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ELEMENTS OF SPECIFIED ORDER
IN SIMPLE ALGEBRAIC GROUPS

R. LAWTHER

Abstract. In this paper we let G be a simple algebraic group and r be a
natural number, and consider the codimension in G of the variety of elements
g ∈ G satisfying gr = 1. We shall obtain a lower bound for this codimension
which is independent of characteristic, and show that it is attained if G is of
adjoint type.

Let G be a simple algebraic group over an algebraically closed field K of char-
acteristic p; let Φ be the root system of G, and take r ∈ N. Define

G[r] = {g ∈ G : gr = 1} and G(r) = {g ∈ G : o(g) = r}
(where o(g) denotes the order of g); then G[r] and G(r) are both subvarieties of G,
and G[r] is the disjoint union of those G(r′) with r′ dividing r. Our attention here is
on the codimension in G of these varieties (if they are non-empty; clearly G[r] 6= ∅,
but the example of G = SL2(K), p = 2 and r = 4 shows that G(r) may be empty).
It is immediate that if G(r) 6= ∅ we have codimG(r) ≥ codimG[r]. Our main result
may be stated as follows.

Theorem 1. Given G, Φ and r as above, there is a number dΦ,r, depending only
on Φ and r and satisfying dΦ,r ≥ |Φ|/r, with the property that codimG[r] ≥ dΦ,r; if
G is of adjoint type we in fact have codimG[r] = dΦ,r, and if in addition G(r) 6= ∅,
then codimG(r) = dΦ,r.

Statements equivalent to the inequality codimG(r) ≥ |Φ|/r are already known
in certain cases. If r = 2 and p 6= 2, the equivalent statement that, if g ∈ G
is an involution, then dimCG(g) ≥ dim(G/B) (where B is a Borel subgroup), is
well known; the stronger statement that CG(g) is then spherical, i.e., it has finitely
many orbits on the flag variety G/B, was proved by Matsuki in [13] for K = C, and
by Springer in [19] for p odd—recently Seitz gave an alternative proof of Springer’s
result in [16]. In the case r = 3 and p 6= 3, the result follows from work of Liebeck
and Shalev in [10]; this case and that with r = 2 are used in work of Liebeck,
Seitz and the author concerning dimensions of fixed point spaces in [9]. More
generally, for r an odd prime a result in this direction appears in further work of
Liebeck and Shalev in [11], while the results proved here find application in [12] to
homomorphisms from Fuchsian groups to finite simple groups.

Notice in particular that the statement of Theorem 1 is independent of the
characteristic p. The author is grateful to Martin Liebeck for the initial observation
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that there appeared to be independence of p for r small and prime, which helped
to motivate the present work.

Some calculations similar to certain ones here appear in a recent paper [2] of
Carlson, Lin, Nakano and Parshall, concerning elements in a restricted Lie algebra
in characteristic p which satisfy x[p] = 0.

The organization of this paper is as follows. In section 1 we give the values
dΦ,r and prove some results about them. Next in section 2 we consider unipotent
elements, and calculate the minimal dimensions of centralizers of unipotent elements
having a prescribed power equal to the identity. Finally we apply these results in
section 3 to consider arbitrary elements, and prove the various statements involved
in Theorem 1.

1. The values dΦ,r

We begin with some notation. Given x ∈ Z, we set εx = 1 or 0 according to
whether x is odd or even. For y ∈ R we write dye for the least integer greater than
or equal to y.

Let Φ be a simple root system of rank `, and let h = |Φ|
` be the Coxeter number

of Φ; take r ∈ N. For Φ of classical type, write

h = zr + e with z ∈ Z, 0 ≤ e < r,

and set

dA`,r = z2r + e(2z + 1)− 1,

dB`,r = 1
2 (z2r + e(2z + 1)) + εrd z2e,

dC`,r = 1
2 (z2r + e(2z + 1)) + εrd z2e,

dD`,r = 1
2 (z2r + e(2z + 1)) + εrd z2e+ z + 1− εz.

For Φ of exceptional type, write

εΦ,r =

{
1 if (Φ, r) = (F4, 5), (E6, 2), (E6, 4), (E8, 11),
0 otherwise;

then set
dΦ,r = `+ 2 max

(
0,
⌈

1
2 (|Φ|/r − `(1− δ1r))

⌉
+ εΦ,r

)
,

where δ∗∗ is the Kronecker delta. For convenience we list the values of dΦ,r for
r < h and Φ exceptional in the following table:
r G2 F4 E6 E7 E8 r F4 E6 E7 E8 r E7 E8 r E8 r E8

6 8 12 21 40 12 11 20 18 14 24 10
1 14 52 78 133 248 7 8 12 19 36 13 11 20 19 14 25 10
2 6 24 38 63 120 8 6 10 17 30 14 9 18 20 12 26 10
3 4 16 24 43 80 9 6 8 15 28 15 9 16 21 12 27 10
4 4 12 20 33 60 10 6 8 13 24 16 9 16 22 12 28 10
5 4 12 16 27 48 11 6 8 13 24 17 9 16 23 12 29 10

Our first result shows why it suffices to list dΦ,r for r < h.

Lemma 1.1. If r ≥ h, then dΦ,r = `.

Proof. First consider Φ of classical type. If r = h, then z = 1 and e = 0, so that
z2r+e(2z+1) = h; since h = `+1, 2`, 2`, 2`−2 for Φ = A`, B`, C`, D` respectively,
in each case we obtain dΦ,r = `. If instead r > h, then z = 0 and e = h, and the
result again follows. For Φ of exceptional type, if r ≥ h we have |Φ|r − ` ≤ 0 (and
δ1r = εΦ,r = 0), and the result is immediate. �



ELEMENTS OF SPECIFIED ORDER IN SIMPLE ALGEBRAIC GROUPS 223

Our next result establishes lower bounds on the values dΦ,r. Recall that a prime
p1 is said to be very good for Φ if either Φ = A` and p1 does not divide `+ 1, or Φ
is not of type A and p1 is good for Φ (so that p1 6= 2 if Φ = B`, C`, D`, p1 6= 2, 3 if
Φ = G2, F4, E6, E7, and p1 6= 2, 3, 5 if Φ = E8).

Lemma 1.2. We have dΦ,r ≥ |Φ|r ; moreover if r is a product of very good primes,
then dΦ,r ≥ |Φ|+`r .

Proof. Begin with the first inequality. For Φ of exceptional type, this is clear from
the definition of dΦ,r. For Φ of classical type we find that we have

rdΦ,r − |Φ| =


zr + (e− 1)(r − e) if Φ = A`,

1
2e(r − e) + rεrd z2e if Φ = B` or C`,
1
2 (e+ 2)(r − e) + r(εrd z2e − εz) if Φ = D`;

in each case the expression given is non-negative, as required (note that if r is even
the last may be written as 1

2e(r− e− 2) + r(1− εz), and we have e ≤ r− 2 because
the equation 2`− 2 = h = zr + e forces e to be even).

Now assume that r is a product of very good primes. For Φ of exceptional type
the second inequality is clear by inspection of the above table. For Φ of classical
type we subtract ` from the expressions in the previous paragraph to obtain

rdΦ,r − |Φ| − ` =


(e− 1)(r − e− 1) if Φ = A`,

1
2e(r − e− 1) + r(εrd z2e −

z
2 ) if Φ = B` or C`,

1
2 (e + 2)(r − e− 1) + r(εrd z2e −

z
2 − εz) if Φ = D`.

For Φ = A` the condition that r is a product of very good primes implies that
e > 0, so that the expression above is non-negative. For the other classical types r
must be odd and so εr = 1; this makes the expressions for B` and C` non-negative,
while for D` we need only consider the case where z is odd. Here the equation
2`− 2 = h = zr+ e forces e to be odd as well, so that e ≤ r − 2, and then we have

rdΦ,r − |Φ| − ` = 1
2 (e + 2)(r − e− 1)− 1

2r = 1
2 (e+ 1)(r − e− 2) ≥ 0

as required. �

We shall also require the following lemma.

Lemma 1.3. With the notation established, if m > 1, then dΦ,r ≥ dΦ,mr, with
equality if and only if dΦ,r = `.

Proof. For Φ of exceptional type this is immediate by inspection of the table above.
For Φ of classical type we write z = z1m + t with 0 ≤ t < m; then h = z1(mr) +
(tr + e) and 0 ≤ tr + e < mr. We then calculate

dA`,r − dA`,mr = z2r + e(2z + 1)− 1− z1
2mr − (tr + e)(2z1 + 1) + 1

= z1(m− 1)(z1mr + 2tr + 2e) + tr(t− 1) + 2te
≥ 0,
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with equality requiring z1 = 0, which forces mr > h and dA`,r = dA`,mr = `.
Similarly

dB`,r − dB`,mr = 1
2z

2r + 1
2e(2z + 1) + εrd z2e

− 1
2z1

2mr − 1
2 (tr + e)(2z1 + 1)− εmrd z1

2 e
= 1

2 (z1(m− 1)(z1mr + 2tr + 2e) + tr(t− 1) + 2te)

+ (εrd z1m+t
2 e − εmrd z1

2 e)
≥ 0,

with equality again requiring z1 = 0 and so dB`,r = dB`,mr = `; the calculation for
dC`,r is identical. Finally we have

dD`,r − dD`,mr = 1
2z

2r + 1
2e(2z + 1) + εrd z2e+ z + 1− εz

− 1
2z1

2mr − 1
2 (tr + e)(2z1 + 1)− εmrd z1

2 e − z1 − 1 + εz1

= 1
2 (z1(m− 1)(z1mr + 2tr + 2e) + tr(t − 1) + 2te)

+ (εrd z1m+t
2 e − εmrd z1

2 e) + z1(m− 1) + (t+ εz1 − εz1m+t)
≥ 0,

with equality once more requiring z1 = 0 and so dD`,r = dD`,mr = `. �

2. Unipotent elements

In this section we shall establish the minimal centralizer dimension of unipotent
elements of prescribed order in a simple algebraic group H . These results will be
utilized in the following section to prove the main theorem of this paper.

We shall proceed by considering the Jordan structure of unipotent elements. For
H classical we take the action of H on its natural module, and use results linking
Jordan structure and centralizer structure due to [20] for good characteristic and
[7] for types B, C and D in characteristic 2. For H exceptional we take the adjoint
action of H , and use results of [8] on Jordan structure and [3, 5, 14, 15, 17, 18] on
centralizer structure. (Note that [15] contains some errors involving centralizers in
E8 in characteristic 2, but these concern component groups, not the structure of
connected centralizers.)

We use the following notation throughout this section and the next. Let q be a
power of the characteristic p of the simple algebraic group H , and set

dq(H) = min
u∈H[q]

dimCH(u).

Given x ∈ Z we set ζx = 1 or 0 according to whether x = 0 or x 6= 0, and as above
set εx = 1 or 0 according to whether x is odd or even. For y ∈ R we write byc for
the greatest integer less than or equal to y, and dye for the least integer greater
than or equal to y.

Lemma 2.1. Take m ∈ N.

(i) If m+ 1 = γq + δ with 0 ≤ δ < q, then dq(Am) = γ2q + (2γ + 1)δ − 1.
(ii) If m = γq + δ with 0 ≤ δ < q, then dq(Am) = γ2q + (2γ + 1)(δ + 1)− 1.

Proof. Take H of type Am; take u ∈ H[q] and write ri for the number of Jordan
blocks of size i in the action of u on the natural module, so that we have

∑
iri =
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m+ 1, and ri = 0 for i > q since uq = 1. By [20],

dimCH(u) =
∑
i

(ri + ri+1 + · · ·+ rq)2 − 1;

among elements of H[q] this is clearly minimized when at most one Jordan block
has size less than q.

In (i) we require Jordan structure qγ , δ, so that rq = γ, rδ = 1 if δ > 0 and ri = 0
otherwise. This gives dimCH(u) = δ(γ+1)2 +(q−δ)γ2−1 = γ2q+(2γ+1)δ−1 as
required. Now consider (ii). If δ < q − 1, then we have Jordan structure qγ , δ + 1,
whence dimCH(u) = (δ+1)(γ+1)2 +(q−δ−1)γ2−1 = γ2q+(2γ+1)(δ+1)−1 as
required; if δ = q−1 the Jordan structure is qγ+1, giving dimCH(u) = q(γ+1)2−1,
again as required. �

Lemma 2.2. Take m ∈ N.
(i) If 2m = γq + δ with 0 ≤ δ < q, then

dq(Cm) = 1
2γ

2q + 1
2 (2γ + 1)δ + εqdγ2 e.

(ii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then

dq(Cm+1) = 1
2γ

2q + 1
2 (2γ + 1)(δ + 1) + εqdγ2 e.

(iii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then

dq(Cm) = 1
2γ

2q + 1
2 (2γ + 1)(δ − 1) + εqdγ2 e.

Proof. Take H of type Ck; as in the previous result take u ∈ H[q] and write ri for
the number of Jordan blocks of size i in the action of u on the natural module, so
that

∑
iri = 2k and ri = 0 for i > q. We must have ri even for all odd i. If p

is odd, [20] gives dimCH(u) = 1
2

∑
i(ri + ri+1 + · · · + rq)2 + 1

2

∑
i odd ri; if p = 2,

then dimCH(u) is not determined simply by the Jordan structure, but [7] gives
a formula whose minimal value reduces to that for odd characteristic. As in the
previous lemma, the optimal Jordan structure will involve as many blocks of size q
as possible.

Begin with (i), so that k = m. If p = 2, then either q = 1, in which case u = 1
and dimCH(u) = dimH = 2m2 +m; or q > 1, when we have Jordan structure qγ , δ
(note that δ = 2m−γq is even here), giving dimCH(u) = 1

2 [δ(γ+1)2 +(q−δ)γ2] =
1
2γ

2q + 1
2 (2γ + 1)δ. If instead p is odd, we take separately the cases where γ

(and hence δ) is even and odd: if γ is even the Jordan structure is qγ , δ, whence
dimCH(u) = 1

2 [δ(γ + 1)2 + (q − δ)γ2 + γ] = 1
2γ

2q + 1
2 (2γ + 1)δ + 1

2γ; if γ is
odd the Jordan structure is qγ−1, q − 1, δ + 1 (or qγ−1, (q − 1)2 if δ = q − 2),
whence dimCH(u) = 1

2 [(δ + 1)(γ + 1)2 + (q − δ − 2)γ2 + (γ − 1)2 + γ − 1] =
1
2γ

2q + 1
2 (2γ + 1)δ+ 1

2 (γ + 1). Thus in all cases the minimal centralizer dimension
is 1

2γ
2q + 1

2 (2γ + 1)δ + εqdγ2 e, as required.
For (ii) and (iii) we proceed by comparing with (i). For (ii) we have k = m+ 1;

thus if we write 2k = γ′q + δ′ with 0 ≤ δ′ < q, we have γ′q + δ′ − 1 = γq + δ. If
δ < q − 1 we then have γ′ = γ, δ′ = δ+ 1 and the minimal centralizer dimension is
1
2γ
′2q+ 1

2 (2γ′+1)δ′+ εqdγ
′

2 e = 1
2γ

2q+ 1
2 (2γ+1)(δ+1)+ εqdγ2 e; if δ = q−1 we have

γ′ = γ+ 1, δ′ = 0 and the minimal centralizer dimension is 1
2 (γ+ 1)2q+ εqdγ+1

2 e =
1
2γ

2q + 1
2 (2γ + 1)q + εqdγ2 e (note that if q is odd here, then γ′ = γ + 1 must be

even, in which case dγ+1
2 e = dγ2 e). In either case we obtain the required formula.

For (iii) we have k = m; thus if we set 2k = γ′q + δ′ with 0 ≤ δ′ < q we have
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γ′q + δ′ + 1 = γq + δ. If δ > 0, then γ′ = γ, δ′ = δ − 1 and the minimal centralizer
dimension is 1

2γ
2q + 1

2 (2γ + 1)(δ − 1) + εqdγ2 e; if δ = 0, then γ′ = γ − 1, δ′ = q − 1
and the minimal centralizer dimension is 1

2 (γ−1)2q+ 1
2 (2γ−1)(q−1) + εqdγ−1

2 e =
1
2 (γ2q−2γ+1)+ εqdγ−1

2 e = 1
2γ

2q− 1
2 (2γ+1)+ εqdγ2 e (note that both γ and q must

be odd here, so 1 + εqdγ−1
2 e = εqdγ2 e). Again the required formula follows. �

Lemma 2.3. Take m ∈ N.

(i) If 2m = γq + δ with 0 ≤ δ < q, then

dq(Bm) = 1
2γ

2q + 1
2 (2γ + 1)δ + εqdγ2 e.

(ii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then

dq(Bm+1) = 1
2γ

2q + 1
2 (2γ + 1)(δ + 1) + εqdγ2 e.

(iii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then

dq(Bm) = 1
2γ

2q + 1
2 (2γ + 1)(δ − 1) + εqdγ2 e.

Proof. Take H of type Bk and u ∈ H[q], and as before write ri for the number of
Jordan blocks of size i in the action of u on the natural module, so that

∑
iri =

2k+1 and ri = 0 for i > q. If p is odd, we must have ri even for all even i; [20] gives
dimCH(u) = 1

2

∑
i(ri + ri+1 + · · ·+ rq)2 − 1

2

∑
i odd ri. If p = 2, we must instead

have ri even for all odd i > 1; here dimCH(u) is again not determined simply
by the Jordan structure, but [7] gives a formula whose minimal value reduces to
1
2

∑
i(ri+ri+1 + · · ·+rq)2− 1

2

∑
i odd ri−

∑
i even ri. Once more, the optimal Jordan

structure will involve as many blocks of size q as possible. Note that it suffices to
prove (i), as (ii) and (iii) will then follow by identical calculations to those in the
previous result.

Thus let k = m. If p = 2, then either q = 1, in which case u = 1 and dimCH(u) =
dimH = 2m2+m; or q > 1, when δ = 2m−γq must be even and we must distinguish
the cases δ = 0 and δ > 0. In the case δ = 0 we have Jordan structure qγ , 1, giving
dimCH(u) = 1

2 [(γ+1)2 +(q−1)γ2−1−2γ] = 1
2γ

2q; for δ > 0 the Jordan structure
is qγ , δ, 1, giving

dimCH(u) = 1
2 [(γ + 2)2 + (δ − 1)(γ + 1)2 + (q − δ)γ2 − 1− 2γ − 2]

= 1
2γ

2q + 1
2 (2γ + 1)δ.

If p is odd instead, as in the previous result we take the cases where γ (and hence
δ) is even and odd separately. If γ is even the Jordan structure is qγ , δ+ 1 (or qγ+1

if δ = q − 1), whence

dimCH(u) = 1
2 [(δ + 1)(γ + 1)2 + (q − δ − 1)γ2 − γ − 1]

= 1
2γ

2q + 1
2 (2γ + 1)δ + 1

2γ.

If γ is odd the Jordan structure is qγ , δ, 1 (or qγ , 12 if δ = 1), whence

dimCH(u) = 1
2 [(γ + 2)2 + (δ − 1)(γ + 1)2 + (q − δ)γ2 + (γ − 1)2 − γ − 2]

= 1
2γ

2q + 1
2 (2γ + 1)δ + 1

2 (γ + 1).

Thus in all cases the minimal centralizer dimension is 1
2γ

2q + 1
2 (2γ + 1)δ + εqdγ2 e,

as required. �
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Lemma 2.4. Take m ∈ N.

(i) If 2m− 1 = γq+ δ with 0 ≤ δ < q, then dq(Dm) = 1
2γ

2q+ 1
2 (2γ+ 1)δ+ 1

2 +
εqdγ2 e − εγ .

(ii) If 2m = γq+ δ with 0 ≤ δ < q, then dq(Dm+1) = 1
2γ

2q+ 1
2 (2γ+ 1)(δ+ 1) +

1
2 + εqdγ2 e − εγ.

(iii) If 2m = γq + δ with 0 ≤ δ < q, then dq(Dm) = 1
2γ

2q + 1
2 (2γ + 1)(δ − 1) +

1
2 + εqdγ2 e − εγ + 2εγζδ.

Proof. This is very similar to the previous result, but the details are rather more
complicated. Take H of type Dk and u ∈ H[q], and again write ri for the number of
Jordan blocks of size i in the action of u on the natural module, so that

∑
iri = 2k

and ri = 0 for i > q. If p is odd, we must again have ri even for all even i, and [20]
once more gives dimCH(u) = 1

2

∑
i(ri + ri+1 + · · · + rq)2 − 1

2

∑
i odd ri. If p = 2,

we must instead have ri even for all odd i, and
∑
ri must also be even; again, the

minimal value taken by the formula in [7] reduces to

1
2

∑
i

(ri + ri+1 + · · ·+ rq)2 − 1
2

∑
i odd

ri −
∑
i even

ri.

First consider (i), and let k = m. If p is odd, we separate into two cases according
to the parity of γ. If γ is odd, then δ is even and the required Jordan structure is
qγ , δ+ 1 (or qγ+1 if δ = q− 1), giving dimCH(u) = 1

2γ
2q+ 1

2 (2γ + 1)δ+ 1
2γ; if γ is

even, then δ is odd and the Jordan structure is qγ , δ, 1 (or qγ , 12 if δ = 1), and we
have dimCH(u) = 1

2γ
2q+ 1

2 (2γ+1)δ+ 1
2 (γ+1). If p = 2, then either q = 1, in which

case u = 1 and dimCH(u) = dimH = 2m2−m; or q > 1, when δ must be odd and
we again separate into two cases according to the parity of γ. If γ is odd, the Jordan
structure is qγ , δ+1 (or qγ+1 if δ = q−1), and dimCH(u) = 1

2γ
2q+ 1

2 (2γ+1)δ− 1
2 .

If γ is even, the Jordan structure can take several forms depending on δ and q:
if δ = q − 1 we have qγ , q − 2, 2 if q > 4, or 4γ , 22 if q = 4, or 2γ , 12 if q = 2; if
3 < δ < q−1 we have qγ , δ−1, 2; if δ = 3 we have qγ , 22; and if δ = 1 we have qγ , 12.
For each of these possibilities we find dimCH(u) = 1

2γ
2q+ 1

2 (2γ+ 1)δ+ 1
2 . Thus in

all cases the minimal centralizer dimension is 1
2γ

2q + 1
2 (2γ + 1)δ + 1

2 + εqdγ2 e − εγ ,
as required.

For (ii) and (iii) we again proceed by comparing with (i). For (ii) we have k =
m+1; thus if we write 2k−1 = γ′q+δ′ with 0 ≤ δ′ < q, we have γ′q+δ′−1 = γq+δ.
If δ < q − 1 we then have γ′ = γ, δ′ = δ+ 1 and the minimal centralizer dimension
is 1

2γ
′2q+ 1

2 (2γ′+1)δ′+ 1
2 + εqdγ

′

2 e− εγ′ = 1
2γ

2q+ 1
2 (2γ+1)(δ+1)+ 1

2 + εqdγ2 e− εγ ;
if δ = q − 1 we have γ′ = γ + 1, δ′ = 0 and the minimal centralizer dimension
is 1

2 (γ + 1)2q + 1
2 + εqdγ+1

2 e − εγ+1 = 1
2γ

2q + 1
2 (2γ + 1)q + 1

2 + 1
2γ (note that

here q is odd and γ even). In either case we obtain the required formula. For
(iii) we have k = m; thus if we set 2k − 1 = γ′q + δ′ with 0 ≤ δ′ < q we have
γ′q + δ′ + 1 = γq + δ. If δ > 0, then γ′ = γ, δ′ = δ − 1 and the minimal
centralizer dimension is 1

2γ
2q + 1

2 (2γ + 1)(δ − 1) + 1
2 + εqdγ2 e − εγ . If on the other

hand δ = 0, then γ′ = γ − 1, δ′ = q − 1 and the minimal centralizer dimension is
1
2 (γ−1)2q+ 1

2 (2γ−1)(q−1)+ 1
2 +εqdγ−1

2 e−εγ−1 = 1
2γ

2q− 1
2 (2γ+1)+1 1

2 +εqdγ−1
2 e−

εγ−1 = 1
2γ

2q− 1
2 (2γ+ 1) + 1

2 + εqdγ2 e+ εγ (note that γq must be even here, so that
if q is odd, then γ must be even, whence εqdγ−1

2 e = εqdγ2 e; and 1 − εγ−1 = εγ).
Again the required formula follows. �
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We may summarize the above results as follows.

Lemma 2.5. If a = cq + d with 0 ≤ d < q and ζ ∈ {0, 1} we have the following:
(i) dq(Aa−ζ) = c2q + (2c+ 1)(a− ζ − cq + 1)− 1;
(ii) dq(Bd a2 e−εaζ) = 1

2c
2q + (2c+ 1)(da2 e − εaζ −

1
2cq) + εqd c2e;

(iii) dq(Cd a2 e−εaζ) = 1
2c

2q + (2c+ 1)(da2 e − εaζ −
1
2cq) + εqd c2e;

(iv) dq(Dd a+1
2 e−εa+1ζ

) = 1
2c

2q+ (2c+ 1)(da+1
2 e− εa+1ζ− 1

2cq) + εqd c2e− c− εc+
2εc(a+1)ζa−cqζ.

We have also shown the following.

Corollary 2.6. Take m ∈ N.
(i) If m+ 1 = γq + δ with 0 ≤ δ < q, then dq(Am+1)− dq(Am) = 2γ + 1.
(ii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then dq(Bm+1)− dq(Bm) = 2γ + 1.
(iii) If 2m+ 1 = γq + δ with 0 ≤ δ < q, then dq(Cm+1)− dq(Cm) = 2γ + 1.
(iv) If 2m = γq+ δ with 0 ≤ δ < q, then dq(Dm+1)− dq(Dm) = 2γ+ 1− 2εγζδ.

We now turn to the exceptional groups; here we simply obtain the values of
dq(H) by comparing the Jordan structure of unipotent elements on the adjoint
module given in [8] with the centralizer structure as given in [3, 5, 14, 15, 17, 18].
We find the following.

Lemma 2.7. If H is of exceptional type with root system Ψ, then dq(H) = dΨ,q.

3. The general case

In this section we shall consider arbitrary elements of a simple algebraic group
G defined over an algebraically closed field of characteristic p, and shall prove the
various statements involved in Theorem 1. We begin with some notation which will
be used throughout this section. Let Φ be the root system of G, taken with respect
to some maximal torus T , and let Π = {α1, . . . , α`} be a fundamental system,
numbered in accordance with [1, Planches I–IX]; write α0 for the highest root of Φ
with respect to Π, set m0 = 1 and define mi for 1 ≤ i ≤ ` by

α0 =
∑̀
i=1

miαi.

Let h =
∑`

i=0 mi be the Coxeter number of Φ. Now take r ∈ N, and let the p′-part
and p-part of r be n and q, respectively, so that r = nq. Given g ∈ G[r], let the
Jordan decomposition of g be g = su = us, where s is semisimple and u unipotent;
we then have s ∈ G[n] and u ∈ (CG(s)0)[q]. Extending the notation of the previous
section, we write

dr(G) = min
g∈G[r]

dimCG(g);

we then have

dr(G) = min
s∈G[n]

dq(CG(s)0) = min
Z=CG(s)0, s∈G[n]

dq(Z),

where we set dq(H1 . . . HtT
′) = dq(H1) + · · ·+ dq(Ht) for H1, . . . , Ht simple and T ′

a torus. We can immediately provide an important interpretation of the number
dr(G).

Lemma 3.1. With the notation established, codimG[r] = dr(G).
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Proof. Taking g = su as above, by conjugation we may assume s ∈ T ; as |T[n]| = n`,
and CG(s)0 contains finitely many unipotent classes, it follows that the number of
classes in G[r] is finite. Thus

dimG[r] = max
g∈G[r]

dim gG,

and hence

codimG[r] = dimG− max
g∈G[r]

dim gG = min
g∈G[r]

dimCG(g) = dr(G),

as required. �

Our approach to calculating the value of dr(G) will be to use a result of Hart-
ley and Kuzucuoğlu in [6], given n, to restrict the possibilities for the connected
centralizer Z of a semisimple element of order n. Among the possible groups Z
we then select one having minimal value of dq(Z), using the results of the previous
section. We shall observe that this minimal value in fact depends only on r and
not on the factorization r = nq, so that it is independent of the characteristic p.

Unless otherwise stated, we assume from now on that

G is of adjoint type.

At the end of this section we shall consider the case of arbitrary isogeny type.
The result from [6] which we need is (part of) Theorem 4.2 there, and follows

the approach of Deriziotis in [4]; under our assumption on the isogeny type of
G it may be stated as follows. Choose non-negative integers b0, b1, . . . , b` with
gcd(b0, b1, . . . , b`) = 1 satisfying

∑`
i=0 bimi = n. The roots αi (or −α0 in the case

i = 0) for which bi = 0 then form a simple system Ψ whose corresponding subsystem
subgroup of G is the centralizer of a semisimple element of order n; moreover, up
to conjugacy all centralizers of semisimple elements of order n arise in this way.

Now from this result it follows that if n ≥ h, then by choosing b1 = · · · = b` = 1
and b0 = n+ 1− h we may take Z = T , whence dr(G) = ` = dΦ,r as required (note
that if n ≥ h, then certainly r ≥ h); it therefore suffices to assume in what follows
that

n < h.

The following result shows that in this case we may substantially restrict the non-
negative integers bi which need be considered.

Lemma 3.2. With the notation established, if n < h the minimal value of dq(Z)
occurs for some b0, b1, . . . , b` with bi ∈ {0, 1} for all i.

Proof. Take b0, b1, . . . , b` satisfying gcd(b0, b1, . . . , b`) = 1 and
∑`

i=0 bimi = n.
Since n < h =

∑`
i=0mi we must have bi = 0 for some i; let v = min{mi : bi = 0}.

We shall show that if not all the bi are 0 or 1, then it is always possible to replace
some of them in such a way that the conditions are still satisfied and the value of
dq(Z) is either reduced or unchanged, but the quantity ∆ = h2|Ψ|+ h

∑`
i=0 bi + v

is decreased; thus after a finite number of steps this process must terminate in a
sequence b0, b1, . . . , b` in which all terms are 0 or 1 as required.

Thus assume bx > 1 for some x; choose y such that my = v and by = 0. We
split into two cases according to the relative sizes of mx and my. First assume
mx ≥ my. If mx = 1 we may replace the pair (bx, by) by (bx − 1, 1); if mx > 1 and
y = 0 replace (bx, by) by (1, (bx − 1)mx); if mx > 1 and y 6= 0 replace the triple
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(bx, by, b0) by (bx − 1, 1, b0 +mx −my). In each instance we obtain b0
′, b1

′, . . . , b`
′

satisfying the required conditions with Ψ′ = Ψ \ {αy}, whence dq(Z ′) ≤ dq(Z); as
|Ψ′| = |Ψ| − 1 and h

∑`
i=0 bi

′ + v′ ≤ hn + v′ < h(h − 1) + h = h2 we clearly have
∆′ < ∆ as required.

Now assume that mx < my. Here we use an observation relating to the extended
Dynkin diagram; we recall that this has nodes 0, 1, . . . , ` corresponding to roots
−α0, α1, . . . , α`. Set m = max{mi : 0 ≤ i ≤ `}; then there is a sequence 0 =
k1, k2, . . . , km of nodes satisfying mkt = t for t ≤ m and with kt joined to kt′ if
and only if |t − t′| = 1. Now the choice of y implies that for any node t with
mt < my we must have bt > 0; thus by interchanging the values bx and bkmx if
necessary we may assume that kmx = x, i.e., the node x occurs in the sequence.
Let kmy = z′ and kmy−1 = z, while if x 6= 0 let kmx−1 = x′; then bz > 0, again
by the choice of y, and if bz′ = 0 we may assume that y is chosen to be z′. We
therefore have 1 = m0 ≤ mx ≤ mz < mz + 1 = my with 0, x and z all appearing in
the sequence, and if x 6= 0, then x′ is also in the sequence with mx′ = mx− 1. Now
if m0 = mx = mz we may replace the pair (bx, by) by (bx − 2, 1); if m0 < mx = mz

replace the triple (b0, bx, by) by (b0−1, bx−1, 1); ifm0 = mx < mz replace (bx, bz, by)
by (bx − 1, bz − 1, 1); lastly if m0 < mx < mz replace the quadruple (bx′ , bx, bz, by)
by (bx′ + 1, bx − 1, bz − 1, 1). In every instance |Ψ′| ≤ |Ψ|; in each but the last we
have

∑`
i=0 bi

′ <
∑`
i=0 bi, while in the last

∑`
i=0 bi

′ =
∑`

i=0 bi but if |Ψ′| = |Ψ|, then
v′ = mz = v − 1. Thus the value of ∆ decreases as required; and one irreducible
component of Ψ (that containing αy) is reduced in rank by 1, while at most an A1

component is introduced (containing −α0 in the first two instances and αz in the
second two), so clearly dq(Z ′) ≤ dq(Z). This completes the proof. �

We may now work our way through the types of irreducible root system.

Proposition 3.3. With the notation established, dr(A`) = dA`,r.

Proof. We have h = `+1; and mi = 1 for all 0 ≤ i ≤ `. By Lemma 3.2 we therefore
require coefficients b0, b1, . . . , b` with n of the bi equal to 1 and the remainder equal
to 0. Suppose bi1 = · · · = bin = 1 with i1 < · · · < in; we may assume i1 = 0, and
set in+1 = ` + 1. We then have Z as a product of n factors Aij+1−ij−1 (where a
factor A0 is interpreted as being trivial) and an (n − 1)-dimensional torus Tn−1.
Now if two of the factors are Ak and Ak′ with k− k′ > 1, we may alter the bi so as
to replace these two factors with Ak−1 and Ak′+1; it follows from Corollary 2.6(i)
that dq(AkAk′ ) − dq(Ak−1Ak′+1) ≥ 0. Thus we may assume that, for some a, all
factors are either Aa or Aa−1; as rankZ = ` we must have

Z = (Aa)b(Aa−1)n−bTn−1,

where `+ 1 = an+ b with 0 ≤ b < n.
Now write a = cq+d with 0 ≤ d < q, and apply the formulæ from Lemma 2.5(i);

we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (n− b)(c2q + (2c+ 1)d− 1) + n− 1

= c2nq + (2c+ 1)(dn+ b)− 1
= c2nq + (2c+ 1)(`+ 1− cqn)− 1
= (2c+ 1)(`+ 1)− c(c+ 1)nq − 1
= (2c+ 1)(`+ 1)− c(c+ 1)r − 1.
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Since we have zr + e = ` + 1 = an + b = (cq + d)n + b = cr + (dn + b) with
dn+ b ≤ (q − 1)n+ (n− 1) = r − 1, it follows that c = z, so

dr(A`) = (2z + 1)(`+ 1)− z(z + 1)r − 1;

substituting from `+ 1 = zr + e gives dr(A`) = dA`,r as required. �

Proposition 3.4. With the notation established, dr(C`) = dC`,r.

Proof. We have h = 2`; and mi = 2 for all 1 ≤ i ≤ ` − 1 while m0 = m` = 1.
Here we shall need to argue separately for n odd and n even; first assume n is odd
and set n = 2s + 1. By Lemma 3.2 we therefore require coefficients b0, b1, . . . , b`
in which the bi which are equal to 1 correspond to s nodes i with 1 ≤ i ≤ ` − 1,
together with either node 0 or node `; this means that Z has s factors of type A,
one factor of type C and an s-dimensional torus. We shall need to determine a
configuration which minimizes dq(Z).

As in the proof of Proposition 3.3, the type A factors may be assumed to take the
form (Ãx)z(Ãx−1)s−z , for some x and some 0 ≤ z < s; suppose the type C factor
is Cy. If we write x = γ1q + δ1 and 2y − 1 = γ2q + δ2 with 0 ≤ δ1, δ2 < q, then by
Lemma 2.5 dq(Ãx−1Cy) − dq(ÃxCy−1) = 2(γ2 − γ1); thus if 2y − 1 > x we could
replace the pair Ãx−1Cy by ÃxCy−1 without increasing dq(Z), so we may assume
that 2y ≤ x+1. Likewise if 2y ≤ x−2 we could replace Ãx−1Cy by Ãx−2Cy+1 (and
then possibly adjust further the factors of type A), so we may assume x− 1 ≤ 2y;
thus we have x − 1 ≤ 2y ≤ x + 1. If there are Ax factors present (so that z > 0
above), then we may argue similarly to deduce that x ≤ 2y ≤ x+ 2; putting these
conditions together we have x ≤ 2y ≤ x + 1, so that y = dx2 e. If there are no Ax
factors, then either y = dx2 e, or 2y = x−1; if the latter holds we may set x′ = x−1,
y′ = y, and then we have (Ãx′)sCy′ with y′ = x′

2 (note that in this case, in which
z = s in the form for the type A factors given above, we have x′ even). Writing a
for x (or x′), we have ` = rankZ = az+ (a− 1)(s− z) + da2 e+ s = as+ da2 e+ z, so
2` = 2as+ 2da2 e+ 2z = 2as+ a+ εa + 2z with εa + 2z < 2s+ 1 (because if z = s,
then a is even). Therefore we have

Z = (Ãa)b
b
2 c(Ãa−1)s−b

b
2 cCd a2 eTs,

where 2` = a(2s+ 1) + b with 0 ≤ b < 2s+ 1.
Having determined the form of Z, write a = cq + d with 0 ≤ d < q, and apply

the formulæ from Lemma 2.5(i,iii); we obtain

dq(Z) = b b2c(c2q + (2c+ 1)(d+ 1)− 1) + (s− b b2c)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da2 e −
1
2cq) + εqd c2e+ s

= c2q(s+ 1
2 ) + (2c+ 1)(ds+ b b2c+ da2 e −

1
2cq) + εqd c2e

= c2q(s+ 1
2 ) + (2c+ 1)(ds+ a+b

2 −
1
2cq) + εqd c2e

= c2q(s+ 1
2 ) + (2c+ 1)(`− cq(s+ 1

2 )) + εqd c2e
= (2c+ 1)`− c(c+ 1)q(s+ 1

2 ) + εqd c2e
= (2c+ 1)`− 1

2c(c+ 1)r + εrd c2e

(note that the assumption that n is odd means that εq = εr). As in the proof of
Proposition 3.3, since we have zr+ e = 2` = an+ b = (cq+ d)n+ b = cr+ (dn+ b)
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with dn+ b ≤ (q − 1)n+ (n− 1) = r − 1, it follows that c = z, so

dr(C`) = (2z + 1)`− 1
2z(z + 1)r + εrd z2e;

substituting from 2` = zr + e gives dr(C`) = dC`,r for n odd, as required.
Now assume that n is even and set n = 2s. Here there are two types of possi-

bilities for the coefficients bi, and thus for the centralizer Z, depending on whether
b0 = b` = 1 or b0 = b` = 0; we shall need to consider each. First consider the
possibility b0 = b` = 1; here there are s− 1 nodes i with 1 ≤ i ≤ ` such that bi = 1,
and so much as in the previous proposition we must have

Z = (Ãa)b(Ãa−1)s−bTs,

where ` = as+ b with 0 ≤ b < s. Again write a = cq+ d with 0 ≤ d < q, and apply
the formulæ from Lemma 2.5(i); we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− b)(c2q + (2c+ 1)d− 1) + s

= c2qs+ (2c+ 1)(ds+ b)
= c2qs+ (2c+ 1)(`− cqs)
= (2c+ 1)`− c(c+ 1)qs
= (2c+ 1)`− 1

2c(c+ 1)r.

Here we have zr + e = 2` = an + 2b = (cq + d)n + 2b = cr + dn + 2b with
dn+ 2b ≤ (q − 1)n+ 2(s− 1) = r − 2, so again we have c = z and

dq(Z) = (2z + 1)`− 1
2z(z + 1)r;

substituting from 2` = zr + e (and noting that εr = 0 here) gives dq(Z) = dC`,r.
The second possibility here is that b0 = b` = 0; here there are s nodes i with

1 ≤ i ≤ ` such that bi = 1. Again we must determine an optimal form for Z, which
has s− 1 factors of type A, two factors of type C and an (s− 1)-dimensional torus.
As before we may assume that the type A factors are (Ãx)z(Ãx−1)s−z , for some x
and some 0 ≤ z < s; the type C factors likewise may be taken to be either (Cy)2

or CyCy−1. Using the reasoning already given, if the type C factors are of equal
rank we must have either y = dx2 e, or z = 0 and 2y = x − 1; in the latter case we
set x′ = x − 1, y′ = y and obtain (Ãx′)s−1(Cy′)2 with y′ = x′

2 (and z = s − 1).
On the other hand, if we have CyCy−1, then both y and y − 1 must satisfy these
conditions; the only way this can happen is if we have 2y = x + 1 with z = 0, in
which case we obtain (Ãx−1)s−1Cdx2 eCd

x
2 e−1 with x odd. Putting together these

possibilities, writing a for x (or x′) and equating rankZ to `, we find that we have

Z = (Ãa)b−εa(1−ζb)(Ãa−1)s−1−b+εa(1−ζb)Cd a2 eCd
a
2 e−εaζbTs−1,

where ` = as+ b with 0 ≤ b < s.
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As usual write a = cq + d with 0 ≤ d < q, and apply the formulæ from Lemma
2.5(i), (iii); noting that εq = 1 because n is even, we obtain

dq(Z) = (b − εa(1 − ζb))(c2q + (2c+ 1)(d+ 1)− 1)

+ (s− 1− b+ εa(1 − ζb))(c2q + (2c+ 1)d− 1)
+ 1

2c
2q + (2c+ 1)(da2 e −

1
2cq) + εqd c2e

+ 1
2c

2q + (2c+ 1)(da2 e − εaζb −
1
2cq) + εqd c2e+ s− 1

= c2qs+ (2c+ 1)(d(s− 1) + b+ 2da2 e − εa − cq) + 2d c2e
= c2qs+ (2c+ 1)(`− cqs) + 2d c2e
= (2c+ 1)`− c(c+ 1)qs+ 2d c2e
= (2c+ 1)`− 1

2c(c+ 1)r + 2d c2e
(observe that 2da2 e − εa = a). As above we have c = z; this time however we have
dq(Z) − dC`,r = 2d c2e ≥ 0. Combining the two types of possibilities, we conclude
that dr(C`) = dC`,r for n even, as required. This completes the proof. �
Proposition 3.5. With the notation established, dr(D`) = dD`,r.

Proof. We have h = 2` − 2; and mi = 2 for all 2 ≤ i ≤ ` − 2 while m0 = m1 =
m`−1 = m` = 1. Again we shall need to argue separately for n odd and n even;
first assume n is odd and set n = 2s + 1. By Lemma 3.2 there are two types of
possibilities for the coefficients bi, and hence the centralizer Z, according to whether
the number of bi equal to 1 for which i ∈ {0, 1, `− 1, `} is 1 or 3; we shall consider
each. First assume that the bi which are equal to 1 correspond to s−1 nodes i with
2 ≤ i ≤ ` − 2, together with three of the four nodes 0, 1, ` − 1 and `; this means
that Z has s factors of type A and an (s+ 1)-dimensional torus. In similar fashion
to the above, we see that we must have

Z = (Aa)b(Aa−1)s−bTs+1,

where ` − 1 = as + b with 0 ≤ b < s. As usual write a = cq + d with 0 ≤ d < q,
and apply the formulæ from Lemma 2.5(i); we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− b)(c2q + (2c+ 1)d− 1) + s+ 1

= c2qs+ (2c+ 1)(ds+ b) + 1
= c2qs+ (2c+ 1)(`− 1− cqs) + 1
= (2c+ 1)`− c(c+ 1)qs− 2c
= (2c+ 1)`− 1

2c(c+ 1)q(n− 1)− 2c

= (2c+ 1)`− 1
2c(c+ 1)(r − q)− 2c.

Here we have zr + e = 2`− 2 = a(n− 1) + 2b = (cq + d)(n − 1) + 2b = c(r − q) +
d(n− 1) + 2b with d(n− 1) + 2b ≤ (q − 1)(n− 1) + 2(s− 1) = r − q − 2; thus if we
set f = d(n − 1) + 2b, then we have zr + e = c(r − q) + f with 0 ≤ f < r − q. It
follows that c ≥ z, and we find that

dq(Z)− dD`,r = (c− z)(f + 1
2 (r − q)(c− z − 1)) + 1

2z((z + 1)q − 3)
+ ( z2 − εrd

z
2e+ εz)

≥ 0

(note that εr = εq as n is odd, and thus if z = q = 1 the second term is − 1
2 but the

third is 1
2 ).
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We now consider the other type of possibility for Z. Here we assume that the bi
which are equal to 1 correspond to s nodes i with 2 ≤ i ≤ `− 2, together with one
of the four nodes 0, 1, `− 1 and `; this means that Z has s factors of type A, one
factor of type D and an s-dimensional torus. We shall again need to determine a
configuration which minimizes dq(Z).

As before, the type A factors may be assumed to take the form (Ax)z(Ax−1)s−z,
for some x and some 0 ≤ z < s; suppose the type D factor is Dy. If we write
x = γ1q + δ1 and 2y − 2 = γ2q + δ2 with 0 ≤ δ1, δ2 < q, then by Lemma 2.5
dq(Ax−1Dy) − dq(AxDy−1) = 2(γ2 − γ1 − εγ2ζδ2); thus if 2y − 2 > x we could
replace the pair Ax−1Dy by AxDy−1 without increasing dq(Z) (note that in this
case if γ2 = γ1, then δ2 > 0 and so ζδ2 = 0), so we may assume that 2y ≤ x + 2.
Likewise if 2y ≤ x− 1 we could replace Ax−1Dy by Ax−2Dy+1 (and then possibly
adjust further the factors of type A), so we may assume x ≤ 2y; thus we have
x ≤ 2y ≤ x + 2. The remainder of the argument is exactly similar to that in the
proof of Proposition 3.4, and we conclude that we have

Z = (Aa)b
b
2 c(Aa−1)s−b

b
2 cDda+1

2 e
Ts,

where 2`− 1 = a(2s+ 1) + b with 0 ≤ b < 2s+ 1.
Having determined the form of Z, write a = cq + d with 0 ≤ d < q, and apply

the formulæ from Lemma 2.5(i),(iv); we obtain

dq(Z) = b b2c(c2q + (2c+ 1)(d+ 1)− 1) + (s− b b2c)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da+1
2 e −

1
2cq) + εqd c2e − c− εc + s

= c2q(s+ 1
2 ) + (2c+ 1)(ds+ b b2c+ da+1

2 e −
1
2cq) + εqd c2e − c− εc

= c2q(s+ 1
2 ) + (2c+ 1)(ds+ a+b+1

2 − 1
2cq) + εqd c2e − c− εc

= c2q(s+ 1
2 ) + (2c+ 1)(`− cq(s+ 1

2 )) + εqd c2e − c− εc
= (2c+ 1)`− c(c+ 1)q(s+ 1

2 ) + εqd c2e − c− εc
= (2c+ 1)`− 1

2c(c+ 1)r + εrd c2e − c− εc

(note once more that the assumption that n is odd means that εq = εr). Here we
have zr + e = 2` − 2 = an + b − 1 = (cq + d)n + b − 1 = cr + (dn + b − 1) with
dn+b ≤ (q−1)n+(n−1) = r−1. Thus either c = z, or we must have c = z+1 and
2`−1 = (z+1)r; but if the latter holds then, using the fact that c and r are both odd,
we see that (2c+1)`− 1

2c(c+1)r+εrd c2e−c−εc = (2z+1)`− 1
2z(z+1)r+εrd z2e−z−εz

anyway. Thus we have

dq(Z) = (2z + 1)`− 1
2z(z + 1)r + εrd z2e − z − εz = dD`,r;

so combining the two possibilities we have dr(D`) = dD`,r for n odd, as required.
Now assume n is even and set n = 2s. Here the number of bi equal to 1 for which

i ∈ {0, 1, `− 1, `} must be even, and thus can be 0, 2 or 4; this gives a number of
possibilities for the type of Z. If bi = 1 for all i ∈ {0, 1, ` − 1, `}, there must be
s− 1 factors of type A and an (s+ 1)-dimensional torus; we find that

Z = (Aa)b(Aa−1)s−1−bTs+1,



ELEMENTS OF SPECIFIED ORDER IN SIMPLE ALGEBRAIC GROUPS 235

where `− 2 = a(s− 1) + b with 0 ≤ b < s− 1. Writing a = cq + d with 0 ≤ d < q
in the usual fashion, we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b)(c2q + (2c+ 1)d− 1) + s+ 1

= c2q(s− 1) + (2c+ 1)(d(s− 1) + b) + 2
= c2q(s− 1) + (2c+ 1)(`− 2− cq(s− 1)) + 2
= (2c+ 1)`− c(c+ 1)q(s− 1)− 4c
= (2c+ 1)`− 1

2c(c+ 1)q(n− 2)− 4c

= (2c+ 1)`− 1
2c(c+ 1)(r − 2q)− 4c.

We have zr + e = 2`− 2 = a(n− 2) + 2b + 2 = c(r − 2q) + d(n − 2) + 2b+ 2, and
d(n− 2) + 2b+ 2 ≤ (q− 1)(n− 2) + 2(s− 2) + 2 = r− 2q; thus c ≥ z, and if we set
f = d(n− 2) + 2b we find that

dq(Z)− dD`,r = (c− z)(f + 1
2 (r − 2q)(c− z − 1)) + z((z + 1)q − 3) + εz ≥ 0

(note that if z = q = 1, then the second term is −1 but the third is 1).
Next assume that the number of bi equal to 1 for which i ∈ {0, 1, `− 1, `} is 2;

here we must subdivide yet further, because the two nodes concerned might be at
different ends of the extended Dynkin diagram or at the same end. If they are at
different ends, then Z has s factors of type A and an s-dimensional torus, and we
obtain

Z = (Aa)b(Aa−1)s−bTs,

where ` = as+ b with 0 ≤ b < s. Setting a = cq + d with 0 ≤ d < q we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− b)(c2q + (2c+ 1)d− 1) + s

= c2q(s− 1) + (2c+ 1)(ds+ b)
= c2q(s− 1) + (2c+ 1)(`− cqs)
= (2c+ 1)`− c(c+ 1)qs
= (2c+ 1)`− 1

2c(c+ 1)r.

Here we have zr + e = 2`− 2 = an+ 2b− 2 = cr + dn+ 2b− 2, and dn+ 2b− 2 ≤
(q − 1)n + 2(s − 1) − 2 = r − 4. Thus either c = z, or we must have c = z + 1
and 2` = (z + 1)r; but if the latter holds then we see that (2c+ 1)`− 1

2c(c+ 1)r =
(2z + 1)`− 1

2z(z + 1)r anyway. Thus in either case we have

dq(Z)− dD`,r = (2z + 1)`− 1
2z(z + 1)r − 1

2z
2r − 1

2e(2z + 1)− εrd z2e − z − 1 + εz

= z + εz

≥ 0.

If however the two nodes are at the same end of the extended Dynkin diagram,
then Z has s−1 factors of type A, one factor of type D and an s-dimensional torus.
Proceeding in a similar fashion to the case above with n odd, we find that

Z = (Aa)b
b
2 c(Aa−1)s−1−b b2 cDda+1

2 e
Ts,
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where 2`− 3 = a(2s− 1) + b with 0 ≤ b < 2s− 1. Setting a = cq+ d with 0 ≤ d < q
we obtain

dq(Z) = b b2c(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b b2c)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da+1
2 e −

1
2cq) + εqd c2e − c− εc + s

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + b b2c+ da+1

2 e −
1
2cq) + d c2e − c− εc + 1

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + a+b+1

2 − 1
2cq) + d c2e − c− εc + 1

= c2q(s− 1
2 ) + (2c+ 1)(`− 1− cq(s− 1

2 )) + d c2e − c− εc + 1

= (2c+ 1)`− c(c+ 1)q(s− 1
2 ) + d c2e − 3c− εc

= (2c+ 1)`− 1
2c(c+ 1)(r − q) + d c2e − 3c− εc.

Here we have zr+ e = 2`− 2 = a(n− 1) + b+ 1 = c(r − q) + d(n− 1) + b+ 1, and
d(n − 1) + b + 1 ≤ (q − 1)(n − 1) + 2s − 2 + 1 = r − q; thus c ≥ z, and if we set
f = d(n− 1) + b we find that

dq(Z)− dD`,r = (c− z)(f + 1
2 (r − q)(c− z − 1)) + 1

2z((z + 1)q − 3)

+ (1
2 (c− z) + εz − 1

2εc)
≥ 0

(note again that if z = q = 1, then the second term is − 1
2 but the third is at least

1
2 ).

Finally we must consider the possibility that bi = 0 for all i ∈ {0, 1, `−1, `}; here
Z has s− 1 factors of type A, two of type D and an (s− 1)-dimensional torus. As
usual the type A factors may be taken to be (Ax)z(Ax−1)s−z , for some x and some
0 ≤ z < s, while the type D factors may be taken to be either (Dy)2 or DyDy−1 for
some y. Arguing in precisely similar fashion to the analogous case in Proposition
3.4 shows that

Z = (Aa)b−εa+1(1−ζb)(Aa−1)s−1−b+εa+1(1−ζb)Dda+1
2 e

Dda+1
2 e−εa+1ζb

Ts−1,

where `− 1 = as+ b with 0 ≤ b < s. As usual, write a = cq+ d with 0 ≤ d < q and
apply the formulæ from Lemma 2.5(i), (iv); noting that εq = 1 because n is even,
and that if d = 0, then c(a+ 1) is even because a = cq ≡ c mod 2, we obtain

dq(Z) = (b− εa+1(1− ζb))(c2q + (2c+ 1)(d+ 1)− 1)

+ (s− 1− b+ εa+1(1− ζb))(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da+1
2 e −

1
2cq) + εqd c2e − c− εc

+ 1
2c

2q + (2c+ 1)(da+1
2 e − εa+1ζb − 1

2cq) + εqd c2e − c− εc + 2εc(a+1)ζdζb

+ s− 1

= c2qs+ (2c+ 1)(d(s− 1) + b+ 2da+1
2 e − εa+1 − cq) + 2d c2e − 2c− 2εc

= c2qs+ (2c+ 1)(`− cqs)− c− εc
= (2c+ 1)`− c(c+ 1)qs− c− εc
= (2c+ 1)`− 1

2c(c+ 1)r − c− εc.

Here zr+e = 2`−2 = an+2b = cr+dn+2b and dn+2b ≤ (q−1)n+2(s−1) = r−2,
so c = z, and we have

dq(Z) = (2z + 1)`− 1
2z(z + 1)r − z − εz = dD`,r
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(note that εr = 0 as n is even here). Combining all the possibilities we conclude
that dr(D`) = dD`,r for n even, as required. This completes the proof. �

Proposition 3.6. With the notation established, dr(B`) = dB`,r.

Proof. We have h = 2`; and mi = 2 for all 2 ≤ i ≤ ` while m0 = m1 = 1. Yet again
we shall need to argue separately for n odd and n even; first assume n is odd and
set n = 2s + 1. By Lemma 3.2 and the fact that α` is short, there are two types
of possibilities for the coefficients bi, and hence Z, according as b` = 0 or 1. First
assume that b` = 1. Then Z has s factors of type A and an s-dimensional torus,
and we have

Z = (Aa)b(Aa−1)s−bTs,

where ` = as+ b with 0 ≤ b < s. Setting a = cq + d with 0 ≤ d < q we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− b)(c2q + (2c+ 1)d− 1) + s

= c2qs+ (2c+ 1)(ds+ b)
= c2qs+ (2c+ 1)(`− cqs)
= (2c+ 1)`− c(c+ 1)qs
= (2c+ 1)`− 1

2c(c+ 1)(r − q).

Here zr + e = 2` = a(n − 1) + 2b = c(r − q) + d(n − 1) + 2b, and d(n − 1) + 2b ≤
(q − 1)(n− 1) + 2(s− 1) = (r − q)− 2; thus c ≥ z, and if we set f = d(n− 1) + 2b
we find that

dq(Z)− dB`,r = (c− z)(f + 1
2 (r − q)(c− z − 1))+ 1

2z((z + 1)q − 2) + (z − εrd z2e)
≥ 0.

Now assume instead that b` = 0. Then Z has s factors of type A, one of type B
and an s-dimensional torus. Arguing precisely as in the proof of Proposition 3.4,
we see that

Z = (Aa)b
b
2 c(Aa−1)s−b

b
2 cBd a2 eTs,

where 2` = a(2s+ 1) + b with 0 ≤ b < 2s+ 1. On setting a = cq+d with 0 ≤ d < q,
the calculation for dq(Z) is identical to that given in the proof of Proposition 3.4
for n odd, and gives

dq(Z) = (2c+ 1)`− 1
2c(c+ 1)r + εrd c2e.

Since zr+ e = 2` = an+ b = cr + dn+ b with dn+ b ≤ (q − 1)n+ (n− 1) = r − 1,
we have c = z and thus

dq(Z) = (2z + 1)`− 1
2z(z + 1)r + εrd z2e = dB`,r.

Combining the two possibilities we see that dr(B`) = dB`,r for n odd, as required.
Now assume that n is even, and set n = 2s. Here either b0 = b1 = 0 or

b0 = b1 = 1, and b` = 0 or 1; so there are four types of possibility for Z. First
take the case where b0 = b1 = b` = 1. Here Z has s − 1 factors of type A and an
s-dimensional torus, and we obtain

Z = (Aa)b(Aa−1)s−1−bTs,
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where `− 1 = a(s − 1) + b with 0 ≤ b < s − 1. Setting a = cq + d with 0 ≤ d < q
gives

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b)(c2q + (2c+ 1)d− 1) + s

= c2q(s− 1) + (2c+ 1)(d(s− 1) + b) + 1
= c2q(s− 1) + (2c+ 1)(`− 1− cq(s− 1)) + 1
= (2c+ 1)`− c(c+ 1)q(s− 1)− 2c
= (2c+ 1)`− 1

2c(c+ 1)(r − 2q)− 2c.

Here zr + e = 2` = a(n − 2) + 2b + 2 = c(r − 2q) + d(n − 2) + 2b + 2, and
d(n− 2) + 2b+ 2 ≤ (q − 1)(n− 2) + 2(s− 2) + 2 = r − 2q. Thus c ≥ z, and if we
set f = d(n− 2) + 2b we find that

dq(Z)− dB`,r = (c− z)(f + 1
2 (r − 2q)(c− z − 1)) + z((z + 1)q − 2) ≥ 0.

Next consider b0 = b1 = 1, b` = 0. Here Z has s−1 factors of type A, one factor
of type B and an s-dimensional torus, and arguing as before we find

Z = (Aa)b
b
2 c(Aa−1)s−1−b b2 cBda2 eTs,

where 2`− 2 = a(2s− 1) + b with 0 ≤ b < 2s− 1. Write a = cq+ d with 0 ≤ d < q.
Noting that εq = 1 here and using the formulæ from Lemma 2.5(i),(ii) we obtain

dq(Z) = b b2c(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b b2c)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da2 e −
1
2cq) + εqd c2e+ s

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + b b2c+ da2 e −

1
2cq) + d c2e+ 1

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + a+b

2 −
1
2cq) + d c2e+ 1

= c2q(s− 1
2 ) + (2c+ 1)(`− 1− cq(s− 1

2 )) + d c2e+ 1

= (2c+ 1)`− c(c+ 1)q(s− 1
2 ) + d c2e − 2c

= (2c+ 1)`− 1
2c(c+ 1)(r − q) + d c2e − 2c.

Here zr+e = 2` = a(n−1)+b+2 = c(r−q)+d(n−1)+b+2, with d(n−1)+b+2 ≤
(q − 1)(n − 1) + (2s− 2) + 2 = r − q + 1. Thus zr + e ≤ (c+ 1)(r − q) + 1. If we
were to have c < z this would give zr+ e ≤ z(r− q) + 1, or e ≤ 1− zq, which would
force e = 0, z = q = 1, whence 2` = r = n, contrary to our assumption that n < h.
Therefore we have c ≥ z, and if we set f = d(n− 1) + b we find that

dq(Z)− dB`,r = (c− z)(f + 1
2 (r − q)(c− z − 1)) + 1

2z((z + 1)q − 3)

+ 1
2 ((c− z) + εc)

≥ 0

(again note that if z = q = 1, then the second term is − 1
2 but the third is at least

1
2 ).

Now consider the case b0 = b1 = 0, b` = 1. Here Z has s− 1 factors of type A,
one factor of type D and an (s− 1)-dimensional torus, and we find

Z = (Aa)b
b
2 c(Aa−1)s−1−b b2 cDda+1

2 e
Ts−1,
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where 2`− 1 = a(2s− 1) + b with 0 ≤ b < 2s− 1. Setting a = cq+ d with 0 ≤ d < q
and recalling that εq = 1 we obtain

dq(Z) = b b2c(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b b2c)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da+1
2 e −

1
2cq) + εqd c2e − c− εc + s− 1

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + b b2c+ da+1

2 e −
1
2cq) + d c2e − c− εc

= c2q(s− 1
2 ) + (2c+ 1)(d(s− 1) + a+b+1

2 − 1
2cq)− d

c
2e

= c2q(s− 1
2 ) + (2c+ 1)(`− cq(s− 1

2 ))− d c2e
= (2c+ 1)`− c(c+ 1)q(s− 1

2 )− d c2e
= (2c+ 1)`− 1

2c(c+ 1)(r − q)− d c2e.
Here we have zr + e = 2` = a(n − 1) + b + 1 = c(r − q) + d(n − 1) + b + 1, and
d(n − 1) + b + 1 ≤ (q − 1)(n − 1) + 2s − 2 + 1 = r − q. Thus c ≥ z, and if we set
f = d(n− 1) + b we find that

dq(Z)−dB`,r = (c− z)(f + 1
2 (r − q)(c− z − 1)) + 1

2z((z + 1)q − 2) + 1
2 (c− εc)≥0.

Finally we must consider the case b0 = b1 = b` = 0. Here Z has s − 1 factors
of type A, one factor of type B, one factor of type D and an (s − 1)-dimensional
torus. Again we must determine an optimal configuration. As usual we may take
the type A factors to be (Ax)z(Ax−1)s−1−z for some x and some 0 ≤ z < s−1, and
easy considerations show that the factors of types B and D may be either ByDy

or By−1Dy for some y. Using the reasoning already given for comparing factors
of type A with those of type B or D, we see that if we have ByDy, then either
2y = x + 1, or z = 0 and 2y = x. If the latter holds we set x′ = x − 1, y′ = y and
obtain (Ax′)s−1By′Dy′ with 2y′ = x′ + 1. Likewise if we have By−1Dy, then either
2y = x + 2, or z = 0 and 2y = x + 1. Again, if the latter holds we set x′ = x − 1,
y′ = y and obtain (Ax′)s−1By′−1Dy′ with 2y′ = x′+2. Putting all of these together
we see that we have

Z = (Aa)b(Aa−1)s−1−bBd a2 eDda+1
2 e

Ts−1,

where ` − 1 = as + b with 0 ≤ b < s. As usual write a = cq + d with 0 ≤ d < q;
using the formulæ in Lemma 2.5(i), (ii), (iv) and noting that εq = 1 here we obtain

dq(Z) = b(c2q + (2c+ 1)(d+ 1)− 1) + (s− 1− b)(c2q + (2c+ 1)d− 1)

+ 1
2c

2q + (2c+ 1)(da2 e −
1
2cq) + εqd c2e

+ 1
2c

2q + (2c+ 1)(da+1
2 e −

1
2 cq) + εqd c2e − c− εc + s− 1

= c2qs+ (2c+ 1)(d(s− 1) + b+ da2 e+ da+1
2 e − cq) + 2d c2e − c− εc

= c2qs+ (2c+ 1)(d(s− 1) + b+ a+ 1− cq)
= c2qs+ (2c+ 1)(`− cqs)
= (2c+ 1)`− c(c+ 1)qs
= (2c+ 1)`− 1

2c(c+ 1)r.

Here zr + e = 2` = an+ 2b+ 2 = cr + dn+ 2b+ 2, with dn+ 2b+ 2 ≤ (q − 1)n+
2(s− 1) + 2 = r. Thus either c = z, or we must have c = z − 1 and 2` = zr; but if
the latter holds, then we see that (2c + 1)`− 1

2c(c + 1)r = (2z + 1)`− 1
2z(z + 1)r

anyway. Thus in either case we have

dq(Z) = (2z + 1)`− 1
2z(z + 1)r = dB`,r
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(note that εr = 0 as n is even here). Combining all possibilities we see that
dr(B`) = dB`,r for n even, as required. This completes the proof. �

Proposition 3.7. With the notation established, if G has root system Φ of excep-
tional type, then dr(G) = dΦ,r.

Proof. We begin by considering the cases in which r < h. Here we proceed by
inspection, using the same general strategy as in the classical cases: given n, Lemma
3.2 is used to restrict the possibilities for Z which must be considered, and then
the formulæ of Lemmas 2.5 and 2.7 are used to calculate dq(Z) for each Z. For
convenience, we present the relevant information in tabular form: given Φ, for each
r < h we give the value dΦ,r and various pairs (p, Z), one for each prime p dividing
r and then finally one for an arbitrary p coprime to r, such that Z is a centralizer
of a semisimple element of order n with minimal value of dq(Z). (Note that if Φ is
of type E7 or E8, the standard notation is used to distinguish between isomorphic
but non-conjugate subsystems: in E7 an (A1

3)′ subsystem is one lying in an A7

subsystem, while in E8 an (A1
4)′ subsystem is one lying in an A8 subsystem.)

r dG2,r (p, Z)

1 14 (−, G2)

2 6 (2, G2), (−, A1Ã1)

3 4 (3, G2), (−, Ã1T1)
4 4 (2, G2), (−, A1T1)
5 4 (5, G2), (−, A1T1)

r dF4,r (p,Z)

1 52 (−, F4)
2 24 (2, F4), (−,A1C3)

3 16 (3, F4), (−,A2Ã2)

4 12 (2, F4), (−,A1Ã2T1)

5 12 (5, F4), (−,A1Ã2T1)

6 8 (2, A2Ã2), (3, A1C3), (−, A1Ã1T2)

7 8 (7, F4), (−,A1Ã1T2)

8 6 (2, F4), (−, Ã1T3)

9 6 (3, F4), (−, Ã1T3)

10 6 (2, B2T2), (5, A1C3), (−, Ã1T3)

11 6 (11, F4), (−, Ã1T3)

r dE6,r (p, Z)

1 78 (−, E6)
2 38 (2, E6), (−, A5A1)
3 24 (3, E6), (−, A2

3)
4 20 (2, E6), (−, A2

2A1T1)
5 16 (5, E6), (−, A2A1

2T2)
6 12 (2, A2

3), (3, A5A1), (−, A1
3T3)

7 12 (7, E6), (−, A1
3T3)

8 10 (2, E6), (−, A1
2T4)

9 8 (3, E6), (−, A1T5)
10 8 (2, A2A1

2T2), (5, A5A1), (−, A1T5)
11 8 (11, E6), (−, A1T5)
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r dE7,r (p, Z)

1 133 (−, E7)
2 63 (2, E7), (−, A7)
3 43 (3, E7), (−, A5A2)
4 33 (2, E7), (−, A4A2T1)
5 27 (5, E7), (−, A3A2A1T1)
6 21 (2, A5A2), (3, A7), (−,A2

2A1T2)
7 19 (7, E7), (−, A2A1

3T2)
8 17 (2, E7), (−, A2A1

2T3)
9 15 (3, E7), (−, A1

4T3)
10 13 (2, A3A2A1T1), (5, A7), (−, (A1

3)′T4)
11 13 (11, E7), (−, (A1

3)′T4)
12 11 (2, A5A2), (3, A3

2A1), (−, A1
2T5)

13 11 (13, E7), (−, A1
2T5)

14 9 (2, A2A1
3T2), (7, A7), (−,A1T6)

15 9 (3, A3A2A1T1), (5, A5A2), (−, A1T6)
16 9 (2, E7), (−, A1T6)
17 9 (17, E7), (−, A1T6)

r dE8,r (p,Z)

1 248 (−, E8)
2 120 (2, E8), (−,D8)
3 80 (3, E8), (−, A8)
4 60 (2, E8), (−,D5A3)
5 48 (5, E8), (−, A4

2)
6 40 (2, A8), (3, D8), (−,A4A3T1)
7 36 (7, E8), (−, A4A2A1)
8 30 (2, E8), (−, A3A2A1

2T1)
9 28 (3, E8), (−, A3A2A1T2)

10 24 (2, A4
2), (5,D8), (−, A2

2A1
2T2)

11 24 (11, E8), (−,A2
2A1

2T2)
12 20 (2, A8), (3, D5A3), (−, A2A1

3T3)
13 20 (13, E8), (−,A2A1

3T3)
14 18 (2, A4A2A1), (7,D8), (−, A2A1

2T4)
15 16 (3, A4

2), (5, A8), (−, (A1
4)′T4)

16 16 (2, E8), (−, (A1
4)′T4)

17 16 (17, E8), (−, (A1
4)′T4)

18 14 (2, A3A2A1T2), (3,D8), (−, A1
3T5)

19 14 (19, E8), (−,A1
3T5)

20 12 (2, A4
2), (5,D5A3), (−, A1

2T6)
21 12 (3, A4A2A1T1), (7, A8), (−,A1

2T6)
22 12 (2, A2

2A1
2T2), (11, D8), (−,A1

2T6)
23 12 (23, E8), (−,A1

2T6)
24 10 (2, A8), (3, A3A2A1

2T1), (−, A1T7)
25 10 (5, E8), (−, A1T7)
26 10 (2, A2A1

3T3), (13, D8), (−, A1T7)
27 10 (3, E8), (−, A1T7)
28 10 (2, A4A2A1T1), (7,D5A3), (−,A1T7)
29 10 (29, E8), (−,A1T7)

In all cases we see that dq(Z) = dΦ,r, as required. This completes the proof in
the cases where r < h.
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Now assume r ≥ h; here we have dΦ,r = `, so we seek to show that there are
regular elements in G[r]. As we are assuming n < h, we may consider the nth row
of the relevant table above, and take Z to be the group appearing in the final entry
of the row (so that Z is the centralizer of a semisimple element of order n, provided
the characteristic does not divide n). We then wish to show that there are regular
unipotent elements in Z[q]. To see this we set hZ to be the maximum of the Coxeter
numbers of the simple factors of Z, and observe that in almost all cases we have
hZ = dhne; the exceptions are listed in the table below:

G n Z hZ
h
n

G2 2 A1Ã1 2 3
F4 3 A2Ã2 3 4
E6 3 A2

3 3 4
E7 2 A7 8 9
E8 2 D8 14 15
E8 3 A8 9 10
E8 5 A4

2 5 6

In each of these exceptions we have hZ = h
n−1; and we observe that in each of them

hZ fails to be coprime to n and so cannot be a power of p. Thus in all instances
the conditions pa ≥ hZ and pa ≥ h

n are equivalent. We now employ Testerman’s
order formula (which is proved in [21] for good characteristic, but may easily be
verified in bad characteristic in the case of regular unipotent elements): this states
that the order of the regular unipotent elements of Z is min{pa : pa ≥ hZ}, which
we may now write as min{pa : pa ≥ h

n}. Since by assumption q ≥ h
n , it follows that

Z[q] does indeed contain regular unipotent elements as required. This completes
the proof in the cases where r ≥ h. �

Combining Lemma 3.1 with Propositions 3.3, 3.4, 3.5, 3.6 and 3.7, we have
proved the following.

Theorem 3.8. If G is a simple algebraic group of adjoint type with root system Φ,
and r ∈ N, then codimG[r] = dΦ,r.

At this point we may observe that taking this result together with Lemma 1.2
gives the following immediate consequence concerning dimensions rather than codi-
mensions.

Corollary 3.9. If G is a simple algebraic group of adjoint type with root system
Φ, and r ∈ N, set x = (1 − 1

r ) dimG − dimG[r]. Then x ≥ 0 if r is a product of
very good primes, and if G is of classical type, the value of x is given by

x =


1
r (e− 1)(r − e− 1) if Φ = A`,
1
2re(r − e− 1) + (εrd z2e −

z
2 ) if Φ = B` or C`,

1
2r (e + 2)(r − e− 1) + (εrd z2e −

z
2 − εz) if Φ = D`.

We may now prove our result concerning G(r).

Theorem 3.10. If G is a simple algebraic group of adjoint type with root system
Φ, and G(r) 6= ∅ for some r ∈ N, then codimG(r) = dΦ,r.

Proof. Given G, suppose r is a minimal counterexample to the statement to be
proved. Then G[r] contains elements of order r, but the minimal centralizer di-
mension occurs for elements of order r′ for some r′ < r. Write as usual r = nq.
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The calculations in Propositions 3.3, 3.4, 3.5, 3.6 and 3.7 provide a centralizer Z
of a semisimple element of order n with the required value of dq(Z), so we must
have r′ = nq′ for some q′ < q. Since elements of order r′ therefore lie in G[r/p],
we must have codimG[r/p] = dΦ,r, i.e., dΦ,r/p = dΦ,r; by Lemma 1.3 this forces
dΦ,r/p = ` (and thus r/p ≥ h). Note that the minimality of r, and the fact that
G(r/p) contains the pth powers of the elements in G(r) and thus is non-empty, mean
that codimG(r/p) = `; so we may assume that r′ = r/p.

Let

Hn =
⋃

s∈G(n)

{u ∈ G : u a regular unipotent element of CG(s)0},

and let q′′ = maxu∈Hn o(u). Since regular unipotent elements in any algebraic
group have the maximal orders among the unipotent elements there, we must have
q′′ ≥ q. If we had q′′ = q we would have regular elements of order r as required,
so we must have q′′ > q. Thus on the one hand we have regular elements of order
rpx, where q′′ = qpx, and on the other we have regular elements of order r′ = r/p.
We shall show that there must then be regular elements of order r, contrary to the
choice of r.

Our approach for G of classical type is to begin with a regular element g = su
of order r′ and successively change the element while maintaining the order of its
semisimple part. Thus if Φ is of type A`, the centralizer Z of s is a product of
factors of type A and a torus. If the largest type A factor has rank k, we must have
q′/p ≤ k < q′, because the order of a regular unipotent element in Ak is the smallest
power of p which is greater than k. Now if Ak′ is any other type A factor, replace
AkAk′ by Ak+1Ak′−1 and iterate until Z has just one non-trivial type A factor;
then iterate replacing A`−yTy by A`−y+1Ty−1 until A`−1T1 is reached. (Note that
each such change still leaves a centralizer of a semisimple element of order n. In
terms of the result from [6], we may take all but one of the non-zero coefficients bi
to be 1, and the last to be determined by the requirement that

∑
bi = n.) At each

stage the order of regular unipotent elements can change by at most a factor of p.
Since the order begins at q′ = q/p and finishes at q′′ = qpx, after the first increase
we must have regular unipotent elements of order q and therefore regular elements
of order r as required.

The argument for the other classical groups proceeds in like fashion. If Φ is
of type C`, the centralizer Z has factors of type A, at most two factors of type
C and a torus. If there is no type C factor, begin by replacing some Ak by Ck.
Iterate replacing CkAk′ by Ck+1Ak′−1 until there are no non-trivial type A factors
remaining. If there are two type C factors, iterate replacingCkCk′ (where k ≥ k′) by
Ck+1Ck′−1 until there is only one. Finally iterate replacing C`−yTy by C`−y+1Ty−1

until C`−1T1 is reached. Again, at each stage the order of regular unipotent elements
can change by at most a factor of p, so the result follows. Types D` and B` are
precisely similar.

For G of exceptional type we proceed differently, as it is necessary to be more
careful about the coefficients bi which determine the centralizer Z. Here we simply
form a list of all possible centralizers Z, and for each record the possible values of
n1 for which it is the centralizer of a semisimple element of order n1, together with
the order q1 of regular unipotent elements in Z. This therefore lists all possible
pairs (n1, q1) for which there is a regular element of order n1q1. Thus if there are
elements of order n1

′q1
′, then there is a pair (n1, q1) on the list with n1

′ = n1
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and q1
′ ≤ q1. We next delete any lines for which the possible pairs (n1, q1) form a

subset of those on some other line. (For example, if Φ is of type E8, then the pairs
(n1, q1) corresponding to Z = A1T7 are those with n1 ≥ 24 and q1 = p, while those
corresponding to Z = A1

2T6 are those with n1 ≥ 20 and q1 = p; the first line may
be deleted as each of its pairs occurs in the second.) We then form a second list,
entering opposite each remaining Z all pairs (n1, q1

′) satisfying n1q1
′ ≥ h for which

there is a pair (n1, q1) on the first list with q1
′ < q1. For example, the result for Φ

of type E6 is as follows, in which the values of q1′ in the final column correspond
to values of n1 for which n1q1

′ ≥ 12:

Z n1 q1 q1
′

T6 ≥ 12 1 −
A1

3T3 ≥ 6 p 1
A3A1T2 ≥ 4 4, 9, p > 3 1, 2, 3
A2

2A1T1 ≥ 4 4, p > 2 1, 2
A4A1T1 ≥ 3 8, 9, p > 3 1, 2, 3, 4
A5T1 ≥ 3 8, 9, 25, p > 5 1, 2, 3, 4, 5
D5T1 ≥ 2 8, 9, 25, 49, p > 7 1, 2, 3, 4, 5, 7
A2

3 3 4, p > 3 −
A5A1 2 9, 25, p > 5 −
E6 1 16, 27, 25, 49, 121, p > 11 −

By inspection we find that each pair on the second list occurs on the first list
opposite some other possibility for Z: those with q1

′ = 1 occur for Z = T6 (for
n ≥ 12); those with q1

′ = 2 for Z = A1
3T3 (for n ≥ 6); those with q1

′ = 3
for Z = A2

2A1T1 (for n ≥ 4); those with q1
′ = 4 for Z = A2

3 (for n = 3) or
Z = A2

2A1T1 (for n ≥ 4); those with q1
′ = 5 for Z = A4A1T1 (for n ≥ 3); and

those with q1
′ = 7 for Z = A5A1 (for n = 2) or Z = A5T1 (for n ≥ 3). This

happens for each exceptional group G. Thus if there are elements in G of a given
order greater than or equal to h, then there are regular elements of that order. Since
by the above it suffices to consider regular elements, this proves the result. �

Finally we consider groups of arbitrary isogeny type.

Theorem 3.11. If G is a simple algebraic group with root system Φ, and r ∈ N,
then codimG[r] ≥ dΦ,r.

Proof. Let Gad be the adjoint group of the same type and over the same field as
G, and let φ : G → Gad be an isogeny; for x ∈ G write x̂ for φ(x). Take g ∈ G[r];
then ĝ ∈ (Gad)[r]. Given h ∈ G, the set Gg,h = {x ∈ G : [g, x] = h} is either
empty or a right coset of CG(g). As CGad(ĝ) =

⋃
h∈kerφ φ(Gg,h) and kerφ is finite,

Theorem 3.8 gives dimCG(g) = dimCGad(ĝ) ≥ dΦ,r. By Lemma 3.1 we then have
codimG[r] = dr(G) ≥ dΦ,r, as required. �

Note that an inequality is the best possible result here, as may be seen by
considering groups of type A1 in odd characteristic with r = 2. We have dA1,2 = 1:
if G is the adjoint group PGL2(K), the involution which is the image of diag(1,−1)
is a regular semisimple element, giving codimG[2] = 1 as required by Theorem 3.8.
However, if G is the simply-connected group SL2(K), the only involution in G is
the central element diag(−1,−1), so that codimG[2] = 3.

Combining Lemma 1.2, Theorem 3.8 and Theorem 3.11 completes the proof of
Theorem 1.
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[6] B. Hartley and M. Kuzucuoğlu, “Centralizers of elements in locally finite simple groups”,
Proc. London Math. Soc. 62 (1991), 301–324. MR1085643 (92d:20040)

[7] W.H. Hesselink, “Nilpotency in classical groups over a field of characteristic 2”, Math. Z.
166 (1979), 165–181. MR0525621 (82d:14030)

[8] R. Lawther, “Jordan block sizes of unipotent elements in exceptional algebraic groups”,
Comm. Algebra 23(11) (1995), 4125–4156. MR1351124 (96h:20084)

[9] R. Lawther, M.W. Liebeck and G.M. Seitz, “Fixed point spaces in actions of exceptional
algebraic groups”, Pac. J. Math. 205 (2002), 339–391. MR1922739 (2003g:20080)

[10] M.W. Liebeck and A. Shalev, “Classical groups, probabilistic methods and the (2, 3)-
generation problem”, Annals of Math. 144 (1996), 77–125. MR1405944 (97e:20106a)

[11] M.W. Liebeck and A. Shalev, “Random (r, s)-generation of finite classical groups”, Bull.
London Math. Soc. 34 (2002), 185–188. MR1874245 (2002i:20100)

[12] M.W. Liebeck and A. Shalev, “Fuchsian groups, finite simple groups and representation
varieties”, to appear in Invent. Math.

[13] T. Matsuki, “The orbits of affine symmetric spaces under the action of minimal parabolic

subgroups”, J. Math. Soc. Japan 31 (1979), 331–357. MR0527548 (81a:53049)
[14] K. Mizuno, “The conjugate classes of Chevalley groups of type E6”, J. Fac. Sci. Univ. Tokyo

24 (1977), 525–563. MR0486170 (58:5951)
[15] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups E7 and

E8”, Tokyo J. Math 3 (1980), 391–461. MR0605099 (82m:20046)
[16] G.M. Seitz, “Double cosets in algebraic groups”, in Algebraic groups and their representations

(ed. R.W. Carter and J. Saxl), NATO ASI Series 517, Kluwer, Dordrecht (1998), pp. 241–257.
MR1670773 (99k:20096)

[17] K. Shinoda, “The conjugacy classes of Chevalley groups of type (F4) over finite fields of
characteristic 2”, J. Fac. Sci. Univ. Tokyo 21 (1974), 133–159. MR0349863 (50:2356)

[18] T. Shoji, “The conjugacy classes of Chevalley groups of type (F4) over finite fields of charac-
teristic p 6= 2”, J. Fac. Sci. Univ. Tokyo 21 (1974), 1–17. MR0357641 (50:10109)

[19] T.A. Springer, “Some results on algebraic groups with involutions”, in Algebraic groups and
related topics (ed. R. Hotta), Advanced Studies in Pure Mathematics 6, Kinokuniya, Tokyo
and North-Holland, Amsterdam (1985), pp. 525–543. MR0803346 (86m:20050)

[20] T.A. Springer and R. Steinberg, “Conjugacy classes”, in Seminar on algebraic groups and
related finite groups (ed. A. Borel et al.), Lecture Notes in Mathematics 131, Springer, Berlin
(1970), pp. 167–266. MR0268192 (42:3091)

[21] D.M. Testerman, “A1-type overgroups of elements of order p in semisimple algebraic groups
and the associated finite groups”, J. Algebra 177 (1995), 34–76. MR1356359 (96j:20067)

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1

4YF, United Kingdom

Current address: Department of Pure Mathematics and Mathematical Statistics, Centre for
Mathematical Sciences, Cambridge University, Cambridge CB3 0WB, United Kingdom

http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.ams.org/mathscinet-getitem?mr=1988985
http://www.ams.org/mathscinet-getitem?mr=1988985
http://www.ams.org/mathscinet-getitem?mr=0227258
http://www.ams.org/mathscinet-getitem?mr=0227258
http://www.ams.org/mathscinet-getitem?mr=0638635
http://www.ams.org/mathscinet-getitem?mr=0638635
http://www.ams.org/mathscinet-getitem?mr=0262352
http://www.ams.org/mathscinet-getitem?mr=0262352
http://www.ams.org/mathscinet-getitem?mr=1085643
http://www.ams.org/mathscinet-getitem?mr=1085643
http://www.ams.org/mathscinet-getitem?mr=0525621
http://www.ams.org/mathscinet-getitem?mr=0525621
http://www.ams.org/mathscinet-getitem?mr=1351124
http://www.ams.org/mathscinet-getitem?mr=1351124
http://www.ams.org/mathscinet-getitem?mr=1922739
http://www.ams.org/mathscinet-getitem?mr=1922739
http://www.ams.org/mathscinet-getitem?mr=1405944
http://www.ams.org/mathscinet-getitem?mr=1405944
http://www.ams.org/mathscinet-getitem?mr=1874245
http://www.ams.org/mathscinet-getitem?mr=1874245
http://www.ams.org/mathscinet-getitem?mr=0527548
http://www.ams.org/mathscinet-getitem?mr=0527548
http://www.ams.org/mathscinet-getitem?mr=0486170
http://www.ams.org/mathscinet-getitem?mr=0486170
http://www.ams.org/mathscinet-getitem?mr=0605099
http://www.ams.org/mathscinet-getitem?mr=0605099
http://www.ams.org/mathscinet-getitem?mr=1670773
http://www.ams.org/mathscinet-getitem?mr=1670773
http://www.ams.org/mathscinet-getitem?mr=0349863
http://www.ams.org/mathscinet-getitem?mr=0349863
http://www.ams.org/mathscinet-getitem?mr=0357641
http://www.ams.org/mathscinet-getitem?mr=0357641
http://www.ams.org/mathscinet-getitem?mr=0803346
http://www.ams.org/mathscinet-getitem?mr=0803346
http://www.ams.org/mathscinet-getitem?mr=0268192
http://www.ams.org/mathscinet-getitem?mr=0268192
http://www.ams.org/mathscinet-getitem?mr=1356359
http://www.ams.org/mathscinet-getitem?mr=1356359

	1. The values d,r
	2. Unipotent elements
	3. The general case
	References

