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SIGNATURE OF RELATIONS IN MAPPING CLASS GROUPS
AND NON-HOLOMORPHIC LEFSCHETZ FIBRATIONS
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Dedicated to Professor Yukio Matsumoto for his 60th birthday

Abstract. We introduce the notion of signature for relations in mapping class
groups and show that the signature of a Lefschetz fibration over the 2-sphere
is the sum of the signatures for basic relations contained in its monodromy.
Combining explicit calculations of the signature cocycle with a technique of
substituting positive relations, we give some new examples of non-holomorphic
Lefschetz fibrations of genus 3, 4 and 5 which violate slope bounds for non-
hyperelliptic fibrations on algebraic surfaces of general type.

1. Introduction

The study of Lefschetz fibrations has turned out to be interesting and important
by virtue of the remarkable works of Donaldson [10] and Gompf [17] which demon-
strate a close relationship between symplectic 4-manifolds and Lefschetz fibrations.

The geography problem of Lefschetz fibrations is one of the most interesting top-
ics to be investigated. Originally, the geography problem for complex surfaces was
to find minimal surfaces of general type with a prescribed pair of Chern numbers.
Using the pair of Euler characteristic and signature instead of the pair of Chern
numbers, we can consider also the geography problem of Lefschetz fibrations. The
Euler characteristic of a given Lefschetz fibration is easily computed, while the sig-
nature is not. If the Lefschetz fibration is over the 2-sphere, Ozbagci [33] and Smith
[36] gave signature formulae: the former’s is suited for explicit computation and
the latter’s for showing some qualitative properties of Lefschetz fibrations. If the
Lefschetz fibration is hyperelliptic, a local signature, which is a generalization of
the σ-number [28] and the fractional signature [29] due to Matsumoto, was defined
by the first author [12] and a method of computing signatures was established.

It is also interesting to find various kinds of examples of non-holomorphic Lef-
schetz fibrations, which imply the difference between the geography of algebraic
surfaces fibered over curves and that of Lefschetz fibrations. Ozbagci and Stipsicz
[34] constructed examples of non-holomorphic genus-2 Lefschetz fibrations whose
total space never appear in the table of the Enriques-Kodaira classification of com-
plex surfaces. Korkmaz [25] generalized their examples to higher genera. Fintushel
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and Stern [14] produced minimal symplectic Lefschetz fibrations which do not sat-
isfy the Noether inequality.

In the present paper we would like to propose a useful method of computing
signatures of Lefschetz fibrations and give some new examples of non-holomorphic
Lefschetz fibrations. We first introduce the notion of signature for relations in
mapping class groups. The signature of a Lefschetz fibration over the 2-sphere is
equal to the sum of the signatures for basic relations appearing in its monodromy.
Combining explicit computations of signatures for basic relations with a technique
of substituting positive relations, which is a generalization of a method of Fuller
and Smith [37], we construct new examples of non-holomorphic Lefschetz fibrations
of genus 3, 4 and 5 which violate lower bounds of the slope of non-hyperelliptic
fibrations in algebraic geometry.

This paper is organized as follows. In Section 2 we recall a well-known theorem
of Hopf and some facts on 2-cocycles of groups. In Section 3 we define the signature
of a relator of mapping class groups and carry out explicit computations of signa-
tures for basic relators. In Section 4 we construct examples of non-holomorphic
Lefschetz fibrations using the results of Section 3 and some results on slope bounds
for algebraic surfaces.

The idea of “the signature of a relation” occurred to the first author when he
worked on signature of surface bundles at the University of Munich in 2000 with the
co-authors of [13]. He is grateful to the co-authors of [13], especially D. Kotschick
for helpful discussions and comments. The authors are grateful to K. Konno for a
detailed explanation of his works on the lower bound of the slope of non-hyperelliptic
fibrations and to T. Morifuji for useful comments on his formula of Meyer’s function
in [30].

2. Hopf’s Theorem and 2-cocycle

In this section we review some facts about cohomology of groups (cf. Brown [6]
and Meyer [27]).

Let G be a group. We define the homology H∗(G) of G as the homology of the
co-invariants of the standard resolution of Z over ZG. The standard chain complex
of G is denoted by C∗(G). We describe the second homology group H2(G) in terms
of a given presentation of G.

Theorem 2.1 (Hopf [19]). Let G be a group, F a free group and π : F → G an
epimorphism. Then the following isomorphism holds:

H2(G) ∼= R ∩ [F, F ]/[R,F ],

where R = Kerπ is the kernel of π.

An explicit homomorphism which induces the isomorphism in Hopf’s theorem is
given as follows.

Lemma 2.2. Let G be a group, F = F (S) the free group generated by a set S and
π : F → G an epimorphism. The homomorphism

R → C2(G) : r �→
∑
s∈S

[
∂r

∂s

∣∣∣∣ s
]

induces the isomorphism

R ∩ [F, F ]/[R,F ] → H2(G) = H2(C∗(G)),
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where ∂/∂s : ZF → ZF is the Fox free derivative with respect to s, f is the image of
f ∈ F under π and the symbol [ · | · ] stands for the bar notation extended linearly
over ZG.

Proof. See Brown [6], §2.5, Exercise 4. �

Using the lemma above, we have the following description of the evaluation map
H2(G) → Z for the cohomology class of a 2-cocycle of G.

Proposition 2.3 (cf. Meyer [27], §3). Let G be a group, F = F (S) the free group
generated by a set S and π : F → G an epimorphism. If a 2-cocycle z : G×G→ Z

of G satisfies the condition

z(g, 1) = z(1, g) = z(g, g−1) = 0 for all g ∈ G,(∗)
then the homomorphism H2(C∗(G)) → Z defined by the cohomology class of z
together with the Kronecker product is induced by the homomorphism

c : R −→ Z : r �→
m∑

j=1

z(s1 · · · sj−1, sj)

(r = s1 · · · sm, s1, . . . , sm ∈ S ∪ S−1)

under the isomorphism in Lemma 2.2.

Proof. Let r be an element of R. We express r as a word in s1, . . . , sm: r =
sε1
1 · · · sεm

m , where ε1, . . . , εm ∈ {±1}. By virtue of Lemma 2.2, the image of r under
the composition c : R→ C2(G) → Z is equal to

∑
s∈S

z

(
∂r

∂s
, s

)
=

m∑
j=1

z

(
∂r

∂sj
, sj

)
=

m∑
j=1

z

(
sε1
1 · · · sεj−1

j−1

∂s
εj

j

∂sj
, sj

)
.

If εj = +1, we have

z

(
sε1
1 · · · sεj−1

j−1

∂s
εj

j

∂sj
, sj

)
= z

(
sε1
1 · · · sεj−1

j−1

∂sj

∂sj
, sj

)
= z

(
sε1
1 · · · sεj−1

j−1 , sj

)

= z
(
sε1
1 · · · sεj−1

j−1 , s
εj

j

)
and if εj = −1, we have

z

(
sε1
1 · · · sεj−1

j−1

∂s
εj

j

∂sj
, sj

)
= z

(
sε1
1 · · · sεj−1

j−1

∂s−1
j

∂sj
, sj

)
= z

(
sε1
1 · · · sεj−1

j−1 · −s−1
j , sj

)

= z
(
sε1
1 · · · sεj−1

j−1 , s
−1
j

)
− z

(
sε1
1 · · · sεj−1

j−1 , 1
)
− z

(
s−1

j , sj

)
= z

(
sε1
1 · · · sεj−1

j−1 , s
εj

j

)
from (∗) and the cocycle condition. �

Remark 2.4. The homomorphism c : R → Z naturally extend to a map c : F → Z

by virtue of the definition above. It satisfies c(xy) = c(x)+c(y)+z(x, y) for x, y ∈ F
(i.e. δc = −π∗z) (see the formula (25) of Meyer [27]).
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3. Signature of relations in mapping class groups

In this section we introduce the notion of a signature for relations in mapping
class groups of surfaces and calculate it for the relations in presentations due to
Gervais [16] and Luo [26].

Let Σg be a closed oriented surface of genus g and Mg the mapping class group
of Σg, namely the group of all isotopy classes of orientation-preserving diffeomor-
phisms of Σg. We follow the functional notation: for ϕ, ψ ∈ Mg, the symbol ϕψ
means that we apply ψ first and then ϕ. We denote by F the free group generated
by all isotopy classes S of simple closed curves on Σg: F = F (S). There is a natural
homomorphism � : F → Mg which sends (the isotopy class of) a simple closed
curve a on Σg to the right-handed Dehn twist ta along a. We often denote the
image �(W ) of a word W in generators S by W . In particular, �(a) = ta = a for
a simple closed curve a ∈ S. It is well known as a theorem of Dehn [9] that this
homomorphism � is surjective. We set R := Ker � and call each element of R a
relator in the generators S of Mg.

Gervais [16] gave an infinite presentation of Mg with generators S.

Theorem 3.1 (Gervais [16]). The kernel R of � is normally generated by the
following relators:

(I) all the braid relators T0, T1 and T20 ;
(II) all the chain relators C3 of length 3;
(III) all the lantern relators L.

If g ≥ 1, (II) and (III) can be replaced by
(IV) all the star relators E.

Luo [26] improved Gervais’ infinite presentation to show that all the relators
were essentially discovered by Dehn.

Theorem 3.2 (Luo [26]). The kernel R of � is normally generated by the following
relators:

(I) all the braid relators T0 and T1;
(II) all the chain relators C2 of length 2;
(III) all the lantern relators L.

We will give definitions of the relators exhibited in the two theorems above
together with their signature computations in the latter half of this section.

We now define the signature of a relator of Mg.

Definition 3.3. We set G = Mg, F = F , R = R, π = � and z = τg in Proposition
2.3, where τg : Mg × Mg → Z is the signature cocycle due to Meyer [27] (see
Appendix A). Then we get an explicit homomorphism cg : R → Z inducing the
evaluation H2(G) → Z. For a relator 
 ∈ R, we define Ig(
) := −cg(
) − s(
)
and call it the signature of 
, where s(
) is the total exponent of separating simple
closed curves contained in the word 
. For example, the signature Ig(A) of the
identity relator A := a ∈ R, where a is a null-homotopic simple closed curve on Σg,
is equal to −1.

A compact connected oriented surface of genus g with n boundary components
is denoted by Σg,n. For (isotopy classes of) simple closed curves a, b, we denote
their geometric intersection number by i(a, b).

Let 
, 
′ ∈ R be relators. We express 
 as a word in generators S: 
 = cε11 · · · cεm
m ,

where c1, . . . , cm are simple closed curves on Σg and ε1, . . . , εm = ±1. If there
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exists an orientation-preserving homeomorphism h : Σg → Σg such that 
′ =
h(c1)ε1 · · ·h(cm)εm , we call that 
 and 
′ are topologically equivalent or have the
same topological type. We call 
 a positive relator if ε1 = · · · = εm = +1.

Definition 3.4 (Smith [37]). Let 
 ∈ R be a relator and ς ∈ R a (positive)
relator. Suppose that there exist (positive) words U, V,W1,W2 ∈ F such that

 = W−1

1 W2 and ς = UW1V . Then we can construct a new (positive) relator
ς ′ = ςV −1
V = UW2V in R. This operation is called a 
-substitution to ς. When
ς ′ is obtained by applying a sequence of 
±1-substitutions to ς, we denote it by
ς ≡ ς ′(mod 
).

Lemma 3.5. The signature Ig for relators of Mg has the following properties:
(1) Ig(
−1) = −Ig(
) for 
 ∈ R;
(2) Ig(W
W−1) = Ig(
) for 
 ∈ R and W ∈ F ;
(3) Ig(
1
2) = Ig(
1) + Ig(
2) for 
1, 
2 ∈ R;
(4) Ig(ς ′) = Ig(ς) + Ig(
) if ς ′ is obtained by applying a 
-substitution to ς,

where 
, ς, ς ′ ∈ R;
(5) Ig(
) = Ig(
′) if 
 ∈ R and 
′ ∈ R are topologically equivalent.

Proof. (1)–(3): It is clear that s(
−1) = −s(
), s(W
W−1) = s(
) and s(
1
2) =
s(
1) + s(
2) for 
, 
1, 
2 ∈ R and W ∈ F . It is trivial that cg(
−1) = −cg(
) and
cg(
1
2) = cg(
1) + cg(
2) for 
, 
1, 
2 ∈ R because cg is a homomorphism on R.
A proof of cg(W
W−1) = cg(
) for 
 ∈ R and W ∈ F are found in Meyer [27], p.
253. (4): We use the notation of Definition 3.4 above. Then we have

Ig(ς ′) = Ig(ς) + Ig(V −1
V ) = Ig(ς) + Ig(
)

from (2) and (3). We postpone the proof of (5) until the next subsection. �

3.1. Braid relation. Let a, b be simple closed curves on Σg and put c = tb(a).
The relation

tc = tbtat
−1
b

in Mg is called the braid relation. If i(a, b) = n, we put Tn = T (a, b) := bab−1c−1 ∈
R. Especially, we denote T2 by T20 if the algebraic intersection number of a and b
is equal to 0.

Proposition 3.6. The signature Ig(Tn) of a braid relator Tn (n = 0, 1, 2, . . . ) is
equal to 0.

Proof. We first note that cg : R → Z can naturally be extended to cg : F → Z and
satisfies cg(uv) = cg(u) + cg(v) + τg(u, v) for u, v ∈ F (see Remark 2.4). Then we
have

cg(Tn) = cg(bab−1c−1) = cg(bab−1) + cg(c−1) + τg(bab−1, c−1)

= cg(a) − cg(c) + τg(c, c−1)
= 0 − 0 + 0 = 0

(cf. Meyer [27], p. 253). Hence we have Ig(Tn) = −cg(Tn)−s(Tn) = −0−0 = 0. �

Proof of Lemma 3.5 (5). We express 
 as a word in generators S: 
 = cε11 · · · cεm
m ,

where c1, . . . , cm are simple closed curves on Σg and ε1, . . . , εm = ±1. There
exists an orientation-preserving homeomorphism h : Σg → Σg such that 
′ =
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h(c1)ε1 · · ·h(cm)εm . Choose a word W ∈ F such that �(W ) = h. Applying T−1
n -

substitutions to each h(ci), we have h(ci) ≡WciW
−1 (mod Tn). Hence we get

Ig(
′) = Ig(h(c1)ε1 · · ·h(cm)εm) = Ig(Wcε11 · · · cεm
m W−1) = Ig(
)

from (2), (4) and Proposition 3.6. �

Remark 3.7. (1) For each n = 0, 1, 2, . . . , the topological type of Tn need not be
unique. T1 has a unique topological type because both a and b must be non-
separating.

(2) If i(a, b) = 1, we also have the braid relation tb = tatct
−1
a . This rela-

tion together with the original relation tc = tbtat
−1
b yields Artin’s relation tb =

tatbtat
−1
b t−1

a . If we put TA := abab−1a−1b−1, then we have Ig(TA) = −cg(TA) =
−2cg(T1) = 0.

3.2. Chain relation.

Definition 3.8 (cf. Johnson [21], Wajnryb [44]). An ordered n-tuple (c1, . . . , cn)
of simple closed curves on Σg is called a chain of length n if it satisfies the next
conditions:

(i) ci and ci+1 intersect transversely at one point (i = 1, . . . , n− 1);
(ii) ci ∩ cj = ∅ if |i− j| > 1.

When the length n is even, a regular neighborhood of a chain (c1, . . . , cn) is a
subsurface of Σg which is of genus h = n/2 and has one boundary component. We
denote a simple closed curve parallel to the boundary by d. The relation

td = (tc1 · · · tc2h
)4h+2

is called the chain relation of length 2h, or the even chain relation (see Wajnryb
[44]). We put C2h := C(c1, . . . , c2h) = (c1 · · · c2h)4h+2d−1 ∈ R. The topological
type of C2h is unique.

Proposition 3.9. The signature Ig(C2h) of a chain relator C2h of length 2h is
equal to −4h(h+ 1) + 1.

Proof. From direct computations of the signature cocycle, we have

cg(C2h) = cg((c1 · · · c2h)4h+2) − c(d) + τg(d, d−1)

= (2h+ 1)cg((c1 · · · c2h)2) +
2h−1∑
i=1

τg((c1 · · · c2h)2, (c1 · · · c2h)2i)

= (2h+ 1)(2cg(c1 · · · c2h) + τg(c1 · · · c2h, c1 · · · c2h)) + 2h

= (2h+ 1)(0 + 2h) + 2h

= 4h(h+ 1).

See also [12] Lemma 3.5 for similar computations. This completes the proof because
s(C2h) = −1. �

When the length n is odd, a regular neighborhood of a chain (c1, . . . , cn) is a
subsurface of Σg which is of genus h = (n−1)/2 and has two boundary components.
We denote simple closed curves parallel to two boundary components by d1 and d2.
The relation

td1td2 = (tc1 · · · tc2h+1)
2h+2
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is called the chain relation of length 2h+ 1, or the odd chain relation (see Wajnryb
[44]). We put C2h+1 := C(c1, . . . , c2h+1) = (c1 · · · c2h+1)2h+2d−1

1 d−1
2 ∈ R. The

topological type of C2h+1 is not unique. We denote C2h+1 also by C2h+1,I if both
d1 and d2 are non-separating, while we denote it by C2h+1,II if both d1 and d2 are
separating.

Proposition 3.10. The signature Ig(C2h+1) of a chain relator C2h+1 of length
2h+ 1 is equal to −2h(h+ 2). In particular, it does not depend on the topological
type of C2h+1.

Proof. If d1 and d2 are separating, then we have

Ig(C2h+1,II) = −cg(C2h+1,II) − s(C2h+1,II) = −2(h+ 1)2 − (−2)

= −2h(h+ 2)

from the formula (30) of Meyer [27].
If d1 and d2 are non-separating, we can compute the value with the help of a work

by Arakawa and Ashikaga [2] or by Morifuji [30] as follows. Choose a hyperelliptic
involution ι : Σg → Σg so that the chain (c1, . . . , c2h+1) is invariant under the action
of ι. Then the map td1td2 = (tc1 · · · tc2h+1)

2h+2 is the monodromy of a degeneration
of hyperelliptic curves, whose local signature is equal to (2h(g−h−1)−1)/(2g+1)−1
(see [2]). According to a theorem of Terasoma [42], the value φg(td1td2) of Meyer’s
function on td1td2 must be equal to −(2h(g − h − 1) − 1)/(2g + 1). On the other
hand, we have

φg(td1td2) = φg((tc1 · · · tc2h+1)
2h+2)

= (2h+ 2)φg(tc1 · · · tc2h+1) −
2h+1∑
i=1

τg(c1 · · · c2h+1, (c1 · · · c2h+1)i)

=
g + 1
2g + 1

· (2h+ 1)(2h+ 2) −
2h+1∑
i=1

τg(c1 · · · c2h+1, (c1 · · · c2h+1)i)

from direct computations. Hence we conclude that
2h+1∑
i=1

τg(c1 · · · c2h+1, (c1 · · · c2h+1)i) = 2h2 + 4h+ 1.

As a result, we obtain

cg(C2h+1,I) = cg((c1 · · · c2h+1)2h+2d−1
1 d−1

2 )

= cg((c1 · · · c2h+1)2h+2) − cg(d1) − cg(d2) − τg(d1, d2)

= (2h+ 2)cg(c1 · · · c2h+1)

+
2h+1∑
i=1

τg(c1 · · · c2h+1, (c1 · · · c2h+1)i) − 0 − 0 − 1

= (2h+ 2) · 0 + (2h2 + 4h+ 1) − 1

= 2h(h+ 2)

and then

Ig(C2h+1,I) = −cg(C2h+1,I) − s(C2h+1,I) = −2h(h+ 2) − 0 = −2h(h+ 2).

We have thus proved the proposition. �
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Remark 3.11. T. Morifuji kindly told the authors that the value φg(td1td2) can
directly be computed by using a method similar to one developed in his paper (see
[30], Remark 2.5 and Example 2.6).

3.3. Lantern relation. Let a and b be simple closed curves on Σg with i(a, b) = 2
and algebraic intersection number 0. We orient a and b locally on a neighborhood
of each intersection point p ∈ a∩ b such that the intersection number (a · b)p at p is
+1. Resolving all intersection points according to the local orientations, we obtain
a new simple closed curve c. A regular neighborhood of a∪ b, which can be chosen
to include c, is a genus-0 subsurface Σ of Σg with 4 boundary components. We
denote simple closed curves parallel to 4 boundary components of Σ by d1, d2, d3

and d4. The relation

tatbtc = td1td2td3td4

is called the lantern relation, which was discovered by Dehn and rediscovered by
Johnson [21]. We put

L := L(a, b) = abcd−1
1 d−1

2 d−1
3 d−1

4 ∈ R.
The topological type of L is not unique. We denote L also by the following symbols
according to the place where L sits in Σg:
LI if all of d1, d2, d3 and d4 are non-separating and Σg − Σ is connected;
LII if one of d1, d2, d3 and d4 is separating and the rest are non-separating;
LIII if all of d1, d2, d3 and d4 are non-separating and Σg − Σ is not connected;
LIV if two of d1, d2, d3 and d4 are separating and the rest are non-separating;
LV if all of d1, d2, d3 and d4 are separating.

Proposition 3.12. The signature Ig(L) of a lantern relator L is equal to +1. In
particular, it does not depend on the topological type of L.

Proof. From the definition of the map cg, we have

cg(L) = τg(a, b) + τg(ab, c) + τg(abc, d−1
1 ) + τg(abcd−1

1 , d−1
2 )

+ τg(abcd−1
1 d−1

2 , d−1
3 ) + τg(d4, d

−1
4 ),

where the last term τg(d4, d
−1
4 ) is obviously equal to 0. Carrying out explicit com-

putation of τg, we obtain the following table:

type τg(a, b) τg(ab, c) τg(abc, d−1
1 ) τg(abcd−1

1 , d−1
2 ) τg(abcd−1

1 d−1
2 , d−1

3 )
LI 0 0 −1 0 0
LII 0 +1 −1 0 0
LIII 0 0 −1 0 −1
LIV 0 +1 −1 0 0
LV 0 0 0 0 0

Thus we have cg(LI) = −1, cg(LIII) = −2 and cg(LII) = cg(LIV) = cg(LV) = 0.
It is easy to see that s(LI) = 0, s(LIII) = +1 and cg(LII) = cg(LIV) = cg(LV) = −1.
Therefore we have Ig(L) = +1 in each case L = LI, LII, LIII, LIV, LV. �
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3.4. Star relation. Let a1, a2, a3 and b be simple closed curves on Σg with i(ai, aj)
= 0 (i �= j) and i(ai, b) = 1 (i = 1, 2, 3). A regular neighborhood of a1∪a2∪a3∪b is
a genus-1 subsurface of Σg with 3 boundary components. We denote simple closed
curves parallel to 3 boundary components by d1, d2 and d3. The relation

td1td2td3 = (ta1ta2ta3tb)
3

is called the star relation, which was discovered by Gervais [16]. We put E :=
(a1a2a3b)3d−1

1 d−1
2 d−1

3 ∈ R. The topological type of E is not unique. We denote E
also by the following symbols according to the place where E sits in Σg:
EI if all of d1, d2 and d3 are non-separating;
EII if one of d1, d2 and d3 is separating and the rest are non-separating;
EIII if all of d1, d2 and d3 are separating.

Proposition 3.13. The signature Ig(E) of a star relator E is equal to +5. In
particular, it does not depend on the topological type of E.

Proof. It follows from the proof of Theorem 1.6 of Gervais [16] that

EI ≡ C−1
3,I L

−1
I , EII ≡ C−1

3,IIL
−1
III , EIII ≡ C−1

3,IIL
−1
IV (mod T0, T1, T20).

We have values of cg on EI, EII and EIII.

cg(EI) = −cg(C3,I) − cg(LI) = −6 − (−1) = −5,
cg(EII) = −cg(C3,II) − cg(LIII) = −8 − (−2) = −6,
cg(EIII) = −cg(C3,II) − cg(LIV) = −8 − 0 = −8.

It is easy to see that s(EI) = 0, s(EII) = +1 and s(EIII) = +3. Therefore we have
Ig(E) = +5 in each case E = EI, EII, EIII. �

3.5. Hyperelliptic relation. The longest chain on Σg is a chain (c1, . . . , c2g+1)
of length 2g + 1. The relation

(tc1 · · · tc2gt
2
c2g+1

tc2g · · · tc1)
2 = 1

is called the hyperelliptic relation, which appeared in Birman-Hilden’s paper [5].
We put Hg = H(c1, . . . , c2g+1) := (c1 · · · c2gc

2
2g+1c2g · · · c1)2 ∈ R. The topological

type of Hg is unique.

Proposition 3.14. The signature Ig(Hg) of a hyperelliptic relator Hg is equal to
−4(g + 1).

Proof. We have

Ig(Hg) = −cg(Hg) − s(Hg) = −4(g + 1) − 0 = −4(g + 1)

from the formula (31) of Meyer [27]. �

The signature Ig(
) of a relator 
 ∈ R is equal to that of another relator with
the same topological type from Lemma 3.5. It seems to the authors that Ig(
) does
not depend even on the topological type of 
 for arbitrary relator 
 ∈ R because of
Theorems 3.1 and 3.2 and Propositions 3.6, 3.9, 3.10, 3.12 and 3.13.
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4. Non-holomorphic Lefschetz fibrations

In this section we exhibit some known examples of Lefschetz fibrations and com-
putations of their signatures using the function Ig : R → Z. We also give some new
examples of non-holomorphic Lefschetz fibrations over S2.

We first review the definition and basic properties of Lefschetz fibrations. More
details can be found in Matsumoto [29] and Gompf and Stipsicz [18].

Definition 4.1. Let M and B be compact oriented smooth manifolds of dimension
4 and 2, respectively. A smooth map f : M → B is called a Lefschetz fibration of
genus g if it satisfies the following conditions:

(i) ∂M = f−1(∂B);
(ii) f has finitely many critical values b1, . . . , bn ∈ intB and f is a smooth fiber

bundle with fiber Σg over B − {b1, . . . , bn};
(iii) for each i (1 ≤ i ≤ n), there exists a unique critical point pi in the singular

fiber Fi := f−1(bi) such that f is locally written as f(z1, z2) = z2
1 + z2

2 with respect
to some local complex coordinates around pi and bi which are compatible with
orientations of M and B;

(iv) no fibers contain a (−1)-sphere.

We take a small disk Di ⊂ B centered at each bi and set B0 := B − (intD1 ∪
· · · ∪ intDn) and M0 := f−1(B0). Since f0 := f |B0 : M0 → B0 is a smooth fiber
bundle with fiber Σg, we consider the homomorphism

χ : π1(B0) → π1(BDiff+Σg) ∼= π0(Diff+Σg) = Mg

induced by the classifying map B0 → BDiffΣg of f0. χ is called the holonomy homo-
morphism of f0 (cf. Morita [31]). If g ≥ 2, there exists a one-to-one correspondence
between the isomorphism classes of the bundle f0 and the conjugacy classes of the
homomorphism χ by virtue of a result of Earle and Eells [11]. Moreover, Mat-
sumoto [29] proved that if g ≥ 2, there exists a one-to-one correspondence between
the isomorphism classes of the Lefschetz fibration f : M → B and the conjugacy
classes of the homomorphism χ which sends each boundary curve to a right-handed
Dehn twist along an essential simple closed curve on Σg.

Suppose that the base B is the 2-sphere S2. Let γi (i = 1, . . . , n) denote the
loop consisting of ∂Di oriented clockwise and a path connecting a point on ∂Di to
the base point b0 ∈ intB. We choose these loops γ1, . . . , γn so that the composition
γ1 · · ·γn is null-homotopic on B0 and any two of them intersect only at b0. Thus
we obtain a presentation

π1(B0) = 〈γ1, . . . , γn|γ1 · · · γn = 1〉
of π1(B0). For each i, χ(γi) is known to be a right-handed Dehn twist tci along
some essential simple closed curve ci on Σg. Hence we have a positive relation

tc1 · · · tcn = χ(γ1 · · ·γn) = 1 ∈ Mg

or a positive relator c1 · · · cn ∈ R associated to the Lefschetz fibration f : M → S2.

Theorem 4.2. Let f : M → S2 be a Lefschetz fibration of genus g over S2 and
c1 · · · cn ∈ R a positive relator associated to f . Then the signature Sign(M) of the
total space M is equal to Ig(c1 · · · cn): namely

Sign(M) = Ig(c1 · · · cn).
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Proof. It is an immediate consequence of Meyer’s signature formula that Sign(M0)
= −cg(c1 · · · cn) because f0 : M0 → B0 is a fiber bundle over B0 with fiber Σg (see
Meyer [27], Satz 1). The signature Sign(f−1(Di)) of a fibered neighborhood of the
singular fiber Fi is equal to 0 (resp. −1) if ci is non-separating (resp. separating).
Hence we obtain

Sign(M) = −cg(c1 · · · cn) − s(c1 · · · cn) = Ig(c1 · · · cn)

from the Novikov additivity. �

Although the positive relator c1 · · · cn ∈ R actually depends on a choice of a loop
system (γ1, . . . , γn) on B0, its equivalence class modulo conjugations of all elements
c1, . . . , cn by a fixed element of F and elementary transformations

c1 · · · cici+1 · · · cn ∼ c1 · · · ci+1(ci)c−1
i+1

· · · cn,
c1 · · · cici+1 · · · cn ∼ c1 · · · (ci+1)cici · · · cn,

where (a)b = bab−1 and i = 1, . . . , n−1, is uniquely determined by the isomorphism
class of the Lefschetz fibration f : M → S2. Conversely, any positive relator 
 ∈ R
can be realized as a relator associated to some Lefschetz fibration over S2. It is
worth noting that (a)b = bab−1 is not in S but in F for a, b ∈ S. We think of (a)b

as the element tb(a) of S because of the braid relation ttb(a) = tbtat
−1
b .

Precisely speaking, the elementary transformation

c1 · · · cici+1 · · · cn ∼ c1 · · · (ci+1)cici · · · cn = c1 · · · tci(ci+1)ci · · · cn
is the composition of inserting a trivial relator c−1

i ci ∈ R and applying T (ci+1, ci)−1-
substitution.

Theorem 4.3. Let f : M → S2, f ′ : M ′ → S2 be Lefschetz fibrations of genus g
over S2 and ς, ς ′ ∈ R positive relators associated to f, f ′, respectively. Suppose that
a 
-substitution to ς yields ς ′ for some relator 
 ∈ R. Then we have

Sign(M ′) = Sign(M) + Ig(
).

Proof. Straightforward from Theorem 4.2 and Lemma 3.5. �

The two theorems above are generalized to those for Lefschetz fibrations over
closed surfaces of arbitrary genus. As a consequence, we conclude that signatures of
Lefschetz fibrations corresponding to relators obtained in §3 of [13] do not depend
on topological types of relators.

Notation 4.4. We denote the signature and the Euler characteristic of a compact
oriented smooth 4-manifold M by σ = Sign(M) and e, respectively. For an almost
complex closed 4-manifold M , we set χh := (σ + e)/4 (the holomorphic Euler
characteristic) and K2 := 3σ + 2e. We define relative numerical invariants χf :=
χh +g−1, K2

f := K2 +8(g−1) and the slope λf := K2
f/χf for a Lefschetz fibration

f : M → B of genus g over a closed surface B. It is easily seen that e = −4(g−1)+n
for a Lefschetz fibration f : M → S2 of genus g with n singular fibers.

4.1. Three hyperelliptic Lefschetz fibrations. We shall begin signature com-
putations with the following well-known Lefschetz fibrations.

Let (c1, . . . , c2g+1) be a chain of length 2g + 1 on Σg. Since a hyperelliptic
relator Hg = (c1 · · · c2gc

2
2g+1c2g · · · c1)2 of genus g is a positive relator, we obtain
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a Lefschetz fibration M1 → S2 of genus g corresponding to Hg. A chain rela-
tor C2g+1 = (c1 · · · c2g+1)2g+2d−1

1 d−1
2 of length 2g + 1 combined with two iden-

tity relators A(d1) = d1, A(d2) = d2 is a positive relator C2g+1A(d2)A(d1) =
(c1 · · · c2g+1)2g+2. A chain relator C2g = (c1 · · · c2g)4g+2d−1 of length 2g combined
with an identity relatorA(d) = d is a positive relator C2gA(d) = (c1 · · · c2g)4g+2. We
have Lefschetz fibrations M2→S2 and M3→S2 corresponding to C2g+1A(d2)A(d1)
and C2gA(d), respectively. By virtue of Theorem 4.2 and 4.3, signatures of M1,M2

and M3 are equal to Ig(Hg), Ig(C2g+1) + 2Ig(A) and Ig(C2g) + Ig(A), respectively.
Invariants of M1,M2 and M3 are calculated as in the following table:

4-manifold σ e χh K2

M1 −4(g + 1) 4(g + 2) 1 −4(g − 1)
M2 −2(g + 1)2 2(2g2 + g + 3) g(g − 1)/2 + 1 2(g − 1)(g − 3)
M3 −4g(g + 1) 4(2g2 + 1) g2 − g + 1 4(g − 1)(g − 2)

Each of M1,M2 and M3 admits a (−1)-section, then cannot be decomposed to
any non-trivial fiber sum and is a simply connected non-spin 4-manifold (cf. Stipsicz
[39], Theorem 1.3, Siebert and Tian [35], Proposition 3.2, and Stipsicz [40], Theorem
1.3). If g = 1, all of them are the 4-manifold E(1), which is CP 2�9CP

2
equipped

with an elliptic fibration. If g = 2, M1,M2 and M3 are CP 2�13CP
2
, E(2)�2CP

2

and H ′(1), respectively (see Gompf and Stipsicz [18] for notation) and are studied
minutely by Matsumoto [29] as Examples A, C and D. According to Ito [20], M1

can be obtained by splitting singular fibers of a certain holomorphic fibration fg :
Mg → S2 of genus g and is diffeomorphic to CP 2�(4g + 5)CP

2
for arbitrary genus

g.
A fiber sum of copies of M1,M2 and M3 are isomorphic to one of �FnM1,

M2�F (n − 1)M1 and �FnM3, where �F stands for the fiber sum. �FnM1 and
M2�F (n − 1)M1 are spin if and only if g is odd and n is even. �FnM3 is spin
if and only if n is even (see Nagami [32] and Stipsicz [40]).

The slope λf of these three fibrations and their fiber sums are equal to 4 − 4/g,
which is known as the lower bound of the slope of relatively minimal holomorphic
fibrations of curves of genus g on non-singular algebraic surfaces (see Xiao [45]).

Remark 4.5. The three Lefschetz fibrations above are all hyperelliptic in the sense
of [12]. Their signature can also be computed by using the local signature for
hyperelliptic fibrations (see [2], [3], [12], [35] and [36]).

4.2. Cadavid-Korkmaz’s examples. Matsumoto’s genus-2 Lefschetz fibration
(Example B of [29]) were generalized to that of arbitrary genus g independently by
Cadavid [7] and Korkmaz [25].

We have constructed a positive relator C2g+1A(d2)A(d1) = (c1 · · · c2g+1)2g+2 in
§4.1. If we put

Γ := (c1c2 · · · cg) · · · (c1c2c3)(c1c2)c1, ∆ := (c1c2 · · · c2g+1)Γ,

then we have Γ−1C2g+1A(d2)A(d1)Γ ≡ ∆2 (mod T0, T1). We can take certain
simple closed curves B0, B1, . . . , Bg to verify

∆ ≡ B0B1 · · ·Bg(cg · · · c2c1)2g+2 (mod T0, T1)

(see Korkmaz [25], Figure 2 and Theorem 2.4). Consider the chain relator Cg =
C(c1, . . . , cg) of length g and let c (resp. a, b) be simple closed curve(s) parallel to
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the boundary of a regular neighborhood of Cg in Σg when g is even (resp. odd).
Applying C−1

g -substitutions to B0B1 · · ·Bg(cg · · · c2c1)2g+2, we obtain

∆C−1
g ≡B0B1 · · ·Bgc (mod T0, T1) (g : even),

∆C−2
g ≡B0B1 · · ·Bga

2b2 (mod T0, T1) (g : odd).

Therefore we have a positive relator

CKg :=

{
(B0B1 · · ·Bgc)2 (g : even)
(B0B1 · · ·Bga

2b2)2 (g : odd)
∈ R

and the corresponding Lefschetz fibration MCK → S2 of genus g.
The signature of MCK is easily computed from signatures of chain relators by

virtue of Theorem 4.2 and 4.3:

Sign(MCK) =

{
Ig(C2g+1) + 2Ig(A) − 2Ig(Cg) (g : even),
Ig(C2g+1) + 2Ig(A) − 4Ig(Cg) (g : odd),

=

{
−4 (g : even),
−8 (g : odd).

Invariants of MCK are calculated as in the following table:

4-manifold σ e χh K2 λf

MCK (g : even) −4 8 − 2g 1 − g/2 4 − 4g 8(g − 1)/g
MCK (g : odd) −8 14 − 2g (3 − g)/2 4 − 4g 8(g − 1)/(g + 1)

The Lefschetz fibration MCK admits a (−1)-section and cannot be decomposed
to a non-trivial fiber sum. MCK is known to be diffeomorphic to Σg/2 × S2�4CP

2

(resp. Σ(g−1)/2 × S2�8CP
2
) if g is even (resp. odd) (see Matsumoto [29], Stipsicz

[40] and Korkmaz [25]). MCK → S2 is hyperelliptic if g is even while it neither is
it if g is odd.

4.3. A generalization of Fuller’s construction. Fuller gave an example of non-
hyperelliptic Lefschetz fibration of genus 3 (see Ozbagci [33] and Smith [37]). We
generalize his example to that of arbitrary genus g and show that some of them are
not isomorphic to any holomorphic Lefschetz fibration.

We construct an “odd subchain part” in a longer chain relator using braid rela-
tions and apply C-substitutions to it in order to destroy hyperellipticity.

We first need to show the following lemma.

Lemma 4.6. Let (c1, . . . , cn) be a chain of length n on Σg. Then we have the
following equivalence:

(c1c2 · · · cn)k+1 ≡ (c1c2 · · · ck)k+1(ck+1ck · · · c2c1)(ck+2ck+1 · · · c3c2)
· · · (cncn−1 · · · cn−k+1cn−k) (mod T0, T1)

for k = 1, . . . , n− 1.

Proof. Fix an integer k such that 1 ≤ k ≤ n− 1. We prove the next equivalence by
induction on i,

(c1c2 · · · cn)k+1 ≡ (c1c2 · · · ck)i(ck+1ck · · · ck−i+2)(ck+2ck+1 · · · ck−i+3)

· · · (cncn−1 · · · cn−i+1)(c1c2 · · · cn)k−i+1 (mod T0, T1)
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for i = 1, . . . , k + 1. It is trivial for i = 1. Suppose that it is verified for i. We use

(ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2) · · · (cncn−1 · · · cn−i) · cj
(∗) ≡ cj+k−n · (ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2) · · · (cncn−1 · · · cn−i)

(mod T0, T1)

for j = n− i+ 1, · · · , n (see Korkmaz [25], Lemma 2.1) to show

(ck+1ck · · · ck−i+2)(ck+2ck+1 · · · ck−i+3) · · · (cncn−1 · · · cn−i+1)c1c2 · · · cn
≡ c1c2 · · · ck−i(ck+1ck · · · ck−i+2)(ck+2ck+1 · · · ck−i+3) · · · (cncn−1 · · · cn−i+1)

· ck−i+1ck−i+2 · · · cn
≡ c1c2 · · · ck−i(ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2) · · · (cncn−1 · · · cn−i)

· cn−i+1cn−i+2 · · · cn
≡
(∗)

c1c2 · · · ck−i+1(ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2) · · · (cncn−1 · · · cn−i)

· cn−i+2cn−i+3 · · · cn
≡
(∗)

· · ·
≡
(∗)

c1c2 · · · ck(ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2) · · · (cncn−1 · · · cn−i)

(mod T0, T1).

Then we obtain

(c1c2 · · · cn)k+1 ≡ (c1c2 · · · ck)i+1(ck+1ck · · · ck−i+1)(ck+2ck+1 · · · ck−i+2)

· · · (cncn−1 · · · cn−i)(c1c2 · · · cn)k−i (mod T0, T1).

Thus we have proven the given equivalence. �

We have obtained positive relators C2g+1A(d2)A(d1) = (c1 · · · c2g+1)2g+2 and
C2gA(d) = (c1 · · · c2g)4g+2 in §4.1.

For h = 0, . . . , g − 1, we set n = 2g + 1, 2g, k = 2h+ 1 in Lemma 4.6. Then we
have

C2g+1A(d2)A(d1) ≡ (c1c2 · · · c2h+1)2h+2(c2h+2c2h+1 · · · c2c1)(c2h+3c2h+2 · · · c3c2)
· · · (c2g+1c2g · · · c2g−2h+1c2g−2h)(c1c2 · · · c2g+1)2g−2h,

C2gA(d) ≡ (c1c2 · · · c2h+1)2h+2(c2h+2c2h+1 · · · c2c1)(c2h+3c2h+2 · · · c3c2)
· · · (c2gc2g−1 · · · c2g−2hc2g−2h−1)(c1c2 · · · c2g)4g−2h

(mod T0, T1).

Applying C−1
2h+1-substitutions to words in right-hand sides, we get positive relators

F odd
h := dh,1dh,2(c2h+2c2h+1 · · · c2c1)(c2h+3c2h+2 · · · c3c2)

· · · (c2g+1c2g · · · c2g−2h+1c2g−2h)(c1c2 · · · c2g+1)2g−2h,

F even
h := dh,1dh,2(c2h+2c2h+1 · · · c2c1)(c2h+3c2h+2 · · · c3c2)

· · · (c2gc2g−1 · · · c2g−2hc2g−2h−1)(c1c2 · · · c2g)4g−2h,

where dh,1 and dh,2 are simple closed curves parallel to the boundary of a regular
neighborhood of the chain (c1, . . . , c2h+1).
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Let Modd
h and M even

h be Lefschetz fibrations of genus g over S2 corresponding to
positive relators F odd

h and F even
h , respectively. Signatures of Modd

h and M even
h are

easily computed from signatures of chain relators by virtue of Theorem 4.2 and 4.3:

Sign(Modd
h ) = Ig(C2g+1) + 2Ig(A) − Ig(C2h+1)

= −2(g + 1)2 + 2h(h+ 2),
Sign(M even

h ) = Ig(C2g) + Ig(A) − Ig(C2h+1)
= −4g(g + 1) + 2h(h+ 2).

Modd
h and M even

h are simply connected non-spin 4-manifolds. Other invariants
of them are calculated as in the following table:

4-manifold e λf

Modd
h 2(2g2 + g − 2h2 − 3h+ 3) 4(g2 − h2 − 1)/(g(g + 1) − h(h+ 1))

M even
h 2(4g2 − 2h2 − 3h+ 2) 4(2g2 − 2g − h2)/(2g2 − h(h+ 1))

Proposition 4.7. Lefschetz fibrations Modd
1 and M even

1 of genus 3, Lefschetz fi-
brations Modd

1 ,Modd
2 ,M even

1 and M even
2 of genus 4 and Lefschetz fibrations Modd

1 ,
Modd

2 ,Modd
3 ,M even

1 ,M even
2 and M even

3 of genus 5 are not isotopic to any holomor-
phic Lefschetz fibration over CP 1.

Proof. Lefschetz fibrations exhibited above are not hyperelliptic in the sense of
[12] because they should have fractional signature from the local signature for-
mula if they were hyperelliptic. If a non-hyperelliptic Lefschetz fibration is iso-
topic to a holomorphic fibration, the slope λf must be greater than or equal to
3 (resp. 24/7, 40/11) when g = 3 (resp. g = 4, 5) by virtue of theorems of
Konno [23], [24] and Chen [8]. On the other hand, the slope λf is equal to
14/5 and 11/4 for Modd

1 and M even
1 of genus 3, to 28/9, 22/7, 46/15 and 40/13

for Modd
1 ,Modd

2 ,M even
1 and M even

2 of genus 4 and 23/7, 10/3, 10/3, 13/4, 36/11 and
62/19 forModd

1 , Modd
2 ,Modd

3 ,M even
1 ,M even

2 and M even
3 of genus 5, respectively. This

completes the proof. �

For every g ≥ 3 and h = 0, . . . , g − 1, Modd
h and M even

h satisfies inequalities
4 − 4/g ≤ λf ≤ 4. The equality λf = 4 − 4/g holds if and only if h = g − 1, which
is the only case that Modd

h and M even
h are hyperelliptic (see Xiao [45] and Konno

[24]).

Remark 4.8. The Lefschetz fibration M even
1 → S2 of genus 3 is nothing but Fuller’s

original example. Smith [37] deduced an inequality equivalent to λf ≥ 3 from study
of divisors in moduli space and proved non-holomorphicity for this fibration.

4.4. Lefschetz fibrations coming from lantern relations. The lantern re-
lation is essentially non-hyperelliptic. We introduce new type examples of non-
hyperelliptic Lefschetz fibrations coming from lantern relations.

We first construct an example peculiar to genus 3. The idea of this example is
to construct a “lantern part” in a chain of length 7. We recall the positive relator
C7A(d2)A(d1) = (c1 · · · c7)8 on the genus-3 surface Σ3 obtained in §4.1.
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Lemma 4.9. For a chain (c1, . . . , c7) of length 7 on Σ3, we have the following
equivalence:

(c1c2c3c4c5c6c7)4

≡ c4 · c1c2c3c4c5 · c1c2c3c4c5c6 · c1c3c5c7 · c2c3c4c5c6c7 · c3c4c5c6c7 · c4
(mod T0, T1).

Proof. We apply T0- and T1-substitutions to the left-hand side repeatedly:

(c1c2c3c4c5c6c7)4

= c1c2c3c4c5c6c7 · c1c2c3c4c5c6c7 · c1c2c3c4c5c6c7 · c1c2c3c4c5c6c7
≡ c1c2c3c4c5c6 · c1c2c3c4c5 · c7c6c7 · c1c2c1 · c3c4c5c6c7 · c2c3c4c5c6c7
≡ c1c2c3c4c5 · c1c2c3c4 · c6c5c6 · c7c6 · c2c1 · c2c3c2 · c4c5c6c7 · c3c4c5c6c7
≡ c1c2c3c4c5 · c1 · c2c3c2 · c4c5c6 · c5c7 · c1c3 · c2c3c4 · c6c5c6 · c7 · c3c4c5c6c7
≡ c1c2 · c4c3c4 · c5 · c1c2c3c4c5c6 · c1c3c5c7 · c2c3c4c5c6c7 · c3 · c5c4c5 · c6c7
≡ c4 · c1c2c3c4c5 · c1c2c3c4c5c6 · c1c3c5c7 · c2c3c4c5c6c7 · c3c4c5c6c7 · c4

(modT0, T1).

Thus the lemma has been proven. �

The complement of an open regular neighborhood of the curves c1, c3, c5, c7 is
homeomorphic to two copies of Σ0,4. Take one of two components and draw simple
closed curves a, b and c on it as in §3.2 so that d1, d2, d3 and d4 coincide with
c1, c3, c5 and c7. Put L := abcc−1

1 c−1
3 c−1

5 c−1
7 ∈ R. Applying L-substitution to the

right-hand side of the equivalence in Lemma 4.9, we obtain a positive relator

U := c4 · c1 · · · c5 · c1 · · · c6 · abc · c2 · · · c7 · c3 · · · c7 · c4(c1 · · · c7)4

from the positive relator C7A(d2)A(d1) = (c1 · · · c7)8 and the corresponding Lef-
schetz fibration MU → S2 of genus 3.

We next treat both chain and lantern relations to construct another example.
The idea of this construction is to connect two chains using a lantern as a connector.

Lemma 4.10. Let (c1, . . . , cn) be a chain of length n on Σg. Then we have the
following equivalence:

(c1c2 · · · cn)k+1 ≡ (ck+1ck · · · c1)(ck+2ck+1 · · · c2) · · · (cncn−1 · · · cn−k)

· (cn−k+1cn−k+2 · · · cn)k+1 (mod T0, T1)

for k = 0, . . . , n− 1.

Proof. Similar to the proof of Lemma 4.6. �

Let (c1, . . . , c2g+1) be a chain of length 2g+1 on Σg andC2gA := (c1c2 · · · c2g)4g+2

and C̄2gA := (c2c3 · · · c2g+1)4g+2 positive relators defined as in §4.1. For h =
2, . . . , g − 2, we have constructed the positive relator

F even
h−1 := dh−1,1dh−1,2(c2hc2h−1 · · · c2c1)(c2h+1c2h · · · c3c2)

· · · (c2gc2g−1 · · · c2g−2h+2c2g−2h+1)(c1c2 · · · c2g)4g−2h+2
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from C2gA using C−1
2h−1-substitution in §4.3. We apply Lemma 4.10 to C̄2gA and

obtain the following equivalence:

C̄2gA ≡ (c2c3 · · · c2g+1)2g+2h+2(c2g−2h+1 · · · c3c2)(c2g−2h+2 · · · c4c3)
· · · (c2g+1 · · · c2h+3c2h+2)(c2h+3c2h+4 · · · c2g+1)2g−2h

(mod T0, T1).

Let dh,1, dh,2 be simple closed curves parallel to the boundary of a regular neigh-
borhood of the chain (c2h+3c2h+4 · · · c2g+1) of length 2g − 2h− 1. Put

C̄2g−2h−1 := (c2h+3c2h+4 · · · c2g+1)2g−2hd−1
h,1d

−1
h,2 ∈ R.

We apply C̄−1
2g−2h−1-substitution to the right-hand side of the equivalence above

and get a positive relator

F̄ even
g−h−1 := (c2c3 · · · c2g+1)2g+2h+2(c2g−2h+1 · · · c3c2)(c2g−2h+2 · · · c4c3)

· · · (c2g+1 · · · c2h+3c2h+2)dh,1dh,2.

Since dh−1,1, dh−1,2, dh,1 and dh,2 bound a subsurface of Σg homeomorphic to Σ0,4,
we can draw simple closed curves āh, b̄h and c̄h on it as in §3.2 so that

Lh := āhb̄hc̄hd
−1
h−1,1d

−1
h−1,2d

−1
h,1d

−1
h,2

is a lantern relator. Then we apply Lh-substitution to F̄ even
g−h−1F

even
h−1 and obtain a

positive relator

Vh := (c2c3 · · · c2g+1)2g+2h+2(c2g−2h+1 · · · c3c2)(c2g−2h+2 · · · c4c3)
· · · (c2g+1 · · · c2h+3c2h+2) · āhb̄hc̄h

· (c2hc2h−1 · · · c2c1)(c2h+1c2h · · · c3c2)
· · · (c2gc2g−1 · · · c2g−2h+2c2g−2h+1)(c1c2 · · · c2g)4g−2h+2

and the corresponding Lefschetz fibration MV
h → S2 of genus g.

Signatures of MU and MV
h are computed from signatures of chain and lantern

relators by virtue of Theorems 4.2 and 4.3:

Sign(MU ) = Ig(C7) + 2Ig(A) + Ig(L)
= −31,

Sign(MV
h ) = 2Ig(C2g) + 2Ig(A) − Ig(C2h−1) − Ig(C2g−2h−1) + Ig(L)

= −6g2 − 8g − 4gh+ 4h2 − 3.

The Euler characteristic and the slope of MU are 47 and 17/6, those of MV
2 of g = 4

are 255 and 31/10, and those of MV
2 of g = 5 are 393 and 151/46, respectively.

Thus we have the next proposition.

Proposition 4.11. The Lefschetz fibration MU → S2 of genus 3 and the Lefschetz
fibration MV

2 → S2 of genus 4 and 5 are not isotopic to any holomorphic Lefschetz
fibration over CP 1.

4.5. Concluding remarks. We can generalize methods in §4.3 and §4.4. For
example, it is possible to construct two or more “subchain parts” in a chain and
apply substitutions twice or more. It is also possible to carry out the construction
in §4.4 starting with two chains of length 2g + 1 instead of two chains of length
2g, or with n+ 1 chains and n lanterns instead of two chains and a lantern. As a
result, we have more non-holomorphic Lefschetz fibrations of genus 3, 4 and 5.



3196 H. ENDO AND S. NAGAMI

Many of the known examples of non-holomorphic Lefschetz fibrations are “non-
complex” because they do not satisfy the Noether inequality though minimal or
they cannot be found in the table of the Enriques-Kodaira classification of compact
complex surfaces. For example, Fintushel and Stern [14] gave an example of mini-
mal symplectic Lefschetz fibrations of genus g with K2 = g − 2 and χh = g + 1. A
computation of the Seiberg-Witten invariants shows the minimality of their exam-
ples.

All examples exhibited in §4 satisfy the slope inequality λf ≥ 4 − 4/g due to
Xiao [45], but some of them violate lower bounds of the slope for non-hyperelliptic
holomorphic fibrations of genus 3, 4 and 5. We began with a typical hyperelliptic
Lefschetz fibration, which is on the slope bound 4 − 4/g, and then destroyed its
hyperellipticity not to increase the slope so much. Thus we obtained examples of
non-holomorphic Lefschetz fibration without proving their minimality. However,
we could not achieve decreasing the slope of fibrations M1,M2 and M3 by the
substitution technique. All examples known to the authors have the slope greater
than or equal to 4 − 4/g. For example, the above example due to Fintushel and
Stern has the slope 9/2 − 5/g. We shall restate the following conjecture in terms
of the slope.

Conjecture 4.12 (Hain, cf. [1], Question 5.10). The slope inequality λf ≥ 4− 4/g
holds for every smooth Lefschetz fibration f : M → S2 of genus g ≥ 2 over the
2-sphere.

We do not know if our examples having slope greater than lower bounds given
by Konno [23], [24] and Chen [8] are holomorphic.

Appendix A. Two definitions of the signature cocycle

We review two definitions of the signature cocycle due to Meyer [27] and Turaev
[43] and prove that they coincide.

Meyer [27] discovered the signature cocycle and gave an explicit description as
follows.

Definition A.1 (Meyer [27]). Let A,B ∈ Sp(2g,Z) be symplectic matrices of rank
2g. We consider the subspace

VA,B := {(x, y) ∈ R
2g × R

2g|(A−1 − I2g)x+ (B − I2g)y = 0}
of the real vector space R2g × R2g, where I2g is the identity matrix. The bilinear
form 〈 , 〉A,B : (R2g × R2g) × (R2g × R2g) → R is defined by

〈(x1, y1), (x2, y2)〉A,B := (x1 + y1) · J(I2g −B)y2,

where · is the inner product of R2g and J is the matrix representing the multipli-
cation by

√−1 on R2g = Cg. It is easy to see that the restriction of 〈 , 〉A,B on
VA,B is symmetric. Then we define

τg(A,B) := sign(VA,B , 〈 , 〉A,B).

τg turns out to be a 2-cocycle of Sp(2g,Z) and called the signature cocycle of genus
g.

Turaev [43] rediscovered (independently) the cocycle above.
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Definition A.2 (Turaev [43]). Let A,B ∈ Sp(2g,Z) be symplectic matrices of
rank 2g. We consider the subspace

WA,B := (A− I2g)R2g ∩ (B − I2g)R2g

of the real vector space R2g. The bilinear form ( , )A,B : WA,B ×WA,B → R is
defined by

(ξ1, ξ2)A,B := (u + v + ξ1) · Jξ2,
where ξ1, ξ2 ∈ WA,B and u, v ∈ R2g such that ξ1 = Au− u = Bv − v. It is easy to
see that ( , )A,B is well defined and symmetric. We define

ϕg(A,B) := sign(WA,B , ( , )A,B).

ϕg turns out to be a 2-cocycle of Sp(2g,Z).

For A,B ∈ Sp(2g,Z), we define the linear map fA,B : VA,B →WA,B by

fA,B(x, y) := (B − I)y ((x, y) ∈ VA,B).

It is easy to check that this map is well defined.

Proposition A.3. For A,B ∈ Sp(2g,Z), the linear map fA,B : VA,B → WA,B is
surjective and satisfies

(fA,B(x, y), fA,B(x′, y′))A,B = −〈(x, y), (x′, y′)〉A,B ,

where (x, y), (x′, y′) ∈ VA,B. In particular, ϕg(A,B) = −τg(A,B).

Proof. Let ξ be an element ofWA,B. We take u, v ∈ R2g so that ξ = Au−u = Bv−v.
This equality means

(A−1 − I)(Au) + (B − I)v = 0
and implies (Au, u) ∈ VA,B. So we have fA,B(Au, u) = (B − I)v = ξ.

For (x, y), (x′, y′) ∈ VA,B , we have

(fA,B(x, y), fA,B(x′, y′))A,B = ((B − I)y, (B − I)y′)A,B

=((A− I)−1((B − I)y) + (B − I)−1((B − I)y) + (B − I)y) · J(B − I)y′

=((A− I)−1((A − I)(A−1x)) + y +By − y) · J(B − I)y′

=(A−1x+By) · J(B − I)y′ = −(A−1x+By) · (I −B)y′

= − (x+ y) · (I −B)y′

= − 〈(x, y), (x′, y′)〉A,B.

Because the kernel of fA,B is included in the annihilator of 〈 , 〉A,B, fA,B induces
a linear isomorphism

f̄A,B : (VA,B/Ker fA,B,−〈 , 〉A,B) → (WA,B, ( , )A,B)

which preserves bilinear forms. �

The mapping class group Mg of genus g acts on H1(Σg; Z) preserving the inter-
section form. If we fix a symplectic basis on H1(Σg; Z), we obtain a representation
Mg → Sp(2g,Z). We call the pull-back of the signature cocycle by this represen-
tation also the signature cocycle.

Remark A.4. The signature cocycle satisfies the condition (∗) in Proposition 2.3
(see Meyer [27] formula (9)).
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