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A NEW LÖWENHEIM-SKOLEM THEOREM

MATTHEW FOREMAN AND STEVO TODORCEVIC

Abstract. This paper establishes a refinement of the classical Löwenheim-
Skolem theorem. The main result shows that any first order structure has a
countable elementary substructure with strong second order properties. Sev-
eral consequences for Singular Cardinals Combinatorics are deduced from this.

1. Introduction

The Löwenheim-Skolem Theorem [21] is one of the classical and formative results
of first order logic. Its consequences have been important technically in the devel-
opment of Model Theory, Set Theory and interesting from the point of view of the
Philosophy of Mathematics [16]. In this paper we improve the Löwenheim-Skolem
Theorem and deduce important combinatorial consequences from the stronger ver-
sion.

There have been many attempts to improve and generalize properties of first
order logic to stronger logics. The literature is much too large to survey here. One
property that defines first order logic is the fact that every infinite structure in
a countable language has a countable elementary substructure. This is not true
of many stronger logics such as second order logic. In particular, in the classical
Löwenheim-Skolem theorem, one has no control over the second order properties of
the elementary substructure.

In this paper we prove that if one fixes in advance a collection of “intervals”
around each point in a particular domain κ (e.g. a club guessing ladder system),
then for all real numbers r and all structures A with domain κ, there is a countable
elementary substructure of A that has non-empty intersection with exactly those
intervals specified by r. This is Theorem 3.

Many of our results will be stated in the language of Stationary Sets. We will
use the following definition of stationary: A set S ⊂ P (A) is stationary iff for all
structures A = 〈A; fi, Rj , ck〉i,j,k∈ω in a countable language, there is an elementary
substructure N ≺ A such that N ∈ S. Thus to say that a certain collection of
structures is stationary is to assert a type of Löwenheim-Skolem theorem.

The study of stationary sets and their reflection properties has become a central
concern of set theory. Stationary set reflection properties often provide combina-
torial substitutes for large cardinal reflection properties, while being consistent at
small cardinals.
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Of particular interest is reflection of stationary families of countable sets. Reflec-
tion for these families has many consequences for both combinatorial and descriptive
set theory. (See e.g. [6], [24] or [23].)

The structure to which a stationary set reflects is very important in the type
of consequence one can deduce. For example, in [23] it is shown that if every
stationary set of countable subsets of some H(λ) reflects to an internally closed
unbounded set, then the singular cardinals hypothesis holds. In [4] it is shown that
if every stationary set of countable subsets of some H(λ) reflects to a set of uniform
cofinality ω1, then there are no very good scales.

This paper gives partial progress towards deciding if ordinary stationary set
reflection implies the stronger reflection properties appearing in the theorems men-
tioned above. Our approach is to postulate ordinary reflection for stationary sets,
but to demand reflection for more than one stationary set at a time. From this type
of hypothesis we are able to deduce the consequences of stronger reflection men-
tioned above (and more) and in certain circumstances prove reflection to internally
approachable sets.

We now make the definitions necessary to formulate the new results precisely.

Definition 1. Let κ be a regular cardinal. A ladder system on a stationary set
S ⊂ κ (consisting of ordinals of countable cofinality) is a collection 〈{δn : n ∈ ω} :
δ ∈ S〉 with the property that each sequence {δn : n ∈ ω} is increasing and cofinal
in δ. Such a ladder system is called club guessing if for all closed unbounded sets
D ⊂ κ there is a δ ∈ D with {δn : n ∈ ω} ⊂ D.

Given a ladder system�l(κ) (which we assume to be club guessing) and a countable
subset N of κ we can associate an infinite subset of ω, by considering the supremum
δ of N and asking which intervals [δn, δn+1) have non-empty intersection with N .

The classical Löwenheim-Skolem Theorem asserts that for any structure on a
cardinal κ, there is a countable elementary substructure but gives no information
(other than that definable in the structure) about where that elementary substruc-
ture lives. Our version gives control over which intervals the elementary substruc-
ture hits. Precisely:

Definition 2. For N ⊂ H(θ) with N ∩ κ having countable cofinality, the pattern
of N at κ is defined to be:

pat(N, κ) = {n : N ∩ [δn, δn+1) �= ∅}
where 〈δn : n ∈ ω〉 is the element of the ladder system for κ at δ = sup(N ∩ κ).

Let θ ≥ ω2 be a regular cardinal. Let

P : {κ : ω2 ≤ κ ≤ θ and κ is regular} → [ω]ℵ0 .

The strengthened Löwenheim-Skolem theorem says:

Theorem 3. Let A be a structure whose domain is some uncountable regular car-
dinal. Then there is a countable N ≺ A such that pat(N, κ) = P (κ), for all regular
κ ∈ N ∪ {θ} that are at least ω2.

(In the reformulation (Theorem 15) proved in section 3, we define
SP = {N ∈ [θ]ℵ0 : pat(N, κ) = P (κ), for all regular κ ∈ N ∪ {θ}}

and restate Theorem 3 as stating that SP is stationary.)
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One may question what this has to do with reflection. The next observation is
one of the main tools of this paper:

Lemma 4. Suppose that X is an uncountable set and X ∩ κ has cofinality ω, and
pattern r ⊂ ω. Then there is a closed unbounded subset C of [X ]ℵ0 of N that have
pattern r at κ.

Restating this lemma in a negative form, it is impossible for the collection of N
that have pattern different from r to reflect to X . Thus if X reflects two different
patterns at κ it must have cofinality ω1.

In particular Lemma 4 together with Theorem 15 implies that there are two
stationary sets such that any X ≺ H(λ) with |X | = ω1 ⊂ X that reflects both
sets must have the property that the cofinality of X ∩ κ is uncountable for all
regular cardinals κ ≤ θ. This gives as a consequence that simultaneous reflection of
any 3 stationary sets gives reflection of stationary sets to sets of size and uniform
cofinality ω1. (See Corollary 20.) In particular, we can apply the theorems of [4]
to see that there are no very good scales.

We explore a concept introduced in [8], that of tightness of a structure. Tight-
ness, per se, is a condition on an uncountable set X relative to a scale. Namely it
says that the elements of the scale that are indexed by ordinals in X are cofinal
below the characteristic function of X . For uncountable structures the stationary
set of tight structures can be defined independently of the choice of scale. This
condition follows if X is internally approachable, but is not equivalent. (Precise
definitions are given later in this section. See the forthcoming [5] for a study of the
relationship betwen tightness and approachability.)

For countable structures, it is not completely clear how to define an analogous
notion of tight. For the purposes of studying the singular cardinals hypothesis we
introduce the notion of weak tightness and show that if the SCH fails the collection
of weakly tight structures is stationary. Any uncountable X that reflects the col-
lection of weakly tight structures and is of uniform cofinality ω1 must be tight. As
a result of this analysis we are able to deduce the following result:

Theorem 5. Suppose that for all uncountable λ, every pair of stationary subsets
of [λ]ℵ0 simultaneously reflects to a set of size ω1. Then the singular cardinals
hypothesis holds.

In the last section of the paper we assume the existence of partial square se-
quences on successors of singular cardinals. The existence of such sequences is
provable in ZFC for successors of regular cardinals and conjectured to be a the-
orem for successors of singular cardinals ([19]). With this assumption and the
assumption that every collection of 4 stationary sets simultaneously reflects we are
able to prove that every stationary subset of a [κ]ℵ0 for κ below the first fixed
point of the ℵ sequence reflects to a set X of cardinality ω1 with ω1 ⊂ X such that
X ∩ [X ]<ℵ0 is stationary.

Notation and background information. We will attempt to keep our notation
as standard as possible. We will follow the custom established by Shelah, of writing
H(λ) for the sets of hereditary cardinality less than λ. We will systematically
confuse H(λ) with a structure of the form 〈H(λ),∈, ∆〉 where ∆ is a well ordering
of H(λ). The cardinal λ will always be taken to be a “large enough regular cardinal”
to reflect any statement we are interested in. We will often also assume that we
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have predicates in the structure for all of the mathematical objects relevant to the
context.

We will use standard terminology with respect to filters and their duals, ideals.
A set X will have “measure zero” with respect to an ideal I iff X ∈ I; it will have
“measure one” iff X ∈ F , where F is the dual ideal. If X does not have measure
zero, then X is I-positive (X ∈ I+).

We will frequently be using the following theorem of Shelah:

Theorem ([18]). Suppose that κ ≥ ω2 is a regular cardinal. Then for all stationary
T ⊂ κ consisting of singular ordinals, there is a stationary set S ⊂ T and a club
guessing sequence defined on S.

(In particular there are stationary S ⊂ κ ∩ cof(ω) on which there are club
guessing ladder systems.)

Definition 6. Suppose that �l(κ) is a club guessing ladder system on S ⊂ κ, a
regular cardinal. We define two filters. The Club Guessing Filter is the filter
generated by sets of the form XD = {δ ∈ S : {δn : n ∈ ω} ⊂ D}, for closed
unbounded sets D ⊂ κ. The Weak Club Guessing Filter is the filter generated by
the sets YD = {δ ∈ S : for all large enough n, δn ∈ D} for closed unbounded sets
D.

Both filters are κ-complete proper filters, but (as remarked by Ishiu) the club
guessing filter is never normal (its normal closure is not a proper filter). The weak
club guessing filter is always normal.

Definition 7. Suppose that B ⊂ A. Then a set S ⊂ P (A) is said to reflect to B
iff S ∩ P (B) is stationary. We say that stationary sets {Si : i ∈ I} simultaneously
reflect to B iff for all i ∈ B ∩ I, Si ∩ P (B) is stationary.

We will be interested in variations of the following weak reflection property:

Suppose that S ⊂ [H(λ)]ℵ0 is stationary. Then there is a set X
having cardinality ℵ1 with ω1 ⊂ X such that S reflects to X .

We will say (loosely) that S reflects to a set of size ω1. The requirement that
ω1 ⊂ X is to separate reflection from issues involving Chang’s Conjecture (see [7])
but its role is not entirely understood. (See Problem 9 at the end of the paper.)

One thrust of this paper is to study what structure we can assume X has. Some
properties of X we can consider:

• X is internally unbounded iff X ∩ [X ]ℵ0 is unbounded.
• X is internally stationary iff X ∩ [X ]ℵ0 is stationary.
• X is internally club iff X ∩ [X ]ℵ0 is closed and unbounded.
• X is internally approachable. (Here we will take this to mean that there is

a sequence 〈Xα : α < |X |〉 that is continuous, increasing with α, has union
X and is such that |Xα| < |X | and every initial segment of the sequence
belongs to X . See [9] for more information about internally approachable
structures.)

These properties are clearly ascending in strength and equivalent (for typical un-
countable X) under CH. However their relationship without CH is unknown. (See
Problem 7.) A related property of an X ≺ H(λ) is that it has uniform cofinality ρ
on some collection K of cardinals. This means that for all κ ∈ K, cof(X ∩ κ) = ρ.
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Clearly if X has cardinality ω1, then any of the properties above implies that X
has uniform cofinality ω1 in all regular cardinals κ.

We now see many variants on the weak reflection property of the form:
Every stationary set (collection of stationary sets) with property
P reflects (simultaneously reflects) to a set with property Q.

In particular we will use the phrase “any collection of κ stationary sets reflects
to a set of size ω1” to mean that there is an X with |X | = ω1, ω1 ⊂ X such that X
simultaneously reflects the collection of stationary sets.

The main theme of this paper is that one can replace hypotheses of the form
“any stationary set can be reflected to a set with property Q”, by statements of
the form “any κ stationary sets can be simultaneously reflected to a set of size ω1”
(where κ is a small cardinal such as 2, 3 or 4) and get similar consequences.

We now make some basic observations about reflection.

Lemma 8. Suppose that every stationary set S ⊂ [H(λ)]ℵ0 reflects to sets of size
ω1. Then for any stationary set S ⊂ [H(λ)]ℵ0 the collection of X ∈ [H(λ)]ℵ1 to
which S reflects is stationary.

Proof. Let A be a structure with domain H(λ). Let X reflect {N ∈ S : N ≺ A}.
Then X ≺ A. �

The converse of this is also true:

Lemma 9. Suppose that S ⊂ [H(λ)]ℵ0 and {X ∈ [H(λ)]ℵ1 : S∩[X ]ℵ0 is stationary}
is stationary. Then S is stationary.

Proof. Let A be a structure with domain H(λ). Let X ≺ A reflect {N ∈ S : N ≺
A}. Then there is an N ∈ S ∩ [X ]ℵ0 , N ≺ X , hence S is stationary. �

We now remark on a standard trick:

Lemma 10. Let A be an expansion of 〈H(λ),∈, ∆〉 for a large regular λ. Suppose
that N ≺ A and x, κ ∈ N and |x| < κ. Let M = skA(N ∪ x). Then:

sup(N ∩ κ) = sup(M ∩ κ).

Proof. Every element of M is of the form τ(a, y) where a ∈ N and y ∈ x for τ
a definable Skolem function in A. Since |x| < κ and x, κ ∈ N , we have N |=
sup{τ(a, y) : y ∈ x} < κ and for some γ ∈ N ∩ κ, γ = sup{τ(a, y) : y ∈ x}. �
Definitions of PCF objects. We refer the daring reader to [18] for information
on PCF theory. Those more easily satisfied might find [3] or [12] easier reading.

Reduced products have been used to study singular cardinals by many authors
(see [20], [11]). Shelah developed an extensive theory of these, notably at cardinals
of countable cofinality.

Typically the PCF theory studies a singular cardinal κ by considering an increas-
ing cofinal sequence of regular cardinals 〈κi : i ∈ cf(κ)〉, and an ideal I on cf(κ).
Then properties of the reduced product

∏
i∈cf(κ) κi/I are used to bootstrap prop-

erties of the κi to κ+. In this paper we will always make the harmless assumption
that all of the κi are at least ω2.

We recall that the partial ordering on the reduced product is defined as follows:
Let f, g ∈

∏
i∈cf(κ)

• We put f =I g iff {i : f(i) �= g(i)} ∈ I.
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• We put f <I g (or f ≤I g) iff {i : f(i) ≥ g(i)} ∈ I (resp: {i : f(i) > g(i)} ∈
I).

(If I is the ideal of bounded sets, then we will write f =∗ g for f =I g and f <∗ g
for f <I g etc. In this case if for all i > k, f(κi) < g(κi), we will write f <k g.)

A scale in
∏

i∈cf(κ) κi/I is a sequence {fα : α < λ} such that:

(1) α < β < λ implies fα <I fβ .
(2) For all f ∈

∏
i∈cf(κ) κi/I there is an α < λ, f <I fα.

If {fα : α < γ} is a scale, then any cofinal subsequence is a scale and hence we
can assume that λ is always a regular cardinal. In this case we will say that the
true cofinality of

∏
i∈cf(κ) κi/I is λ. (We note that this is well defined.)

Shelah has shown that there is always a sequence of cardinals κi such that∏
i∈cf(κ) κi/I has a scale of length κ+, where I is the ideal of bounded subsets of

cf(κ).
An exact upper bound for a sequence 〈fα : α < γ〉 ⊂

∏
κi is a function g such

that if h <I g, then there is an α < γ such that f <I fα. If an exact upper bound
exists it is clearly unique (mod I). We will assume that our scales are continuous
in the sense that if 〈fα : α < γ〉 has an exact upper bound, then fγ is the exact
upper bound.

If 〈fα : α < λ〉 is a continuous <I increasing sequence of functions, then γ is a
good point for the sequence iff there is a sequence of functions 〈gδ : δ ∈ cf(γ)〉 of
length cf(γ) which is pointwise increasing on a fixed I-large subset of cf(κ) and is
cofinally interleaved with 〈fα : α < γ〉 modulo I; i.e. that for all α < γ there are
δ < cf(γ), α′ < γ such that fα <I gδ <I fα′ . If I is the ideal of bounded subsets
of cf(κ), then this is equivalence to the existence of an unbounded set A ⊂ γ and
a set B ∈ I such that for all κi /∈ B, {fα(κi) : α ∈ A} is strictly increasing. It is
a theorem of Shelah that for ordinals γ of cofinality larger than cf(κ), γ is a good
point iff there is an exact upper bound g for 〈fα : α < γ〉 with cf(g(κi)) = cf(γ)
for almost all κi. In particular the collection of good points is stationary. A point
γ is promising iff A can be taken to be stationary in γ, and very good iff A can
be taken to be closed and unbounded. A point γ is better iff there is a closed
unbounded set A ⊂ γ such that for all β ∈ A, there is a B ∈ I such that for all
κi /∈ B, {fα(κi) : α ∈ A ∩ β} is strictly increasing. Clearly, if γ is very good, then
it is better, and better implies promising.

Easy arguments show that if γ is a good point and E ⊂ γ is unbounded, there
is an unbounded subset E′ ⊂ E such that E′ satisfies the definition of good. It is
also easy to show that if γ is a good point of cofinality at least cf(κ)+2, then γ is
promising.

A scale will be called good (resp. very good, better) iff there is a closed unbounded
D ⊂ λ such that every γ ∈ D with cofinality greater than cf(κ) is good (resp. very
good, better).

Shelah has shown that if the SCH fails first at a cardinal κ, then there is a
cofinal sequence 〈κn : n ∈ ω〉 in and a better scale on

∏
κn/I, where I is the ideal

of bounded sets.
Good, better and very good scales and their relations with reflection properties

were studied systematically in [4], to which we refer the reader for information.
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We finish with two important definitions.

Definition 11. Let K be a set of cardinals and N a set. The characteristic function
of N (denoted χN) is defined to be χN (κ) = sup(N ∩ κ) for κ ∈ K. In contexts
where we are working with a scale on

∏
κi for some sequence of cardinals 〈κi〉, we

will take K to be the collection of κi’s.
If we fix a sequence �κ = 〈κi〉 and an ideal I on {κi} we will say that N is tight

for �κ and I iff N ∩
∏

κi is cofinal in
∏

(N ∩ κi) modulo <I .

If we have a scale 〈fα : α < λ〉 ⊂
∏

κi/I and N ≺ 〈H(λ),∈, ∆, 〈fα : α < λ〉〉,
then tightness is equivalent to the statement that χN is an exact upper bound for
{fα : α ∈ N ∩ λ} mod I.

In our context we will always be working with tight structures of a uniform
cofinality; however tight does not imply uniform cofinality (see [5]).

2. Standard Namba lemmas

In this section we quote some useful results about “Namba Combinatorics” that
are well known. (The reader is referred to [14], [13], [1], [17], [2], [15]) for the
mathematical and historical background of this area.)

The basic objects for this theory are trees that split into positive sets relative to
certain (proper) filters. The relevant property of these filters is their completeness.

Let T ⊂ [OR]<ω be a tree and suppose that for each σ ∈ T we have a filter Fσ

on {α : σ�α ∈ T }. Let c(σ) be the completeness of this filter.

Definition 12. Given a tree T ⊂ [OR]<ω, the stem of T is the collection of σ ∈ T
such that for all τ ∈ T either σ ⊂ τ or τ ⊂ σ. All of our trees will have a finite
stem. A Namba subtree of T is a subtree T ′ ⊂ T such that for all σ ∈ T ′ not lying
in a proper initial segment of the stem of T ′, {α : σ�α ∈ T ′} is positive for the
filter Fσ.

Example 13 (Namba). Let T be a subtree of ω<ω
2 such that every node σ not in a

proper initial segment of the stem of T is ω2 splitting (i.e. |{α : σ�α ∈ T }| = ω2).
For each σ not in a proper initial segment of the stem of T let Fσ be the filter of
cobounded subsets of ω2.

This example is fairly typical in that the filters for a Namba tree are usually a
variation on either the filter of cobounded sets or the filter of closed unbounded
sets. (Namba considered similar forcings on different cardinals in his papers.)

Recall that if T is a tree there is a topology on the collection of all branches
through T (which we will denote by [T ]) obtained by taking the topology induced
by the product topology on κω for some κ larger than the supremum of all ordinals
appearing in a sequence in T .

The basic Namba lemma appears in [14] among other places:

Theorem 14. Suppose that T is a Namba tree such that for all σ ∈ T , c(σ) > κ.
Suppose that

[T ] =
⋃
i<κ

Xi

where each Xi is a Borel subset of [T ]. Then there is a Namba subtree T ′ ⊂ T such
that for some i < κ, [T ′] ⊂ Xi.

The fact that each Xi is Borel is used to see that a particular game is Borel and
hence determined. In most applications, the sets Xi will be closed sets.
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3. A strong Löwenheim-Skolem Theorem

In this section we give the proof of a strong Löwenheim-Skolem Theorem.
We begin by restating the data for the theorem. Let θ be a regular cardinal,

and P : {κ : ω2 ≤ κ ≤ θ and κ is regular} → [ω]ℵ0 a function. Fix for each regular
cardinal ω2 ≤ κ ≤ θ a club guessing ladder system �l(κ).

Recall that for N ⊂ H(θ) with N ∩ κ having countable cofinality, the pattern of
N at κ is defined to be:

pat(N, κ) = {n : N ∩ [δn, δn+1) �= ∅}

where 〈δn : n ∈ ω〉 is the element of the ladder system for κ at δ = sup(N ∩ κ).
Using this data we can define the following set:

SP = {N ∈ [H(θ)]ℵ0 : pat(N, κ) = P (κ), for all κ ∈ N ∩ dom(P )}.
The main theorem of this section is:

Theorem 15. SP is stationary.

Proof. Fix an arbitrary structure A = 〈H(ξ), ∆, θ,�l, P, . . . 〉 for a regular ξ > θ.
We need to find a countable elementary substructure N ≺ A such that for all
κ ∈ N ∩ dom(P ), pat(N, κ) = P (κ).

To see the result we build a ⊂-decreasing sequence of Namba-trees (in the ap-
propriate sense) 〈Tn : n ∈ ω〉 with the property that if b is a branch through all of
the Tn, then N = skA(b) has the desired property.

Each tree Tn will be a subset of θ<ω. The nodes σ ∈ Tn will have a label s(σ)
among the regular cardinals less than or equal to θ. The trees Tn will be Namba
in the sense that there will be finitely many regular cardinals {κ0, . . . , κn−1} less
than or equal to θ such that:

• If s(σ) = κi for some i, then there is a unique α < κi such that s(σ)�α ∈ Tn.
• If s(σ) = κ /∈ {κ0, . . . , κn−1}, then {α : σ�α ∈ Tn} ⊂ κ is unbounded in κ.

We require that the labelling s will have the following two properties:

(1) If b is a branch through T0 and σ = b � k for some k and κ ∈ skA(σ) is
regular, then there is an infinite set of m ≥ k such that every τ ∈ Tn with
σ ⊂ τ and |τ | = m has s(τ) = κ.

(2) If s(τ) = κ, then κ ∈ sk(τ).

The Tn’s will also have the property that there are δ0, . . . , δn−1 ∈ OR such that
for all branches b through Tn,

• sup(skA(b) ∩ κi) = δi.
• κi ∈ skA(b).
• skA(b) has the pattern P (κi) at κi.

We will say that a Tn with these properties is acceptable for this sequence
{κ0, . . . , κn−1}, and dually that each κi is fixed for Tn.

By carefully enumerating the κi’s in the Skolem hulls of the stems of the various
Tn, it suffices to show the following lemma:

Lemma 16. Suppose that T is a Namba tree acceptable for {κ0, . . . , κn−1} and
κ ≤ θ is in skA(σ), where σ is the stem of T . Then there is a T ′ ⊂ T that is
acceptable for {κ0, . . . , κn−1, κ}.
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To prove this lemma, we build intermediate subtrees of T and utilize these to
get T ′. All of the trees will be the result of judicious pruning by strategies (in two
different games).

3.1. The first game. In the first game G1 players I and II cooperate to build
a branch through T according to the following schedule. At a stage where the
sequence σ ∈ T has been constructed:

(1) If s(σ) < κ (or s(σ) ∈ {κ0, . . . , κn−1}), player II plays an ordinal α < s(σ)
such that σ�α ∈ T .

(2) If s(σ) > κ and s(σ) /∈ {κ0, . . . , κn−1}, II chooses an ordinal γ < s(σ) and
I chooses an α with γ < α < s(σ) such that σ�α ∈ T .

(3) At stages σ where s(σ) = κ player I plays an ordinal β, II plays an ordinal
γ > β and I plays an α > γ with σ�α ∈ T .

A play of the game results in:

• a branch b through the tree T ;
• a sequence 〈βn : n ∈ S ⊂ ω〉 of ordinals played by player I at stages σ with

s(σ) = κ;
• a sequence of ordinals 〈γn : n ∈ S〉 played by II at the same stages. Note

that for all n, βn < γn.

The winning condition:
Player I wins the game G1 iff:

skA(b) ∩
⋃
n∈S

[βn, γn) = ∅.

Note. While the game G1 is closed (and hence determined), this fact appears not
to be relevant to finding a strategy for I.

Claim 17. There is a tree T ∗ ⊂ T that is acceptable for {κ0, . . . , κn−1} such that
Player I has a winning strategy in G1 played on T ∗.

Proof. To see this, note that by reducing T somewhat and (possibly) adding func-
tions to the type of A we can assume that for all σ ∈ T with s(σ) = κ, there is an
fσ definable in A from σ such that

fσ : κ ∩ cof(ω1) → {α : σ�α ∈ T }

is a bijection with fσ(δ) ≥ δ for all δ. Since expanding a structure increases the
Skolem hull, it suffices to show the claim for the expanded structure.

Note that if b is a branch through T and c is the result of replacing each α = b(n)
arising from a stage σ = b � n with s(σ) = κ by f

−1

σ (α), then

skA(b) = skA(c).

Thus, as far as Skolem hulls go, we can assume that for all stages σ with s(σ) = κ:

{α : σ�α ∈ T } = κ ∩ cof(ω1).

We now make this assumption replacing T for the moment by the “isomorphic” S.
For each α ∈ κ ∩ cof(ω1), we choose 〈α(i) : i ∈ ω1〉 converging to α. For each

infinite branch c = 〈αn : n ∈ ω〉 through S and each n with s(c � n) = κ, let icn be
the least i ∈ ω1 such that αn(i) > skA(c) ∩ αn. Let i(c) = sup〈icn : n ∈ ω〉.



1702 MATTHEW FOREMAN AND STEVO TODORCEVIC

By Theorem 14 we see that there is a tree S∗ ⊂ S and a β∗ < ω1 such that:
• For all σ ∈ S∗, if s(σ) �= κl for any l < n then σ is an s(σ) splitting node

of S′.
• If s(σ) = κ then for stationarily many α < κ, σ�α ∈ S∗.
• For all branches c through S∗, i(c) = β∗.

We let T ∗ be the subtree of T corresponding to S∗.
To see that T ∗ satisfies the claim, we define a winning strategy for player I.
We describe her plays on S∗ rather than T ∗ for convenience. Note that player I

has discretion to play only at σ with s(σ) ≥ κ.
By cases:

• At stages σ where s(σ) > κ, player I plays arbitrarily according to the rules
of G1.

• At stages σ where s(σ) = κ, consider the map from X = {α : σ�α ∈ S∗}
to κ given by α �→ α(β∗). This function is regressive, and hence constantly
βσ on a stationary subset X ′ ⊂ X for some βσ. Player I now plays βσ and
when II responds with some γ, player I plays an α ∈ X ′\γ.

To see that this is a winning strategy on T ∗ we note that if c is the result of
playing according to this strategy, then for all n with σ = c � n and s(σ) = κ we have
that skA(c)∩c(n) ⊂ βσ = βn. Since βn < γn < c(n), we have skA(c)∩ [βn, γn) = ∅.
By the definability and monotonicity of the fσ’s we have c(n) ≤ b(n) and skA(c) =
skA(b) for the branch b through T ∗ corresponding to c. This proves the claim. �

Claim 18. There is a tree T † ⊂ T ∗ that is acceptable for {κ0, . . . , κn−1} such that
every branch b through T † is the result of a play of the game G1 according to W,
where W is I’s winning strategy in G1.

Proof. This claim is standard so we sketch the proof. Decide which elements σ of
T ∗ to put in T † by induction on n. In the process define a partial play of the game
G1 according to W to associate with σ. At any inning, a play by II is canonically
associated with an ordinal, and hence canonically well ordered.

For s(σ) < κ, put all one point extensions of σ into T †, since they all canonically
correspond to a legal play by player II.

For s(σ) ≥ κ, put every τ into T † that is a one point extension of σ corresponding
to a response by W to some play by II in the the partial play of the game associated
with σ . Associate to each τ the least such play by II eliciting this response, together
with its response by W . �

3.2. The second game. Define a game G2
δ for those δ ∈ κ ∩ cof(ω) where the

ladder system �l(κ) is defined. For these δ let 〈δn : n ∈ ω〉 be �l(κ) at δ. In G2
δ players

I and II cooperate to produce a play of the game G1 by producing a branch through
T †.

At a stage σ ∈ T †:
• If s(σ) < κ, player II chooses an arbitrary one point extension of σ.
• If s(σ) = κ, then W produces a β < δ. Player II then chooses an n ∈ ω

with δn > β and W produces an α such that σ�α ∈ T †.
• If s(σ) > κ, then II chooses an η < s(σ) and I plays an α > η with

σ�α ∈ T †.
We note that the only places where I has discretion in this game is at those σ

for which s(σ) > κ. Moreover, we will be interested in this game for those δ such



A NEW LÖWENHEIM-SKOLEM THEOREM 1703

that the δn are closed under the strategy W , and hence II does not lose the game
for the trivial reason of not being able to play.
The winning condition:

Player I wins G2
δ iff

(1) skA(b) ∩ κ ⊂ δ.
(2) If 〈(β0, n0, α0), (β1, n1, α1), . . . , (βj , nj, αj), . . . 〉 are the triples produced at

stages kj where s(b � kj) = κ, then (αi, βi+1) ⊂ [δni , δni+1).

Note. The game G2
δ is determined.

Claim 19. There is a set D of measure one for the club guessing filter on κ such
that for all δ ∈ D, player I has a winning strategy in G2

δ .

Proof. If not, let A be a positive set of counterexamples for the club guessing filter.
For each δ ∈ A, let Rδ be a strategy for II in G2

δ .
Let A1 be an expansion of A containing the predicate for T , T †, the strategy W

for I in G1 and 〈Rδ : δ ∈ A〉.
Let C = {γ < κ : skA1(γ) ∩ κ = γ}. Let δ∗ ∈ A “club guess” C, i.e. δ∗n ∈ C for

all n.
We claim that I wins the game G2

δ∗ . To see this we build a play of the game
that obeys II’s strategy Rδ∗ but is a winning play for I.

To describe the play we only need to describe I’s responses at stages σ where
s(σ) > κ. At these stages {Rδ(σ) : δ ∈ A and σ is a play of the game according to
Rδ} is bounded in s(σ). Hence there is a “canonical” response by player I against
all of these strategies simultaneously. (Namely the least α such that σ�α ∈ T † and
α is a bound.) We claim that this canonical response defeats player II’s strategy
Rδ∗ .

To see this we first show that the branch b produced by the play of the game
G2

δ∗ by I’s canonical strategy and the strategy Rδ∗ is a subset of skA1(δ∗). Hence
skA1(b) ∩ κ ⊂ δ∗.

To do this we show by induction on k that b � k ∈ skA1(δ∗). Suppose that this
is true for k. Let σ = b � k. We have three cases:

Case 1: s(σ) < κ. Then, since s(σ) ∈ skA(σ) and σ ⊂ skA1(δ∗), we have s(σ) < δ∗

and the response to σ by player II according to Rδ∗ belongs to skA1(δ∗).

Case 2: s(σ) = κ. In this case II chooses some n and b � (k + 1) is determined by
W applied to the play of the game in G1 associated with σ and δ∗n. Since W and
the tree T † belong to skA1(δ∗), we are done.

Case 3: s(σ) > κ. In this case the contribution by player I is canonical and hence
definable from σ and 〈Rδ : δ ∈ A〉.

In fact we need more: the definability properties are local in the following sense:
Suppose that {(β0, n0, α0), (β1, n1, α1), . . . , (βk, nk, αk), . . . } are the plays at

stages σ with s(σ) = κ; then

αk, βk+1 ∈ skA1(δ∗nk+1).

To see this, note that if ki and ki+1 are stages in the game with s(σ) = κ and no
intermediate stage has label κ, then the response by W to produce βi+1 is defined
by parameters in skA1(δ∗ni

+ 1).
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To sum up we have shown that if I plays her canonical strategy we get a branch b
through T † with the property that skA1(b)∩κ ⊂ δ∗ and if 〈(β0, n0, α0), (β1, n1, α1),
. . . , (βj , nj , αj), . . . 〉 are the triples produced at stages kj where s(b � kj) = κ, then
(αi, βi+1) ⊂ [δ∗ni

, δ∗ni+1). �

In particular there is at least one δ < κ such that I has a winning strategy in
G2

δ . Fix such a δ.
Repeatedly play the game using I’s winning strategy to build a Namba tree

T ′ ⊂ T † such that:
(1) If σ ∈ T ′ and s(σ) < κ then {α : σ�α ∈ T ′} = {α : σ�α ∈ T }.
(2) If σ ∈ T ′ and s(σ) > κ then |{α : σ�α ∈ T ′}| = s(σ).
(3) At stages σ where s(σ) = κ, player II plays {δn : n ∈ P (κ)}. (The pattern

at κ.)

We claim that T ′ satisfies the conclusion of Lemma 16. To see this let b be a
branch through T ′. Then:

• sup(skA(b) ∩ κ) = δ.
• If II plays δnk

at stage k, then αk ∈ [δnk
, δnk+1) and therefore nk ∈

pat(skA(b), κ).
• If II plays nk and nk+1 at stages σ, τ that are successive initial segments

of b that satisfy s(σ) = s(τ) = κ, then βk+1 ∈ [δnk
, δnk+1) and moreover,

skA(b) ∩ δnk+1 ⊂ βk+1.

Note that this implies that skA(b)∩ [δnk+1, δnk+1) = ∅. In particular, there
is no n ∈ [nk + 1, nk+1) that lies in pat(skA(b), κ).

This proves Lemma 16 and hence Theorem 15. �

4. Patterns and tightness

4.1. Playing with patterns. In this section we discuss reflection and patterns. As
remarked in the introduction (Lemma 4), if X ≺ H(λ) has uncountable cardinality
and X ∩ κ has cofinality ω and pattern r ⊂ ω, then for a closed unbounded subset
C ⊂ [X ]ℵ0 , the pattern of N ∈ C at κ is also r.

This remark is our basic device for using simultaneous reflection to produce
reflecting sets X with uniform cofinality ω1. We now give corollaries of Theorem
15.

Corollary 20. Suppose that for all stationary S, T, U ⊂ [H(λ)]ℵ0 there is an X
such that ω1 = |X | ⊂ X and X reflects S, T and U . Then for all stationary S there
is an X that has uniform cofinality ω1 that reflects S.

Proof. Let r, s be distinct infinite subsets of ω. Let T be the stationary set of
N ≺ H(λ) such that for all regular cardinals κ ≤ λ with κ ∈ N, pat(N, κ) = r, and
let U be the collection of all such N with pat(N, κ) = s.

Then it follows from Lemma 4 that any X that reflects both T and U must have
uniform cofinality ω1. Since X reflects S as well, we are done. �

In particular this implies that all of the consequences of reflection to sets of uni-
form cofinality (such as the non-existence of good scales) follow from simultaneous
reflection for any 3 stationary sets.
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We now turn to somewhat more involved uses of this device.

Corollary 21. Suppose that any pair of stationary sets simultaneously reflects to
a set of size ω1. Let S ⊂ [H(λ)]ℵ0 be a stationary set and a be a countably infinite
set of regular cardinals between ω2 and λ and suppose that {κ0, κ1, . . . , κn} ⊂ a.
Then there is a set X, ω1 = |X | ⊂ X that reflects S and there is an infinite b ⊂ a
with {κ0, κ1, . . . , κn} ⊂ b such that for all κ ∈ b, cf(X ∩ κ) = ω1.

Proof. By refining S in n + 1 stages we can find a stationary S′ ⊂ S such that for
all i ≤ n, either there is an ri ⊂ ω such that for all N ∈ S′, pat(N, κi) = ri or for
all r ∈ [ω]ℵ0 , {N ∈ S′ : pat(N, κi) = r} is non-stationary.

Fix arbitrary distinct infinite r, s ⊂ ω with r �= ri and s �= ri all i ≤ n. Without
loss of generality we can assume that for all N ∈ S′ and all i, pat(N, κi) �= r and
pat(N, κi) �= s.

Let T be the collection of N such that for all κ ∈ a, pat(N, κ) = r. Reflect S′

and T simultaneously. Then X0∩κi must have cofinality ω1 for all {κ0, κ1, . . . , κn}.
If X0 has cofinality ω1 relative to infinitely many κ ∈ a then we are done. Oth-
erwise we can assume that for all N ∈ S ∩ [X0]ℵ0 and all but finitely many κ ∈
a, pat(N, κ) = r. If this happens for a stationary collection of X0, then by Lemma
9, there is a cofinite set d ⊂ a such that S† = {N ∈ S′ : for all κ ∈ d, pat(N, κ) = r}
is a stationary set.

Let U be the collection of all N such that for all κ ∈ a, pat(N, κ) = s. Any X
which reflects both S† and U must have relative cofinality ω1 for all but finitely
many κ ∈ a and also at all κ ∈ {κ0, κ1, . . . , κn}. Since S† ⊂ S we are done. �

We have no immediate application of the next result; however it seems of interest:

Theorem 22. Let S ⊂ [H(θ)]ℵ0 be the collection of all countable N such that
pat(N, κ) /∈ N for all regular κ ∈ N at least ω2. Then S is stationary. In particular,
S has non-stationary intersection with any SP for P a function from the regular
cardinals below θ to the infinite subsets of ω.

Proof. The proof is the same as in Theorem 15 except that we add a wrinkle
at the very beginning. To see that S is stationary we take any algebra A =
〈H(ξ), ∆, θ,�l, P, . . . 〉 for ξ > θ and find an N ≺ A with N ∈ S. Note that we
can assume that θ > 2ℵ0 . Let 〈rα : α < ω1〉 be an enumeration of [ω]ℵ0 that is
definable in A.

By an application of Lemma 14 we can assume that there is a δ such that for all
branches b through T0, sk

A(b) ∩ ω1 = δ. Let r = rδ and finish the proof using the
real r in the role of P (κ) for all κ ∈ skA(b). �

4.2. Tightness. Let κ be a singular cardinal of cofinality ω and 〈κn : n ∈ ω〉 an
increasing cofinal sequence in κ. Suppose that the true cofinality of

∏
n∈ω κn is κ+

and fix a scale 〈fα : α < κ+〉 ⊂
∏

n∈ω κn. Recall that the characteristic function of
a set A (relative to the 〈κn〉) is the function χN (κn) = sup(N ∩κn). The following
definition first appeared in [8].

Definition 23. Let X ≺ H(λ) have cardinality ω1 and ω1 ⊂ X . Then X is tight
(with respect to 〈κn〉) iff X ∩

∏
n κn is cofinal in

∏
n(X ∩ κn).

For countable N ≺ H(λ) we say N is weakly tight iff for γN = sup(N ∩ κ+),
fγN ≥∗ χN . (For the notion of tightness, we refer the reader to Definition 39.)
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We will use the following characterization of tightness that appeared in [8]:

Lemma 24. Let X ≺ H(λ) have cardinality ω1 and let γ = sup(X ∩ κ+). Then
the following are equivalent:

• X is tight and has uniform cofinality ω1.
• χX =∗ fγ and γ is a good point of the scale.

The next lemma uses the ideas of the proof of the following theorem of Shelah:

Theorem (Shelah [18]). Suppose that κ has cofinality ω, λω < κ for all λ < κ and
that κω > κ+. Then there is an increasing cofinal set 〈κn : n ∈ ω〉 in κ and a scale
〈fα : α < κ+〉 on

∏
κn (modulo the Frechet filter) that has the property that for all

γ < κ+ with uncountable cofinality there is a closed unbounded set D ⊂ γ such that
(1) o.t.D = cf(γ).
(2) For all β ∈ D there is an n < ω such that fα(κj) < fβ(κj) for all j > n

and all α ∈ D ∩ β.
In [4], such a sequence is called a better scale.

Lemma 25. Suppose that there is a better scale on
∏

n κn. Then the collection of
weakly tight sets is stationary.

Proof. We assume that the sequence 〈fα〉 is a better scale. Let A be a structure
expanding H(λ). We must produce a countable set N ≺ A that is weakly tight.

Let Y ≺ A be an internally approachable structure of cardinality ω1, and let
〈Yi : i ∈ ω1〉 be a an approaching sequence. We can assume that each Yi ≺ A. Let
γ = sup(Y ∩ κ+) and γi = sup(Yi ∩ κ+). Then {γi : i ∈ ω1} is a closed unbounded
set in γ. Let D ⊂ γ be the closed unbounded set guaranteed to exist from the
definition of “better scale”. Then there is a stationary subset S of D ∩ {γi}i<ω1

and a k ∈ ω such that for all n > k, γi < γj ∈ S, fγi(κn) < fγj (κn). For each γi ∈ S,
there is a ki such that χYi

(κn) < fγj(κn) for all n > ki and all γj ∈ S\{γi + 1}.
By refining S again we can assume that for all γi ∈ S, ki = k.

Let γ∗ =def γi∗ ∈ S be a limit point of S. We claim that Y ∗ =def Yi∗ is weakly
tight. To see this we note that:

χY ∗ = sup
i<i∗

χYi

pointwise, and for all n > k,

sup
i<i∗

fγi(κn) ≤ fγ∗(κn).

On the other hand for γi < γj < γl ∈ S ∩ γ∗ and n > k,

χYi
(κn) < fγj (κn) < χYl

(κn).

So for all n > k, supi<i∗ χYi
(κn) = supi<i∗ fγi(κn) and we are done. �

The next observation will be used in the proof of the singular cardinals hypoth-
esis.

Lemma 26. Let X be a set of cardinality ω1 and suppose that cf(X ∩ κ+) has
cofinality ω1. If X reflects the collection of weakly tight structures, then:

(1) X is tight.
(2) X ∩ κn has cofinality ω1 for almost all n.
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Proof. Let a ⊂ X be countable. It suffices to show that there is a function f ∈
X ∩

∏
n κn such that for all but finitely many n, f(κn) ≥ sup(a ∩ κn). Since the

collection of weakly tight sets is stationary in X , there is a weakly tight N ⊂ X
with a ⊂ N . Then fγN (κn) ≥ sup(a∩κn) for all but finitely many N . Since X∩κ+

has cofinality ω1, there is a γ ∈ X such that γ > γN . Thus fγ(κn) ≥ sup(a ∩ κn)
for almost all n. �

5. The singular cardinals hypothesis

In this section we describe a set that must be closed unbounded if every pair of
stationary sets simultaneously reflects. On the other hand we will show that it is
co-stationary if the singular cardinals hypothesis fails.

Definition 27. Let κ be a singular cardinal of cofinality ω and 〈κn : n ∈ ω〉
a cofinal sequence of regular cardinals. A pre-Jensen matrix is a matrix of sets
〈An

α : n ∈ ω, α < κ+〉 satisfying:
(1) For all α, n, An

α ⊂ κ+ and |An
α| = κn.

(2) For all α < β, n < ω there is an m < ω, An
α ⊂ Am

β .
(3)

⋃
n∈ω An

α = α.

(For the record a Jensen Matrix has the additional properties that for all α
having uncountable cofinality,⋃

n∈ω

[An
α]ℵ0 =

⋃
n∈ω,β<α

[An
β ]ℵ0

and that
⋃

n∈ω,β<κ+ [An
β ]ℵ0 = [κ+]ℵ0 . For more information about Jensen matrices

and related square principles the reader is referred to [10].)

Lemma 28. There is a pre-Jensen matrix.

Proof. Let λ be a regular cardinal much bigger than κ and let A = 〈H(λ),∈, ∆, . . . 〉
be as usual. We define our sequence by induction on α. Suppose that we have
defined An

α for all α < β.
We will define a sequence 〈Mk : k ∈ ω〉 and let Am

β = M∞ ∩ κ+ where M∞ =⋃
k∈ω Mk. Choose a cofinal sequence C ⊂ β. Let M0 = skA(κm ∪C). Let Mi+1 be

the Skolem hull in A of
Mi ∪

⋃
β∈Mi∩α,n<m

An
β .

Then M∞ has cardinality κm and if α ∈ Am
β , then An

α ⊂ Am
β for all n < m.

Finally it is easy to check that if n < m, then An
β ⊂ Am

β , and that
⋃

m∈ω Am
β =

β. �

Definition 29. Suppose that the true cofinality of
∏

n∈ω κn is κ+ and fix a scale
〈fα : α < κ+〉 ⊂

∏
n∈ω κn.

• For a countable set A ⊂ κ+, we define ΓA(κn) = supα∈A(fα(κn)) for all
n ∈ ω. (We remark that for N ≺ H(λ), ΓN∩κ+ = χN .)

• Let F be the subset of
∏

n κn defined to be the collection of all g ∈
∏

n κn

such that for some α < κ+, n ∈ ω and X ∈ [An
α]ℵ0 for all but finitely many

k, g(κk) = ΓX(κk).
• Define S to be the collection of countable A ⊂ κ+ such that ΓA /∈ F .
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Lemma 30. Suppose that 〈fα : α < κ+〉 is a good scale. Then for a closed
unbounded set of X ∈ [H(λ)]ℵ1 if cf(X ∩ κ+) is ω1 and X is tight, then X does
not reflect S.

Proof. Suppose X ≺ 〈H(λ),∈, ∆, 〈fα〉α, . . . 〉 satisfies the hypothesis of the lemma.
Let γ = sup(X ∩ κ+) and a = {κn}. Since 〈fα〉 is a good scale, we can find a

cofinal set B ⊂ X∩γ such that for some finite b ⊂ a and all κ ∈ a\b, {fα(κ) : α ∈ B}
is a strictly increasing sequence of length ω1 and χX(κ) = sup{fα(κ) : α ∈ B}.
Since B is uncountable, there is an n, |B∩An

γ | = ω1, and hence we can assume that
B ⊂ An

γ .
Note that there is a closed unbounded collection of countable subsets N of X

such that for all α ∈ N there is a δ ∈ B∩N such that for all κ ∈ a\b, fα(κ) < fδ(κ).
However this implies that the collection of countable subsets N of X for which

ΓN(κ) = supδ∈B′ fδ(κ) for some countable B′ ⊂ B and all but finitely many κ ∈ a
contains a closed unbounded set. Hence the collection of N such that ΓN ∈ F is
closed unbounded in [X ]ℵ0 and hence S cannot reflect to X . �

We now establish the singular cardinals hypothesis.

Theorem 31. Suppose that for all λ every pair of stationary sets in [H(λ)]ℵ0

simultaneously reflects to a stationary set of size ω1. Then for all regular cardinals
κ ≥ ω2:

κω = κ.

(In particular, for all κ of cofinality ω, κω = κ+.)

By [22], if every stationary set reflects to a set of size ω1, then 2ℵ0 ≤ ω2. Hence,
the second assertion is equivalent to the first and this is what we establish. (See
[20] or [11].)

The basic outline of the proof is as follows. Suppose that the set S given in
Definition 29 is stationary. To obtain a contradiction we work to reflect S to a
tight set X , which is impossible by Lemma 30. To reflect S to a tight set, we
simultaneously reflect S with the stationary set of weakly tight structures (which
form a stationary set since the SCH fails at κ (Lemma 25)). The two problematic
points are seeing that S is stationary and that when reflected simultaneously with
the weakly tight sets, the result is an X that has cofinality ω1 at κ+. To achieve
the latter we again resort to the device of “patterns”.

Definition 32. Suppose that r ⊂ ω is infinite. Define Sr ⊂ S to be the collection
of N ∈ S such that pat(N, κ+) = r.

Lemma 33. If κω > κ+ and r ⊂ ω is infinite, then the set Sr is stationary.

Remark. Assuming this lemma we can carry out the outline described above. We
first fix any infinite r ⊂ ω; then (by Lemmas 26 and 30) the only X ∈ [H(λ)]ℵ1

that simultaneously reflect both Sr and the weakly tight structures are those with
cof(X ∩ κ+) = ω. Hence Tr =def {N : N is weakly tight and pat(N, κ+) = r}
is stationary. Now take any infinite s ⊂ ω that differs from r and reflect Tr simul-
taneously with Ss. The result is a tight set X ∈ [H(λ)]ℵ1 that has cof(X∩κ+) = ω1

and reflects Ss (and hence S). This contradiction finishes the proof of Theorem
31. We note that were we content to prove the SCH from reflecting any three sets
simultaneously, the argument would simplify to showing that S is stationary. Thus
it suffices to show Lemma 33.
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Proof. We show that for any structure A expanding some large 〈H(λ),∈, ∆〉 there
is a δ < κ+ and family D of elementary substructures of A with supremum δ and
pattern r such that {χN : N ∈ D} has cardinality κω. This suffices by a simple
cardinality argument, since the cardinality of F is κ+. To do this we recapitulate
portions of the proof of Theorem 15 with suitable modifications.

In our current situation we need only play one game, as we are not concerned
about cardinals above κ+. We play the game on Namba subtrees of the tree T =
{σ ∈ [κ+]<ω : σ(2n) ∈ κn and σ(2n + 1) ∈ κ+ ∩ cof(ω1)}. In the game G on some
subtree T ∗ ⊂ T players I and II play according to the following schedule. We
assume that we want to extend a partial play σ ∈ T ∗:

(1) At an even stage 2n, player II plays an ordinal tn < κn with σ�tn ∈ T ∗.
(2) At odd stages 2n+1, player I plays an ordinal βn < κ+, II plays an ordinal

γn > βn and I plays an αn > γn with σ�αn ∈ T ∗.
Player I wins G iff

skA({{tn, αn} : n ∈ ω}) ∩
⋃
n

[βn, γn) = ∅.

Claim 34. There is a subtree T ∗ ⊂ T such that player I has a winning strategy
on the game played on T ∗ and T ∗ is Namba in the sense that:

(1) For σ ∈ T ∗ of even length 2n, |{t : σ�t ∈ T ∗}| = κn.
(2) For σ ∈ T ∗ of odd length, |{α : σ�α ∈ T ∗}| = κ+ (the successors of σ are

even stationary; see below).

For each α ∈ κ ∩ cof(ω1), we choose 〈α(i) : i ∈ ω1〉 converging to α. For each
infinite branch c through T and each αn ∈ c from a κ+-splitting node, let icn be the
least i ∈ ω1 such that αn(i) > skA(c) ∩ α. Let i(c) = sup〈icn : n ∈ ω〉.

Arguing exactly as in Theorem 15 (and Claim 17) we see that we can build a
tree T ∗ ⊂ T that has the following properties:

(1) If τ has odd length 2n + 1, then |{t : τ�t ∈ T ∗}| = κn.
(2) if τ has even length, then {α < κ+ : τ�α ∈ T } is stationary.
(3) There is an ordinal β∗ such that for all branches c through T ∗, i(c) = β∗.

We claim that I has a winning strategy on this tree. As before we define a
strategy for player I. Player I only has discretion to play at odd stages. Here
he considers the sequence (t0, α0, . . . , tn) already played. Since the set O = {α :
(t0, α0, . . . , tn, α) ∈ T ∗} is stationary, he can find a βn such that for a stationary
set G ⊂ O if α ∈ G then α(β∗) = βn. He plays this βn. When player II responds
with γn, player I plays some αn ∈ G greater than γn.

By item (3), if {tn, αn : n ∈ ω} is a play produced this way, then we see that
skA({tn, αn}n) ∩ αn ⊂ βn. In particular

skA({tn, αn}n) ∩
⋃
n

[βn, γn) = ∅.

Hence this play is a win for player I; thus we have defined a winning strategy for
the first player in the game. This finishes the proof of Claim 34.

Let W be a winning strategy for I in the game. Let D be the closed unbounded
set of δ such that skA(δ ∪ {W})∩ κ+ = δ. Choose a δ where the ladder system for
κ+ is defined that is such that 〈δn : n ∈ ω〉 ⊂ D. In particular, note that if σ is a
partial play of the game G according to W , then any γ < δn played at an odd stage
in the game, has a response via W of an α < δn.
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We now build a large collection of structures with pattern r ⊂ ω that have
supremum δ. Enumerate r in increasing order as 〈kl : l ∈ ω〉. As in Claim 18, we
can build a tree T † ⊂ T such that:

(1) Every branch b through T † is a sequence of ordinals 〈t0, α0, t1, α1, . . . 〉 that
is the result of a play of the game G according to W .

(2) For τ ∈ T † of odd length, |{t : τ�t ∈ T †}| = κn.
(3) If σ ∈ T † has length 2l + 1, then αl is the result of II playing the ordinal

δn where n = kl.

To see that item (3) is possible, we note that δn is closed under the strategy W .
Since (inductively) σ ⊂ δn, any βl played according to W is less than δn.

Now suppose that b is a branch through T †. We claim that skA(b) has pattern
r. Let {tl, (βl, γl, αl) : l ∈ ω} be the ordinals played during the game. If n = kl ∈ r
then at stage 2l + 1 player II played δn (as γl). Since δn+1 ∈ D, αl < δn+1. Hence
n ∈ pat(SkA(b), κ). Hence r ⊂ pat(SkA(b), κ). On the other hand if n ∈ (kl, kl+1)
(where kl and kl+1 are successive elements of r), then at stage 2l + 1, player II
played δkl

. Since δkl+1 ∈ D, βl+1 < δkl+1. At stage 2l + 3 player II played δkl+1

as γl+1. Since S is a winning strategy, skA(b) ∩ [βl+1, δkl+1) = ∅. In particular,
n /∈ pat(skA(b), κ).

We have a continuous, one to one map from
∏

n κn into branches through T †.
Thus we can associate (in a continuous way) to each f ∈

∏
n κn an Nf ≺ A with

sup(Nf ∩ κ+) = δ and pat(Nf , κ) = r.
Applying Theorem 14 repeatedly, we inductively construct a tree R ⊂ κ<ω such

that:

(1) If σ ∈ R has length n, then {α : σ�α ∈ R} ⊂ κn and has cardinality κn.
(2) If f, g are infinite branches through R and f(n) < g(n), then sup(Nf∩κn) <

sup(Ng ∩ κn).

In particular, any two distinct branches f, g through R yield distinct Nf , Ng.
This proves Lemma 33, and hence Theorem 31. �

6. Some remarks on reconstruction

In this section we discuss a technique for reconstructing a countable set from a
finite set of ordinals. We use this to show that there is a particular stationary set
of countable structures that, if reflected to a set X of cardinality ω1, has stationary
intersection with Pω1(X) ∩ X .

We will use some square principles whose ZFC status is currently unknown.

Definition 35. Let κ be a cardinal. A partial square sequence for κ is a sequence
C = 〈Cα : α ∈ S〉 of sets such that:

• Cα ⊂ α is closed and unbounded.
• o.t.(Cα) < κ.
• If γ is a limit point of both Cα and Cβ , then Cα ∩ γ = Cβ ∩ γ.

If S is a stationary set of a fixed cofinality µ, then we will also assume that the
order type of each Cα is µ.

Note that if C is a partial square sequence, then it can be extended to a partial
square sequence on {γ : for some α, γ is a limit point of Cα}.
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The following conjecture has been shown by Shelah [18] for κ a successor of a
regular cardinal at least ℵ3:

Conjecture. If κ is a successor cardinal, then there is a stationary set S ⊂
cof(ω1) ∩ κ on which there is a partial square sequence.

We will assume the conjecture for the rest of this section. For most of our
results the conjecture can be loosened to require only that S be a stationary subset
of cof(ωn) for some n; however we do not give the arguments here.

We will make the following assumption on the rationalization that it is a conse-
quence of multiple reflection:

Assumption. For all singular κ, |pcf(κ)| = 1.

We illustrate the ideas at ℵω+1; the ideas carry over very similarly to general κ
below the first fixed point of the ℵ function. (Where our knowledge of the PCF
theory ends.) Because we are working aroung ℵω, in this section the characteristic
functions are relative to

∏
n≥2 ℵn, and if f ∈

∏
ℵn, we will often write f(n) instead

of f(ωn).
We start with a well-known lemma that is the basis for our reconstruction tech-

nique.

Lemma 36. Suppose that N, M are elementary substructures of the structure
A0 = 〈H(ℵω+1),∈, ∆〉 and are such that for all 2 ≤ n ∈ ω, χN (n) ≤ χM (n),
sup(N ∩ω1) ≤ sup(M ∩ω1) and for all n ≤ ω, N ∩M is cofinal in N ∩ℵn+1. Then
N ∩ ℵω+1 ⊂ M ∩ ℵω+1.

Suppose that S ⊂ ℵω+1 is a stationary set and C = 〈Cα : α ∈ S〉 is a partial
square sequence on S. Extend C to a partial square sequence on the collection of γ
that are limit points of some Cα.

Fix a scale 〈fα : α < ℵω+1〉 ⊂
∏

n≥2 ℵn.

Lemma 37. There is a sequence 〈f ′
α : α < ℵω+1〉 and a k ∈ ω such that each

f ′
α =k fα and is such that for each club set D, {f ′

α : α ∈ D ∩ S} dominates every
function in

∏
n≥2 ℵn everywhere.

Proof. Split S into ℵω+1 disjoint stationary sets {Si : i ∈ ℵω+1}. We claim that
for each i there is a ki such that for all closed unbounded sets D, {fα : α ∈
Si ∩ D} dominates

∏
n>ki

ωn everywhere. For otherwise for each k we would have
a counterexample gk, Dk with the property that for all α ∈ Si ∩Dk, there is an n >
k, fα(n) ≤ gk(n). Letting g be the pointwise supremum of the gk and D =

⋂
k Dk

we see that for no α ∈ Si ∩ D is g <∗ fα, a contradiction.
Hence for some k there are ℵω+1 many Si’s with ki = k. Choose a one to one

map that associates to each �γ ∈
∏

1≤n≤k ℵn an i = i	γ with ki = k, and for α ∈ Si�γ

define

f ′
α(n) =

{
�γ(n) if n ≤ k,
fα(n) otherwise.

Let D be any closed unbounded set and g ∈
∏

n≥2 ℵn. Let �γ ∈
∏

1<n≤k ℵn be
everywhere larger than g � (k + 1). Then there is some α ∈ Si�γ ∩ D such that
g <k fα. But then g is everywhere less than f∗

α, as desired. �
We remind the reader (as in the remarks after Lemma 25) that if the SCH fails

at κ ∈ cof(ω), then there is a cofinal set 〈κn : n ∈ ω〉 in κ with a scale of length
κ+ in

∏
κn.
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Definition 38. We say that the scale has been squared iff for all γ in the domain
of C and all n such that ωn > cf(γ), fγ(n) = sup{fδ(n) : δ ∈ Cγ}.

Note that any scale can be squared by induction and that squaring a scale twice
is the same as squaring a scale once. Moreover, if γ is an ordinal where the square
sequence has been defined, then for all n the function sending δ, a limit point of
Cγ , to fδ(n) is strictly increasing.

For each 2 ≤ n ∈ ω, fix a ladder system�l(ωn) on a stationary set Sn ⊂ ωn∩cof(ω)
that associates to each δ ∈ Sn an increasing sequence 〈δn : n ∈ ω〉.

Definition 39. Let N ≺ A0 be countable. Recall that N is weakly tight iff χN ≤∗

fγ where γ = sup(N ∩ ℵω+1).
N is tight iff N is weakly tight, Cγ exists and for some k, for all n ≥ k, {fδ(n) :

δ is a limit point of Cγ} ⊂ N∩ℵn. (In particular tightness implies that χN =k fγ .)
N is reconstructible iff N is tight, χN =k fγ and for all 1 < j < k the club

guessing sequence is defined at δ = sup(N ∩ ωj) and 〈δn : n ∈ ω〉 ⊂ N .

We note that if χN ≤∗ fγ and Cγ ⊂ N where γ = sup(N ∩ ℵω+1), then N is
tight. In practice this is the form we shall use.

Lemma 40. Let 〈fα : α < ℵω+1〉 be a scale that has been squared by a partial
square sequence C defined on a stationary set S ⊂ ℵω+1 ∩ cof(ω1). The collection
of reconstructible structures is stationary.

Proof. Fix an algebra A on H(θ) extending A0. Without loss of generality we can
assume that A contains a predicate for the partial square sequence C and for the
club guessing ladder systems. Choose an algebra B on H(θ) containing the function
X �→ skA(X) for X ∈ H(θ). Let γ ∈ S be an ordinal of cofinality ω1 such that
skB(γ) ∩ ℵω+1 = γ.

Define a sequence of ordinals 〈γi : i ∈ ω1〉 by induction with the property that
for all i > 0, γi ∈ Cγ . Let γ0 = 0. Suppose that 〈γj : j < i〉 is defined. Let
Ni = skA(〈γj : j < i〉). Let γi be the least ordinal η in the limit points of Cγ such
that χNi

<∗ fη.
For each i there is a k = ki such that χNi

<k fγi . So stationarily many i
have the same ki. Let A be an infinite subset of ω1 such that for some k and all
i ∈ A, ki = k. Without loss of generality we can take A to have order type ω. Let
δ = sup{γi : i ∈ A}. Then δ ∈ Cγ .

We claim that if N = skA({γi : i ∈ A}) then χN ≤k fδ. To see this, note that
N ⊂

⋃
i∈A Ni, and so χN (n) ≤ supi∈A χNi

(n). But each χNi
<k fγi and fδ is the

pointwise supremum of the fγi since the scale has been squared.
Since δ is a limit point of the γi ∈ A and each γi is a limit point of Cγ , and A

has a predicate for C, we see that each Cγi ⊂ N . Hence Cδ ⊂ N and N is tight.
Let N0 = skA(N ∪ωk). By Lemma 10, χN0

=k χN and sup(N0∩ℵω+1) = δ. We
now show by induction on 1 ≤ m ≤ k that there is an Nm ≺ N0 with the properties
that:

(1) |Nm| = ωk−m ⊂ Nm.
(2) sup(Nm ∩ ℵω+1) = δ and Cδ ⊂ Nm.
(3) χNm

=k χN .
(4) If δ(m) = sup(Nm ∩ ωk−m+1), then for all 1 ≤ m ≤ k − 1, δ(m) ∈ Sk−m+1.
(5) For all 1 ≤ m < k, and m ≤ m′, 〈δ(m)n : n ∈ ω〉 ⊂ Nm′ .
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Suppose that we have defined Nm−1 and m < k. Let Mm−1 be the structure
expanding Nm−1 by adding predicates for Cδ, and 〈δ(l)n : n ∈ ω, 1 ≤ l < m〉.

Let D = {γ < ωk−m : skMm−1(γ)∩ωk−m+1 = γ}. Then D is a closed unbounded
set and so there is a δ(m) ∈ Sm. In particular, skMm−1({δ(m)n : n ∈ ω}) ∩
ωk−m+1 = δ(m). Letting Nm = skMm−1({δ(m)n : n ∈ ω} ∪ ωk−m) we finish the
induction for m < k.

Given Nk−1 we define Nk to be any countable elementary substructure of Nk−1

containing the sets required by items (2) and (5). We check that Nk works. Clearly
Nk ≺ A and Cδ ⊂ Nk ⊂ N0, and hence Nk is tight. Moreover, χNk

=k fδ, for
1 < m < k, 〈δ(k − m)n : n ∈ ω〉 ⊂ Nk.

We have shown that given any structure A we can find an elementary substruc-
ture that is reconstructible. The lemma follows. �

Theorem 41. Let λ be a large regular cardinal. Suppose that there is a partial
square sequence on a stationary subset of ℵω+1∩cof(ω1) and that ℵℵ0

ω = ℵω+1. Then
there is a stationary set R ⊂ [H(λ)]ℵ0 such that if X is an elementary substructure
of 〈H(λ),∈, ∆, A0〉, ω1 ⊂ X, and cof(X ∩ ℵα) has uncountable cofinality for all
2 ≤ α ∈ ω and α = ω + 1, and X reflects R, then X ∩ [X ]ℵ0 is stationary.

(We note that the hypotheses of the theorem do not require that X have cardi-
nality ω1, though this is the main application. Also, all that is used in the proof,
is that sup(pcf{ℵn : n ∈ ω}) = ℵω+1. Following methods of [5] one can eliminate
that assumption, assuming that partial square sequences exist on all cardinals.)

Proof. Let R be the collection of reconstructible sets. We note that every element
N of R can be canonically defined by the parameters:

(1) δ = sup(N ∩ ℵω+1),
(2) the least k,χN =k fδ, and
(3) 〈sup(N ∩ ωk), sup(N ∩ ωk−1), . . . , N ∩ ω1〉

simply by taking the Skolem hull in A0 of Cδ together with the ladder systems
attached to each sup(N ∩ ωm), (1 < m ≤ k) and N ∩ ω1.

Suppose now that X is an uncountable set including all of the countable ordinals
that satisfies the cofinality restriction and X ≺ H(λ). Then X ∩ ℵω+1 is ω-closed.
Hence if N ⊂ X belongs to R, the finitely many parameters needed to define N
belong to X . Hence N ∈ X . �

Corollary 42. Assume that there is a partial square on a stationary subset of
ℵω+1∩ cof(ω1). Suppose that any four stationary sets simultaneously reflect. Then
every stationary subset of [H(ℵω+1)]ℵ0 reflects to an internally stationary set. In
particular, if the CH holds, then every stationary set reflects to an internally ap-
proachable set.

Proof. As in Corollary 20, we fix distinct infinite subsets r, s ⊂ ω and consider Ss

and Sr to be the sets that everywhere have pattern s and pattern r respectively.
Then any X ⊃ ω1 that has cardinality ω1 and which reflects both Ss and Sr has
uniform cofinality ω1. If X also reflects the set R, then X is internally stationary.
Suppose now that we want to reflect an arbitrary set T . If we simultaneously reflect
T with Sr, Ss and R, we get an X which reflects T that is internally stationary. �
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(The reconstruction techniques were first investigated in [5] for uncountable
structures, in the context of covering lemmas. For uncountable sets no version
of square is needed.)

7. Some questions

This paper leaves many questions open. We list them below. We begin with the
question that we failed to solve in this paper.

(1) Does weak reflection imply that every stationary set reflects to an internally
approachable set of size ω1?

(2) Can one deduce the singular cardinal hypothesis from the weak reflection
principle? This has been shown recently by Shelah.

(3) Can one deduce that there are no very good scales from the weak reflection
principle?

In a different direction we would like to know if partial squares exist on
successors of singular cardinals. A particular question:

(4) Does there exist a stationary set S ⊂ ℵω+1 ∩ cof(ω1) on which there is a
partial square sequence?

The next few problems deal with technical issues raised in this paper that we
think are of interest:

(5) Can one build a scale 〈fα : α < ℵω+1〉 ⊂
∏

n∈a ℵn (for some a) such that
T = {N ≺ H(λ) : χN ≤∗ fγ where γ = sup(N ∩ ℵω+1)} is stationary? (In
this paper, we showed that such a scale exists if the SCH fails, or if there is
a partial square on some stationary set of ordinals of cofinality ω1 in ℵω+1.
Here we ask if this is a result of ZFC. Clearly if the answer to Problem 4 is
affirmative, the answer to this problem is affirmative.)

(6) Letting T be the set defined in the previous question, is Tr = {N ∈ T :
pat(N,ℵω+1) = r} stationary? (Under any hypothesis?) Showing this
would require combining the two main techniques of this paper.

(7) Let X ≺ H(λ) have cardinality ω1 and suppose that ω1 ⊂ X . Then each of
the following properties is implied by the later properties. Moreover, under
the CH they are all equivalent. Are they equivalent in ZFC?
(a) X ∩ [X ]ℵ0 is unbounded in [X ]ℵ0 .
(b) X ∩ [X ]ℵ0 is stationary in [X ]ℵ0 .
(c) X ∩ [X ]ℵ0 is closed and unbounded in [X ]ℵ0 .
(d) X is internally approachable.

(8) Suppose that X ≺ H(λ) has cardinality ω1 and uniform cofinality ω1. Let
κ be a regular cardinal. Suppose that X ∩ [X ∩κ]ℵ0 is stationary. Is it true
that X ∩ [X ∩ κ+]ℵ0 is stationary?

(9) Suppose for all stationary sets S ⊂ [H(λ)]ℵ0 there is a set X of cardinality
ω1 such that S ∩ [X ]ℵ0 is stationary. Is it true that for all stationary sets
S ⊂ [H(λ)]ℵ0 there is such an X with ω1 ⊂ X?
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