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THREEFOLDS WITH VANISHING HODGE COHOMOLOGY

JING ZHANG

Abstract. We consider algebraic manifolds Y of dimension 3 over C with

Hi(Y, Ωj
Y ) = 0 for all j ≥ 0 and i > 0. Let X be a smooth completion

of Y with D = X − Y , an effective divisor on X with normal crossings. If
the D-dimension of X is not zero, then Y is a fibre space over a smooth
affine curve C (i.e., we have a surjective morphism from Y to C such that
the general fibre is smooth and irreducible) such that every fibre satisfies the
same vanishing condition. If an irreducible smooth fibre is not affine, then
the Kodaira dimension of X is −∞ and the D-dimension of X is 1. We also
discuss sufficient conditions from the behavior of fibres or higher direct images
to guarantee the global vanishing of Hodge cohomology and the affineness of

Y .

0. Introduction

Let Y be a complex manifold with Hi(Y,ΩjY ) = 0 for all j ≥ 0 and i > 0. Then
what is Y ? Is Y Stein? This is a question raised by Serre [Se]. Peternell [P] also
asked the same question for schemes: If Y is a smooth scheme of finite type over C,
is it affine? For the nonalgebraic case, in particular complex surfaces, see Peternell’s
paper [P]. Throughout this paper, we assume that Y is an algebraic manifold, i.e.,
an irreducible nonsingular algebraic variety defined over C . If dimY = 1, then Y
is affine. If dimY = 2, Mohan Kumar [Ku] classified it completely. It may not be
affine and has three possibilities as follows:

(1) Y is affine.
(2) Let C be an elliptic curve and E the unique nonsplit extension of OC by

itself. Let X = PC(E) and D the canonical section. Then Y = X −D.
(3) Let X be a projective rational surface with an effective divisor D = −K with

D2 = 0, let O(D)|D be nontorsion, and let the dual graph of D be D̃8 or Ẽ8. Then
Y = X −D.

If the surface Y is not affine, then the Kodaira dimension of X is −∞ and the
D-dimension is 0 ([Ku], Lemma 1.8). In the second case, the canonical divisor
KX = −2D and D is irreducible, so the logarithmic Kodaira dimension κ̄(Y ) =
κ(D +KX , X) = −∞; in the third case, KX = −D and D is either D̃8 or Ẽ8. Let
D′ =

∑
Di be the reduced divisor, where the Di’s are the prime components of D;

then KX +D′ is not effective. Therefore again κ̄(Y ) = −∞ ([I3], [Ku], [Mi]). The
surfaces in the first two cases are Stein. The third case is open. Since there exist
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Stein varieties which are not affine (see [H2], Serre gave the first example of this),
the surfaces in the third case might be Stein.

If dimY = 3, let us first fix our basic assumption (BA) as follows.
(BA) Let Y be a smooth irreducible threefold, and letX be a smooth completion

(see Nagata [N] for the existence of X) such that X − Y =
⋃
Di, the union of

connected, distinct prime divisors on X . Let D be an effective divisor supported
in

⋃
Di with normal crossings [I3]. Suppose that the moving part of |nD| is base

point free (such a smooth completion of Y always exists after further blowups),
H0(X,OX(nD)) �= C for some n and Y contains no complete surfaces.

Proposition. Under the condition (BA), there is a smooth projective curve C̄ and
a smooth affine curve C such that the following diagram commutes:

Y ↪→ X�f |Y
�f

C ↪→ C̄

where f is proper and surjective, every fibre of f over C̄ is connected, and the
general fibre is smooth. Also, the general fibre of f |Y is connected and smooth, and
if the D-dimension of X is no less than 2, then we can set C̄ to be P1.

Our main results are the following.

Theorem A. If Hi(Y,ΩjY ) = 0 for all j ≥ 0 and i > 0 and H0(Y,OY ) �= C, then
for the above f , we have:

(1) Every fibre S of f |Y over C satisfies the same vanishing condition, i.e.,
Hi(S,ΩjS) = 0.

(2) If there is a smooth fibre Xy0 over y0 ∈ C̄ such that Xy0 |Y = S0 is not affine,
then the Kodaira dimension of X is −∞ and the D-dimension of X is 1.

(3) If one fibre S of f |Y over C is not affine, then Y is not affine. Y is affine if
and only if for every coherent sheaf F on X

h1(X, lim→
n
F ⊗O(nD)) <∞.

Conversely, in the above diagram, let Fn = ΩjX ⊗O(nD) or Fn = ΩjX(logD) ⊗
O(nD), where ΩjX(logD) is the sheaf of logarithmic j-forms on Y ([I1], [I2], [I3]).
Then we have

Theorem B. If the higher direct images satisfy

lim→
n

R1f∗Fn = lim→
n

R2f∗Fn = 0,

or for every point y ∈ C, if Dy = Xy ∩D is a curve, and

lim→
n
H2(Xy, Fn,y) = 0, lim→

n
R1f∗Fn = 0,

where Fn,y = Fn|Xy , then Hi(Y,ΩjY ) = 0 for all j ≥ 0 and i > 0.

Similar results for the affineness of Y can be obtained. We will discuss it in
Section 3. From Theorem A and the surface cases (2) and (3) which are not affine,
we know that a threefold with the vanishing Hodge cohomology is not necessarily
affine. If it is affine, then of course it is Stein. In the surface case, if Y is not
affine, the Kodaira dimension of X is unique. Is it still true for threefolds? When
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there are nonconstant regular functions on the threefold Y , by Theorem A(1) and
Mohan Kumar’s classification, there are three different types of smooth fibres. The
question reduces to two questions. The first question is: given a smooth variety
Y with Hi(Y,ΩjY ) = 0 for all j ≥ 0, i > 0 and a surjective morphism from Y
to a smooth affine curve C such that every (or general) fibre is affine, then is Y
affine? Generally it is not true without restriction on Hodge cohomology. Under our
cohomology restrictions, if Y is a surface, then it is true (Lemma 1.8, [Ku]). The
second question is the invariance of plurigenera. If one fibre S0 is not affine, then
is the Kodaira dimension of Xt a constant in an open neighborhood of 0? Iitaka
conjectured that in a smooth family the mth plurigenus is constant. He proved it
for the surface case ([I4], [I5]). Nakayama proved that the conjecture follows from
the minimal model conjecture and the abundance conjecture ([Na1], [Na3]). Siu
proved it if the generic fibre is of general type [Si2]. Kawamata extended Siu’s
result to fibres with canonical singularities [Ka4]. In our case, some isolated fibres
may be singular or reducible or both. We cannot therefore apply these results.

Now let Y and X be as in Theorem A. We are sure that the Kodaira dimension
of X can be −∞ and the D-dimension can be 1 (Theorem 7). Our motivation here
is to see the global picture from the fibre, i.e., if every fibre or general fibre has
vanishing Hodge cohomology, then is it still true for Y ? We can prove that the
direct limit of second direct images vanishes, thus H2(Y,ΩjY ) = 0. But the direct
limit of the first direct images might be supported at finitely many points. We do
not know how to deal with these points and whether the first direct image sheaves
are locally free or not. In fact, by a result of Goodman and Hartshorne (Lemma 4),
we only need the local freeness on C. If it is true, then the direct limit is zero and
therefore we also have H1(Y,ΩjY ) = 0. Hence we can get an equivalent condition
for vanishing Hodge cohomology of Y .

Mohan Kumar’s proof in the surface case heavily depends on the following two
facts. By his Lemma 1.10, any line bundle L on the carefully chosen divisor D with
degree zero when restricted to each component of D has the following property:
H0(L) �= 0 if and only if L ∼= OD. Thus if L = OD(D), then it satisfies all these
conditions by the choice of D; therefore, it is either torsion or nontorsion. This is
why Y has only two possibilities if it is not affine. We do not know of a similar
result when the dimension is 3. The second fact is the Zariski decomposition of
D. He used it to compute intersection numbers and h0(X,OX(mD)) = 1 for every
nonnegative m. But in threefold, we do not always have Zariski decomposition
(see [C]; for recent progress, see [Na2]). To understand Y and X , we have to use
a different approach. We first construct a proper and surjective morphism from
X to a smooth curve. This is the place where we need the condition that the D-
dimension of X is not 0. Notice that we cannot use any other divisor on X to define
our map. Otherwise, we have no control of the cohomology and the image of Y , so
we cannot use our assumption. This says that we can only change the boundary
D, but cannot change Y . This is why we cannot use Iitaka’s fibration and Mori’s
construction. So in order to use Iitaka’s fibration, we must assume κ(X) ≥ 0, which
is not true in our case; but we can use Iitaka’s Cn conjecture ([Ka2], [V]).

The content of this paper is divided into three parts. In the first section, we will
present some basic lemmas. We borrow the idea from the surface case, i.e., from
[Ku], [P]. The second section contains the construction of the fibre space. We will
prove our main theorems in the third section and give an example. Our basic tools
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are Grothendieck’s local cohomology theory and classification theory developed by
the Japanese school of algebraic geometry.

Convention. Unless otherwise explicitly mentioned, we always use Zariski topol-
ogy, i.e., an open set means a Zariski open set.

1. Preliminary lemmas

Lemma 1. Let Y be an irreducible smooth threefold with Hi(Y,ΩjY ) = 0 for every
j ≥ 0 and i > 0. Let X be any smooth completion of Y . Then X − Y has no
isolated points.

Proof. If P is an isolated point of X − Y , let Y ′ = Y ∪ {P}. Then Y ′ is a scheme
and we have the exact sequence of local cohomology

0 = H2(Y,OY ) −→ H3
{P}(OY ′) −→ H3(Y ′,OY ′) = 0.

The last term is zero since Y ′ is not complete; but

H3
{P}(OY ′) ∼= lim→

n

Ext3OX
(OnP ,OY ′) �= 0

where OnP = OX/Mn, M is the ideal sheaf of P . To see this, write the short
exact sequence

0 −→ Mn/Mn+1 −→ O(n+1)P −→ OnP −→ 0.

Then, since Ext2OX
(Mn/Mn+1,OY ′) = 0, we have

0 −→ Ext3OX
(OnP ,OY ′) −→ Ext3OX

(O(n+1)P ,OY ′)

−→ Ext3OX
(Mn/Mn+1,OY ′) −→ 0.

If Ext3OX
(Mn/Mn+1,OY ′) �= 0, then dimension of Ext3OX

(OnP ,OY ′) −→ ∞ as
n −→ ∞. Thus H3

{P}(OY ′) �= 0. For some suitable m determined by n, we have

Mn/Mn+1 = (OP /M)m.

Therefore,

Ext3OX
(Mn/Mn+1,OY ′) =

⊕
Ext3(OP /M,OY ′) =

⊕
Ext3(C(P ),OY ′).

Choose local coordinates such that P = {x = y = z = 0}, x, y, z ∈ OU , U is a
neighborhood of P . Then

0 −→ OU −→ O3
U −→ O3

U −→ OU −→ C(P ) −→ 0.

Moreover,

Exti(C(P ),OU ) =
{

0 if i �= 3,
C(P ) if i = 3.

Finally, we can compute

Ext3(C(P ),OY ′) = H0(Ext3(C(P ),OU )) = C(P ) �= 0.

�

Lemma 2. Under the conditions of Lemma 1, X − Y =
⋃
Zi is connected, where

the Zi’s are irreducible components.
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Proof. If X − Y = Z is not connected, write Z = Z1 +Z2, Z1 ∩Z2 = ∅. We have a
long exact sequence of local cohomology:

0 = H2(Y,Ω3
Y ) −→ H3

Z(X,Ω3
X) −→ H3(X,Ω3

X) −→ H3(Y,Ω3
Y ) = 0.

So H3
Z(X,Ω3

X) = H3(X,Ω3
X) = C by Serre duality; but by the Mayer-Vietoris

sequence,
H3
Z(X,Ω3

X) ∼= H3
Z1

(X,Ω3
X) ⊕H3

Z2
(X,Ω3

X).

Both summands are at least one-dimensional since

H3
Zi

(X,Ω3
X) −→ H3(X,Ω3

X) = C −→ H3(X − Zi,Ω3
X) = 0.

This is a contradiction. �

Lemma 3. Let X, Y be as above. Then Y contains no complete surfaces.

Proof. If S is a complete, irreducible surface in Y , then we have the short exact
sequence

0 −→ A −→ Ω2
Y −→ Ω2

S −→ 0

where A is the kernel. Since Ω2
Y and Ω2

S are coherent, A is coherent. For any
abelian sheaf F on X , we have the long exact sequence

· · · −→ H3
Z(X,F) −→ H3(X,F) −→ H3(Y,F) −→ 0.

By formal duality [H3],
H0(X̂, Ĝ) = H3

Z(X,H)∗

where G = HomOX (F , ω), ω = Ω3
X and H = HomOX (G, ω). If F is locally free,

then H = F . So we have

H0(X̂, Ĝ) = H3
Z(X,F)∗;

but H0(X,G) −→ H0(X̂, Ĝ) is injective, by Serre duality, H3
Z(X,F) −→ H3(X,F)

is surjective. So H3(Y,F) = 0 for any locally free sheaf F . Then for any coherent
sheaf F , H3(Y,F) = 0 since we have the short exact sequence

0 −→ B −→ F ′ −→ F −→ 0

where F ′ is locally free. In particular, H3(Y,A) = 0. From

0 = H2(Y,Ω2
Y ) −→ H2(Ω2

S) −→ H3(Y,A) = 0

we have H2(Ω2
S) = 0, which is a contradiction ([AK]). �

Remark 1. Our proof is algebraic. In analytic category, we can use Siu’s theorem
[Si1] to get H3(Y, F ) = 0 for any analytic sheaf F since Y is not compact by Serre
duality. Then we can use Norguet and Siu’s result ([NS], [P]). It says that if a
complex manifold Y contains a compact analytic subvariety of dimension q and for
every coherent sheaf F on Y , Hq+1(Y, F ) = 0, then Hq(Y,Ωq) �= 0.

By the above lemmas, we know that for any smooth completion X of Y , the
dimension of the boundary X − Y is not zero. By suitable blowing ups, we may
assume they satisfy the basic assumption (BA). So the D-dimension of such X
makes sense. We put a lemma after Theorem 1 for logical correctness. It says that
if the D-dimension of X is not zero, then Y contains no complete curves.
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Lemma 4 (Goodman, Hartshorne). Let V be a scheme and D an effective Cartier
divisor on V . Let U = V−SuppD, and let F be any coherent sheaf on V . Then for
every i ≥ 0,

lim→
n

Hi(V, F ⊗O(nD)) ∼= Hi(U,F |U ).

2. Construction of a proper, surjective morphism from X to C̄

If H0(X,OX(nD)) �= C, let ξ be a nonconstant, irreducible element (which
means that it cannot be written as a product of two nonconstant elements) in
H0(X,OX(nD)). Then it defines a rational map

ξ : X ��� P
1,

with poles in D. When restricted to Y , it is a morphism

ξ|Y : Y −→ A
1.

Let U = ξ(Y ), the image of Y under ξ. By Hironaka’s elimination of indeterminacy,
there is a smooth projective variety X̃ , such that the morphism σ : X̃ → X is a
composite of finitely many monoidal transformations which is isomorphic when
restricted to Y , i.e., Y is fixed and g = ξ ◦ σ : X̃ → P1 is proper and surjective.
Replace X by X̃. Since g|Y = ξ, we have the following commutative diagram:

Y ↪→ X�g|Y
�g

U ↪→ P1.

To guarantee the connectedness of fibres, we can use Stein factorization. Let f :
X → C̄ be a proper surjective morphism, and let h : C̄ → P1 be a finite ramified
covering such that g is the composition of these two maps, i.e., g = h ◦ f . Let
C = f(Y ). Then we have the commutative diagram

Y ↪→ X�f |Y
�f

C ↪→ C̄,

where f is proper and surjective and every fibre of f is connected. Moreover, C
and C̄ are smooth.

Now consider the image of D under f . If f(D) is a point, then Y contains
complete surfaces, so f(D) = C̄. Since both X and C̄ are irreducible and projective,
every fibre of f over C̄ has dimension at least 2 ([Sh], Chapter 1, section 6.3,
Theorem 7) but cannot be 3 ([Sh], Chapter 1, section 6.1, Theorem 1), that is,
every fibre has dimension 2. By the second Bertini theorem ([Sh], Chapter 2,
section 6.2), there is an open set U ⊂ C̄ such that every fibre f−1(P ) for every
point P in U is smooth.

Since f(D) = C̄, there is a component Di of D, such that f(Di) = C̄. But some
components of D may have points as images. Removing these finitely many points
from C, for a general point P in C, the inverse image S̄ = f−1(P ) is an irreducible
surface such that ∅ �= Di ∩ S̄ ⊂ D ∩ S̄. By irreducibility of the general fibre, D ∩ S̄
is a curve on S̄ for general P . Removing this curve, the surface S = S̄−D = S̄ ∩Y
is irreducible. So the general fibre of f |Y over C is smooth and irreducible (thus
connected).



THREEFOLDS WITH VANISHING HODGE COHOMOLOGY 1983

By our construction, f∗OX = OC̄ ([U2], Proposition 1.13). But we do not know
what the curve C̄ is. If the D-dimension κ(D) ≥ 2, then we can set C̄ to be P1.
The construction of a rational map from X to P1 is due to Ueno ([U2], page 46).

Choose two algebraically independent rational functions η1 and η2 in C(X). By
Zariski’s lemma ([HP], Chapter X, section 13, Theorem 1, page 78), there exists a
constant d such that the field C(η1 + dη2) is algebraically closed in C(X). Define
a rational map f from X to P1 by sending points x in X to (1, η1(x) + dη2(x)) in
P1. We can choose η1 and η2, such that η1 + dη2 only has poles in D ([U2], Lemma
4.20.3), that is, when restricted to Y , f is a morphism. Then by our previous
argument, we have the diagram

Y ↪→ X�f |Y
�f

C ↪→ P1,

where f and f |Y satisfy the same properties as before.

Proposition. Under the condition (BA), there is a smooth projective curve C̄ and
a smooth, affine curve C such that the following diagram commutes:

Y ↪→ X�f |Y
�f

C ↪→ C̄

where f is proper and surjective, every fibre of f over C̄ is connected, and the
general fibre of f is smooth. Also, the general fibre of f |Y is connected and smooth.
Moreover, if the D-dimension of X is no less than 2, then we can set C̄ to be P1.

Remark 2. By [I1], page 79, for the general fibre Xy = f−1(y), D|Xy = Dy is a
divisor of Xy with normal crossings if D is a divisor with normal crossings.

3. Structure of Y with h0(X,OX(nD)) > 1

In the diagram of the proposition, since C̄ is smooth, f is flat.

Theorem 1. If Y is a smooth threefold with Hi(Y,ΩjY ) = 0 for all j ≥ 0 and i > 0
and H0(X,OX(nD)) �= C for some n, then in the construction of the proposition,
for every fibre S of f |Y over C, Hi(S,ΩjY |S) = 0; therefore Hi(S,ΩjS) = 0 for all
j ≥ 0 and i > 0.

Proof. Y has no complete surfaces by Lemma 1. Thus the condition of the propo-
sition is satisfied. For any point P on C, let g be an element of Γ(C,OC) such that
the divisor defined by g is Q=divg = P +Q1 + · · ·+Qr, P �= Qi for every i. Then

f−1(Q) = SQ = S ∪ S1 ∪ · · · ∪ Sr
where S is the fibre over P and Si is the fibre over Qi. From the short exact
sequence

0 −→ OY −→ OY −→ OSQ −→ 0
where the first map is defined by g, we have

Hi(SQ,OSQ) = 0

for every i > 0. Similarly, from the short exact sequence

0 −→ ΩjY −→ ΩjY −→ ΩjY |SQ −→ 0
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where the first map is still defined by g, we have

Hi(SQ,Ω
j
Y |SQ) = 0.

By the Mayer-Vietoris sequence, we have

Hi(S,ΩjY |S) = 0.

In particular, Hi(S,OS) = 0. From the exact sequence

0 −→ A −→ ΩjY |S −→ ΩjS −→ 0

we have Hi(S,ΩjS) = 0 for every i > 0 and j ≥ 0 since H2(S,A) = 0 for the
coherent sheaf A ([H3], [Kl]). �

Remark 3. If Hi(Y,ΩjY ) = 0 for every i > 0 and j ≥ 0, and H0(X,OX(nD)) �= C

for some n, then Y contains no complete curves. In fact, if E is such a curve in
Y , then its image under f |Y is a point P on C, so E is contained in the fibre S
of f |Y over P also contained in f−1(P ) = XP in X . Write XP = X ′

P +D′ where
D′ is a divisor contained in D and X ′

P intersects Y with the surface S in Y , i.e.,
S = Y ∩X ′

P , and X ′
P ∩D is a curve. Then Hi(S,ΩjS) = 0 for every i > 0 and j ≥ 0

by Theorem 1. This implies that S is not complete [AK]. If there is a complete
curve Z in S, then H1(Z,Ω1

Z) �= 0, but

0 −→ A −→ Ω1
S −→ Ω1

Z −→ 0

and H2(S,A) = 0 ([H3], [Kl]). This is a contradiction. So we have shown

Lemma 5. Let Y be a smooth threefold with Hi(Y,ΩjY ) = 0 for all j ≥ 0 and i > 0
and H0(Y,OY ) �= C. Then Y contains no complete curves.

Now consider the sheaves ΩjX and ΩjX(logD). Let Fn = ΩjX ⊗ O(nD) or Fn =
ΩjX(logD) ⊗ O(nD). Then Fn is flat over C̄ since it is locally free on X and C̄

is smooth. If Hi(Y,ΩjY ) = 0, then for every fibre S = f−1
|Y (y) = Xy ∩ Y , y ∈ C,

Hi(S,ΩjY |S) = 0 for all j ≥ 0 and i > 0. If Xy is irreducible, then by Lemma 4,
since Fn|S = ΩjY |S and D|Xy = Dy is a divisor on Xy, we have

lim→
n

Hi(Xy, Fn,y) = 0

where Fn,y = Fn|Xy . If the point y lies in C̄\C, or the fibre Xy is not irreducible,
then what will happen? Is the direct limit still zero? Theorem 2 is our answer.

Theorem 2. Under the conditions of Theorem 1, for every point y in C̄, we have

lim
→
n

Hi(Xy, Fn,y) = 0.

Proof. If y is contained in C and the fibre Xy in X is irreducible, we are done.
First let y ∈ C̄\C, E = f−1(y). We have the short exact sequence

0 −→ OX(−E) −→ OX −→ OE −→ 0.

Tensoring with Fn, we have

0 −→ Fn(−E) −→ Fn −→ Fn|E −→ 0.

If
lim→
n
Hi(X,Fn(−E)) = 0,
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since we have
lim→
n

Hi(X,Fn) = 0,

then writing the long exact sequence, we get our claim.
For any fixed n, there is a suitable l, such that the map

α2 : Hi(X,Fn) −→ Hi(X,Fn+l−1)

is zero. For this n and l, we have a map

Hi(X,Fn(−E)) α−→Hi(X,Fn+l(−E)).

E is a component of D (may not be prime) so the map α can be factored through
three maps as follows:

Hi(X,Fn(−E)) α1−→Hi(X,Fn) α2−→Hi(X,Fn+l−1)
α3−→Hi(X,Fn+l(−E)).

Since α2 = 0, and α = α3 ◦ α2 ◦ α1, we have α = 0, i.e, the direct limit we want
is zero. The map α3 is the natural map corresponding to the map Fn+l−1 →
Fn+l−1 ⊗O(D − E).

If y is a point in C and the fibre Xy is not irreducible, write Xy = X ′
y+D′ where

D′ is a divisor contained in D, X ′
y intersects Y with a surface S, and X ′

y ∩D is a
curve. Then S is the fibre of f |Y over y in Y . S may not be irreducible, however,
X ′
y\S is a divisor on X ′

y. By Theorem 1 and Lemma 4, for every i > 0,

lim→
n

Hi(X ′
y, Fn|X′

y
) = 0.

From the short exact sequence

0 −→ Fn(−X ′
y) −→ Fn −→ Fn|X′

y
−→ 0

we have for i+ 1 = 2, 3,

lim→
n

Hi+1(X,Fn(−X ′
y)) = 0.

Similar to the above argument about Hi(X,Fn(−E)), we can see that

lim→
n
Hi(X,Fn(−D′)) = 0.

For i > 0, consider the map

Hi+1(X,Fn(−X ′
y −D′))

β−→Hi+1(X,Fn+l(−X ′
y −D′)).

As before, it can be factored through three maps as follows:

Hi+1(X,Fn(−X ′
y −D′))

β1−→Hi+1(X,Fn(−X ′
y))

β2−→Hi+1(X,Fn+l−1(−X ′
y))

β3−→Hi+1(X,Fn+l(−X ′
y −D′)).

For every fixed n, we can choose l such that the map β2 is zero. Since β = β3◦β2◦β1,
β = 0, i.e., for i+ 1 = 2, 3,

lim→
n

Hi+1(X,Fn(−X ′
y −D′)) = 0.

Again from the exact sequence

0 −→ Fn(−X ′
y −D′) −→ Fn −→ Fn|X′

y+D′ = Fn|Xy −→ 0

we get our claim. �
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From Theorems 1 and 2 we know how the global vanishing cohomology controls
the local (fibre) cohomology. How does the fibre behavior influence the global
behavior? If every fibre S of f |Y in Y over y ∈ C satisfies Hi(S,ΩjY |S) = 0, then
does Hi(Y,ΩjY ) = 0? We will see that the second and third cohomology vanish but
the first cohomology is a mystery. To guarantee its vanishing, we have to add a
mild condition.

To see how the local fibre behavior influences the global behavior, the higher
direct images Rif∗Fn are the link. They are coherent for all i ≥ 0 by Grauert’s
theorem. Since f is flat over C̄, hi(Xy, Fn,y)=dimCH

i(Xy, Fn,y) is an upper semi-
continuous function on C̄. Since H4(Xy, Fn,y) = H3(Xy, Fn,y) = 0, by [Mu],
Corollary 3, R3f∗Fn = 0. This guarantees H3(Y,ΩjY ) = 0 for every j, and for every
point y ∈ C̄,

R2f∗Fn⊗C(y) ∼= H2(Xy, Fn,y).
If we only consider the closed points y on C̄, C(y) = C, we have ([U2], Theorem
1.4)

(R2f∗Fn)y⊗C ∼= H2(Xy, Fn,y),
where (R2f∗Fn)y is the stalk at y and the tensor product is over OC̄,y. So every
stalk satisfies

lim→
n

(R2f∗Fn)y/P(R2f∗Fn)y = lim→
n
H2(Xy, Fn,y) = 0

for every closed point y, where P is the maximal ideal of Oy. This means that for
every fixed n and fixed y, there is an l such that the map

φ : (R2f∗Fn)y/P(R2f∗Fn)y −→ (R2f∗Fn+l)y/P(R2f∗Fn+l)y

is zero. Choose an affine open neighborhood U of y in C̄ such that R2f∗Fn|U = M̃

and R2f∗Fn+l|U = Ñ , where M and N are finitely generated modules over A =
O(U). For every maximal ideal P of O(U), we have the commutative diagram

M
ψ−→ N�π1

�π2

M/PM φ−→ N/PN.
We can prove ψ(M) = 0 if Dy = D∩Xy is a curve on the fibre Xy for every y ∈ C.
Therefore,

lim
→
n

R2f∗Fn|C = 0

which means H2(Y,ΩjY ) = 0 by Remark 5. In fact, we can get a stronger result.
From the exact sequence

0 −→ O(nD) −→ O((n+ 1)D) −→ OD((n+ 1)D) −→ 0,

tensoring with F then with OXy , we have

0 −→ Fn,y −→ Fn+1,y −→ Fn+1,y|D −→ 0.

If Dy is a curve, then H2(Fn+1,y|D) = H2(Fn+1,Dy ) = 0 for every n. So the map
H2(Fn,y) → H2(Fn+1,y) is surjective for every n. But by Theorem 2, for suitable
l, the map H2(Fn,y) → H2(Fn+l,y) is zero. Thus there is an n(y) depending
on y such that for every n ≥ n(y), H2(Fn,y) = 0. Now fix some y0 in C̄ such
that H2(Fn,y0) = 0 for every n ≥ n(y0) and there is an open neighborhood U0
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of y0 in C̄ such that R2f∗Fn(y0) is locally free on U0. Then H2(Fn(y0),y) = 0 for
every y in U0. So H2(Fn,y) = 0 for every y in U0 and every n ≥ n(y0). Let
C − U0 = {y1, y2, ..., ym} and choose n0 = max(n(y0), n(y1), ..., n(ym)). Then
H2(Xy, Fn,y) = 0 for every y ∈ C and every n ≥ n0. By the upper semi-continuity
theorem, (R2f∗Fn)y/P(R2f∗Fn)y = 0 for all points y in C. By Nakayama’s lemma,
R2f∗Fn|C = 0.

The sheaf R1f∗Fn is not so nice. For any fixed n, there is an open set Un in
C̄, such that it is locally free on Un. Let Un = C̄\An, where An is closed in C̄,
i.e., it consists of only finitely many points of C̄. Since any complete metric space
is a Baire space (in complex topology, every countable intersection of dense open
sets in C̄ is dense in C̄ [B2], Chapter 9), B = C̄\⋃

An =
⋂
Un is a dense (but

we do not know if B is open) subset of C̄ in complex topology. Hence for every
point y on B, all stalks (R1f∗Fn)y are locally free. Write B as a union of connected
subsets Bm, B =

⋃
Bm. Then there is one Bm, such that Bm is dense in C̄ and

connected in complex topology. So we may assume that B is connected. Again by
the upper-semicontinuity theorem, for every point y in C and every n ≥ n0, since
R2f∗Fn|C = 0, we have [Mu]

(R1f∗Fn)y⊗C ∼= H1(Xy, Fn,y).

For any m, h1(Xy, Fm,y) is constant on B since R1f∗Fm is locally free at every
point y on B and B is connected. So for the above n and for all points y in B,
there is an l such that the map

H1(Xy, Fn,y) −→ H1(Xy, Fn+l,y)

is zero. Moreover, for every point y in C and sufficiently large n, we have the
following commutative diagram:

R1f∗Fn⊗C(y) ≈−→ H1(Xy, Fn,y)�α �β
R1f∗Fn+l⊗C(y) ≈−→ H1(Xy, Fn+l,y).

The map β is zero for every y ∈ B, so as before, the map

α : (R1f∗Fn)y/P(R1f∗Fn)y −→ (R1f∗Fn+l)y/P(R1f∗Fn+1)y

is zero for all points y in B. By the local freeness, this says on B,

lim→
n

R1f∗Fn|B = 0.

To see this, fix a point y0 in B. For any sufficiently large n and for the above l,
choose an affine open set V containing y0 such that both R1f∗Fn and R1f∗Fn+l

are locally free on V . So there are two positive integers m1 and m2 such that
R1f∗Fn(V ) = O(V )m1 and R1f∗Fn+l(V ) = O(V )m2 . Now for infinitely many
maximal ideals P , we have the commutative diagram

O(V )m1
ψ−→ O(V )m2�π1

�π2

O(V )m1/PO(V )m1
φ−→ O(V )m2/PO(V )m2 .
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Since ψ(O(V )m1) ⊂ ∩PO(V )m2 = 0, where P runs over infinitely many maximal
ideals of O(V ), we have ψ(O(V )m1) = 0. This proves

lim→
n

R1f∗Fn|B = 0.

Since the direct limit of R1f∗Fn is quasi-coherent, its support is locally closed.
Now B is dense and connected in complex topology, so there exists an affine open
set U (we come back to Zariski topology!) in C̄ such that on U , the direct limit

lim→
n

R1f∗Fn|U = 0.

By Theorem 4 and its remark below, we have proved

Theorem 3. If for every point y in C̄ and for every i > 0,

lim→
n
Hi(Xy, Fn,y) = 0,

and for every point y ∈ C, Dy = Xy∩D is a curve on the fibre Xy, then R2f∗Fn|C =
0 for n ≥ n0 and

lim→
n
R1f∗Fn|U = 0, for a suitable U.

So H3(Y,ΩjY ) = H2(Y,ΩjY ) = H1(V,ΩjY |V ) = 0 for every j, where V = f−1(U)∩Y .

We have seen that R3f∗Fn = 0 for every n is determined by the dimension of
fibres. Now we explain why for i = 1, 2, if

lim→
n

Rif∗Fn = 0,

then H2(Y,ΩjY ) = H1(Y,ΩjY ) = 0. For any point y ∈ C̄, choose an affine open set
U containing y, and let G denote the direct limit of Fn. Then we have the long
exact sequence of local cohomology

H1
Z(f−1(U), G) −→ H1(f−1(U), G) −→ H1(f−1(U − {y}), G) −→ H2

Z(f−1(U), G)

−→ H2(f−1(U), G) −→ H2(f−1(U − {y}), G) −→ H3
Z(f−1(U), G) −→ 0,

where Z = f−1(y). Since the direct limit commutes with cohomology [H1], for every
i > 0,

Hi(f−1(U), G) = lim→
n

Hi(f−1(U), Fn) = lim→
n

Rif∗Fn(U) = 0

and

Hi(f−1(U − {y}), G) = lim→
n

Hi(f−1(U − {y}), Fn) = lim→
n

Rif∗Fn(U − {y}) = 0,

we have H2
Z(f−1(U), G) = H3

Z(f−1(U), G) = 0. Let V = C̄ − {y}; from

−→ Hi
Z(X,G) −→ Hi(X,G) −→ Hi(f−1(V ), G) −→

and for i = 2, 3, Hi
Z(X,G) = Hi

Z(U,G) = 0. By Lemma 4, we have

H2(X,G) = lim→
n

H2(X,Fn) = 0 =⇒ H2(Y,ΩjY ) = 0

and
H3(X,G) = lim→

n
H3(X,Fn) = 0 =⇒ H3(Y,ΩjY ) = 0.

Now look at H1(X,G), since

lim→
n
R1f∗Fn(C) = lim→

n
H1(f−1(C), Fn) = 0
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and Y = f−1(C) ∩ Y ψ
↪→f−1(C) is an affine morphism (D is locally defined by one

equation), by Grothendieck [G], page 100. Finally we get

0 = lim→
n

H1(f−1(C), Fn) = H1(f−1(C), ψ∗(Fn|Y )) = H1(Y,ΩjY ).

Theorem 4. If
lim→
n
R1f∗Fn = lim→

n
R2f∗Fn = 0,

or for every y ∈ C̄, if Dy = Xy ∩D is a curve on the fibre Xy and

lim→
n

R1f∗Fn = lim→
n

H2(Xy, Fn,y) = 0,

then Hi(Y,ΩjY ) = 0 for every i > 0 and j ≥ 0.

Remark 4. If R1f∗Fn are locally free, then R0f∗Fn and R2f∗Fn are locally free by
[Mu], page 50, corollary, and from Theorems 3 and 4, we know that the vanishing
direct limit of Hi(Xy, Fn,y) guarantees the vanishing of the Hodge cohomology of
Y . So it is almost true that the local vanishing Hodge cohomology on every fibre
S over C guarantees the global vanishing of Y . The local freeness of R1f∗Fn also
tells us that Hi(Y,ΩjY ) = 0 and

lim→
n
R1f∗Fn = lim→

n
R2f∗Fn = 0

are equivalent.

Remark 5. By Lemma 4, the theorem is true if the above assumptions hold on C,
i.e.,

lim→
n
R1f∗Fn|C = lim→

n
R2f∗Fn|C = 0,

or for every y ∈ C,

lim→
n

R1f∗Fn|C = lim→
n

H2(Xy, Fn,y) = 0.

Now let us consider the affineness of Y . Under the basic assumption (BA), if
Y is affine, then every fibre S of f |Y over C is affine in the proposition since it is
closed in Y . Conversely, if every fibre is affine in Theorem 1, is Y affine? In the
surface case, it is true. Let us state it precisely. If we have a surjective morphism
from a smooth surface S with Hi(S,ΩjS) = 0 for every i > 0, j ≥ 0 to an affine
curve C, then S must be affine. If not, there are nonconstant regular functions on
S lifted from regular functions on C. But by Lemma 1.8, [Ku], we know there is no
such function on S. How about the case of threefolds? We can give some answer.
By Serre’s affineness criterion, S is affine if and only if for all coherent sheaves of
ideals IS on S, Hi(S, IS) = 0 for all i > 0, or if and only if for all coherent sheaves
FS on S, Hi(S,FS) = 0. Since the proof of Theorem 2, Theorem 3, and Theorem
4 also works for coherent sheaves, we have

Theorem 5. (1) In the diagram of the proposition, if Y is affine, then every fibre
S over C is affine and for every point y ∈ C̄, every i > 0 and every coherent sheaf
F on X,

lim→
n
Hi(Xy,Fn,y) = 0, lim→

n
R2f∗Fn = 0,
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and there is an affine open set U in C̄ and an integer n0 such that for every m ≥ n0,

lim→
n

R1f∗Fn|U = 0, R2f∗Fm|U = 0,

where Fn = F ⊗O(nD), Fn,y = Fn|Xy .
(2) Conversely, if

lim→
n

R1f∗Fn|C = lim→
n

R2f∗Fn|C = 0,

or for every y ∈ C, if Dy is a curve and

lim→
n

R1f∗Fn|C = lim→
n

H2(Xy,Fn,y) = 0,

then Y is affine.

Remark 6. If Y is affine, then it is Stein. Theorem 5(2) is also a sufficient condition
of Steinness.

Theorem 6. If Hi(Y,ΩjY ) = 0 for every i > 0 and j ≥ 0, and the D-dimension of
X is not zero, then Y is affine if and only if for every coherent sheaf F on X,

h1(X, lim→
n

F ⊗O(nD)) <∞.

Proof. By the assumption, we know that Y contains no complete curves. By [GH],
Proposition 3, we are done. �

For the D-dimension and Kodaira dimension of X , we have

Theorem 7. If Hi(Y,ΩjY ) = 0, the D-dimension of X is not zero, and there is
a smooth fibre Xy0 of f over y0 ∈ C̄ such that S0 = Xy0 |Y is not affine, then the
Kodaira dimension of X is −∞ and the D-dimension of X is 1. Generally, we
have

κ(C̄) + κ(Xy0) ≤ κ(X) ≤ κ(Xy0) + 1.

In particular, if the genus of C̄: g(C̄) ≥ 2, then κ(X) = κ(Xy0) + 1.

Proof. In the surface case, if S0 is not affine and satisfies the same vanishing condi-
tion, then the Kodaira dimension of its completion Xy0 is −∞ and the D-dimension
is 0 by [I3], [Ku], [Mi]. If S0 is not affine, then Xy0 is birational to either the special
ruled surface of case (2) or the special rational ruled surface of case (3) in the first
paragraph of Section 0, with S fixed. By deformation theorems of Iitaka [I4], [I5],
there is an affine open set U in C̄ such that every fibre Xy of f over y ∈ U is of the
same type. By Theorem 5.11 and Theorem 6.12 of Ueno [U2], we have

κ(X) ≤ κ(Xy0) + 1 = −∞.

Combining with the upper semicontinuity theorem, if for the general fibre Xy over
y ∈ C̄, κ(D|Xy0

, Xy0) = κ(D|Xy , Xy), then

κ(D,X) ≤ κ(D|Xy0
, Xy0) + 1.

Consider κ(D|Xy0
, Xy0). If the divisor Dy0 = D|Xy0

on Xy0 is a special divisor
as [Ku], i.e., it has no exceptional divisor of the first type and it is a generator of
the kernel of the intersection form, then H0(OX0 (nDy0)) = C, for every nonneg-
ative integer n (this says H0(OXy (nDy)) = C for every n and general y), hence
κ(D|Xy , Xy) = κ(D|Xy0

, Xy0) = 0, κ(D,X) = 1. But we cannot guarantee that Dy0
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is such a special divisor. By [I3], properties (1), (2), pages 11 and 12, let D1, ..., Dr

be prime components of D. For all integers p1,..., pr > 0, we have

κ(D1 + ...+Dr, X) = κ(p1D1 + ...+ prDr, X);

and if g : W → V is a surjective morphism, where W and V are smooth projective
varieties and E is an effective divisor on W such that codim(g(E)) ≥ 2, then

κ(g∗(D′) + E,W ) = κ(D′, V )

where D′ is a divisor on V , g∗(D′) =
∑
D′
i is the reduced transform of D′, where

D′
i are irreducible components. By [U2], Lemma 5.3, pages 51 and 52, if every fibre

in the above map g is connected, then we have the C-linear isomorphism

H0(V,OV (D′)) ∼= H0(W,OW (g∗D′)).

From these properties we get the same D-dimension. In fact, on the fibre Xy,
the Dy-dimension does not depend on the support of the divisor Dy, i.e., Dy may
contain exceptional curves of the first kind. It also does not depend on the coeffi-
cients of the prime divisors of Dy. In any case, the open part S = Xy ∩ Y is fixed.
Therefore, κ(D|Xy0

, Xy0) = 0. Hence κ(D,X) = 1 if Sy0 is not affine.
The remaining cases follow from [Ka2], [V]. �

Remark 7. In the above proof, if the fibre Xy0 = X0 is smooth, then S0 = X0∩Y is
smooth and satisfies Hi(S0,Ω

j
S0

) = 0. If S0 is not affine, then it is fixed by Mohan
Kumar’s classification, i.e., it is either a type (2) surface or a type (3) surface (see
the first paragraph of Section 0). Here the boundary D0 = X0 − S0 = D|X0 may
not be the special divisor D′

0 in [Ku]. But by the above argument, κ(D0, X0) =
κ(D′

0, X0) = 0. It might happen that there is no global divisor D on X such that
when restricted to the fibre X0, it is the divisor D′

0. Fortunately, we do not need
the existence of such a special divisor D. In fact, we have D first and then consider
its restriction on the fibre.

In the surface case, if Hi(S,ΩjS) = 0 for all i > 0 and j ≥ 0, and S is not affine,
then the Kodaira dimension of its completion is unique and the D-dimension is
also unique. In the threefold case, is it still true? Using the same notation as in
Theorem 7, if S0 is affine, then we can choose U such that every fibre Xy of f over
U has constant Kodaira dimension. If g(C̄) ≥ 2, then κ(X) = κ(Xy)+1. But under
this condition, is Y affine? This is equal to the question that if every (or general)
fibre S of f |Y over C is affine, is Y affine?

Consider the logarithmic Kodaira dimension κ̄(Y ) = κ(KX +D,X). For general
fibre Xy, D|Xy = Dy is a divisor on Xy with normal crossings [I1]. The logarithmic
Kodaira dimension does not depend on the embedding if the boundary is a divisor
with normal crossings [Mi]. By Theorem 3, [I3], κ̄(Y ) ≤ κ̄(S) + 1, where S is a
general fibre. If S is smooth but not affine, then κ̄(S) = −∞, therefore κ̄(Y ) = −∞.
Generally, if Iitaka’s C̄n conjecture is true [I3], i.e., κ̄(Y ) ≥ κ̄(S) + κ̄(C), then

κ̄(S) + κ̄(C) ≤ κ̄(Y ) ≤ κ̄(S) + 1.

In particular, if κ̄(C) = 1, i.e., the genus g(C̄) ≥ 2, then κ̄(Y ) = κ̄(S) + 1. In 1978,
Kawamata [Ka3] proved this conjecture if the fibre dimension is 1.
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Finally, we give an example.

Example. Let S be a surface with Hi(S,ΩjS) = 0 for all i > 0 and j ≥ 0, not affine,
and let C be any smooth affine curve. Then Y = S×C satisfies Hi(Y,ΩjY ) = 0 for
all i > 0 and j ≥ 0 by Künneth’s formula (see [Hi] or [SaW]). The D-dimension of
X = S̄ × C̄ is 1 and the Kodaira dimension is −∞ by Theorem 7. Its logarithmic
Kodaira dimension is also −∞. Again by Künneth’s formula, if S is of type (3)
surface in Mohan Kumar’s classification [Ku], then q(X) = h1(OX) = g(C̄). This
example says that q(X) can be any nonnegative integer. So if we choose different
C with different genus, the corresponding X are not isomorphic since they have
different q.
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