /∈ σ(α), by (1) of
Proposition 2.14. We deduce from this that

{σ(β) : β ∈ F∗, β 
 α} ⊂ {γ ∈ F∗[M ] : max γ /∈ σ(α)}.
Therefore, ∑

β∈F∗, β
α

|µ|(Gβ) =
∑

β∈F∗, β
α

|µ|(Hσ(β))

≤
∑

γ∈F∗[M ],maxγ /∈σ(α)

|µ|(Hγ) < δ.

�

5. Proof of Theorem 1.1

First note that in proving Theorem 1.1 there will be no loss of generality if we
assume K is totally disconnected, in view of Miljutin’s theorem [38]. Theorem 1.1
is an immediate consequence of the next more precise theorem.
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Theorem 5.1. Let K be a compact, totally disconnected and metrizable space.
Let M ⊂ BC(K)∗ be w∗-compact. Assume that η(λ,M) ≥ ξ for some λ > 0 and
1 ≤ ξ < ω1. Let F be a regular and stable family of order ξ and 0 < ε < λ/16. Then
there exists a sequence (Vn) of non-empty clopen subsets of K with (χVn) equivalent
to the natural basis of XF and such that the closed linear span [χVn , n ∈ N] of (χVn)
in C(K) is normed by M. Moreover, in the above, the equivalence constant may be
chosen not to exceed (λ/16 − ε)−1, while the norming constant may be chosen no
less than λ/16− ε.

We recall that a hereditary family F is stable provided that F ∈ F is maximal,
under inclusion, in F if, and only if, there exists n > maxF such that F ∪{n} /∈ F .
We also recall thatM norms a subspaceX of C(K) if there exists a scalar c > 0 such
that supµ∈M |µ(f)| ≥ c‖f‖, for all f ∈ X . We then call c the norming constant of
M. Finally two Schauder basic sequences (xn) and (yn) are equivalent if there exist
positive scalars c1, c2 such that c1‖

∑n
i=1 aixi‖ ≤ ‖

∑n
i=1 aiyi‖ ≤ c2‖

∑n
i=1 aixi‖,

for all n ∈ N, and all choices of scalars (ai)ni=1. We then call c2/c1 the equivalence
constant of (xn) and (yn).

Theorem 5.1 will follow from

Proposition 5.2. Let K be a compact, totally disconnected, metrizable space, and
letM⊂ BC(K)∗ be w∗-compact. Let F be a regular and stable family containing the
singletons, and let (Un) be a sequence of non-empty clopen subsets of K. Suppose
there exist positive constants ρ < λ such that for every F ∈ F∗ there exists µ ∈ M
satisfying |µ(Un)| ≥ λ for all n ∈ F and |µ|(

⋃
n/∈F Un) < ρ. Then there exists a

sequence (Vn) of non-empty clopen subsets of K with (χVn) equivalent to the natural
basis of XF and such that the closed linear span [χVn , n ∈ N] of (χVn) in C(K) is
normed by M. Moreover, in the above, given δ > 0, δ < (λ − ρ)/4, (Vn) may be
chosen so that the equivalence constant does not exceed

(
(λ−ρ)/4− δ

)−1, while the
norming constant is no less than (λ − ρ)/4− δ.

We postpone the proof of Proposition 5.2 in order to give the

Proof of Theorem 5.1. Choose a positive scalar δ < min{λ/28, ε/2}. Apply Theo-
rem 1.4 to obtain a family (Gα)α∈F∗ of (necessarily non-empty) clopen subsets of
K such that for every α ∈ F∗ there exists µ ∈ M such that |µ(Gβ)| ≥ λ/4− δ for
all β 6 α in F∗, yet

∑
β∈F∗, β
α |µ|(Gβ) < δ.

Put Un =
⋃
α∈F∗,maxα=nGα, for all n ∈ N. Clearly, (Un) is a sequence of

non-empty clopen subsets of K. Let {n1, . . . , nk} ∈ F∗ with n1 < · · · < nk. Set
αi = {n1, . . . , ni}, for i ≤ k. Choose µ ∈ M so that |µ(Gαi)| ≥ λ/4 − δ for all
i ≤ k, and

∑
α∈F∗, α
αk |µ|(Gα) < δ. Observe that for all i ≤ k,

Uni \Gαi ⊂
⋃

α∈F∗\{αi},maxα=ni

Gα ⊂
⋃

α∈F∗, α
αk

Gα

and so

|µ|(Uni \Gαi) ≤ |µ|(
⋃

α∈F∗, α
αk

Gα)

≤
∑

α∈F∗, α
αk

|µ|(Gα) < δ.
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Thus, |µ(Uni)| ≥ λ/4− 2δ, for all i ≤ k. Arguing similarly, we obtain that⋃
n/∈{n1,...,nk}

Un ⊂
⋃

α∈F∗, α
αk

Gα

and so again
|µ|(

⋃
n/∈{n1,...,nk}

Un) ≤
∑

α∈F∗, α
αk

|µ|(Gα) < δ.

Proposition 5.2 (with “λ”= λ/4 − 2δ, ρ = δ and the chosen δ) yields a sequence
(Vn) of non-empty clopen subsets of K such that (χVn) is (λ/16− ε)−1 equivalent
to the natural basis of XF , while [χVn , n ∈ N] is λ/16− ε-normed byM. The proof
of the theorem is now complete. �

The proof of Proposition 5.2 requires the following key lemma.

Lemma 5.3. Let (Un) be a sequence of clopen subsets of K, and let F be a regular
and stable family containing the singletons. Then there exists a sequence (Wn) of
clopen subsets of K with Wn ⊂ Un for all n ∈ N, and such that

(1) If
⋂
n∈IWn 6= ∅ for some I ⊂ N, then I ∈ F .

(2) For every I ∈ F and all n ∈ I we have Un \Wn ⊂
⋃
i/∈I Ui.

Proof. Given n ∈ N, set

Fn = {F ∈ F : maxF < n and F ∪ {n} /∈ F}.
The stability of F yields that every F ∈ Fn is a maximal, under inclusion, member
of F . Define a sequence (Wn) of subsets of K as follows:

Wn =

{
Un, if Fn = ∅;
Un \

⋃
F∈Fn (

⋂
i∈F Ui), if Fn 6= ∅.

Clearly, each Wn is a clopen subset of Un. Suppose that I ⊂ N and
⋂
n∈IWn 6= ∅.

We show I ∈ F .
If that were not the case, then there would exist a finite subset J of I such that

J /∈ F (otherwise, I would be infinite, say I = {in : n ∈ N} with i1 < i2 < . . . and
{i1, . . . , in} ∈ F for all n ∈ N, contradicting the compactness of F). We can thus
select n1 < · · · < nk in I so that {ni : i ≤ k} /∈ F . Since F contains the singletons,
there exists k0 < k which is the largest j < k such that {ni : i ≤ j} ∈ F . Then
F = {ni : i ≤ k0} ∈ F , yet F ∪ {nk0+1} /∈ F . It follows that F is a maximal
member of F and that F ∈ Fnk .

Now let t ∈
⋂
n∈IWn. Since t ∈ Wnk and F ∈ Fnk , we infer that t /∈

⋂
m∈F Um.

However, t ∈Wni ⊂ Uni , for all i ≤ k0 as ni ∈ I for all i ≤ k. Thus t ∈
⋂
i≤k0

Uni =⋂
m∈F Um, which is a contradiction. Hence I ∈ F , which proves (1).
To show (2) holds, let I ∈ F and n ∈ I. Suppose t ∈ Un \ Wn. It follows

that t ∈
⋃
F∈Fn (

⋂
j∈F Uj). Choose F ∈ Fn with t ∈

⋂
j∈F Uj . We claim that

F \ I 6= ∅. Indeed, were F ⊂ I we would have F = I by the maximality of F in
F . But then n ∈ F , contradicting maxF < n. Finally choose j ∈ F \ I. Then
t ∈ Uj ⊂

⋃
i/∈I Ui. �

Proof of Proposition 5.2. Choose a sequence (Wn) of clopen subsets of K according
to Lemma 5.3, applied on the sequence (Un) and the family F . Since

⋂
n∈IWn 6= ∅

implies I ∈ F , we infer that (χWn) is a weakly null sequence in C(K). Let F ∈ F∗
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and choose µ ∈ M such that |µ(Un)| ≥ λ, for all n ∈ F , yet |µ|(
⋃
n/∈F Un) < ρ.

Condition (2) in Lemma 5.3 now yields

Un \Wn ⊂
⋃
i/∈F

Ui, for all n ∈ F,

and thus |µ|(Un \Wn) ≤ |µ|(
⋃
i/∈F Ui) < ρ. Summarizing,

(5.1) For every F ∈ F∗ there exists µ ∈ M such that |µ(Wn)| ≥ λ − ρ, for all
n ∈ F .

Now let δ > 0 and apply Corollary 4.9 for the weakly null sequence (χWn) and the
set of measuresM, to obtain a subsequence (χWmn

) with the following property:
(5.2) Let I ∈ [N]<∞ and µ ∈ M satisfy |µ(Wmi)| ≥ λ − ρ for all i ∈ I and the

scalars µ(Wmi), i ∈ I, are all of the same sign. Then there exists ν ∈ M such that
|ν(Wmi)| ≥ λ − ρ for all i ∈ I, the scalars ν(Wmi), i ∈ I, are all of the same sign,
and

∑
i/∈I |ν|(Wmi) < δ.

We now apply Lemma 5.3 for the sequence of clopen sets (Wmn) and the family
F to obtain a sequence (Vn) of clopen subsets of K satisfying (1) and (2) of Lemma
5.3. We are going to show that (Vn) is the desired sequence by establishing the
following

(5.3) ‖
∑
n anχVn‖ ≤ ‖

∑
n anen‖F for all (an) ∈ c00.

(5.4) If (an) ∈ c00 satisfies ‖
∑
n anen‖F = 1, then there exists ν ∈M such that

|ν(
∑

n anχVn)| ≥ (λ− ρ− δ)/4− δ.
The assertion of the proposition will then follow if we take δ sufficiently small.

Note in particular that (5.4) implies Vn 6= ∅, for all n ∈ N. (5.3) is easily verified
since

⋂
n∈I Vn 6= ∅ implies I ∈ F , by (1) of Lemma 5.3.

To show (5.4), let (an) ∈ c00 such that ‖
∑
n anen‖F = 1, and choose F1 ∈ F

with
∑
n∈F1

|an| = 1. Next choose F2 ⊂ F1 such that∑
n∈F2

|an| ≥ 1/2 and the scalars an, n ∈ F2, are all of the same sign.

Since F is spreading we infer that {mi : i ∈ F2} ∈ F and thus (5.1) yields µ ∈ M
such that |µ(Wmi)| ≥ λ− ρ, for all i ∈ F2. We next choose F ⊂ F2 such that∑

i∈F
|ai| ≥ 1/4 and the scalars µ(Wmi), i ∈ F, are all of the same sign.

Applying (5.2), we find ν ∈ M such that

|ν(Wmi )| ≥ λ− ρ, for all i ∈ F,
the scalars ν(Wmi), i ∈ F, are all of the same sign,∑
i/∈F
|ν|(Wmi ) < δ.

We next have, by (2) of Lemma 5.3, that Wmi \Vi ⊂
⋃
n/∈F Wmn , for all i ∈ F , and

so

|ν|(Wmi \ Vi) ≤ |ν|(
⋃
n/∈F

Wmn) ≤
∑
n/∈F
|ν|(Wmn) < δ, for all i ∈ F.
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Hence,

|ν(Vi)| ≥ λ− ρ− δ, for all i ∈ F,
the scalars ν(Vi), i ∈ F, are all of the same sign,∑
i/∈F
|ν|(Vi) < δ (because Vi ⊂Wmi).

Concluding,

|ν(
∑
i

aiχVi)| = |ν(
∑
i∈F

aiχVi) + ν(
∑
i/∈F

aiχVi)|

≥ |
∑
i∈F

aiν(Vi)| −
∑
i/∈F
|ν|(Vi)

=
∑
i∈F
|ai||ν(Vi)| −

∑
i/∈F
|ν|(Vi)

> (λ− ρ− δ)
∑
i∈F
|ai| − δ ≥ (λ− ρ− δ)/4− δ.

Therefore (5.4) holds. This completes the entire proof. �
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